Plan de gestion des risques d’inondation
Bassin Rhône-Méditerranée

Rapport environnemental
Suite à l'avis de l'Ae et consultations
Février 2022
Historique des versions du document

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Commentaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>V2</td>
<td>3 avril 2020</td>
<td>Rapport environnemental - COPIL 3</td>
</tr>
<tr>
<td>V3 (ND)</td>
<td>25 juin 2020</td>
<td>Rapport environnemental - COPIL 4 02/07/2020</td>
</tr>
<tr>
<td>V4 (ND)</td>
<td>23 juillet 2020</td>
<td>Rapport environnemental - Bureau Comité Bassin 04/09/2020</td>
</tr>
<tr>
<td>V initiale finale</td>
<td>7 septembre 2020</td>
<td>Rapport environnemental - Comité Bassin 25/09/2020</td>
</tr>
<tr>
<td>V5 (ND)</td>
<td>15 novembre 2021</td>
<td>Rapport environnemental - Prise en compte de l'avis de l'Autorité environnementale</td>
</tr>
<tr>
<td>V6</td>
<td>22 décembre 2021</td>
<td>Rapport environnemental - Prise en compte des consultations et des évolutions finales du PGRI</td>
</tr>
<tr>
<td>V7</td>
<td>7 février 2022</td>
<td>Rapport environnemental - Prise en compte des retours de la DREAL et nouvelles données PAPI</td>
</tr>
</tbody>
</table>

Affaire suivie par

Olivier CONTE - DREAL Auvergne-Rhône-Alpes, service Bassin Rhône Méditerranée Plan Rhône

Tél : 04.24.28.67.42 Fax :

Courriel : olivier.conte@developpement-durable.gouv.fr

Rédacteur

Groupement MTDA - BRL Ingénierie

Relecteur

Olivier CONTE - DREAL Auvergne-Rhône-Alpes - service Bassin Rhône Méditerranée Plan Rhône
PREAMBULE

Acteur public central de la protection des territoires face aux risques naturels et technologiques, la DREAL se doit de concevoir et de mettre en œuvre un Plan de Gestion des Risques d'Inondations (PGRI).

Le PGRI, mis en place sur chaque district hydrographique français, a vocation à mettre en œuvre efficacement, au plus près du terrain, les priorités d’action définies par l’État et les parties prenantes dans la stratégie nationale de gestion des risques d’inondation.

Il donne une vision stratégique des actions à conjuger pour réduire les conséquences négatives des inondations sur un territoire donné, en orchestrant à l’échelle de chaque grand bassin les différentes composantes de la gestion des risques d’inondations. A ce titre, il est opposable à l’administration et à ses décisions. Il a une portée directe sur les documents d’urbanisme et décisions administratives dans le domaine de l’eau.

Le PGRI est mis à jour régulièrement dans le cadre de la directive inondation qui constitue un processus d’amélioration continue sur 6 ans. Ainsi, la nouvelle version devait être approuvée initialement avant décembre 2021 pour assurer la cohérence de la politique de gestion des inondations et garantir une bonne articulation avec le SDAGE. Compte tenu de la situation particulière liée à la COVID19, le déroulement des étapes de concertation et de validation a été modifiée, leur échéance d’approbation est reportée à mars 2022.

Le document présenté pour le « mandat » 2022-2027 est ainsi issu d’une large concertation avec les territoires et les administrations directement concernés par la portée du document et le risque inondation. Pour ce faire des ateliers techniques ont notamment été réalisés.

Conformément à la réglementation relative à l’évaluation de certains plans et documents ayant une incidence sur l’environnement, le PGRI est soumis à une évaluation environnementale en vue de son approbation.

L’évaluation a été conduite dans la neutralité et l’indépendance, par un groupement MTDA-BRLi qui n’est pas impliqué dans les enjeux de la mise en œuvre du document. En outre, le maître d’ouvrage n’est pas lié aux conclusions et recommandations produites.
SOMMAIRE

1 - RÉSUMÉ NON TECHNIQUE..13

1.1 - Présentation de l'évaluation environnementale et du Plan de Gestion des Risques d'Inondation (PGRI)..13
 1.1.1 - Quel est le rôle de l'évaluation environnementale ?...13
 1.1.2 - Comment se présente le Plan de Gestion des Risques d'Inondation Rhône-Méditerranée et quel est son contenu ? ...14
 1.1.3 - Avec quels autres documents le PGRI doit-il composer ? ..16

1.2 - État initial de l'environnement - Quel est l'état actuel de l'environnement dans le bassin Rhône-Méditerranée et comment évolue-t-il ? ...19
 1.2.1 - Présentation générale du bassin Rhône-Méditerranée ..19
 1.2.2 - La ressource en eau ...20
 1.2.3 - Climat et changement climatique...21
 1.2.4 - Énergie ..22
 1.2.5 - Sols et sous-sols ..23
 1.2.6 - Qualité de l'air ..23
 1.2.7 - Milieux naturels et biodiversité ...24
 1.2.8 - Continuités écologiques ..24
 1.2.9 - Paysage et patrimoine ..25
 1.2.10 - Risques naturels et technologiques ...26
 1.2.11 - Santé humaine et nuisances ...26
 1.2.12 - Déchets ...27
 1.2.13 - Bilan des enjeux environnementaux ..28

1.3 - Les solutions de substitution et les motifs ayant conduit au choix du projet28
 1.3.1 - Quel contexte pour l'élaboration du PGRI Rhône-Méditerranée 2022-2027 ?28
 1.3.2 - Comment s'est déroulée la concertation ? ..29
 1.3.3 - Quels ont été les choix retenus ? ...29
 1.3.4 - Quelle prise en compte de l'évaluation environnementale ? ...30

1.4 - Analyse des effets de la mise en œuvre du PGRI sur l'environnement et la santé humaine et présentation des mesures d'évitement-réduction-compensation ..30
 1.4.1 - Quels seront les effets probables du PGRI sur l'environnement et la santé humaine ?30
 1.4.2 - Quelles sont les mesures pour éviter, réduire ou compenser les effets négatifs ?35

1.5 - Présentation du dispositif de suivi ...36

1.6 - Quelles sont les méthodes retenues pour élaborer les différentes parties du rapport environnemental ? ..36

2 - PRÉSENTATION DU PLAN DE GESTION DES RISQUES D'INONDATION ET ARTICULATION AVEC LES AUTRES PLANS, SCHÉMAS ET PROGRAMMES ..39

2.1 - L'évaluation environnementale stratégique ...39
 2.1.1 - Bases légales et réglementaires ...39
 2.1.2 - Objectifs de l'évaluation environnementale ..39
 2.1.3 - Structure du rapport environnemental ..40
 2.1.4 - Consultations du rapport environnemental ...42

2.2 - Le Plan de Gestion des Risques d'Inondation ..43
 2.2.1 - Objectifs du PGRI ...44
 2.2.2 - Architecture et contenu ..44
 2.2.3 - Les Grands Objectifs et dispositions du PGRI 2022-2027 ..45

2.3 - Articulation du PGRI avec les autres plans, schémas et programmes47
 2.3.1 - Approche méthodologique générale ..47
 2.3.2 - Cohérence avec les engagements internationaux, communautaires et nationaux47
 2.3.3 - Détermination des plans, schémas, programmes pertinents à prendre en compte au regard de la portée et du champ d'application du PGRI ..53

3 - ÉTAT INITIAL DE L'ENVIRONNEMENT ...76

3.1 - Présentation du territoire ..76
 3.1.1 - Situation géographique ..76
 3.1.2 - Démographie et occupation de l'espace ..78
3.2 - Analyse des thématiques de l'environnement ... 96
3.2.1 - Ressources en eau ... 96
3.2.2 - Climat et changement climatique ... 122
3.2.3 - Energie ... 133
3.2.4 - Sols et sous-sols .. 140
3.2.5 - Qualité de l'air ... 148
3.2.6 - Milieux naturels et biodiversité ... 154
3.2.7 - Continuités écologiques .. 179
3.2.8 - Paysage et patrimoine ... 186
3.2.9 - Risques naturels et technologiques ... 192
3.2.10 - Santé humaine et nuisances ... 209
3.2.11 - Déchets .. 215
3.3 - Synthèse de l'état initial de l'environnement .. 222
3.3.1 - Analyse des enjeux à l'égard des tendances d'évolution 222
3.3.2 - Hiérarchisation de sujets .. 224

4 - PRÉSENTATION DES SOLUTIONS DE SUBSTITUTION ET EXPOSÉ DES MOTIFS POUR LESQUELS LES OBJECTIFS DU PGRI ONT ÉTÉ RETENUES ... 226
4.1 - Contexte de l'élaboration du PGRI .. 226
4.1.1 - Application de la directive inondation et PGRI 2016-2021 226
4.1.2 - Deuxième cycle et préparation du PGRI 2021-2027 227
4.2 - Un travail itératif pour étudier les évolutions possibles du PGRI 2022-2027 ... 229
4.2.1 - Les questions importantes inondation sur le bassin Rhône-Méditerranée ... 229
4.2.2 - Ateliers et réunions de concertation .. 231
4.2.3 - Retours d'expérience sur la mise en œuvre du PGRI 2016-2021 233
4.3 - Les choix réalisés pour le PGRI 2022-2027 ... 235
4.3.1 - Une structure maintenue .. 235
4.3.2 - Des orientations d'évolution ciblées .. 236
4.3.3 - La mise en place d'un suivi du PGRI ... 237
4.4 - Prise en compte des enjeux environnementaux dans le projet 237

5 - ANALYSE DES EFFETS PROBABLES DE LA MISE EN ŒUVRE DU PGRI SUR L'ENVIRONNEMENT ET LA SANTÉ HUMAINE ... 238
5.1 - Analyse des effets probables de la mise en œuvre du PGRI par enjeu environnemental .. 238
5.1.1 - Ressources en eau .. 238
5.1.2 - Climat et changement climatique ... 242
5.1.3 - Energie .. 245
5.1.4 - Sols et sous-sols .. 245
5.1.5 - Qualité de l'air ... 248
5.1.6 - Milieux naturels et biodiversité .. 248
5.1.7 - Continuités écologiques ... 251
5.1.8 - Paysage et patrimoine ... 253
5.1.9 - Risques naturels et technologiques ... 255
5.1.10 - Santé humaine et nuisances ... 260
5.1.11 - Déchets ... 262
5.1.12 - Synthèse des effets du PGRI sur l'environnement 263

5.2 - Évaluation des incidences Natura 2000 .. 265
5.2.1 - Bases légales et réglementaires ... 265
5.2.2 - Approche méthodologique générale ... 265
5.2.3 - Résultat de l'évaluation des incidences Natura 2000 267
6 - PRÉSENTATION DES MESURES POUR ÉVITER, RÉDUIRE OU COMPenser LES EFFETS NÉGATIFS...277
6.1 - Bilan des incidences négatives sur l'environnement.............................277
6.2 - Mesures visant à limiter les conséquences dommageables sur l'environnement...279

7 - PRÉSENTATION DU DISPOSITIF DE SUIVI DE LA MISE EN ŒUVRE DU PGRI..........280
7.1 - Les objectifs du suivi...280
7.2 - Dispositif de suivi de l'incidence du PGRI sur l'environnement..................280
7.3 - Indicateurs proposés pour le suivi de l'incidence du PGRI sur l'environnement...281
7.3.1 -Indicateurs existants..281
7.3.2 -Proposition d'indicateurs complémentaires..283

8 - MÉTHODE D'ÉVALUATION ENVIRONNEMENTALE APPLIQUÉE AU PGRI 2022-2027.....284
8.1 - Principes généraux et organisation de l'étude...284
8.1.1 -Processus progressif et itératif...284
8.1.2 -Délimitation de l'aire d'étude et échelle d'analyse....................................284
8.2 - Élaboration de l'état initial de l'environnement..284
8.2.1 -Approche générale et principe de base..284
8.2.2 -Analyse par thématique environnementale..285
8.2.3 -Caractérisation des enjeux..286
8.3 - Évaluation des effets sur l'environnement..287
8.3.1 -Approche générale et principes de base..287
8.3.2 -Caractérisation des effets...287
8.4 - Mesures d'évitement-réduction-compensation..288
8.5 - Limites méthodologiques...288

9 - AVIS DES ÉTATS MEMBRES DE L'UNION EUROPÉENNE CONSULTÉS...............290

LISTE DES ANNEXES...291
Annexe I : Bibliographie..291
Annexe II : Effets du PGRI par disposition...294
Index des illustrations

Illustration 1 : Hiérarchisation des enjeux environnementaux (simplifiés) du rapport environnemental du PGRI 2022-2027
Illustration 2 : Bilan des effets probables cumulés de chaque GO sur les enjeux environnementaux
Illustration 3 : Schéma du bilan écologique de la démarche itérative et de l'application de la séquence ERC (adapté de : Ministère de la transition écologique et solidaire)
Illustration 4 : Schéma de réalisation du rapport environnemental
Illustration 5 : Représentation schématique de la grille multi-critères utilisée pour l'évaluation environnementale
Illustration 6 : Mise en œuvre de la directive inondation et positionnement du PGRI (source : PGRI 2016-2021)
Illustration 7 : Liens et opposabilité juridiques du PGRI avec les autres documents
Illustration 8 : Carte du district hydrographie Rhône et côtiers méditerranéens (source : État des lieux du bassin Rhône-Méditerranée, Agence de l'eau RMC, 2019)
Illustration 10 : Carte de la population municipale en 2016 par commune
Illustration 11 : Changement d'occupation des sols entre 2006 et 2018 (source : Corine Land Cover)
Illustration 12 : Carte de l'occupation du sol du bassin (CLC 2018)
Illustration 13 : Carte de l'évolution de l'occupation du sol sur le bassin entre 2006 et 2018
Illustration 16 : Les ports maritimes français du bassin RMed et leur tonnage en 2017 (en millions de tonnes) (source : SDES)
Illustration 17 : Carte de localisation des usages récréatifs liés aux milieux aquatiques sur le bassin RMed (source : Ecodelision, depuis l'état des lieux du bassin Rhône-Méditerranée, Agence de l'eau RMC, 2019)
bassin Rhône-Méditerranée, Agence de l'eau RMC, 2019)

Illustration 25 : Évolution des prélèvements d'eau par usage (hors usages hydroélectricité et refroidissement industriel).

Illustration 29 : Carte des zones sensibles (eutrophisation) et des zones vulnérables (nitrates) du bassin RMed.

Illustration 30 : Carte des zones de répartition des eaux du bassin.

Illustration 31 : Écart à la moyenne 1961-1990 (11,8 °C) de la température moyenne annuelle en France (Source : Météo France)

Illustration 32 : Évolution du bilan radiatif de la Terre en W/m² selon les différents scénarios du GIEC

Illustration 33 : Production d'électricité des régions AURA, BFC, Occitanie et PACA entre 2014 et 2017 (source données : MTES)

Illustration 34 : Carte des grands types de formations hydrogéologiques

Illustration 35 : Carte des zones biogéographiques françaises (source : INPN-MNHN)

Illustration 36 : Carte des ZNIEFF du bassin RM

Illustration 37 : Carte des espaces naturels soumis à une protection forte dans le bassin RM

Illustration 38 : Carte des sites Natura 2000 du bassin RM

Illustration 39 : Carte issue de l'étude EMEBIODIV identifiant les masses d'eau superficielle impactées par des pressions morphologiques avec les espaces à enjeux pour la biodiversité

Illustration 40 : Carte des réservoirs de biodiversité identifiés dans les SRADDET du bassin (d'après les SRCE)

Illustration 41 : Carte des classements en liste 1 et liste 2 des cours d'eau du bassin

Illustration 42 : Carte des Éléments de Protection du paysage sur le bassin

Illustration 43 : Carte du risque d'inondation sur le bassin

Illustration 44 : Carte des Territoires à Risques importants d'Inondation (TRI) du bassin RM

Illustration 45 : Programmes d'Actions de Prévention des Inondations (PAPI) dans le bassin au 1er juillet 2018 (source : Tableau de bord, Bilan à mi-parcours du SDAGE 2016-2021, AERMC)

Illustration 46 : Carte des ressources stratégiques pour l'AEP, travaux de délimitation des zones de sauvegarde (source : Tableau de bord, Bilan à mi-parcours du SDAGE 2016-2021, AERMC)

Illustration 47 : Calendrier d'élaboration du PGRI 2022-2027 (source : note présentant le calendrier et le
programme de travail du 2e cycle de la directive inondation)...230
Illustration 48 : Sujets abordés lors des commissions géographiques sur le thème de la restauration physique des
cours d'eau et de la réduction de l'aléa inondation..234
Illustration 49 : Continuité écologique longitudinale et latérale (source : DDT 19)..252
Illustration 50 : Bilan des effets cumulés probables de chaque GO sur les enjeux environnementaux........265

Index des tables
Tableau 1 : Architecture et contenu du rapport environnemental...41
Tableau 2 : Analyse de l'articulation du PGRI 2022-2027 avec la SNGRI...56
Tableau 3 : Détermination des plans, schémas et programmes retenus dans l'analyse...62
Tableau 4 : Analyse de la cohérence entre les PRFB et le PGRI 2022-2027...71
Tableau 5 : Analyse de la cohérence entre les DRA/SRA et le PGRI 2022-2027..73
Tableau 6 : État des lieux des principaux outils de gestion de l'eau sur le bassin RM (source : Gest'eau, consulté en juin 2020)...93
Tableau 7 : État écologique des masses d'eau de transition et côtières en 2019...105
Tableau 8 : État chimique des masses d'eau de transition et côtières en 2019...105
Tableau 9 : Pourcentage de masses d'eau superficielle en RNAOE 2027 selon les causes de risque (source : État
des lieux du bassin Rhône-Méditerranée, Agence de l'eau RMC, 2019)...120
Tableau 10 : Normales annuelles (1981-2010) à différentes stations météorologiques du bassin (Source : Météo
France)...123
Tableau 11 : Puissance hydroélectrique installée et potentiels...139
Tableau 12 : Objectifs de réduction fixés pour la France (exprimés en pourcentage par rapport à 2005)..............152
Tableau 13 : Carte des réservoirs biologiques du bassin RM..171
Tableau 14 : Types de réseaux (source : Le territoire et ses réseaux techniques face au risque d'inondation)...197
Tableau 15 : Communes couvertes par un PPRn (ou anciennement PER) (source : BD Gaspar, novembre 2019)..................206
Tableau 16 : Quantité de déchets ménagers et assimilés par région en kg/hab. en 2015 (Source : projets de
PRPGD des régions)...217
Tableau 17 : Synthèse de l'évolution probable des enjeux..223
Tableau 18 : Priorisation des enjeux environnementaux - PGRI..226
Tableau 19 : Masses d'eau intersectées par les sites Natura 2000 (source : BRLi, 2020 d'après référentiel masses
d'eau 2022 et données INPN)...269
Tableau 20 : Pressions sur les sites Natura 2000 par typologie (source : BRLi, 2020 d'après INPN)..................271
Tableau 21 : Synthèse des incidences sur les pressions qui s'exercent sur les sites Natura 2000.........................274
Acronymes utilisés

A	AAC : Aire d'Alimentation de Captage
	AEP : Alimentation en Eau Potable
	AERMC : Agence de l'Eau Rhône Méditerranée Corse
	AFB : Agence Française de la Biodiversité
	APPB : Arrêté Préfectoral de Protection de Biotope
	ARS : Agence Régionale de la Santé
	AURA : Auvergne-Rhône-Alpes
B	BFC : Bourgogne-Franche-Comté
	BTP : Bâtiments Travaux Publics
C	CGEDD : Conseil Général de l'Environnement et du Développement Durable
	CEN : Conservatoire des Espaces Naturels
	CLE : Commission Locale de l'Eau
D	DBO5 : Demande Biologique en Oxygène sur 5 jours
	DCE : Directive Cadre sur l'Eau
	DCO : Demande Chimique en Oxygène
	DCSMM : Directive Cadre Stratégie pour le Milieu Marin
	DERU : Directive relative au traitement des Eaux Résiduaires Urbaines
	DI : Directive Inondation
	DOCOB : Document d'Objectifs (Natura 2000)
	DSF : Document Stratégique de Façade
	DUP : Déclaration d'Utilité Publique
E	EAIP : Enveloppe Approchée des Inondations Potentielles
	EBF : Espace de Bon Fonctionnement
	EH : Équivalent Habitant
	EnR : Énergie Renouvelable
	ENS : Espace Naturel Sensible
	EPAGE : Établissement Public d'Aménagement et de Gestion de l'Eau
	EPCI : Établissement Public de Coopération Intercommunale
	EPR : Évaluation Préliminaire des Risques d'Inondation
	EPTB : Établissement Public Territorial de Bassin
	ERC : Évitement, Réduction, Compensation
	ETM : Éléments Trace Métallique
	EVP : Étude Volumes Prélèvables
F	FEADER : Fonds Européen Agricole pour le Développement Rural
	FEDER : Fonds Européen de Développement Régional
	FSE : Fonds Social Européen
G	GEMAPI : Gestion des Milieux Aquatiques et Prévention des Inondations
	GES : Gaz à Effet de Serre
	GIEC : Groupe d'experts Intergouvernemental sur l’Évolution du Climat
	GO : Grand Objectif
H	HAP : Hydrocarbures Aromatiques Polycycliques
Plan de Gestion des Risques d'Inondation 2022-2027 - Bassin Rhône-Méditerranée

ICPE : Installation Classée pour la Protection de l'Environnement
IOTA : Installations, Ouvrages, Travaux et Activités

ICLEMA : Loi sur l'Eau et les Milieux Aquatiques
LTECV : Loi de Transition Énergétique pour la Croissance Verte

MAE : Mesure Agro-Environnementale
MAPTAM : (Loi de) Modernisation de l'Action Publique Territoriale et d'Affirmation des Métropoles
MES : Matière En Suspension
METOX : Métaux Toxiques totaux
MTES : Ministère de la Transition Écologique et Solidaire
MW : Méga-Watt

NQE : Normes de Qualité Environnementale

OF : Orientation Fondamentale
OFB : Office Français de la Biodiversité
OMS : Organisation Mondiale de la Santé
ONERC : Observatoire National sur les Effets du Réchauffement Climatique
ORSEC : Organisation de la Réponse de Sécurité Civile

PACA : Provence-Alpes-Côte d'Azur
PAMM : Plan d'Action pour le Milieu Marin
PAOT : Plan d'Action Opérationnel Territorialisé
PAPI : Programme d'Actions pour la Prévention des Inondations
PCAET : Plan Climat Air Énergie Territorial
PDM : Programme de Mesures
PGRE : Plan de Gestion de la Ressource en Eau
PGRI : Plan de Gestion des Risques d'Inondation
PLAGEPOMI : Plan de Gestion des Poissons Migrateurs
PLU(i) : Plan Local de l'Urbanisme (intercommunal)
PN : Parc National
PNA : Plan d'Action National
PNR : Parc Naturel Régional
PPA : Plan de Protection de l'Atmosphère
PPE : Programmation Pluriannuelle de l'Énergie
PPD : Plan Particulier d'Intervention
PRPR(n ou t) : Plan de Prévention des Risques (naturels ou technologiques)
PRAD : Plan Régional de l'Agriculture Durable
PRPGD : Plan Régional de Prévention et de Gestion des Déchets
PRSE : Plan Régional Santé Environnement
PTGE : Projet de Territoire pour la Gestion de l'Eau
SAGE : Schéma d'Aménagement et de Gestion des Eaux
SAU : Surface Agricole Utile
SCoT : Schéma de Cohérence Territoriale
SDAGE : Schéma Directeur d'Aménagement et de Gestion des Eaux
SDPC : Schéma Directeur de Prévision des Crues
SLGRI : Stratégie Locale de Gestion du Risque Inondation
SNGRI : Stratégie Nationale de Gestion du Risque Inondation
SNML : Stratégie Nationale pour la Mer et le Littoral
SOCLE : Stratégie d'Organisation des Compétences Locales de l'Eau
SPC : Service de Prévision des Crues
SPR : Sites Patrimoniaux Remarquables
SRADDDET : Schéma Régional d'Aménagement, de Développement Durable et d'Égalité des Territoires
SRC : Schéma Régional des Carrières
SRCE : Schéma Régional de Cohérence Écologique
SMVM : Schéma de Mise en Valeur de la Mer
SNBC : Stratégie Nationale Bas Carbone
STEU : Station de Traitement des Eaux Usées

T
Tep : Tonne équivalent pétrole
TRI : Territoire à Risque important d'Inondation
TVB : Trame Verte et Bleue
TWh : TeraWatt heure

U
UP : Unité de Présentation
1 - Résumé non technique

L’objectif est d’exposer, de manière synthétique et accessible, le contenu du rapport environnemental et la façon dont il est construit. Le résumé non technique répond successivement à ces principales questions :

- Quel est le rôle de l’évaluation environnementale ?
- Comment se présente le PGRI Rhône-Méditerranée ?
- Avec quels documents le PGRI doit composer ?
- Quel est l’état actuel du territoire ?
- Quels sont les motifs qui ont conduit au choix du projet ?
- Quels sont ses effets probables sur l’environnement et la santé humaine et quels sont les mesures mises en œuvre pour éviter, réduire ou compenser les effets potentiellement négatifs ?
- Quels sont les indicateurs pour suivre les effets du PGRI sur l’environnement ?
- Et quelles sont les méthodes retenues pour élaborer les différentes parties de l’évaluation environnementale ?

1.1 - Présentation de l'évaluation environnementale et du Plan de Gestion des Risques d'Inondation (PGRI)

1.1.1 - Quel est le rôle de l’évaluation environnementale ?

Le PGRI est un document stratégique dont la mise en œuvre présente des effets sur l’environnement. A ce titre, conformément à la réglementation européenne et nationale, un rapport environnemental doit être réalisé et accompagnier le schéma, dans le but de lever les incertitudes et d’accompagner la démarche.

Ses objectifs ne sont donc pas seulement réglementaires mais visent surtout à :

- favoriser une prise de décision compatible avec les objectifs de protection de l’environnement ;
- appréhender les impacts environnementaux du plan et assurer leur prise en compte et leur suivi.

Le contenu du rapport environnemental est encadré par l’article R.122-20 modifié du Code de l’Environnement, à savoir :

- la présentation générale du plan (objectifs, contenu, articulation avec les autres documents s’appliquant déjà sur le territoire) ;
- la description de l’état initial de l’environnement, les perspectives d’évolution de ce territoire et les principaux enjeux de la zone au regard de l’objet du document ;
- l’exposé des solutions de substitution raisonnables ayant été étudiées et les motifs pour lesquels le projet de PGRI a été finalement retenu ;
- l’analyse des effets du schéma sur les différentes thématiques environnementales et l’évaluation des incidences Natura 20001 ;
- la présentation des mesures prises pour éviter, réduire ou compenser les effets potentiellement négatifs

1 Territoires délimités sur la base d'une réglementation européenne et qui présentent des enjeux de biodiversité particulièrement forts
• la définition des critères, indicateurs et modalités permettant le suivi des effets du PGRI sur l'environnement lors de sa mise en œuvre ;
• la présentation de la méthodologie employée pour la réalisation du rapport environnemental ;
• le résumé non technique du rapport environnemental.

1.1.2 - Comment se présente le Plan de Gestion des Risques d'Inondation Rhône-Méditerranée et quel est son contenu ?

1.1.2.a - Présentation et objectifs

• les orientations fondamentales et dispositions présentées dans le Schéma Directeur d'Aménagement et de Gestion des Eaux (SDAGE) concernant la prévention des inondations au regard de la gestion équilibré et durable de la ressource en eau ;
• les dispositions concernant la surveillance, la prévision et l'information sur les phénomènes d'inondation, qui comprennent notamment le schéma directeur de prévision des crues ;
• les dispositions pour la réduction de la vulnérabilité des territoires face aux risques d'inondation ;
• des dispositions concernant l'information préventive, l'éducation, la résilience et la conscience du risque.

Son élaboration s'appuie notamment sur l'Évaluation Préliminaire des Risques d'Inondation (EPRI), dont l'addendum a été réalisée en 2018 en vue de ce deuxième cycle, ainsi que sur les retours d'expérience de la mise en œuvre du PGRI précédent.

Un premier PGRI Rhône-Méditerranée a été mis en œuvre sur la période 2016-2021.

1.1.2.b - Contenu

Le PGRI est constitué de deux volumes :

• le volume 1 présente les objectifs et les dispositions applicables à l'ensemble du bassin Rhône-Méditerranée ;
• le volume 2 est constitué des propositions et des objectifs détaillées par TRI.

Afin d'atteindre les objectifs fixés, cinq Grands Objectifs (GO) sont proposés, déclinés en 48 dispositions, qui traitent des grands enjeux de la gestion des risques d'inondation sur le bassin. La structuration du PGRI 2016-2021 est conservée, tout en actualisant leur contenu en fonction de l'évolution des enjeux du bassin et des
Plan de Gestion des Risques d'Inondation 2022-2027 | Bassin Rhône-Méditerranée

connaissances, des consultations et retours d'expérience, et des modifications du contexte (règlementation, stratégies nationales, etc.).

Grand Objectif 1 - Mieux prendre en compte le risque dans l’aménagement et maîtriser le coût des dommages liés à l’inondation

La prévention des risques d'inondation relève d'enjeux humains et financiers importants. En effet, de nombreuses secteurs urbanisés et d'activités économiques se trouvent en zone inondable sur le bassin, et une grande majorité de ces biens n'est pas conçue pour résister aux inondations.

Pourtant, il est possible de limiter les conséquences négatives d'une crue ou d'une submersion marine en prenant des mesures de réduction de la vulnérabilité : réduire le coût des dommages, minimiser les dysfonctionnements, favoriser le redémarrage de l’activité après une inondation, etc. La prévention la plus efficace pour limiter les dommages liés aux inondations reste d’éviter l’urbanisation en zone inondable. Dans cet objectif, le GO1 du PGRI développe trois volets :

- l'amélioration de la connaissance des enjeux du territoire et de leur vulnérabilité ;
- la réduction de la vulnérabilité des territoires exposés ;
- la prise en compte du risque d'inondation dans l'aménagement du territoire.

Grand Objectif 2 - Augmenter la sécurité des populations exposées aux inondations en tenant compte du fonctionnement naturel des milieux aquatiques

Le bon fonctionnement des milieux naturels peut fortement contribuer à la réduction des risques d'inondation. Ainsi, une synergie peut être recherchée entre les objectifs de gestion des risques d'inondation et de submersion marine avec les objectifs environnementaux de la directive cadre sur l'eau (traduits notamment dans le SDAGE).

De manière générale, l’optimisation des bénéfices hydrauliques et environnementaux est à rechercher dans l’étude de chacun des scénarios. Des actions telles que la reconquête de zones humides, de corridors biologiques, d’espaces de bon fonctionnement des cours d’eau visent la prévention des inondations tout en contribuant à l’atteinte du bon état des eaux. En complément, il convient de s’assurer que la réalisation d’ouvrages de protection ne remet pas en cause l’objectif de non dégradation de l’état des masses d’eau. Aussi, le PGRI propose 15 dispositions visant :

- l'action sur les capacités d'écoulement ;
- la prise en compte des risques torrentiels ;
- la prise en compte de l'érosion côtière du littoral ;
- la bonne performance des ouvrages de protection.

A noter que les dispositions formant les trois premiers objectifs décrits ci-dessus constituent également l'Orientations Fondamentale 8 du SDAGE Rhône-Méditerranée 2022-2027.

Grand Objectif 3 - Améliorer la résilience des territoires exposés

Dès lors que les inondations sont inévitables, la capacité des territoires à s’organiser pour gérer les crises et
rebondir après un événement concoure à réduire les impacts négatifs de cet événement naturel. Cette capacité des territoires à s’organiser passe dans un premier temps par la surveillance, la prévision et la vigilance des phénomènes d’inondation (3 dispositions).

Dans un deuxième temps, la réponse aux situations d’urgence exige la mobilisation de tous les moyens publics et privés et leur coordination efficace par une direction unique afin de faire face aux catastrophes naturelles. Cela exige également un bon fonctionnement des ouvrages de protection, des réseaux d'eau (eau potable et eaux usées) et des systèmes d'évacuation des eaux (8 dispositions).

Enfin, la population doit quant à elle être informée de l’existence d’un risque, de ses possibles conséquences, et des mesures à prendre pour s’en prémunir : information préventive et culture du risque (3 dispositions).

Grand Objectif 4 - Organiser les acteurs et les compétences

La gestion des risques d’inondation nécessite une bonne articulation avec les politiques d’aménagement du territoire, tout en s’assurant de la bonne gestion des milieux aquatiques. La confrontation des différentes politiques publiques requière donc une gouvernance spécifique, afin de définir avec les nombreux acteurs concernés (collectivités territoriales, acteurs socio-économiques, représentants de la société civile et services de l’État) les objectifs communs à atteindre.

En outre, la gestion des risques d’inondation souffre encore d’un manque de maîtres d’ouvrages pour porter les études et travaux, avec notamment un retard accumulé depuis des années sur l’entretien et la restauration des ouvrages de protection. Enfin, la mise en œuvre du PGRI et des stratégies locales doit être coordonnée avec l'ensemble des acteurs de l'eau (SDAGE et schéma d'aménagement et de gestion des eaux, stratégies locales, contrats de milieux et de bassin versant, programmes d'actions de prévention des inondations, etc.).

Face à ces enjeux le PGRI vise à renforcer la gouvernance locale sur la gestion des risques d’inondation à l’interface entre acteurs de l’eau et acteurs de l’aménagement du territoire. Il s'agit donc, grâce à 7 dispositions, de :

- favoriser la synergie entre les différentes politiques publiques ;
- garantir un cadre de performance pour la gestion des ouvrages de protection.

Grand Objectif 5 - Développer la connaissance sur les phénomènes et les risques d'inondation

Dans le domaine de la prévention des inondations, comme dans beaucoup d'autres, la connaissance est un préalable à toutes actions. Le développement de la connaissance sur les inondations permet de mieux définir le choix des actions de prévention des inondations à mobiliser, de mieux saisir les opportunités de développement en dehors des zones inondables et d’aider à une prise de conscience du risque chez les populations exposées. En parallèle, la valorisation et le partage de la connaissance constitue un enjeu majeur. Ainsi, les 6 dispositions du GO5 visent à :

- développer la connaissance sur les risques d'inondation ;
- améliorer le partage de la connaissance sur la vulnérabilité du territoire, actuelle et future.

1.1.3 - Avec quels autres documents le PGRI doit-il composer ?

Le Plan de Gestion des Risques d'Inondation s’inscrit au sein d’un ensemble de textes et de documents
préexistants qui définissent la stratégie et les objectifs en termes de gestion des risques d'inondation et, plus généralement, des ressources en eau, des milieux naturels, des activités agricoles, de l'occupation du sol, de l'énergie, etc.

Ainsi, afin de maintenir la cohérence de cet ensemble, un des objectifs du rapport environnemental est d’analyser la cohérence du PGRI avec ces documents et textes réglementaires, et de réajuster le scénario retenu en conséquence si nécessaire. Cela permet de vérifier que le PGRI n'aille pas à l'encontre d'un objectif national ou local relatif aux différents enjeux territoriaux.

Concernant le PGRI, la réglementation renseigne sur plusieurs documents avec lesquels il doit s’articuler. Il s’agit :

- de la loi, et notamment les textes qui régissent le plan ;
- de la Stratégie Nationale de Gestion des Risques d'Inondation (SNGRI) et des stratégies locales (SLGRI) ;
- du Schéma Directeur d'Aménagement et de Gestion des Eaux (SDAGE) ;
- du Document Stratégique de Façade (DSF) intégrant le Plan d'Actions pour le Milieu Marin (PAMM) ;
- du dispositif ORSEC (Organisation de la Réponse de SÉcurité Civile) ;
- du Schéma Directeur de Prévision des Crues (SDPC) ;
- des Schémas Régionaux d'Aménagement, de Développement Durable et d’Égalité des Territoires (SRADDET) ;
- des documents d'urbanisme (Schémas de Cohérence Territorial, Plans Locaux d'Urbanisme et Cartes Communales) ;
- des décisions administratives prises dans le domaine de l'eau, notamment les Plans de Prévention des Risques d'inondation (PPRi).

Les rapports entre ces documents peuvent être la conformité (soit le respect strict), la compatibilité (soit ne pas être contraire) ou la prise en compte. Ils peuvent être ascendants (le PGRI doit être conforme ou compatible) ou descendants (le document en question doit être compatible au PGRI).

1.1.3.a - La Stratégie Nationale de Gestion des Risques d'Inondation (SNGRI) et les Stratégies Locales (SLGRI)

Le PGRI doit définir les objectifs permettant d'atteindre ceux de la SNGRI et comporter une synthèse des SLGRI et de leurs mesures. L'analyse montre la conformité du PGRI avec ces éléments notamment, vis-à-vis des orientations stratégiques de la SNGRI :

- Développer la gouvernance et les maîtrises d'ouvrage → GO4 du PGRI ;
- Aménager durablement les territoires → GO1 et GO2 du PGRI ;
- Mieux savoir pour mieux agir → GO5 du PGRI ;
- Apprendre à vivre avec les inondations → GO3 du PGRI.

Concernant les SLGRI, le volume 2 du PGRI est consacré aux propositions et des objectifs détaillées sur les territoires concernés.

1.1.3.b - Le Schéma Directeur d'Aménagement et de Gestion des Eaux (SDAGE) Rhône-Méditerranée 2022-2027

Le PGRI doit comprendre les orientations fondamentales et dispositions du SDAGE concernant la prévention...
des inondations au regard de la gestion équilibrée et durable de la ressource en eau et doit être compatible avec les objectifs de qualité et de quantité des eaux fixés par le SDAGE.

Comme vu précédemment, le GO2 du PGRI comprend les 11 dispositions de l'orientation fondamentale 8 du SDAGE « Augmenter la sécurité des populations exposées aux inondations en tenant compte du fonctionnement naturel des milieux aquatiques ». En outre, plusieurs dispositions relatives à la gouvernance (GO4) sont également communes avec plusieurs de l'orientation fondamentale 4 du SDAGE.

Afin d'assurer la compatibilité du PGRI avec le SDAGE, leur élaboration est menée de façon conjointe et imbriquée. Le PGRI rappelle, dans plusieurs dispositions, les objectifs de bon état des masses d'eau et de non dégradation.

1.1.3.c - Le Document Stratégique de Façade (DSF) Méditerranée

Le PGRI doit être compatible avec les objectifs environnementaux définis par le Plan d'Action pour le Milieu Marin (document constituant le volet environnemental du DSF). Le plan est en cours d'élaboration et son projet n'est pas disponible au moment de la rédaction du rapport environnemental du PGRI. Ainsi, l'analyse de compatibilité ne peut pas être réalisée.

Toutefois, l'analyse de l'articulation du PGRI avec les objectifs environnementaux de la stratégie de façade Méditerranée montre une bonne cohérence de l'ensemble, notamment pour :
- la restauration des fonctionnalités naturelles des milieux permettant de réduire les crues et les submersions marines ;
- la préservation et l'amélioration de la gestion de l'équilibre sédimentaire ;
- la prise en compte de l'érosion côtière.

1.1.3.d - Le dispositif ORSEC et le Schéma Directeur de Prévision des Crues (SDPC)

Le PGRI doit être accompagné des dispositions afférentes aux risques d'inondation des plans ORSEC. Ces dispositions sont référencées dans le PGRI. Aussi, le PGRI incite ce dispositif à développer un volet inondation.

Concernant le SDPC, le PGRI doit comprendre les dispositions concernant la surveillance, la prévision et l'information sur les inondations. Le PGRI, notamment par son objectif « Agir sur la surveillance et la prévision », répond à cette obligation.

1.1.3.e - Les documents devant être compatibles au PGRI

Les Plans de Prévention des Risques d'inondation (PPRi) doivent être compatibles au PGRI. En particulier, le PGRI comprend plusieurs objectifs et recommandation qui s'adressent aux PPRi, dont l'amélioration de la connaissance des enjeux du territoire, la maîtrise des dommages en cas d'inondation, la non aggravation de la vulnérabilité, la préservation des champs d'expansion des crues et la limitation de l'exposition des enjeux protégés par des ouvrages de protection.

Les Schémas Régionaux d'Aménagement, de Développement Durable et d'Égalité des Territoires
Les documents d'urbanisme doivent être compatibles au PGRI. D'autre part, le PGRI doit prendre en compte la trame verte et bleue des SRADDET (continuités écologiques). Au sein du PGRI, le GO2 participe activement au maintien, voire à l'amélioration des continuités écologiques, notamment par la restauration de la fonctionnalité naturelle des milieux, la préservation des champs d'expansion des crues et la gestion des ripisylves.

Enfin, les documents d'urbanisme doivent être compatibles au PGRI. Dans cet objectif, le GO1 est particulièrement important à traduire dans ces documents (prise en compte du risque dans l'aménagement du territoire). Par ailleurs, d'autres dispositions s'adressent notamment à ces document, telles que la préservation des champs d'expansion des crues, la limitation du ruissellement à la source, ou encore la cohérence des projets d'aménagement du territoire et de développement économique avec les objectifs de la politique de gestion des risques d'inondation.

1.1.3.f - La cohérence avec les autres plans et programmes

Au-delà de la réglementation, le PGRI interagira avec de nombreux autres plans, programmes et schémas s’appliquant sur le bassin Rhône-Méditerranée, qu’ils soient de portée nationale, régionale ou locale.

Ainsi, plus d'une soixantaine de documents ont été retenus et les interactions potentielles avec le projet de PGRI analysées. Il s’agit de ne pas présenter d’incohérence majeure, pouvant mettre en difficulté l’atteinte d’un objectif ou la préservation d’un enjeu porté par un autre document.

Les documents analysés sont relatifs aux thématiques de l’énergie, de l’aménagement du territoire, de la qualité de l’air, du changement climatique, de la gestion des déchets, des risques naturels, de la santé humaine, de la gestion de la forêt, etc.

Aucune incohérence n’a été détectée lors de ce travail.

1.2 - État initial de l'environnement - Quel est l'état actuel de l'environnement dans le bassin Rhône-Méditerranée et comment évolue-t-il ?

L’EIE est construit selon onze thématiques, précédées par une première partie présentant le territoire et ses dynamiques. Le degré de précision du traitement de chaque thématique environnementale est déterminé par l’objet du PGRI, ses effets probables et la réglementation.

1.2.1 - Présentation générale du bassin Rhône-Méditerranée

Le PGRI 2022-2027 s'applique à l'échelle du grand bassin Rhône-Méditerranée.

Bien que le projet de PGRI soit approuvé en 2021, l'état initial ne peut pas toujours décrire l'environnement en 2020, car plusieurs années peuvent se dérouler avant que les données ne soient collectées, analysées et rendues disponibles. Ici, l'état initial s'appuie généralement sur des données datant de 2016 à 2019. A noter que les plus récentes disponibles ont été mobilisées.
Un territoire qui s'étend sur 121 600 km² (soit près de 20 % du territoire métropolitain), concernant cinq régions (Occitanie, Provence-Alpes-Côte d'Azur, Auvergne-Rhône-Alpes, Bourgogne-Franche-Comté et Grand-Est) et 29 départements. Le territoire comprend également les masses d'eau côtière en mer qui s'étendent jusqu'à 1 mille marin des côtes (soit environ 1,85 km).

Une population de 15,6 millions d'habitants en 2016 et une densité de 131 hab./km² (France : 105 hab./km²). Une population répartie principalement le long des principaux cours d'eau, dont le Rhône et la Saône ainsi que sur le littoral méditerranéen. Les principales zones urbaines sont les intercommunalités de Marseille, Lyon, Nice, Montpellier, Toulon, Grenoble et Saint-Étienne (pour celles comptant plus de 400 000 habitants). Enfin, une croissance démographique soutenue, avec 16,7 millions d'habitants prévus pour 2027.

Une occupation des sols qui présente la particularité d'une superficie boisée importante (36 % de forêt contre 25 % au niveau national) et d'une moindre surface agricole (36 % contre 59 %). De plus, une forte dynamique d'artificialisation des terres est constatée (+ 8% entre 2006 et 2018).

Une agriculture particulièrement diversifiée, en lien avec la variété des climats et de la topographie du bassin (montagne, plaine alluviale, littoral, etc.). La viticulture y occupe une place importante (Bourgogne, vallée du Rhône, Languedoc-Roussillon, etc.), tout comme l'élevage (bovins, caprins, volailles, etc.) et l'arboriculture. Comme sur le territoire national, une transition vers une agriculture plus durable est observée (forte progression de l'agriculture biologique notamment, malgré une proportion encore faible sur le territoire).

La ressource en eau du bassin constitue le support d'un tourisme diversifié et de plusieurs activités de loisirs, telles que la baignade en eau de mer et eau douce, la pêche et la plaisance, les sports d'hiver, le thermalisme et la thalassothérapie, les sports d'eaux vives, etc. Elle est également essentielle à l'activité industrielle et la production conchylicole et piscicole du bassin. Enfin, le transport de marchandises sur l'eau constitue un mode de trafic stratégique.

Un petit cycle de l'eau représentant des prélèvements entre 1,5 et 1,6 milliard de m³ par an pour l'eau potable, provenant essentiellement des eaux souterraines. Le bassin compte environ 3 600 stations d'épuration.

Un bassin recouvert à près de 50 % par des démarches locales de gestion de l'eau et une gouvernance locale qui s'articule désormais entre les intercommunalités, les Établissements Publics Territoriaux de Bassin (EPTB) et les Établissements Publics d'Aménagement et de Gestion des Eaux (EPAGE), avec pour enjeux de maintenir une gestion par bassin versant permettant la solidarité amont-aval.

1.2.2 - La ressource en eau

1.2.2.a - Richesses

Les masses d'eau superficielles présentent un taux élevé de bon état chimique (96 %). Quant aux masses d'eau souterraine, le bon état quantitatif est atteint pour 88 % d'entre elles. De plus, une amélioration significative de leur état chimique a été enregistrée ces dernières années. Des résultats encourageants sont également observés vis-à-vis des flux de substances dangereuses et de la contamination des cours d'eau par certains pesticides.
De plus, la mise en œuvre des trois SDAGE précédents a permis une amélioration importante des connaissances et des enjeux, une mise en œuvre de démarches notables (telles que la restauration de cours d'eau et de zones humides, le traitement de nombreux ouvrages bloquant la continuité écologique, la protection de zones à forts enjeux, etc.), ainsi que l'acquisition d'une expérience toujours renforcée.

1.2.2.b - Faiblesses

L'objectif de bon état écologique des masses d'eau superficielle n'est pas atteint (moins de 50 % en 2019). De plus, il est toujours observé une contamination quasi-généralisée des cours d'eau par les pesticides (bien que leur concentration globale baisse). De même, la contamination des eaux souterraines par les nitrates ne montre pas de diminution.

Le bassin comporte encore des stations d'épuration, dont certaines importantes, en situation de non-conformité. En outre, les connaissances sur l'assainissement non collectif restent fragmentées. Enfin, de nombreux territoires connaissent des tensions quantitatives en période de basses eaux.

1.2.2.c - Perspectives d'évolution

Les masses d'eau superficielle présentent un risque de non atteinte du bon état d'ici 2027 relativement élevé, en raison notamment du poids important des altérations de l'hydromorphologie. Concernant les masses d'eau souterraine, le risque apparaît comme moins élevé, mais toujours significatif (environ un quart), en raison des pollutions par les pesticides et les prélèvements d'eau.

1.2.2.d - Enjeux environnementaux

Le bon état des masses d'eau superficielle et souterraine :

➢ l'équilibre quantitatif des masses d'eau ;
➢ la qualité des eaux souterraines et superficielles ;
➢ la morphologie des cours d'eau et plan d'eau.

1.2.3 - Climat et changement climatique

1.2.3.a - Richesses

Le bassin présente des climats multiples et variés, participant à la richesse du territoire. De plus, une amélioration du niveau de conscience et des connaissances est observée sur le changement climatique, comme en témoignent les outils de lutte et d'adaptation mis en œuvre ces dernières années.

1.2.3.b - Faiblesses

Un changement climatique en cours, dont les effets sur les thématiques de l'environnement et la société s'intensifient. Le bassin montre des zones déjà fortement impactées, avec, parfois, une évolution des usages qui participent à l'augmentation de la vulnérabilité des territoires.

Par ailleurs, le secteur des transports routiers reste stable en termes d'émissions de gaz à effet de serre et l'artificialisation des sols (particulièrement importante sur le bassin) participe à la réduction de la capacité de « puits de carbone » des sols.
1.2.3.c - Perspectives d'évolution

La poursuite du phénomène montre à terme, pour le territoire :

- une augmentation de la fréquence, de la longueur et de l'intensité des vagues de chaleur, associée à une dynamique inverse pour les vagues de froid ;
- une augmentation du temps passé en sécheresse agricole et en sécheresse hydrologique (baisse des débits et du niveau des nappes, modification des régimes hydrologiques, etc.) ;
- des précipitations intenses probablement augmentées en hiver mais une diminution de l'enneigement.

Les conséquences déjà observées, que ce soit au niveau de l'eau et de la biodiversité, des montagnes et des glaciers, de l'agriculture, du littoral et du milieu marin, et de la santé sont donc appelées à se poursuivre et à s'intensifier.

1.2.3.d - Enjeux environnementaux

- L'adaptation aux effets du changement climatique.
- La lutte contre le changement climatique.

1.2.4 - Énergie

1.2.4.a - Richesses

Le bassin Rhône-Méditerranée présente une capacité de production d'électricité suffisante pour répondre à ses besoins (avec, toutefois, des disparités importantes selon les régions). De plus, la consommation de ce type d'énergie est couverte à plus d'un tiers par les énergies renouvelables (pourcentage environ deux fois plus élevé que la moyenne nationale). Enfin, la production d'électricité sur le bassin est globalement relativement peu émettrice de carbone.

1.2.4.b - Faiblesses

Depuis 2014, la consommation d'énergie dans le territoire apparaît comme relativement stable (à mettre en regard avec les objectifs réglementaires de réduction progressive). Parallèlement, la consommation d'énergie issue de ressources fossiles suit une trajectoire similaire.

1.2.4.c - Perspectives d'évolution

Sur la base des tendances observées ces dernières années, les perspectives d'évolution concernant l'énergie semblent mener vers une diminution insuffisante des consommations énergétiques, avec toutefois, en parallèle, un développement fort des énergies renouvelables. Désormais, les SRADDET établissent, pour chaque région, des objectifs ambitieux de diminution de consommation d'énergie et de production d'énergie renouvelable.

1.2.4.d - Enjeux environnementaux

- La conciliation des objectifs de production d'énergie renouvelable et du bon état des eaux.
1.2.5 - Sols et sous-sols

1.2.5.a - Richesses

Le territoire présente une richesse remarquable en termes de présence et de diversité de ressources minérales et pédologiques. Les six Géoparcs UNESCO présents dans le bassin Rhône-Méditerranée (sur les sept en France) témoignent de cette richesse.

1.2.5.b - Faiblesses

Les phénomènes d'érosion sont très présents dans le territoire, que ce soit au niveau des sols agricoles ou du littoral méditerranéen (érosion du trait de côte). De plus, les sols souffrent globalement d'un manque de cadre de protection (à l'image de la directive cadre sur l'eau) et de nombreuses pressions s'y exercent : artificialisation, pollutions, modifications de la structure et de la texture, pertes de sols, etc.

1.2.5.c - Perspectives d'évolution

En termes de tendances d'évolution, le changement climatique devrait jouer un rôle important, notamment avec une intensification probable des phénomènes d'érosion. De plus, concernant la fertilité des sols, un accroissement des déséquilibres apports/exports, déjà observés, devrait se poursuivre. Cependant, il devrait également être observé un encadrement plus important de l'activité de carrière et une protection plus forte du patrimoine géologique.

1.2.5.d - Enjeux environnementaux

➢ La lutte contre les pollutions des sols.
➢ La maîtrise de l'artificialisation des sols.

1.2.6 - Qualité de l'air

1.2.6.a - Richesses

La qualité de l'air est un paramètre particulièrement suivi dans le territoire, avec des connaissances qui sont aujourd'hui bien développées. Ceci est notamment possible du fait des nombreux dispositifs de surveillance répartis sur l'ensemble du bassin. Ainsi, une baisse globale des émissions ou des concentrations de plusieurs polluants atmosphériques est observée ces dernières années.

1.2.6.b - Faiblesses

Toutefois, plusieurs territoires présentent toujours des problématiques fortes en lien avec la qualité de l'air (avec des valeurs cibles régulièrement dépassées pour plusieurs polluants). Ces dernières peuvent être intensifiées par des facteurs climatiques et géophysiques défavorables (relief, ensoleillement, etc.). La pollution à l'ozone notamment apparaît comme particulièrement problématique.

1.2.6.c - Perspectives d'évolution

Les tendances observées en termes de réduction des émissions de dioxyde de souffre, de particules fines, ou encore d'oxyde d'azote devraient se poursuivre, sous l'impulsion d'objectifs fortes européens, nationaux et
régionaux. Toutefois, concernant l'ozone, la tendance est inverse (principalement dans la partie sud du bassin), et les effets du changement climatique pourraient appuyer cette tendance.

1.2.6.d - Enjeux environnementaux

➢ La protection de la santé humaine.

1.2.7 - Milieux naturels et biodiversité

1.2.7.a - Richesses

De par la diversité de ses climats, de ses sols, de la disponibilité de l'eau, des reliefs, etc. le bassin Rhône-Méditerranée constitue un territoire favorable à une richesse très importante en termes de milieux et d'espèces, dont une proportion très significative est protégée ou gérée. Particulièrement dans ces espaces, des observations encourageantes sont recensées : retours d'espèces, augmentation de populations, etc.

1.2.7.b - Faiblesses

Le territoire abrite malgré tout des habitats naturels globalement en situation de conservation défavorable, particulièrement dans la région méditerranéenne. De plus, une perte de zones humides et de prairies permanentes est toujours observée. L'érosion de la biodiversité « ordinaire » est importante et les différentes stratégies de diminution des pressions sur la biodiversité montrent leurs limites en termes d'efficacité.

1.2.7.c - Perspectives d'évolution

La tendance d'amélioration de l'état de la biodiversité dans les zones protégées pourrait se poursuivre, au moins à court terme. Toutefois, les pressions qui pèsent sur les habitats naturels en dehors de ces zones (artificialisation, effets du changement climatique, conflits d'enjeux, espèces exotiques envahissantes, usage des pesticides, etc.) apparaissent comme de plus en plus intenses.

1.2.7.d - Enjeux environnementaux

➢ La conciliation des usages de la ressource avec la restauration et la préservation des milieux.
➢ La diminution des pressions (artificialisation, pollutions, espèces exotiques envahissantes, etc.).
➢ La préservation de la biodiversité ordinaire.

1.2.8 - Continuités écologiques

1.2.8.a - Richesses

La connaissance scientifique et cartographique des grandes continuités écologiques du bassin est relativement développée (trames verts et bleues). Celle des cours d'eau est forte, en lien avec les obstacles à la continuité écologique et les travaux sur les poissons migrateurs.

De plus, certains secteurs du bassin (Provence-Alpes-Côte d'Azur et Languedoc-Roussillon) apparaissent comme moins impactés par la fragmentation du linéaire hydrologique que la plupart des autres régions de France. D'autres zones, telles que les Alpes du Sud et les Pyrénées orientales montrent globalement des continuités écologiques relativement préservées.
1.2.8.b - Faiblesses

A l'inverse, certains territoires souffrent d'un phénomène de fragmentation des continuités important (notamment en Auvergne-Rhône-Alpes et Bourgogne-Franche-Comté). De plus, à l'échelle du bassin Rhône-Méditerranée, un obstacle à la continuité écologique des cours d'eau est recensé tous les 3 km de linéaire en moyenne. Enfin, la proportion de territoires artificialisés y est plus importante qu'au niveau national.

1.2.8.c - Perspectives d'évolution

Malgré des retards, la tendance est à l'amélioration de la continuité des cours d'eau, sous l'impulsion de la réglementation (classement des cours d'eau), de la mise en œuvre des SDAGE et programmes de mesures successifs et des outils locaux (SAGE, contrats de milieu et de bassin versant), ainsi que des plans de gestion des poissons migrateurs Rhône-Méditerranée.

Concernant les continuités terrestres, à l'image des pressions s'exerçant sur les milieux naturels et la biodiversité, les tendances de fragmentations semblent difficiles à enrayer.

1.2.8.d - Enjeux environnementaux

- La diminution de la fragmentation des milieux.
- La préservation des continuités écologiques, y compris latérales.

1.2.9 - Paysage et patrimoine

1.2.9.a - Richesses

A l'image du climat et de sa topographie, le bassin Rhône-Méditerranée se caractérise par la diversité et la richesse de ses paysages (des plus hauts sommets d'Europe aux grands espaces littoraux). La multitude de sites protégés, patrimoine artificiel ou naturel, témoigne de cette richesse (patrimoine UNESCO, monuments historiques, sites classés, parcs et réserves naturels, etc.).

1.2.9.b - Faiblesses

Toutefois, à l'instar des continuités écologiques, les paysages souffrent par endroit (montagne, vallées alluviales, etc.) de la fragmentation créée par les grands axes de communication et autres aménagements. De plus, l'étalement urbain peu maîtrisé et, par endroit, la déprise agricole provoquent une artificialisation ou une fermeture des paysages.

1.2.9.c - Perspectives d'évolution

L'évolution des paysages est fortement liée à celle des pressions décrites dans les autres thématiques (effets du changement climatique, évolution des catastrophes naturelles, artificialisation des sols, etc.). De plus, les tendances de dégradation ou d'amélioration sont globalement propres aux sensibilités de chacun.

1.2.9.d - Enjeux environnementaux

- La préservation de la qualité et de la diversité des paysages.
- La conciliation des enjeux entre préservation du patrimoine lié à l'eau et restauration des continuités.
1.2.10 - Risques naturels et technologiques

1.2.10.a - Richesses

Les outils et actions mis en œuvre relatifs à la prévention et à la réduction des risques sont nombreux (plans de prévention des risques, plan de gestion du risque d'inondation et stratégies locales, programmes d'actions de prévention des inondations, etc.). De plus, l'historique riche des événements a permis d'ancre une information et une culture du risque dans la société (à nourrir cependant).

1.2.10.b - Faiblesses

Le bassin Rhône-Méditerranée est fortement concerné par les risques naturels : inondations, feux de forêt, mouvements de terrain, etc. La population exposée à de tels risques peut être très importante par endroit. De plus, une grande part des communes concernées par les risques ne disposent pas de plan de prévention des risques. Ainsi, des épisodes récents ont montré des dysfonctionnements en termes d'aménagements, de prévention et d'information.

1.2.10.c - Perspectives d'évolution

L'évolution des risques naturels est fortement liée à celle du climat. En effet, des études prospectives montrent qu'il faut s'attendre à une augmentation des dommages annuels moyens liés aux événements catastrophiques. Les principaux risques concernés sont les inondations (en lien avec les pluies extrêmes) et les incendies de forêt.

1.2.10.d - Enjeux environnementaux

La protection des personnes et des biens vis-à-vis des risques :

- la diminution de l'aléa (préservation/restauration des champs d'expansion des crues et des zones humides connectées aux cours d'eau, préservation des espaces de bon fonctionnement, diminution de l'imperméabilisation des sols, etc.) ;
- la diminution de la vulnérabilité (maîtrise de l'urbanisation et du coût des dommages, mise en place des plans de prévention des risques, etc.) ;
- la préparation et la gestion de crise, le développement de la conscience du risque et des connaissances.

1.2.11 - Santé humaine et nuisances

1.2.11.a - Richesses

Au-delà des thématiques traitées précédemment (qualité de l'air notamment), la qualité de l'eau distribuée pour l'alimentation humaine apparaît comme globalement bonne, avec une proportion de captages protégés qui a bien augmenté ces dernières années. Les actions sur les captages prioritaires se développent et se poursuivent, en lien également avec la délimitation des zones à forts enjeux pour l'eau potable actuelle et future (« zones de sauvegarde »). Enfin, la qualité des eaux est conforme aux exigences de la directive baignade sur la quasi-totalité des sites de baignade (99 %).

Concernant les nuisances, la connaissance est surtout développée sur les nuisances sonores, avec un travail...
important réalisé ces dernières années vis-à-vis du bruit du trafic.

1.2.11.b - Faiblesses

Parallèlement, la qualité des eaux de conchyliculture reste mauvaise à très mauvaise dans une proportion importante de sites.

De plus, certains secteurs du bassin montrent des nuisances sonores particulièrement fortes, et les connaissances sur les autres types de nuisances et sur les effets de certaines substances sur la santé humaine restent parfois insuffisantes.

1.2.11.c - Perspectives d'évolution

Les mesures et actions de protection des captages d'eau potable (prioritaires ou non) ainsi que des zones à forts enjeux se poursuivent. Concernant les autres nuisances, leur prise en compte pourra se développer. Notons toutefois l'importance des effets du changement climatique dans les évolutions (disponibilité de l'eau, vagues de chaleur, espèces exotiques, épidémies, etc.).

1.2.11.d - Enjeux environnementaux

La bonne santé des personnes :

➢ la bonne qualité de l'eau distribuée pour l'alimentation humaine et sa disponibilité ;
➢ la bonne qualité des eaux à usage récréatif ou de production ;
➢ la maîtrise des nuisances.

1.2.12 - Déchets

1.2.12.a - Richesses

Le territoire est bien équipé en termes d'installations de traitement des déchets (malgré des disparités locales). Aussi, l'élaboration des plans régionaux de prévention et de gestion des déchets a permis de centraliser et d'améliorer les connaissances sur cette thématique de façon importante.

1.2.12.b - Faiblesses

L'évolution de ces connaissances a toutefois révélé des manques, notamment en ce qui concerne les déchets du BTP, dont une part encore importante échappe aux filières de traitement régionales. Les gisements de déchets du BTP et de déchets dangereux restent souvent estimés.

1.2.12.c - Perspectives d'évolution

Une tendance à la baisse de la production des déchets ménagers et assimilés est observée, bien que relativement faible (de -3 % à -1 % entre 2010 et 2015 selon les régions). Vis-à-vis des autres types de déchets, les tendances sont plus difficiles à estimer. Concernant spécifiquement les déchets d'assainissement, une augmentation de la production de boues est observée, notamment en région PACA, posant la question de leur traitement.
1.2.12.d - Enjeux environnementaux

➢ La lutte contre les déchets flottants.

1.2.13 - Bilan des enjeux environnementaux

Le rapport environnemental retient donc 23 enjeux environnementaux qui sont hiérarchisés de structurants (7 enjeux) à modérés (10 enjeux) en passant par forts (6 enjeux).

Les enjeux structurants sont ceux qui présentent un niveau de priorité particulièrement fort pour le PGRI sur l'ensemble du bassin. Les enjeux forts présentent un niveau de priorité élevé, mais de façon moins homogène ou plus éloignée du champ d'action du PGRI. Les enjeux modérés revêtent un niveau de priorité plus faible pour le territoire. Il peut également s'agir d'enjeux sur lesquels le PGRI ne dispose pas de levier d'action.

1.3 - Les solutions de substitution et les motifs ayant conduit au choix du projet

1.3.1 - Quel contexte pour l'élaboration du PGRI Rhône-Méditerranée 2022-2027 ?

Le PGRI est élaboré sous l'autorité du Préfet coordonnateur de bassin, en étroite collaboration avec les parties prenantes, en associant l'ensemble des acteurs concernés par la gestion de l'eau à l'échelle du bassin : usagers,
Plan de Gestion des Risques d'Inondation 2022-2027 | Bassin Rhône-Méditerranée

élus, associations, État et professionnels. Sa mise en œuvre succède à celle du PGRI 2016-2021. La réalisation d'un PGRI est réglementairement obligatoire et encadrée.

Sa conception s'appuie sur un état des lieux réalisé à l'échelle du bassin hydrographique (l'évaluation préliminaire des risques d'inondation, dont la mise à jour a réalisée en 2017-2018), sur les analyses à moyen et long termes d'évolution des enjeux du territoire ainsi que sur une large concertation des parties prenantes de manière à concilier la gestion des risques d'inondation avec le développement économique et le respect de l'environnement.

1.3.2 - Comment s'est déroulée la concertation ?

L'élaboration du PGRI 2022-2027, 2ème édition du document, a fait l'objet d'un travail préparatoire très important s'étant déroulé entre 2018 et 2021. Elle s'appuie à la fois sur l'évolution du contexte technique (nouvelles études, évolution des enjeux, etc.) et du contexte institutionnel.

Ce travail a permis d'opérer des choix sur un certain nombre de thématiques, dont les principales mises à la discussion étaient :

- la gestion des risques d'inondation dans le contexte du changement climatique ;
- l'urbanisation et le risque d'inondation ;
- la restauration physique des cours d'eau et la réduction de l'aléa inondation.

Ainsi, la consultation sur les questions importantes réalisée entre 2018 et 2019 visait un public large et mixte afin de recueillir les avis sur les enjeux et les besoins d'évolution du PGRI. Parallèlement, dès 2018, des consultations techniques des acteurs locaux impliqués dans la gestion des risques d'inondation se sont tenues. L'objectif était de stabiliser le diagnostic et d'entamer la réflexion sur les évolutions du PGRI. Un retour d'expérience des acteurs chargés de la mise en œuvre du PGRI 2016-2021 a également été réalisé.

Suite à ces deux premières étapes, des groupes de contribution politiques et techniques ont été réunis dès septembre 2019. Ils ont abordé les trois thématiques citées ci-dessus, dans une optique d'évolution importante du PGRI afin de répondre à ces enjeux.

Sur cette base, les instances ont pu retenir, de façon éclairée, les choix et évolutions qui constituent le PGRI Rhône-Méditerranée 2022-2027.

1.3.3 - Quels ont été les choix retenus ?

En accord avec le travail itératif d'élaboration, et sur le constat d'un PGRI 2016-2021 encore récent traitant d'enjeux toujours d'actualité, il a été décidé de conserver la structure de ce document pour le PGRI 2022-2027 (notamment les 5 Grands Objectifs).

Ainsi, les évolutions se situent au sein de chaque orientation fondamentale, de façon ciblée :

- le renforcement de l'enjeu de non aggravation de la vulnérabilité, notamment en affirmant des principes fondamentaux de la prévention des inondations sur l'ensemble des territoires et en développant les connaissances sur la vulnérabilité de l'existant (GO1) ;
- le développement des solutions alternatives aux ouvrages de protection pour lutter contre les...
inondations, notamment par la mise en avant des espaces de bon fonctionnement des cours d'eau, et une plus grande prise en compte des enjeux liés aux ruissellements (GO2) ;

- l'actualisation des données relatives à la surveillance, à la prévision et à la transmission de l'information sur les crues et les submersion marines, ainsi que le renforcement de la sensibilisation, à destination du grand public notamment (GO3) ;

- l'intégration des objectifs de la politique de gestion des risques d'inondation aux projets d'aménagement du territoire et l'association des acteurs concernés le plus en amont possible (GO4) ;

- le développement de la connaissance des phénomènes d'inondation et l'étude des effets du changement climatique sur les aléas (GO5).

1.3.4 - Quelle prise en compte de l'évaluation environnementale ?

Le travail d'évaluation environnementale et les échanges menés entre l'évaluateur et le rédacteur du PGRI ont permis d'intégrer plusieurs éléments au sein du document afin d'améliorer la prise en compte des enjeux environnementaux dans le document, notamment liés aux milieux naturels et au changement climatique.

1.4 - Analyse des effets de la mise en œuvre du PGRI sur l'environnement et la santé humaine et présentation des mesures d'évitement-réduction-compensation

1.4.1 - Quels seront les effets probables du PGRI sur l'environnement et la santé humaine ?

L'analyse des effets probables du PGRI consiste, dans un premier temps, à analyser les effets des 48 dispositions qui le composent au regard des différents enjeux environnementaux.

Il ressort de l'analyse que les incidences potentielles du PGRI sur l’environnement sont très majoritairement positives : sur environ 320 incidences identifiées, 89 % correspondent à des effets probables positifs ou très positifs. Les composantes les plus impactées positivement sont celles entrant dans les champs d’application directs du PGRI : dimensions liées aux risques naturels, mais également à la morphologie des milieux aquatiques et à l’adaptation au changement climatique.

Au-delà de ces impacts positifs, des effets incertains (9 % des incidences) ou potentiellement négatifs (1 %) ont été identifiés.

Les effets incertains correspondent à des dispositions en lien avec une composante de l’environnement mais dont l’incidence n’est pas certaine et dont le sens ne peut être défini (positive et/ou négative) à ce stade et à cette échelle d’analyse. Les impacts peuvent être variables suivant la nature réelle des projets ou les conditions de leur mise en œuvre. Pour les paysages, la sensibilité individuelle rentre en considération.

La synthèse de l'analyse des effets par composante est présentée ci-après.
1.4.1.a - **Ressource en eau**

La mise en œuvre du PGRI devrait provoquer des effets positifs au regard des trois enjeux de cette thématique.

Concernant l'enjeu d'équilibre quantitatif de la ressource, les effets devraient apparaître par la préservation d'espaces d'échanges avec les eaux souterraines (milieux alluviaux notamment), l'augmentation de la capacité d'infiltration dans certaines zones (recherche de solutions de ressuyage après la crise par exemple) et la progression vers une gestion équilibrée et durable de la ressource en eau.

Les effets probables du PGRI sur la qualité des eaux s'exprimeront notamment à travers la limitation des ruissellements, la diminution des vulnérabilités en zones inondables, la maîtrise des pollutions et la progression vers une gestion durable et équilibrée de la ressource en eau. A noter l'existence de quelques effets qualifiés...
d'incertains, en lien avec l'inondation de nouveaux espaces.

Enfin, l'enjeu de morphologie des milieux aquatiques est particulièrement traité au sein du PGRI. En effet, un des objectifs forts du PGRI est de réduire le risque inondation en privilégiant prioritairement le fonctionnement naturel des milieux aquatiques. Ainsi, la préservation et la restauration de l'espace de bon fonctionnement et du transport sédimentaire recherché par le PGRI seront autant d'actions qui présenteront des effets positifs à très positifs sur cet enjeu. Lorsque l'importance des risques et l'absence d'efficacité des mesures basées sur le fonctionnement naturel justifient la réalisation d'ouvrages de protection plus lourds, des effets négatifs sur la morphologie des milieux aquatiques pourraient apparaître. Ces derniers devraient toutefois être bien maîtrisés par l'ensemble des conditions posées par le PGRI.

1.4.1.b - Climat et changement climatique

Les effets de la mise en œuvre du PGRI sur le climat et le changement climatique devraient être positifs, principalement en termes d'adaptation.

La préservation de milieux pouvant jouer le rôle de puits de carbone, telles que les zones humides ou les milieux présents dans les champs d'expansion des crues (face à l'artificialisation des sols) participera à l'atténuation du changement climatique.

D'autre part, la mise en œuvre du PGRI présentera des effets positifs à très positifs en termes d'adaptation au changement climatique. Ils s'exprimenteront à travers les mesures portées par le PGRI visant la diminution de la vulnérabilité des biens et des personnes face aux risques d'inondation, l'augmentation de la résilience des territoires suite à un épisode de crise et le développement des connaissances sur les évolutions attendues.

1.4.1.c - Énergie

Concernant l'unique enjeu énergie (modéré), aucun effet probable significatif n'a été relevé du fait de la mise en œuvre du PGRI.

1.4.1.d - Sols et sous-sols

Les effets probables du PGRI sur l'enjeu relatif à la qualité des sols seront globalement positifs. Ils s'exprimenteront notamment à travers la limitation des ruissellements, la diminution des vulnérabilités en zones inondables et la maîtrise des pollutions pouvant survenir lors des épisodes de crue. A noter l'existence de quelques effets qualifiés d'incertains, en lien avec l'inondation de nouveaux espaces.

Quant à l'enjeu de maîtrise de l'artificialisation des sols, il bénéficiera d'effets positifs à très positifs issus de la mise en œuvre du PGRI. Ils devraient s'exprimer par la préservation des espaces de bon fonctionnement des milieux aquatiques, ainsi que de la préservation et la restauration de champs d'expansion des crues, de la non augmentation de la vulnérabilité des territoires face au risque, ainsi que de la réduction des ruissellements, majoritairement issus de l'artificialisation des sols. Quelques effets négatifs ou incertains sont analysés (implantation d'ouvrages de protection, protection de zones particulières à risques forts sur le littoral), mais resteront limités : conditions du PGRI pour la réalisation d'ouvrage, lutte contre les ruissellements, bénéfices attendus, etc.
1.4.1.e - Qualité de l'air

L'amélioration de la qualité de l’air n'est pas une thématique traitée par le PGRI. Aucune mesure n’a été évaluée comme ayant un effet probable significatif sur la qualité de l’air (enjeu modéré) et justifier d’un effet sur la santé humaine par ce biais.

1.4.1.f - Milieux naturels et biodiversité

L'objectif du PGRI visant notamment la synergie entre le fonctionnement naturel des milieux aquatiques et la lutte contre le risque inondation amènera des effets positifs, voire très positifs sur cette thématique. De plus, ces effets seront amplifiés par l'ensemble des dispositions qui promeuvent une maîtrise de l'imperméabilisation des sols (via la limitation des ruissellements ou la préservation des champs d'expansion des crues par exemple) et qui agissent, indirectement, sur la qualité des eaux, dont profite la biodiversité. L'analyse met en lumière quelques effets incertains, liés à la modification des conditions écologiques de certaines surfaces, ou à la réalisation d'aménagements. Cependant, plusieurs dispositions encadrent fortement ces réalisations d'ouvrages et autres aménagements impactant.

1.4.1.g - Continuités écologiques

Les effets probables du PGRI sur ces enjeux seront largement positifs. La continuité latérale des cours d'eau (lit mineur - lit majeur) est indirectement recherchée, par la préservation ou la restauration de l'espace de bon fonctionnement (comprenant les champs d'expansion des crues). De plus, le respect de la dynamique de transport solide est également un objectif. Enfin, le PGRI dispose également de mesure qui auront des effets positifs hors des milieux aquatiques (haies par exemple). Des risques existent en termes de coupure de continuités suite à la réalisation d'ouvrages dans des cas particuliers. Ces risques sont toutefois globalement encadrés par l'ensemble des dispositions du PGRI.

1.4.1.h - Paysage et patrimoine

Si quelques effets incertains ressortent de l'analyse, notamment en lien avec la réalisation d'opérations sur certaines digues, les effets sur le paysage et le patrimoine du PGRI devraient être globalement positifs. Il participera à maintenir le caractère naturel ou agricole de certaines zones d'intérêt pour la gestion du risque inondation et participera à la réduction des dommages subis lors des épisodes de crues, notamment sur le patrimoine.

1.4.1.i - Risques naturels et technologiques

Le PGRI aura des effets très positifs en termes de réduction de l'aléa inondation et submersion marine. Ces derniers sont prioritairement recherchés via le rétablissement d'un fonctionnement naturel des milieux aquatiques et une restauration de l'espace de bon fonctionnement, avec des effets positifs multiples sur d'autres enjeux. La bonne gestion des ouvrages de protection ainsi que le développement des connaissances participeront également à diminuer l'aléa. De plus, le PGRI traite également de l'aléa érosion sur le littoral.

Le Grand Objectif 1, traitant particulièrement de la réduction de la vulnérabilité des territoires face aux risques d'inondation, présentera des effets très positifs. La prévention y tient une place importante,
notamment par l'évitement de l'augmentation des enjeux dans les territoires soumis aux risques d'inondation. Cependant, pour les enjeux présents, des analyses et des stratégies de réduction seront mises en place. De plus, d'autres dispositions du PGRI présenteront des effets positifs sur cet enjeu, par l'augmentation de la résilience des territoires et l'acquisition de connaissances notamment. Enfin, le PGRI aura quelques effets positifs sur la vulnérabilité vis-à-vis d'autres risques, par la connaissance enjeux d'un territoire et le maintien à jour des documents de gestion de crise.

Enfin, un grand nombre de dispositions du PGRI auront des effets positifs à très positifs sur l'enjeu de gestion de crise, de conscience du risque et de connaissances. Cela concerne l'ensemble des Grands Objectifs du document, en particulier le 3 (gestion de crise et conscience du risque) et le 5 (acquisition de connaissances). De plus, le Grand Objectif 4, par la mise en place d'une gouvernance adaptée, devrait avoir des effets positifs transversaux sur cet enjeu.

1.4.1.j - Santé humaine et nuisances

Les effets du PGRI sur la bonne qualité de l'eau à destination de la consommation humaine et sa disponibilité, et des eaux à usages récréatifs ou de production seront positifs, bien que relativement limités. Ils s'exprimeront particulièrement par la bonne gestion et connaissance des réseaux d'eau, facilitant leur fonctionnement et leur résilience pendant et après la crise.

Notons que les effets du PGRI sur les enjeux de qualité de l'eau et de quantité pourront également, dans des cas particuliers, concerner ces enjeux.

Concernant la maîtrise des nuisances, la mise en œuvre du PGRI pourra présenter des effets positifs, notamment pendant les épisodes de crise. Ils s'exprimeront à travers l'amélioration de la gestion des eaux pluviales et des réseaux d'eau (notamment usées), ainsi que par l'anticipation de survenue de nuisances lors des inondations.

1.4.1.k - Déchets

Bien que n'étant pas un objectif direct du PGRI, plusieurs dispositions du document auront des effets positifs à très positifs sur cet enjeu. Ils pourront apparaître par la limitation du potentiel de déchets flottants à la source (en limitant les zones artificialisées potentiellement inondables par exemple) et par la maîtrise de la circulation des déchets flottants, avant de parvenir aux milieux aquatiques ou à la mer.

1.4.1.l - Analyse des incidences Natura 2000

L'évaluation des incidences du PGRI sur les sites Natura 2000 a pour but de vérifier la compatibilité du PGRI avec les objectifs de conservation des sites Natura 2000 du territoire du bassin. Pour cela, l'analyse a porté sur les incidences de ses dispositions sur les vulnérabilités et les pressions correspondantes, de chaque classe d'habitats Natura 2000 identifiée comme étant en lien avec les milieux aquatiques.

Il est constaté que le PGRI ne devrait présenter que peu d'incidences sur les sites Natura 2000. Il n'est que marginalement responsable de modifications sur les pressions qui s'y exercent et vient en général appuyer le maintien du caractère naturel des zones inondables et submersibles pour y limiter les enjeux humains et matériel.
Quelques dispositions pourraient présenter un effet potentiellement négatif sur certains sites Natura 2000. Ces risques sont toutefois bien écartés par les principes et autres dispositions du PGRI. De plus, elles devraient rester non significatives dans la mesure où elles seront a priori limitées dans l'espace (ouvrages ou actions ponctuels eux-mêmes soumis à étude des incidences Natura 2000 à l'échelle du projet) et très hypothétiques.

Enfin, il est rappelé que tout projet présentant une incidence potentielle sur un ou plusieurs sites Natura 2000 devra lui-même faire l'objet d'une analyse des incidences Natura 2000 précise.

1.4.2 - Quelles sont les mesures pour éviter, réduire ou compenser les effets négatifs ?

1.4.2.a - Présentation de la démarche

Au-delà des mesures issues du travail d’évaluation pendant la phase d’élaboration et intégrées dans le projet de PGRI, le rapport environnemental doit proposer des mesures de « Évitement, Réduction, Compensation » (ERC) lorsqu’il résulte de l’analyse finale du schéma que des effets probables négatifs sont toujours présents.

1.4.2.b - Le PGRI 2022-2027

Les effets finaux du PGRI ne requièrent pas la définition de mesures strictes d'évitement, réduction,
compensation. Seuls quelques points de vigilance sont définis, afin d'écartler les incertitudes en termes d'effets précis qui pourraient résulter de sa mise en œuvre. Cela concerne :

- la vigilance quant aux pollutions accidentelles pouvant survenir lors d'épisodes d'inondation (GO2) ;
- la vigilance quant à la réalisation de projets de ressuyage (GO3).

1.5 - Présentation du dispositif de suivi

1.5.1.a - Définition et objectifs

Le rapport environnemental doit présenter plusieurs indicateurs qui permettront, tout au long de la mise en œuvre du PGRI, de retranscrire les effets réels du document sur l’environnement et la santé humaine.

Afin d’être opérationnels et efficaces, ces indicateurs doivent être faciles à renseigner, mesurables dans le temps, en petit nombre, pertinents et bien représenter l’évolution réelle de l’environnement.

1.5.1.b - Dispositif de suivi du PGRI 2022-2027

Le suivi environnemental de la mise en œuvre du PGRI pourra s'appuyer sur le suivi de nombreux indicateurs existants, dont ceux définis dans le cadre de son élaboration ainsi qu'un certain nombre issu du tableau de bord du SDAGE. Ainsi l'ensemble des indicateurs déjà existants, à travers le PGRI, le SDAGE et l'EPRI, couvrira l'ensemble du suivi environnemental de la mise en œuvre du PGRI Rhône-Méditerranée.
Le suivi des indicateurs pris pour la réalisation de l'évaluation préliminaire des risques d'inondation du bassin pourra également se poursuivre.

1.6 - Quelles sont les méthodes retenues pour élaborer les différentes parties du rapport environnemental ?

Il est réalisé sur la base du projet de PGRI de mars 2022 et à l'aide des documents suivants : mise à jour de l'évaluation préliminaire des risques d'inondation (addendum 2018-2019), rapports et comptes-rendus des réunions de concertation, résultats des consultations, etc.
Dans cette première étape, il s’agit tout d’abord de déterminer les documents avec lesquels le PGRI pourrait interagir en s’appuyant notamment sur la réglementation. Une fois la liste réalisée, une analyse des orientations et objectifs de chaque document retenu est effectuée au regard de ceux du PGRI. La compatibilité vise à vérifier qu’il n’y a pas d’orientations ou d’objectifs contraires entre le PGRI et le document concerné.

La réalisation de l’État Initial de l’Environnement se déroule en trois grandes étapes : la description de chaque thématique de l’environnement, la recherche des perspectives d’évolution de l’environnement sans la mise en œuvre du PGRI (ou scénario « au fil de l’eau ») et l’identification ainsi que la hiérarchisation des enjeux environnementaux.

Chaque thématique est décrite de façon proportionnelle, c’est-à-dire selon l’importance des interactions entre cette thématique et le PGRI (par exemple, le PGRI aura de plus grandes interactions avec l’eau qu’avec la qualité de l’air. Les descriptions respectives refléteront donc cette différence). Le scénario « au fil de l’eau » s’appuie sur la poursuite des tendances observées les années précédentes jusqu’en 2027. Enfin, l’identification et la hiérarchisation des enjeux environnementaux découlent des étapes précédentes. Pour chaque thématique, ils sont construits et hiérarchisés en fonction de la sensibilité du territoire, des menaces qui pèsent sur la thématique et des moyens d’action dont dispose le PGRI.

L’évaluation du PGRI est effectuée au regard de chaque enjeu environnemental et, dans un premier temps, disposition par disposition. Elle est réalisée à l’aide de grilles multicritères, permettant de croiser chaque enjeu avec chaque disposition du PGRI. Les effets peuvent ainsi être neutres, positifs ou négatifs. Le PGRI étant un document stratégique, tous les effets ne peuvent pas être précisément décrits, car dépendants des conditions précises de mise en œuvre de chaque disposition, ainsi que des projets qui en découleront. C’est pourquoi l’analyse peut également faire ressortir des incertitudes. À ce stade, des mesures correctrices sont proposées par l’évaluateur, permettant de préciser des points importants ou de corriger des effets indésirables.
Suite au travail d’évaluation disposition par disposition, les effets cumulés sur chaque enjeu sont déterminés. En effet, lorsqu’une disposition présente un effet négatif sur un enjeu, ou un effet incertain, une autre peut éviter la réalisation de cet effet négatif ou lever cette incertitude, et réciproquement. Ce travail permet de déterminer si des mesures d’évitement, de réduction ou de compensation sont nécessaires. Si tel est le cas, des mesures précises sont proposées et discutées avec l’élaborateur du schéma.

Le travail d’évaluation du schéma lors de son élaboration comporte des incertitudes : conditions de mise en œuvre du schéma, évolutions imprévues de l’environnement, biais de l’évaluateur, etc. Ainsi, des indicateurs permettant de suivre les effets réels du PGRI au cours de sa mise en œuvre sont proposés. Pour cela, les indicateurs retenus dans le PGRI lui-même, ainsi que ceux suivis dans le cadre d’autres documents ayant une forte interaction avec le PGRI sont analysés. Il s’agit de proposer des indicateurs cohérents avec ceux qui existent déjà et pertinents, de façon à faciliter le travail de suivi et d’information.
2 - Présentation du Plan de Gestion des Risques d'Inondation et articulation avec les autres plans, schémas et programmes

2.1 - L'évaluation environnementale stratégique

2.1.1 - Bases légales et réglementaires

Depuis plusieurs dizaines d'années, les préoccupations environnementales prennent une place de plus en plus importante dans les choix de développement et d’aménagement du territoire. Les enjeux de la préservation de l'environnement qui comprennent ceux du milieu naturel, du milieu physique et du milieu humain doivent être pris en compte, non seulement dans les projets mais aussi au sein des plans et programmes.

Actuellement, les articles R.122-17 et suivants du Code de l’Environnement listent les plans/schémas/programmes et autres documents de planification soumis à évaluation environnementale stratégique, de façon systématique ou après un examen au cas par cas. Ils définissent également les exigences portées aux études environnementales, notamment concernant le rapport d'évaluation.

2.1.2 - Objectifs de l'évaluation environnementale

L’évaluation environnementale est un processus itératif d’accompagnement de l’élaboration du plan, schéma ou programme évalué. L’élaboration du document et son évaluation environnementale doivent débuter en même temps et être conduits en parallèle pour l’atteinte des objectifs suivants :

- **fournir au maître d'ouvrage des éléments de connaissance** utiles à l’élabo.
le mieux possible les enjeux environnementaux ;

- **permettre à l'Autorité environnementale (Ae) de formuler un avis** sur les incidences sur l’environnement du plan, schéma ou programme. L'évaluation environnementale doit être soumise avec le document évalué, pour avis, à une autorité compétente indépendante en matière d’environnement. En ce qui concerne le PGRI, il s’agit de l’Autorité environnementale du Conseil général de l’environnement et du développement durable (CGEDD) ;

- **éclairer la décision des autorités administratives chargées d’approuver** le plan, schéma ou programme. Dans le cas du PGRI, la démarche d’évaluation environnementale aide l’instance d’élaboration et les parties prenantes à examiner le document. En effet, elle permet de leur rendre compte des différentes alternatives envisagées et les renseigne sur les raisons des choix effectués au regard des enjeux environnementaux, ainsi que sur les mesures qui ont été ou qui pourront être mises en œuvre pour éviter, réduire et éventuellement compenser les effets du PGRI sur l’environnement ;

- **contribuer à la transparence des choix opérés et à l’information du public.** L’évaluation environnementale est un outil important d’information du public et des acteurs concernés par le schéma, à qui elle offre une meilleure compréhension des choix effectués au cours de l’élaboration du document et des effets notables probables des orientations prises. Elle permet ainsi de mieux comprendre la manière dont les décisions prennent en compte les enjeux environnementaux.

2.1.3 - Structure du rapport environnemental

Conformément à ces attentes réglementaires et afin d’informer les différents publics, le présent rapport est articulé autour de neuf chapitres décrits ci-après et d’un résumé non technique de l’évaluation. Ils proposent une succession logique d’analyses, axées sur les questions que pourraient se poser le maître d’ouvrage, l’autorité environnementale et le grand public.

<table>
<thead>
<tr>
<th>CHAPITRE ET REFERENCE LEGALE</th>
<th>CONTENU</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPITRE 1
Art. R122-20 II. DU CODE DE L'ENV.</td>
<td>Résumé non technique
Résumé synthétique et non-technique du rapport environnemental
Le résumé non-technique reprend les principaux résultats et conclusions de l’évaluation environnementale et décrit la manière dont celle-ci a été effectuée. Il fait l’objet d’un chapitre à part, autonome, pour faciliter sa diffusion et sa prise de connaissance par les différents publics.</td>
</tr>
<tr>
<td>CHAPITRE 2
Art. R122-20 §1 DU CODE DE L'ENV.</td>
<td>Présentation de l’évaluation environnementale, du PGRI et de son articulation avec les documents cadres
Ce chapitre aborde les fondements de l’évaluation environnementale, puis présente le schéma évalué, en l’occurrence le PGRI. Cette dernière étape identifie les éléments qui vont être analysés afin de proposer une méthodologie adaptée pour qualifier et, lorsque cela est possible, quantifier les effets notables probables sur l’environnement. L’articulation du PGRI avec les autres plans, schémas et programmes est enfin présentée. Cette partie présente la cohérence du PGRI avec les autres documents cadres susceptibles...</td>
</tr>
</tbody>
</table>
CHAPITRE 3
Art. R122-20 §2 DU CODE DE L’ENV.
Quel est l’état initial de l’environnement ?
Et comment est-il susceptible d’évoluer ?

Analyse de l’état initial de l’environnement

Ce chapitre dresse un état des lieux de l’environnement sur le territoire concerné par le Bassin Rhône-Méditerranée. Il souligne par grande thématique les éléments marquants de l’environnement pour en identifier les enjeux.

Dans un souci d’efficacité de l’analyse et de compréhension des enjeux, seuls les éléments en lien direct ou indirect avec la mise en œuvre du plan sont abordés.

C’est sur ces thématiques environnementales et enjeux que s’appuie ensuite l’évaluation des effets notables probables de la mise en œuvre du document.

Les enjeux identifiés sont autant de questions qui se posent sur le territoire. Ils permettent également d’évaluer de quelle manière les grandes thématiques de l’environnement abordées dans ce cadre sont susceptibles d’évoluer en l’absence de mise en œuvre du PGRI.

CHAPITRE 4
Art. R122-20 §3 et 4 DU CODE DE L’ENV.
Quelles solutions ont été étudiées ? Et quels choix ont été opérés pour élaborer le PGRI et améliorer sa prise en compte de l’environnement ?

Exposé des motifs pour lesquels les orientations du PGRI ont été retenus

Cette partie expose les motifs pour lesquels les axes du schéma ont été retenus, notamment au regard des enjeux environnementaux, et les raisons qui justifient les choix opérés au regard des solutions alternatives raisonnables. Il s’agit de retracer l’historique de la démarche d’élaboration du PGRI, en mettant en avant les différents choix opérés et leurs conséquences sur le schéma final.

CHAPITRE 5
Art. R122-20 §5 DU CODE DE L’ENV.
Quelles sont les incidences notables probables de la mise en œuvre du PGRI l’environnement, incluant les sites Natura 2000 ?

Analyse des effets probables notables de la mise en œuvre du PGRI sur l'environnement

Ce chapitre constitue le cœur du rapport environnemental et développe l’évaluation des effets probables notables de la mise en œuvre du PGRI sur les thématiques environnementales développées dans le chapitre 3. Il s’agit d’une expertise argumentée des effets notables probables, proportionnée à la portée stratégique du document évalué.

Elle vise à souligner les effets positifs et négatifs probables et à définir s’ils sont directs ou indirects, à court, moyen ou long terme et enfin s’ils sont temporaires ou permanents. Une évaluation spécifique est également conduite sur les effets cumulés, à la fois sur chacune des thématiques environnementales abordées et de manière transversale pour chaque axe du schéma.

Enfin, une partie spécifique est dédiée à l’évaluation des incidences sur les sites Natura 2000.

CHAPITRE 6
Art. R122-20 §6 DU CODE DE L’ENV.
Comment éviter, réduire ou compenser les éventuelles incidences négatives identifiées ?

Présentation des mesures pour éviter, réduire ou compenser les incidences négatives notables sur l’environnement

Ce chapitre prolonge l’analyse des effets. Il rappelle dans un premier temps les effets probables négatifs notables et propose dans un second temps des mesures ou points de vigilance pour les éviter, réduire voire compenser.

Ce chapitre conclut un processus itératif entre le maître d’ouvrage et l’évaluateur, dans une optique d’amélioration de la prise en compte des enjeux environnementaux. Le document ayant une vocation stratégique, il peut également être proposé, au-delà de mesures stricto
Plan de Gestion des Risques d'Inondation 2022-2027 | Bassin Rhône-Méditerranée

sensu, des points de vigilance quant à la mise en œuvre du plan.

CHAPITRE 7

Art. R122-20 §7 DU CODE DE L'ENV.

Comment suivre l'évolution des incidences négatives probables et les corriger le cas échéant ?

Présentation des critères, indicateurs et modalités retenues pour suivre l’évolution des incidences négatives notables sur l’environnement.

Cette partie du rapport environnemental propose des critères et des modalités simples, pour suivre l’évolution des incidences probables du PGRI. Le suivi doit permettre de connaître les incidences réelles du plan sur l’environnement, mais également de s’assurer que les mesures proposées pour les éviter, réduire voire compenser sont efficaces.

Ces critères et modalités sont calibrés au plus proche des outils existants pour le pilotage du PGRI lui-même, afin d’assurer un suivi facilité et efficace, qui permette la mise en œuvre de mesures correctrices le cas échéant.

CHAPITRE 8

Art. R122-20 §8 DU CODE DE L'ENV.

Quelle méthode d'évaluation environnementale ?

Méthode d’évaluation environnementale appliquée

Ce chapitre développe la méthode utilisée pour évaluer les effets de la mise en œuvre du PGRI sur l’environnement. Il s’agit d’éclairer le lecteur sur les références prises pour l’expertise.

Ce chapitre aborde également toutes les parties du rapport environnemental qui demandent des éclairages méthodologiques utiles à la compréhension. Des éléments plus précis de méthode se retrouvent également chacune des parties du rapport.

CHAPITRE 9

Art. R122-20 §9 DU CODE DE L'ENV.

Quelle implication et/ou effets sur les territoires des États membres concernés ?

Les avis émis par les États membres de l'Union Européenne consultés

Le bassin Rhône-Méditerranée présente des connexions avec certains États membres de l'UE voisins. A ce titre, leur avis sur la mise en œuvre du PGRI doivent être présentés dans ce chapitre.

2.1.4 - Consultations du rapport environnemental

L’évaluation environnementale est soumise à plusieurs consultations réglementaires (en tant que partie de l'ensemble du projet) :

- une autre auprès du grand public, lors de la procédure de mise à disposition du public pour une période de 6 mois du projet de PGRI et de l’ensemble des documents d’accompagnement (dont l’évaluation environnementale). L’objectif est d’informer le grand public sur le projet et sur la prise en compte de l’environnement dans le plan, et de lui permettre de formuler des avis s’il le souhaite ;

- une dernière lorsque le PGRI et les documents d’accompagnement seront soumis aux assemblées et services (conseils régionaux, conseils départementaux, organismes socioprofessionnels, instances et structures locales de gestion de l'eau) pour une période de 4 mois conformément à l'article R.212-6 du Code de l'Environnement.
2.2 - Le Plan de Gestion des Risques d'Inondation

Après l’évaluation préliminaire des risques d'inondation (mise à jour en 2018), l'identification des Territoires à Risques importants d'Inondation (TRI) et la cartographie des risques, le PGRI constitue une étape importante à mettre en place dans le cadre de la Directive Inondation. En effet, il donne une vision stratégique des actions à conjuguer pour réduire les conséquences négatives des inondations, en fixant les objectifs et dispositions en matière de gestion des risques d’inondation à l’échelle du bassin hydrographique et des TRI. Il englobe tous les aspects de la gestion des risques d’inondation en mettant l’accent sur la prévention, la protection et la préparation, y compris la prévision et les systèmes d’alerte.

2.2.1 - **Objectifs du PGRI**

Le PGRI vise à encadrer l'utilisation des outils de prévention des inondations à l'échelle du bassin Rhône-Méditerranée, puis à définir des objectifs priorisés pour réduire les conséquences négatives des inondations des territoires à risques importants du bassin. Les objectifs du PGRI doivent permettre d'atteindre ceux de la Stratégie Nationale de Gestion des Risques d'Inondation (SNGRI), qui sont (grands objectifs) :

- d'augmenter la sécurité des populations ;
- de stabiliser sur le court terme, et réduire à moyen terme, le coût des dommages ;
- de raccourcir fortement le délai de retour à la normale des territoires sinistrés.

Le PGRI comprend :

- des objectifs et des orientations fondamentales pour la prévention des inondations et des mesures pour l'ensemble du bassin hydrographique (district) ;
- des objectifs et mesures particulières aux Territoires à Risque important d'Inondation (TRI), en lien avec les Stratégies Locales de Gestion des Risques Inondation (SLGRI).

2.2.2 - **Architecture et contenu**

En termes de contenu, la réglementation demande à ce que le PGRI contienne notamment :

- les conclusions de l'EPRI (mise à jour) ;
- les cartes des zones inondables au niveau des TRI ;
- les objectifs appropriés en matière de gestion des risques pour les TRI ;
- la synthèse et le degré de priorités des dispositions visant à atteindre les objectifs par TRI ;
- les modalités de suivi de chacune des dispositions prises par TRI ;
- une description du processus de coordination avec la directive cadre sur l'eau (DCE).

Par ailleurs, pour répondre aux objectifs du PGRI, les mesures prises doivent comprendre (article L.566-7 du Code de l'Environnement) :

- les orientations fondamentales et dispositions présentées dans le SDAGE, concernant la prévention des inondations au regard de la gestion équilibrée de la ressource en eau ;
- les dispositions concernant la surveillance, la prévision et l'information sur les phénomènes d'inondation, qui comprennent notamment le Schéma Directeur de Prévision des Crues (SDPC) ;
- les dispositions pour la réduction de la vulnérabilité des territoires face aux risques d'inondation, comprenant des mesures pour le développement d'un mode durable d'occupation et d'exploitation des sols, notamment des mesures pour la maîtrise de l'urbanisation et la cohérence du territoire au regard du risque d'inondation, des mesures pour la réduction de la vulnérabilité des activités économiques et du bâti et, le cas échéant, des mesures pour l'amélioration de la rétention de l'eau et l'inondation contrôlée ;
- des dispositions concernant l'information préventive, l'éducation, la résilience et la conscience du risque.

Le plan doit également contenir :

- une synthèse des stratégies locales et de leurs mesures ;
- les dispositions afférentes aux risques d'inondation des plans ORSEC (Organisation de la Réponse de la Sécurité Civile).

Sur cette base, la circulaire du 14 août 2013 relative à l'élaboration du PGRI prévoit une structuration de PGRI autour de quatre grandes parties :

- un préalable sur le PGRI, sa portée, son processus d'élaboration et de mise en œuvre ;
• un diagnostic à l'échelle du bassin hydrographique et un bilan sur la politique mise en œuvre ;
• une partie « objectifs et dispositions » à l'échelle du bassin ;
• une partie « objectifs et dispositions » pour la gestion des TRI.

Ces parties sont complétées par une annexe reprenant les éléments cartographiques du diagnostic, un récapitulatif des dispositions et des indicateurs de suivi en vue du rapportage, et l'évaluation environnementale du PGRI.

De manière générale, le PGRI est structuré selon les objectifs stratégiques qu'il fixe, à l'image de la structuration du SDAGE autour des orientations fondamentales.

2.2.3 - Les Grands Objectifs et dispositions du PGRI 2022-2027

Le PGRI 2022-2027 du bassin Rhône-Méditerranée s'articule autour de cinq Grands Objectifs (GO), déclinant 48 dispositions :

• **GO1 - Mieux prendre en compte le risque dans l'aménagement et maîtriser le coût des dommages liés à l'inondation**

La prévention la plus efficace pour limiter les dommages liés aux inondations reste, bien évidemment, d'éviter l'urbanisation en zone inondable. Son corollaire consiste à réduire la vulnérabilité des enjeux existants en zone inondable. Ainsi, l'adoption de mesures de réduction de la vulnérabilité des enjeux présents en zones inondables doit permettre de réduire le coût des dommages, de minimiser les dysfonctionnements, de favoriser le redémarrage de l’activité après une inondation.

Par conséquent, ce Grand Objectif ambitionne, à travers six dispositions, d'améliorer la connaissance de la vulnérabilité du territoire, de la réduire et de respecter les principes d'un aménagement du territoire adapté aux risques d'inondation.

• **GO2 - Augmenter la sécurité des populations exposées aux inondations en tenant compte du fonctionnement naturel des milieux aquatiques**

La réduction des risques d'inondation peut également s'envisager sur des solutions fondées sur la nature. En effet, des actions telles que la reconquête des zones humides, de corridors biologiques, d'espaces de bon fonctionnement des cours d'eau, etc. sont favorables à la réduction de l'aléa. Il s'agit donc de favoriser une stratégie commune entre prévention des inondations et gestion des milieux aquatiques, telle que souhaitée par la mise en œuvre de la compétence GEMAPI.

Ainsi, ce Grand Objectif vise, à travers quinze dispositions, à agir sur les capacités d'écoulement, à prendre en compte les risques torrentiels, à prendre en compte l'érosion côtière du littoral et à assurer la performance des ouvrages de protection.

• **GO3 - Améliorer la résilience des territoires exposés**

Les inondations peuvent faire courir un risque grave voire mortel aux populations. C'est pourquoi la priorité, mise en avant par la stratégie nationale de gestion des risques d'inondation, est de limiter au maximum le risque de pertes de vies humaines en développant la prévision, l’alerte, la mise en sécurité des populations et la formation aux comportements qui sauvent. En effet, dès lors que les inondations sont inévitables, la capacité des territoires à s'organiser pour gérer les crises et rebondir après un événement concoure à réduire les impacts négatifs de cet événement naturel.
Ce Grand Objectif vise donc, à travers quatorze dispositions à améliorer la résilience des territoires exposés, en passant par la prévision, la gestion de crise et la culture du risque.

- **GO4 - Organiser les acteurs et les compétences**

Afin de réduire les risques d'inondation et d'assurer la protection des populations, la structuration des acteurs, notamment par la compétence GEMAPI, est un préalable indispensable à la mise en œuvre concrète des actions. La gestion des risques d'inondation nécessite une bonne articulation des politiques d'aménagement du territoire tout en s’assurant de la bonne gestion des milieux aquatiques.

C'est pourquoi ce Grand Objectif a pour objectif, à travers sept dispositions, de favoriser la synergie entre les différentes politiques publiques, et de garantir un cadre de performance pour la gestion des ouvrages de protection.

- **GO5 - Développer la connaissance sur les phénomènes et les risques d'inondation**

Dans un contexte de changement climatique, et des incertitudes qui l’accompagne en termes d'élévation du niveau de la mer, d'évolution des phénomènes extrêmes ou encore de modification des régimes hydrologiques, l'adaptation nécessite une connaissance développée sur l'évolution des risques.

Ce Grand Objectif cherche donc, à travers six dispositions, à développer la connaissance sur les risques d'inondation et à améliorer le partage de la connaissance sur la vulnérabilité du territoire actuelle et future.
2.3 - Articulation du PGRI avec les autres plans, schémas et programmes

Ce chapitre vise à évaluer la cohérence externe du PGRI 2022-2027 avec :

- les politiques qui définissent les grands objectifs et constituent le cadrage stratégique international, européen et national en lien avec la gestion de la ressource en eau ;
- la liste des plans, schémas ou programmes soumis à évaluation environnementale et mentionnés à l'article R.122-17 du Code de l’Environnement.

Il s’agit d’évaluer l’intégration du PGRI dans son contexte institutionnel et technique.

2.3.1 - Approche méthodologique générale

La méthode d’analyse est similaire entre les deux catégories de plans, schémas, programmes, documents de planification et engagements étudiés.

Chaque plan, schéma, programme, document de planification ou engagement est présenté (objectifs, orientations générales, etc.). L’articulation avec le PGRI est analysée sur cette base, en cherchant à mettre en évidence les éventuels synergies ou points de divergence entre les documents.

L’analyse de l’articulation entre le PGRI et les engagements internationaux, communautaires, nationaux et infranationaux en faveur de l’environnement est effectuée selon les grandes thématiques environnementales. Les objectifs et orientations de protection de l’environnement seront ainsi synthétisés et présentés par thématique pour éviter les redondances entre des documents d’échelle différente, mais dont les finalités sont identiques.

2.3.2 - Cohérence avec les engagements internationaux, communautaires et nationaux

Les parties suivantes présentent la position du PGRI par rapport aux objectifs des textes internationaux, communautaires et nationaux sur les principales composantes environnementales qui sont affectées par le PGRI.

2.3.2.a - Thématique de l’eau

- Convention pour la protection de la mer Méditerranée contre la pollution (Barcelone, 1976, 1995)

La convention de Barcelone et les protocoles associés visent à protéger l’environnement marin et côtier de la Méditerranée tout en encourageant des plans régionaux et nationaux contribuant au développement durable. Au fil du temps, son mandat s'est élargi pour inclure la planification et la gestion intégrée de la zone côtière.

- Protocole relatif à la protection de la mer Méditerranée contre la pollution d'origine tellurique (Athènes, 1980)

Dans la mesure où ce protocole vise la cause majeure de pollution en mer, il impose une élimination progressive des substances les plus dangereuses et une réduction sensible des substances moins nocives. Les rejets soumis à autorisation sont quant à eux soumis à des normes techniques précises. Les amendements ont modifié de façon substantielle le texte originel. Les modifications s’inspirent des grands principes fixés à la conférence de Rio.

- **La directive « inondations » (2007/60/CE)**

La directive « inondation » est à l'origine de la méthodologie décrite précédemment (EPRI => TRI et leur cartographie des surfaces inondables et des risques inondation => PGRI).

- **La Directive Cadre sur l'Eau (DCE 2000/60/CE) et les autres directives « de l'eau »**

- Directive 2006/118/CE du 12 décembre 2006 sur la protection des eaux souterraines contre la pollution, découlant de l'article 17 de la DCE, modifiée par la directive 2014/80/UE ;
- Directive 2008/105/CE du 16 décembre 2008 établissant des normes de qualité environnementale dans le domaine de l'eau, découlant de l'article 16 de la DCE ;

La directive 2008/56/CE du 17 juin 2008 établissant un cadre d’action communautaire dans le domaine de la politique pour le milieu marin fixe les principes selon lesquels les États membres doivent agir en vue d'atteindre le bon état écologique de l'ensemble des eaux marines dont ils sont responsables d'ici 2020 ou le maintenir. La DCSMM doit conduire les États à prendre les mesures nécessaires pour réduire les impacts des activités sur ce milieu.

Pour prendre en compte, à bonne échelle, l'ensemble des eaux européennes, la directive se décline en régions et sous régions marines. Les eaux françaises sont réparties en 4 sous régions marines, dont la « Méditerranée occidentale ».

La mise en œuvre de la directive, sur chaque sous-région, passe par l'élaboration de stratégies marines. La
transposition de ces stratégies en droit français s'effectue par l'élaboration d'un Plan d'Actions pour le Milieu Marin (PAMM). Le PAMM définit des objectifs environnementaux généraux, déclinés en objectifs particuliers, auxquels sont associés des indicateurs en vue de parvenir à un bon état écologique du milieu marin.

L'articulation du PGRI avec le PAMM, instrument de mise en œuvre de la directive, est analysée au sein de la partie dédiée (cf. chapitre 2.3.3.a).

- **Les lois sur l'eau**

 La loi n°64-1245 du 16 décembre 1964

 La première loi sur l'eau française relative au régime et à la répartition des eaux et à la lutte contre leur pollution fonde le système national de l’eau, organisé en six bassins hydrographiques, chacun étant doté d’une instance de concertation, le comité de bassin et d’une agence financière chargée d’une politique incitative. La loi comporte un important volet pénal contre les pollueurs.

 La loi n°92-3 du 3 janvier 1992

 La deuxième loi sur l'eau reconnaît la ressource en eau comme "patrimoine commun de la Nation". Elle introduit la notion d'unité de la ressource en matière de gestion. Les mesures de protection s'appliquent en effet "aux eaux superficielles et souterraines, et aux eaux de mer dans la limite des eaux territoriales ". Elle dote le bassin d'un instrument de planification, le SDAGE et prévoit des SAGE au niveau local.

 La loi n°2006-1772 du 30 décembre 2006

 La troisième loi sur l'eau, dite LEMA (Loi sur l'Eau et les Milieux Aquatiques), institue le droit d'accès à l’eau potable dans des conditions économiquement acceptables pour tous. Elle rend le système de redevance des agences de l’eau constitutionnel en encadrant les taux des redevances par le Parlement, fixe les grandes orientations des 9ème programmes des agences de l’eau et crée l’Office national de l’eau et des milieux aquatiques (désormais inclus dans l'Office Français de la Biodiversité, OFB).

 La LEMA constitue la transposition de la DCE dans le droit français. Un grand nombre de principes, déjà introduit dans le droit national en 1962 et 1994 (gestion par bassin versant, association des usagers, financement, etc.) ont été confirmé et la police de l'eau a été créée.

- **Les lois Grenelle**

 La loi n°2009-967 du 3 août 2009 de programmation relative à la mise en œuvre du Grenelle de l'environnement, dite « Grenelle 1 » pose les grands objectifs et les engagements pris par l'État. Cette loi propose des mesures relatives à la lutte contre le réchauffement climatique, à la préservation de la biodiversité et des milieux naturels, à la mise en place d’une nouvelle forme de gouvernance et enfin à la prévention des risques pour l’environnement et la santé.

 La loi n° 2010-788 du 12 juillet 2010 portant engagement national pour l'environnement, dite « Grenelle 2 », decline des mesures relatives à six chantiers majeurs : les bâtiments et l’urbanisme, les transports, les consommations énergétiques, la biodiversité, les risques, la santé et les déchets et la gouvernance écologique.

 Elles rappellent notamment les objectifs d'atteinte de bon état des masses d'eau fixés par la DCE et donnent également plusieurs autres objectifs, dont :

 - assurer un bon fonctionnement des écosystèmes en protégeant les espèces et les habitats ;
 - protéger les zones humides et les captages d'eau potable ;
 - encadrer l'assainissement non collectif et lutter contre les pertes d'eau dans les réseaux ;
• protéger la mer et le littoral.

Les lois Grenelle constituent la transposition dans le droit français de la directive inondation, notamment par le chapitre sur les risques industriels et naturels (Titre V - Chapitre IV de la loi Grenelle 2).

• La loi MAPTAM

• Convergences du PGRI avec ces engagements

Le PGRI fixe, à l'échelle du bassin Rhône-Méditerranée, les grands objectifs sur le risque inondation et intègre la DCE et, plus particulièrement, la Directive « inondation » à travers ses dispositions.

Spécifiquement sur la compétence GEMAPI, le GO4 et sa disposition D.4-2 cadrent la bonne prise en main de cette compétence par les collectivités et l'association des acteurs de l'eau.

En agissant sur la thématique inondation, les dispositions du GO2 prennent également en compte les milieux naturels sensibles et leur fonctionnement écologique (zones humides, ripisylves, etc.). Ces dispositions visent à limiter l'intensité des crues et submersions marines par le biais d'un maintien ou d'un retour à un fonctionnement « naturel » des cours d'eau et milieux côtiers.

En effet, certains de ces milieux, en ce qu'ils constituent des champs d'expansion des crues, ont vocation à être inventorier et préserver. A ce titre, les espaces de bon fonctionnement des cours d'eau, dont le bon fonctionnement est essentiel en vue de l'atteinte du bon état des masses d'eau superficielles, sont également préservés par le PGRI. Ainsi, plusieurs dispositions du GO2 sont communes avec celles du SDAGE, outils de planification visant l'atteinte du bon état des masses d'eau. Les milieux marins et littoraux bénéficient aussi de dispositions spécifiques, qui sont développées ci-après à travers l'analyse de l'articulation du PGRI avec le document stratégique de façade notamment.

Les dispositions D.4-3 à D.4-5, qui visent une bonne gouvernance des enjeux liés au risque inondation et aux milieux aquatiques, favorisent la cohérence entre gestion des milieux aquatiques et prévention des inondations. Elles définissent également spécifiquement un objectif d'intégration des priorités du SDAGE dans les outils de prévention des inondations, et de gestion équilibrée et durable des ressources en eau.

2.3.2.b - Thématique de la biodiversité

• Convention internationale pour la protection des végétaux (Rome, 1951)

Cette convention se propose d'assurer une action commune pour empêcher la dissémination et l’introduction d’organismes nuisibles aux végétaux et aux produits végétaux, et de promouvoir des mesures en matière de lutte contre les espèces exotiques envahissantes végétale, animale ou autre. Le texte offre un cadre pour la coopération, l’harmonisation et l’échange de données techniques au niveau international, en collaboration avec les organisations régionales et nationales chargées de la protection des végétaux. Elle joue également un rôle de premier plan dans le commerce.

• Convention relative aux zones humides d'importance internationale (Ramsar, 1971)

Ce traité intergouvernemental incarne les engagements de ses États membres à maintenir les caractéristiques
écologiques de leurs zones humides d'importance internationale et à planifier « l'utilisation rationnelle », ou utilisation durable, de toutes les zones humides se trouvant sur leur territoire.

Le bassin compte 11 sites Ramsar dont la liste est déclinée au sein de l'état initial de l'environnement (cf. chapitre 3.3.6).

- **Convention sur la conservation des espèces migratrices appartenant à la faune sauvage (Bonn, 1979)**

Cette convention a pour objectifs de protéger et de gérer les espèces migratrices appartenant à la faune sauvage (espèces terrestres, marines et aériennes) à l'échelle mondiale sur l'ensemble de leur aire de répartition. Ces objectifs visent à favoriser les travaux de recherche sur les espèces migratrices et la mise en œuvre de mesures de protection immédiate pour les espèces menacées.

- **Convention sur la diversité biologique (Rio, 1992)**

Présenté à la conférence de Rio, ce texte est le premier accord mondial sur la conservation et l'utilisation durable de la diversité biologique. La convention se fixe trois objectifs principaux : la conservation de la diversité biologique, l'utilisation durable de ses éléments constitutifs, et le partage juste et équitable des avantages qui découlent de l'utilisation des ressources génétiques, à des fins commerciales et autres.

- **Convention relative à la conservation de la vie sauvage et du milieu naturel en Europe (Berne, 1979)**

Cette convention a pour but d'assurer la conservation de la vie sauvage et du milieu naturel de l'Europe par une coopération entre les États. Il s'agit du premier instrument juridique contraignant qui vise la protection des espèces végétales et animales rares et en danger, ainsi que les habitats naturels de l’Europe. Les pays signataires s'engagent à :

- mettre en œuvre des politiques nationales de conservation de la flore et de la faune sauvages, et des habitats naturels ;
- intégrer la conservation de la faune et de la flore sauvages dans les politiques nationales d'aménagement, de développement et de l'environnement ;
- encourager l'éducation et promouvoir la diffusion d'informations sur la nécessité de conserver les espèces et leurs habitats.

La directive 92/43/CEE concernant la conservation des habitats naturels ainsi que des espèces de faune (biologie) et de la flore sauvages, dite directive « Habitats », promeut la protection et la gestion des espaces naturels et des espèces de faune et de flore à valeur patrimoniale que comportent ses États membres, dans le respect des exigences économiques, sociales et culturelles.

La directive 2009/147/CE, dite directive « Oiseaux », vise la protection et la gestion des populations d'espèces d'oiseaux sauvages du territoire européen. Cette protection s'applique aussi bien aux oiseaux eux-mêmes qu'à leurs nids, leurs œufs et leurs habitats.

Ces deux directives s'appuient sur un réseau cohérent de sites écologiques protégés : le réseau Natura 2000.

- **La loi « biodiversité »**

La loi n° 2016-1087 du 8 août 2016 pour la reconquête de la biodiversité, de la nature et des paysages vise à protéger, restaurer et valoriser la biodiversité et le patrimoine naturel français en évitant, réduisant ou compensant les effets négatifs des activités humaines sur l’environnement. Elle crée par ailleurs l’Agence française pour la biodiversité (désormais Office Français pour la Biodiversité).
A noter que la loi définit la notion de cours d'eau.

Convergences du PGRI avec ces engagements

En agissant sur la thématique inondation, les dispositions du PGRI prennent également en compte les milieux naturels sensibles et leur fonctionnement écologique. En particulier, le GO2 intègre la préservation des zones humides, des ripisylves et des milieux naturels associés aux cours d'eau à travers les espaces de bon fonctionnement.

En particulier, les dispositions 2-7, 2-8 et 2-12, qui recommandent une gestion durable de l'équilibre sédimentaire, de la ripisylve (habitats et abris de nombreuses espèces) et la limitation de la création d'obstacles pour favoriser les écoulements des crues, permettent de préserver ou d'améliorer la continuité écologique et le déplacement des espèces.

2.3.2.c - Autres thématiques

Pris lors de la conférence de Paris sur le climat (COP21) en décembre 2015, les pays signataires ont adopté le premier accord universel sur le climat juridiquement contraignant. L'accord de Paris constitue un lien entre les politiques actuelles et l'objectif de neutralité climatique fixé pour la fin du siècle. Il vise à contribuer à la mise en œuvre de la Convention de New-York, notamment en (article 2) :

- contenant l'élévation de la température moyenne de la planète en dessous de 2 °C par rapport aux niveaux préindustriels ;
- renforçant les capacités d'adaptation aux effets néfastes des changements climatiques et en promouvant la résilience à ces changements ;
- rendant les flux financiers compatibles avec un profil d'évolution vers un développement à faible émissions de gaz à effet de serre et résilient aux changements climatiques.

Convergences du PGRI avec ces engagements

La thématique du changement climatique et ses effets sur le risque inondation est traitée dans le PGRI à travers le GO5 dans le cadre du développement des connaissances. Les dispositions D.5-2 et D.5-3 peuvent être citée concernant les connaissances sur l’évolution des aléas littoraux et torrentiels avec le changement climatique.

En termes de lutte contre le changement climatique, la préservation des champs d'expansion des crues de l'artificialisation, des zones humides et espaces de bon fonctionnement permettra de conserver leur capacité de puits de carbone.
2.3.3 - Détermination des plans, schémas, programmes pertinents à prendre en compte au regard de la portée et du champ d'application du PGRI

Le législateur a donné au PGRI une valeur juridique particulière en lien avec les décisions administratives et avec les documents d’aménagement du territoire. Ces relations sont présentées ci-dessous :

Illustration 7 : Liens et opposabilité juridiques du PGRI avec les autres documents

2.3.3.a - Analyse de l’articulation avec les documents disposant d’une relation réglementaire avec le PGRI 2022-2027

Le Schéma Directeur d'Aménagement et de Gestion des Eaux (SDAGE) Rhône-Méditerranée

<table>
<thead>
<tr>
<th>État d'avancement</th>
<th>SDAGE RMed 2022-2027 en cours d'élaboration</th>
</tr>
</thead>
</table>

Articulation avec le PGRI

- Comprend les orientations fondamentales et dispositions du SDAGE concernant la prévention des inondations au regard de la gestion équilibrée et durable de la ressource en eau (art. L.566-7-1° du Code de l’Environnement)
- Compatibilité avec les objectifs de qualité et de quantité des eaux fixés par le SDAGE (art. L.566-7 du Code de l’Environnement)

Le Schéma Directeur d'Aménagement et de Gestion des Eaux (SDAGE) est un document de planification décentralisé qui définit, pour une période de six ans, les grandes orientations pour une gestion équilibrée de la ressource en eau ainsi que les objectifs de qualité et de quantité des eaux à atteindre. Il est établi en application de l’article L.212-1 du Code de l’Environnement.

Le SDAGE correspond au plan de gestion des eaux par bassin hydrographique demandé par la Directive Cadre
sur l'Eau (DCE) de 2000.

La réglementation impose que les dispositions du SDAGE concernant la prévention des inondations au regard de la gestion équilibre et durable de la ressource en eau soient communes avec le PGRI, ainsi l'orientation fondamentale 8 du SDAGE est reprise dans son intégralité dans le PGRI (Grand Objectif 2). De plus, plusieurs dispositions du Grand Objectif 4 sont également communes avec le SDAGE (Orientation Fondamentale n°4).

Le PGRI vise notamment l'intégration des priorités du SDAGE dans les PAPI et SLGRI (D.4-3), ainsi qu'une gestion équilibrée des ressources en eau (D.4-4).

Enfin, afin d'assurer la compatibilité du PGRI et la cohérence des deux documents, leur élaboration est menée de façon conjointe et imbriquée.

La Stratégie Nationale de Gestion des Risques d'Inondation (SNGRI) et les Stratégies Locales (SLGRI)

<table>
<thead>
<tr>
<th>État d'avancement (SNGRI)</th>
<th>Présentée le 10 juillet 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>État d'avancement (SLGRI)</td>
<td>41 SLGRI élaborées et mises en œuvre sur les 31 TRI</td>
</tr>
<tr>
<td>Articulation avec le PGRI</td>
<td>Définit des objectifs devant permettre d'atteindre ceux de la SNGRI et comporte une synthèse des SLGRI et de leurs mesures (art. L.566-7 du Code de l'Environnement)</td>
</tr>
</tbody>
</table>

La Stratégie Nationale de Gestion des Risques d'Inondation (SNGRI) a été élaborée à la suite de la mise en œuvre de la directive « inondation » de 2007. Elle vise à encadrer les PGRI et leurs déclinaisons territoriales en rassemblant les dispositions en vigueur pour donner un sens à la politique nationale et afficher les priorités. Elle répond ainsi au besoin de se baser sur un cadre national partagé qui oriente la politique de gestion des risques d'inondation. La SNGRI poursuit trois grands objectifs prioritaires, que le PGRI doit permettre d'atteindre :

- augmenter la sécurité des populations exposées ;
- stabiliser à court terme, et réduire à moyen terme, le coût des dommages liés à l'inondation ;
- raccourcir fortement le délai de retour à la normale des territoires sinistrés.

Issus de ces objectifs, la stratégie nationale s'appuie sur quatre orientations stratégiques :

- développer la gouvernance et les maîtrises d'ouvrage ;
- aménager durablement les territoires ;
- mieux savoir pour mieux agir ;
- apprendre à vivre avec les inondations.

Localement, les Stratégies Locales de Gestion des Risques d'Inondation (SLGRI) sont mises en œuvre à l'échelle des Territoires à Risque important d'Inondation (tout ou partie). Elles sont la déclinaison locale à la fois de la SNGRI et du PGRI.

Les orientations stratégiques de la SNGRI sont bien mises en œuvre dans le PGRI comme indiqué dans le tableau suivant.
Tableau 2 : Analyse de l'articulation du PGRI 2022-2027 avec la SNGRI

<table>
<thead>
<tr>
<th>SNGRI</th>
<th>PGRI 2022-2027</th>
</tr>
</thead>
<tbody>
<tr>
<td>Développer la gouvernance et les maîtrises d'ouvrage</td>
<td>Cette orientation de la SNGRI se retrouve dans le GO4 du PGRI avec la coordination et l'organisation des services publics acteurs de la gestion du risque. Les dispositions D.4-1, D.4-3, D.4-4 et D.4-5 en particulier participent pleinement à cet objectif.</td>
</tr>
<tr>
<td>Aménager durablement les territoires</td>
<td>Le GO1 permet une meilleure prise en compte du risque dans l'aménagement du territoire et les nouvelles constructions, notamment à travers les dispositions D.1-3 à D.1-6.</td>
</tr>
<tr>
<td>Mieux savoir pour mieux agir</td>
<td>La connaissance sur les risques d'inondation fait l'objet d'un Grand Objectif dédié du PGRI, le GO5. Il développe cette thématique à la fois sur le développement de cette connaissance et sur son partage.</td>
</tr>
<tr>
<td>Apprendre à vivre avec les inondations</td>
<td>La surveillance, la prévention et la sensibilisation des populations et territoires exposés sont traités dans le GO3. En particulier, les sous-objectifs « Se préparer à la crise et apprendre à mieux vivre avec les inondations » et « Développer la conscience du risque des populations par la sensibilisation, le développement de la mémoire du risque et la diffusion de l'information ».</td>
</tr>
</tbody>
</table>

La Stratégie Nationale pour la Mer et le Littoral (SNML) et ses documents associés

| État d'avancement | SNML adoptée le 23 février 2017
Stratégie de façade Méditerranée, dont partie de PAMM, adoptée le 4 octobre 2019
Volet opérationnel du DSF adopté le 20 octobre 2021 |
|-------------------|--|

- la transition écologique pour la mer et le littoral ;
- le développement de l'économie bleue durable ;
- le bon état écologique du milieu marin et la préservation d'un littoral attractif ;
- le rayonnement de la France.

Pour répondre à ces objectifs, 4 grands axes stratégiques sont développés :

- s'appuyer sur la connaissance et l'innovation ;

Rapport environnemental | Version modifiée suite à l'avis de l'Ae et les consultations, février 2022
55/300
• développer des territoires maritimes et littoraux durables et résilients ;
• soutenir et valoriser les initiatives et lever les freins ;
• promouvoir une vision française au sein de l'Union Européenne et dans les négociations internationales, et porter les enjeux nationaux.

A l'échelle des façades maritimes délimitées par la stratégie nationale et dans le respect des principes et des orientations posés par la SNML (article L.219-3 du Code de l'Environnement), le Document Stratégique de Façade (DSF) définit les objectifs de la gestion intégrée de la mer et du littoral et les dispositions correspondant à ces objectifs.

Le DSF présente la situation de l'existant dans le périmètre de la façade, notamment l'état de l'environnement tant en mer, tel que décrit par le ou les Plans d'Action pour le Milieu Marin (PAMM), que sur le littoral. Il expose également les conditions d'utilisation de l'espace marin et littoral, les activités économiques liées à la mer et à la valorisation du littoral ainsi que les principales perspectives d'évolution socio-économiques et environnementales et les activités associées (décret n°2012-219 du 16 février 2012 modifié relatif à la stratégie nationale pour la mer et le littoral et aux documents stratégiques de façade).

Le DSF est constitué de plusieurs volets dont les deux premiers, à savoir la situation de l'existant des activités maritimes et l'évaluation de l'état initial de l'état écologique des eaux marines, et les objectifs stratégiques et zones de vocation constituent la Stratégie de façade maritime. Elle précise les enjeux pour la façade, notamment de conciliation du développement économique des activités maritimes avec le respect du milieu marin, et définit une vision d'avenir souhaitée à l'horizon 2030.

Concernant le volet stratégique du DSF (la stratégie de façade maritime), adopté en octobre 2019, le PAMM est constitué de l'annexe 2 (Synthèse scientifique et technique relative à l'évaluation initiale de l'état écologique des eaux marines, et les objectifs stratégiques et zones de vocation constituent la Stratégie de façade maritime. Elle précise les enjeux pour la façade, notamment de conciliation du développement économique des activités maritimes avec le respect du milieu marin, et définit une vision d'avenir souhaitée à l'horizon 2030.

Concernant le volet stratégique du DSF (la stratégie de façade maritime), adopté en octobre 2019, le PAMM est constitué de l'annexe 2 (Synthèse scientifique et technique relative à l'évaluation initiale de l'état écologique des eaux marines, et les objectifs stratégiques et zones de vocation constituent la Stratégie de façade maritime. Elle précise les enjeux pour la façade, notamment de conciliation du développement économique des activités maritimes avec le respect du milieu marin, et définit une vision d'avenir souhaitée à l'horizon 2030.

Les objectifs environnementaux portés par la stratégie sur lesquels le PGRI 2022-2027 peut présenter un levier d'action sont les objectifs liés à la préservation des habitats marins et des espèces marines à savoir :

• A. Maintenir ou rétablir la biodiversité et le fonctionnement des écosystèmes des fonds côtiers ;
• B. Maintenir un bon état de conservation des habitats profonds des canyons sous-marins ;
• C. Préserver la ressource halieutique du plateau du Golfe du Lion et des zones côtières ;
• D. Maintenir ou rétablir les populations de mammifères marins et tortues dans un bon état de conservation ;
• E. Garantir les potentialités d'accueil du milieu marin pour les oiseaux : alimentation, repos, reproduction, déplacements.
Deux dispositions du PRGI sont particulièrement en cohérence avec ces objectifs, il s'agit des dispositions D.2-6 (« Restaurer les fonctionnalités naturelles des milieux qui permettent de réduire les crues et les submersions marines ») et D.2-7 (« Préservar et améliorer la gestion de l'équilibre sédimentaire »). En effet, la restauration des fonctionnalités des habitats marins et littoraux et du transit sédimentaire pourra permettre le bon état de la biodiversité dans les zones côtières.

De plus, le sous-objectif « Prendre en compte l'érosion côtière du littoral » (dispositions D.2-10 et D.2-11) pourrait également participer à la réussite de ces objectifs, par la prise en compte par les documents stratégiques locaux (SLGRI, SCoT littoraux) qui sont invité à réfléchir à l'aménagement du littoral et à préserver les espaces naturels permettant de limiter l'érosion côtière.

Le Schéma Directeur de Prévision des Crues (SDPC)

<table>
<thead>
<tr>
<th>État d'avancement</th>
<th>Approuvé par arrêté préfectoral le 20 décembre 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Articulation avec le PGRI</td>
<td>Comprend les dispositions concernant la surveillance, la prévision et l'information sur les inondations, notamment le SDPC (art. L.566-7-2° du Code de l'Environnement)</td>
</tr>
</tbody>
</table>

Mis en œuvre à l’échelle du grand bassin hydrographique Rhône-Méditerranée, le Schéma Directeur de Prévision des Crues (SDPC) précise l’organisation de la surveillance, de la prévision et de la transmission de l’information sur les crues à l’échelle du bassin. Il assure la cohésion des dispositifs de l’État et de ses établissements publics, délimite les territoires de compétence des différents Services de Prévision des Crues (SPC) dans le bassin et identifie les cours d’eau qui font l’objet d’une surveillance et d’une prévision sur tout ou partie de leur linéaire (article L.564-1 à 3 du Code de l’Environnement).

En Rhône-Méditerranée, le SDPC délimite ainsi 5 services de prévision des crues : le SPC Rhône amont-Saône ; le SPC Alpes du nord ; le SPC Grand delta ; le SPC Méditerranée Est ; le SPC Méditerranée Ouest.

A l’échelle du territoire des services de prévision des crues, l’organisation de la chaîne de prévision de chacun des SPC est décrite dans un règlement de surveillance, de prévision et de transmission de l’information sur les crues.

Concernant la prévision des crues, le PGRI 2022-2027 intègre trois dispositions dans le GO3 (sous-objectif « Agir sur la surveillance et la prévision ») : les dispositions D.3-1, D.3-2 et D.3-3. La première d'entre elles décrit l'organisation de la prévision des crues sur le bassin en citant le SDPC. La disposition suivante développe davantage en décrivant le système de prévision des inondations et en organisant la structuration d'atlases des zones inondées potentielles (ZIP). Enfin, les outils utilisés pour la prévision des crues sont identifiés dans la dernière disposition citée.

Le dispositif Organisation de la Réponse de Sécurité Civile (ORSEC)

<table>
<thead>
<tr>
<th>État d'avancement</th>
<th>Mis en place au niveau des 29 départements du bassin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Articulation avec le PGRI</td>
<td>Accompagné des dispositions afférentes aux risques d'inondation des plans ORSEC (art. L.566-7 du Code de l'Environnement)</td>
</tr>
</tbody>
</table>

Le dispositif d'Organisation de la Réponse de Sécurité Civile (ORSEC), rénové par la loi de modernisation de la sécurité civile du 13 août 2004, organise la mobilisation, la mise en œuvre et la coordination des acteurs concourant à la protection générale des populations en situation de crise. Il se décline selon trois niveaux : zonal, départemental et maritime.
Les dispositions afférentes aux inondations du dispositif ORSEC sont référencées dans le PGRI. En particulier, la disposition D.3-7 (« Développer des volets inondations au sein des dispositifs ORSEC départementaux »), spécifiquement dédiée aux dispositifs ORSEC, incite cet outil à développer un volet inondation.

Les Plans de Prévention des Risques d'inondation (PPRi)

<table>
<thead>
<tr>
<th>État d'avancement</th>
<th>3 201 PPRi arrêtés ou prescrits en août 2021 (bd Gaspard)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Articulation avec le PGRI</td>
<td>Compatibilité avec le PGRI (art. L.562-1-VI du Code de l'Environnement)</td>
</tr>
</tbody>
</table>

En 1995 (loi n°95-101 du 2 février 1995 relative au renforcement de la protection de l’environnement dite loi « Barnier »), les Plans de Prévention des Risques naturels prévisibles (PPRn) ont été créés. La loi dite « Barnier » visait à renforcer et à unifier l’action de prévention. Elle précisait en outre que les procédures déjà approuvées valent PPR.

Les Plans de Prévention des Risques d'Inondation (PPRi), généralement réalisés à l’échelle communale ou de tronçon de cours d’eau, comportent la délimitation des zones à risque qui font l’objet d’une réglementation et de mesures spécifiques, s’imposant notamment aux documents d’urbanisme mais aussi aux projets d’Installation Classée pour la Protection de l'Environnement (ICPE).

En particulier, le PGRI 2022-2027 décline plusieurs objectifs et recommandations à l'intention des PPRi :

- Disposition D.1-1 : Mieux connaître les enjeux d'un territoire pour pouvoir agir sur l'ensemble des composantes de la vulnérabilité : population, environnement, patrimoine, activités économiques, etc. ;
- Disposition D.1-2 : Maîtriser les dommages en cas d'inondation en agissant sur la vulnérabilité des biens, au travers des stratégies locales, des programmes d'action ou réglementaire ;
- Disposition D.1-3 : Ne pas aggraver la vulnérabilité en orientant le développement urbain en dehors des zones à risque ;
- Disposition D.2-1 : Préserver les champs d'expansion des crues ;
- Disposition D.2-13 : Limiter l'exposition des enjeux protégés par des ouvrages de protection.

Les Schémas Régionaux d'Aménagement, de Développement Durable et d'Égalité des Territoires (SRADDET), y compris les Plans Régionaux de Prévention et de Gestion des Déchets (PRPGD)

<table>
<thead>
<tr>
<th>État d'avancement (SRADDET)</th>
<th>Auvergne-Rhône-Alpes : approuvé par arrêté préfectoral le 10 avril 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bourgogne-Franche-Comté : approuvé par arrêté préfectoral le 16 septembre 2020</td>
</tr>
<tr>
<td></td>
<td>Grand-Est : approuvé par arrêté préfectoral le 24 janvier 2020</td>
</tr>
<tr>
<td></td>
<td>Occitanie : projet adopté par le Conseil Régional le 19 décembre 2019</td>
</tr>
<tr>
<td></td>
<td>Provence-Alpes-Côte d'Azur : approuvé par arrêté préfectoral le 15 octobre 2019</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>État d'avancement (PRPGD)</th>
<th>Auvergne-Rhône-Alpes : approuvé par arrêté préfectoral le 10 avril 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bourgogne-Franche-Comté : approuvé par arrêté préfectoral le 16 septembre 2020</td>
</tr>
<tr>
<td></td>
<td>Grand-Est : approuvé par arrêté préfectoral le 24 janvier 2020</td>
</tr>
<tr>
<td></td>
<td>Occitanie : projet adopté par le Conseil Régional le 14 novembre 2019</td>
</tr>
<tr>
<td></td>
<td>Provence-Alpes-Côte d'Azur : approuvé par arrêté préfectoral le 15 octobre 2019</td>
</tr>
</tbody>
</table>
Plan de Gestion des Risques d'Inondation 2022-2027 | Bassin Rhône-Méditerranée

| Articulation avec le PGRI | Compatibilité avec les objectifs et orientations fondamentales du PGRI (art. L.4251-2-2° du Code Général des Collectivités Territoriales)
Prise en compte de la trame verte et bleue (art. L.371-3 du Code de l'Environnement) |

Rendu obligatoire par la loi portant nouvelle organisation territoriale de la République (NOTRe) du 7 août 2015, le Schéma Régional d'Aménagement, de Développement Durable et d'Égalité des Territoires (SRADDET) constitue le document d'orientation prescriptif pour le territoire régional et l’instrument privilégié d’expression de l’ambition politique pour le territoire régional.

Le SRADDET ayant une portée prescriptive, il définit des objectifs et les règles conçues pour favoriser l’atteinte de ses objectifs, dans les onze domaines déterminés par la loi dont la gestion économe de l’espace, le développement des transports, la pollution de l’air, la lutte contre le changement climatique, la protection et la restauration de la biodiversité, et la prévention et la gestion des déchets.

Le SRADDET est un schéma intégrateur qui se substitue à quatre schémas régionaux. Il met en cohérence différentes politiques publiques thématiques :

- le Plan Régional de Prévention et de Gestion des Déchets (PRPGD), issu d’une nouvelle compétence régionale ;
- le schéma régional climat air énergie ;
- le schéma régional de cohérence écologique ;
- le schéma régional des infrastructures de transport ;
- le schéma régional de l’intermodalité.

La loi n°2015-991 du 7 août 2015 portant nouvelle organisation territoriale de la République (NOTRe) a également eu pour effet de supprimer plusieurs plans régionaux, interrégionaux ou départementaux de prévention et de gestion des déchets pour les unifier au sein du nouveau Plan Régional de Prévention et de gestion des déchets (PRPGD). Le PRPGD a pour objet de coordonner à l’échelle régionale les actions entreprises par l’ensemble des parties prenantes concernées par la prévention et la gestion des déchets sur une période de 6 et 12 ans. Le PRPGD doit comporter un « Plan Régional d’Action en faveur de l’économie circulaire ».

Le PGRI prend en compte la partie continuités écologiques des SRADDET à travers le GO2 qui préserve et participe à la restauration des milieux supports de la trame bleue. En particulier les dispositions D.2-1 traitant de la préservation des champs d’expansion des crues, la D.2-6 traitant de la restauration de la fonctionnalité naturelle des milieux et la D.2-8 traitant de la gestion des ripisylves.

Les documents d'urbanisme

| Articulation avec le PGRI | Compatibilité avec les objectifs de gestion des risques d'inondation, les orientations fondamentales et les dispositions du PGRI (art. L.131-1-10° et L.131-7 du Code de l’Urbanisme) |

Institué par la loi « Solidarité et Renouvellement Urbains » du 13 décembre 2000, le Schéma de Cohérence Territorial (SCoT) est l’outil de conception et de mise en œuvre d’une planification stratégique intercommunale, à l’échelle d’un large bassin de vie ou d’une aire urbaine, dans le cadre d’un projet d’aménagement et de développement durables. Il doit respecter les principes du développement durable : principe d’équilibre entre le renouvellement urbain, le développement urbain maîtrisé, le développement de l’espace rural et la préservation des espaces naturels et des paysages ; principe de diversité des fonctions urbaines et de mixité sociale ; principe de respect de l’environnement.
Le Plan Local d'Urbanisme (PLU) est un document d’urbanisme établissant un projet global d’urbanisme et d’aménagement à l’échelle d’une commune ou d’une intercommunalité (PLUi). Il établit les principales règles applicables à l’utilisation du sol sur un territoire déterminé.

Enfin, la Carte Communale (CC) est un document d’urbanisme simple qui délimite les secteurs de la commune où les permis de construire peuvent être délivrés. Elle doit respecter les objectifs d’équilibre, de gestion économique de l’espace, de diversité des fonctions urbaines et de mixité sociale. Contrairement au PLU, elle ne peut pas réglementer de façon détaillée les modalités d’implantation sur les parcelles et ne peut pas contenir des orientations d’aménagement.

Le G01 du PGRI 2022-2027 est l'objectif central de la prise en compte du risque dans l'aménagement du territoire régi notamment par les documents d'urbanisme. La compatibilité de ces documents avec les principes d’aménagement des zones à risques d’inondation est précisée dans la disposition D.1-3 « Ne pas aggraver la vulnérabilité en orientant le développement urbain en dehors des zones à risque ».

D'autres dispositions insistent sur le rôle des documents d'urbanisme en matière de prévention des inondations :

- Disposition D.2-1 : Préserver les champs d'expansion des crues ;
- Disposition D.2-2 : Rechercher la mobilisation de nouvelles capacités d'expansion des crues ;
- Disposition D.2-4 : Limiter le ruissellement à la source ;
- Disposition D.2-10 : Identifier les territoires présentant un risque important d'érosion ;
- Disposition D.2-13 : Limiter l'exposition des enjeux protégés par des ouvrages de protection ;
- Disposition D.4-2 : Assurer la cohérence des projets d'aménagement du territoire et de développement économique avec les objectifs de la politique de gestion des risques d'inondation

2.3.3.b - Analyse de l’articulation avec les autres plans, schémas et programmes

En outre, cette analyse doit également être réalisée avec les autres plans, schémas, programmes et documents de planification dont l'articulation avec le PGRI ne fait pas l'objet d'un contexte réglementaire précis, mais dont les objectifs, enjeux, et actions peuvent présenter des interactions avec les domaines abordés dans le PGRI.

La première étape consiste alors à déterminer quels sont les plans et programmes visés à l'article R.122-17 du Code de l'Environnement en lien direct avec le champ d'action du PGRI et qui portent une échelle d'analyse comparable.

Le tableau suivant présente l'ensemble des documents visés par cet article et met en évidence ceux qui sont retenus pour l'analyse ainsi que la justification correspondante.
Tableau 3 : Détermination des plans, schémas et programmes retenus dans l’analyse

<table>
<thead>
<tr>
<th>Documents</th>
<th>Retenu (OUI/NON)</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programmes opérationnels des fonds européens (FEADER/FEDER/FEAMP)</td>
<td>OUI</td>
<td>Volets potentiels en lien avec la ressource en eau dans les programmes opérationnels.</td>
</tr>
<tr>
<td>Programmes opérationnels élaborés par les autorités de gestion établies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pour le Fonds européen de développement régional, le Fonds européen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>agricole et de développement rural et le Fonds de l'Union européenne pour</td>
<td></td>
<td></td>
</tr>
<tr>
<td>les affaires maritimes et la pêche</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schéma décennal de développement du réseau</td>
<td>NON</td>
<td>Sans interaction potentielle notable avec le PGRI</td>
</tr>
<tr>
<td>Schéma régional de raccordement au réseau des énergies renouvelables</td>
<td>NON</td>
<td>Sans interaction potentielle notable avec le PGRI</td>
</tr>
<tr>
<td>(S3RENR), prévu par l'article L.321-7 du code de l'énergie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schéma directeur d'aménagement et de gestion des eaux (SDAGE)</td>
<td>OUI</td>
<td>Articulation forte entre le PGRI et le SDAGE</td>
</tr>
<tr>
<td>prévu par les articles L.212-1 et L.212-2 du code de l'environnement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schéma d'aménagement et de gestion des eaux (SAGE), prévu par les articles</td>
<td>OUI</td>
<td>Le SAGE est un outil de planification de la</td>
</tr>
<tr>
<td>L.212-3 à L.212-6 du code de l'environnement</td>
<td></td>
<td>gestion de l’eau, à l’échelle locale. Il intègre desorientations en termes de prévention des inondations</td>
</tr>
<tr>
<td>Document stratégique de façade (DSF) prévu par l'article L.219-3</td>
<td>OUI</td>
<td>Document qui décline la Stratégie nationale pour la mer et le littoral</td>
</tr>
<tr>
<td>Document stratégique de bassin maritime (DSBM) prévu par les articles</td>
<td>NON</td>
<td>Document uniquement défini dans les outre-mer.</td>
</tr>
<tr>
<td>L.219-3 et L.219-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Programmation pluriannuelle de l'énergie (PPE) prévue aux articles</td>
<td>NON</td>
<td>Sans lien direct avec le PGRI</td>
</tr>
<tr>
<td>L.141-1 et L.141-5 du code de l'énergie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stratégie nationale de mobilisation de la biomasse (SNMB)</td>
<td>NON</td>
<td>Sans lien direct avec le PGRI</td>
</tr>
<tr>
<td>prévue à l'article L.211-8 du code de l'énergie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schéma régional de biomasse (SRB) prévu par l'article L.222-3-1 du code</td>
<td>NON</td>
<td>Sans lien direct avec le PGRI</td>
</tr>
<tr>
<td>de l'environnement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schéma régional du climat, de l'air et de l'énergie (SRCAE)</td>
<td>NON</td>
<td>Schémas intégrés dans les SRADDET</td>
</tr>
<tr>
<td>prévu par l'article L.222-1 du code de l'environnement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plan climat air énergie territorial (PCAET) prévu par l'article R.229-51</td>
<td>NON</td>
<td>Non appréciable à l'échelle d'un district hydrographique</td>
</tr>
<tr>
<td>du code de l'environnement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charte de parc naturel régional prévue au II de l'article L. 333-1-1 du</td>
<td>OUI</td>
<td>19 PNR sur le bassin RMed</td>
</tr>
<tr>
<td>code de l'environnement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charte de parc national prévu par l'article L.331-3 du code de l'environnement</td>
<td>OUI</td>
<td>7 PN sur le bassin RMed</td>
</tr>
<tr>
<td>Plan départemental des itinéraires de randonnée motorisée (PDIRM) prévue</td>
<td>NON</td>
<td>Pas d’interaction notable avec le PGRI</td>
</tr>
<tr>
<td>par l'article L.361-2 du code de l'environnement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orientations nationales pour la préservation et la remise en bon état</td>
<td>NON</td>
<td>Orientations intégrées dans les TVB régionales des SRADDET</td>
</tr>
<tr>
<td>des continuités écologiques prévues à l'article L.371-2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rapport environnemental | Version modifiée suite à l'avis de l'Ae et les consultations, février 2022 61/300
<table>
<thead>
<tr>
<th>Documents</th>
<th>Retenu (OUI/NON)</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>du code de l'environnement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schéma régional de cohérence écologique (SRCE) prévu par l'article L.371-3 du code de l'environnement</td>
<td>NON</td>
<td>Schémas intégrés dans les SRADDET</td>
</tr>
<tr>
<td>Plans, schémas, programmes et autres documents de planification soumis à évaluation des incidences Natura 2000 au titre de l'article L.414-4 du code de l'environnement, à l'exception de ceux mentionnés au II de l'article L.122-4 du même code</td>
<td>/ /</td>
<td></td>
</tr>
<tr>
<td>Schéma régionale de carrières (SRC) : schéma mentionné à l'article L.515-3 du code de l'environnement (documents)</td>
<td>OUI</td>
<td>Interaction avec le PGRI par les impacts potentiels des carrières sur les inondations</td>
</tr>
<tr>
<td>Plan national de prévention des déchets prévu par l'article L.541-11 du code de l'environnement</td>
<td>NON</td>
<td>Sans lien direct avec le PGRI</td>
</tr>
<tr>
<td>Plan national de prévention et de gestion de certaines catégories de déchets prévu par l'article L.541-11-1 du code de l'environnement</td>
<td>NON</td>
<td>Sans lien direct avec le PGRI</td>
</tr>
<tr>
<td>Plan régional de prévention et de gestion des déchets prévu par l'article L.541-13 du code de l'environnement</td>
<td>NON</td>
<td>Sans lien direct avec le PGRI</td>
</tr>
<tr>
<td>Plan national de gestion des matières et déchets radioactifs prévu par l'article L.542-1-2 du code de l'environnement</td>
<td>NON</td>
<td>Sans lien direct avec le PGRI</td>
</tr>
<tr>
<td>Plan de gestion des risques d'inondation (PGRI) prévu par l'article L.566-7 du code de l'environnement</td>
<td>/</td>
<td>Présent document</td>
</tr>
<tr>
<td>Programme d'actions national pour la protection des eaux contre la pollution par les nitrates d'origine agricole prévu par le IV de l'article R.211-80 du code de l'environnement</td>
<td>NON</td>
<td>Articulation réalisée sur les programmes régionaux</td>
</tr>
<tr>
<td>Programme d'actions régional pour la protection des eaux contre la pollution par les nitrates d'origine agricole prévu par le IV de l'article R.211-80 du code de l'environnement</td>
<td>NON</td>
<td>Sans lien direct avec le PGRI</td>
</tr>
<tr>
<td>Programme national de la forêt et du bois (PNFB) prévu par l'article L.121-2-2 du code forestier</td>
<td>NON</td>
<td>Articulation réalisée sur les plans régionaux (PRFB)</td>
</tr>
<tr>
<td>Programme régional de la forêt et du bois (PRFB) prévu par l'article L.122-1 du code forestier et en Guyane, schéma pluriannuel de desserte forestière</td>
<td>OUI</td>
<td>Interaction potentielle avec le PGRI vis-à-vis des services rendus par la forêt sur l'eau</td>
</tr>
<tr>
<td>Directives d'aménagement mentionnées au 1° de l'article L.122-2 du code forestier</td>
<td>OUI</td>
<td>Interaction potentielle sur le volet « eau et milieux aquatiques »</td>
</tr>
<tr>
<td>Schéma régional mentionné au 2° de l'article L.122-2 du code forestier</td>
<td>OUI</td>
<td></td>
</tr>
<tr>
<td>Schéma régional de gestion sylvicole mentionné au 3° de l'article L.122-2 du code forestier</td>
<td>OUI</td>
<td></td>
</tr>
<tr>
<td>Schéma départemental d'orientation minière prévu par l'article L.621-1 du code minier</td>
<td>NON</td>
<td>Document spécifique à la Guyane</td>
</tr>
<tr>
<td>Projet stratégique grand port : Les 4° et 5° du projet stratégique des grands ports maritimes, prévus à l'article R.5312-63 du code des transports</td>
<td>NON</td>
<td>Sans lien direct avec le PGRI</td>
</tr>
<tr>
<td>Documents (R.122-17 du Code de l’Environnement)</td>
<td>Retenu (OUI/NON)</td>
<td>Justification</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Réglementation des boisements prévue par l'article L.126-1 du code rural et de la pêche marine</td>
<td>NON</td>
<td>Sans lien direct avec le PGRI</td>
</tr>
<tr>
<td>SRDAM : Schéma régional de développement de l'aquaculture marine prévu par l'article L.923-1-1 du code rural et de la pêche maritime</td>
<td>NON</td>
<td>Sans lien direct avec le PGRI</td>
</tr>
<tr>
<td>Schéma national des infrastructures de transport (SNIT) prévu par l'article L.1212-1 du code des transports</td>
<td>NON</td>
<td>Sans lien direct avec le PGRI</td>
</tr>
<tr>
<td>Schéma régional des infrastructures de transport (SRIT) prévu par l'article L.1213-1 du code des transports</td>
<td>NON</td>
<td>Sans lien direct avec le PGRI</td>
</tr>
<tr>
<td>Plan de déplacements urbains (PDU) prévu par les articles L.1214-1 et L.1214-9 du code des transports</td>
<td>NON</td>
<td>Sans lien direct avec le PGRI</td>
</tr>
<tr>
<td>Contrat de plan Etat-Région (CPER) prévu par l'article 11 de la loi n° 82-653 du 29 juillet 1982 portant réforme de la planification</td>
<td>OUI</td>
<td>Interaction potentielle sur les risques naturels</td>
</tr>
<tr>
<td>Schéma régional d'aménagement, de développement durable et d'égalité des territoires (SRADDET) prévu par l'article L.4251-1 du code général des collectivités territoriales</td>
<td>OUI</td>
<td>Interaction potentielle avec le PGRI importante</td>
</tr>
<tr>
<td>Schéma de mise en valeur de la mer (SMVM) élaboré selon les modalités définies à l'article 57 de la loi n° 83-8 du 7 janvier 1983 relative à la répartition des compétences entre les communes, les départements et les régions</td>
<td>NON</td>
<td>Sans lien direct avec le PGRI</td>
</tr>
<tr>
<td>Schéma d'ensemble du réseau de transport public du Grand Paris et contrats de développement territorial prévus par les articles 2,3 et 21 de la loi n° 2010-597 du 3 juin 2010 relative au Grand Paris</td>
<td>NON</td>
<td>Hors bassin RMed</td>
</tr>
<tr>
<td>Schéma des structures des exploitations de cultures marines prévu par à l'article D.923-6 du code rural et de la pêche maritime</td>
<td>NON</td>
<td>Sans lien direct avec le PGRI</td>
</tr>
<tr>
<td>Schéma directeur territorial d'aménagement numérique mentionné à l'article L.1425-2 du code général des collectivités territoriales</td>
<td>NON</td>
<td>Sans lien direct avec le PGRI</td>
</tr>
<tr>
<td>Directive territoriale d'aménagement et de développement durable prévue à l'article L.102-4 du code de l'urbanisme</td>
<td>NON</td>
<td>Sans lien direct avec le PGRI</td>
</tr>
<tr>
<td>Schéma directeur de la région d'Ile-de-France prévu à l'article L.122-5</td>
<td>NON</td>
<td>Hors bassin RMed</td>
</tr>
<tr>
<td>Schéma d'aménagement régional (SAR) prévu à l'article L.4433-7 du code général des collectivités territoriales</td>
<td>NON</td>
<td>Hors bassin RMed</td>
</tr>
<tr>
<td>Plan d'aménagement et de développement durable de Corse (PADDUC) prévu à l'article L.4424-9 du code général des collectivités territoriales</td>
<td>NON</td>
<td>Hors bassin RMed</td>
</tr>
<tr>
<td>Schéma de cohérence territoriale (SCoT) et plans locaux d'urbanisme intercommunaux (PLUi) comprenant les dispositions d'un schéma de cohérence territoriale dans les conditions prévues à l'article L.144-2 du code de l'urbanisme</td>
<td>OUI</td>
<td>Concerne une échelle très locale, non appréciable à l'échelle d'un PGRI. Mais SCOT et PLU(i) doivent être compatibles</td>
</tr>
<tr>
<td>Plan local d'urbanisme intercommunal (PLUi) qui tient lieu de plan de déplacements urbains mentionnés à l'article L.1214-1 du</td>
<td>OUI</td>
<td>Concerne une échelle très locale, non appréciable à l'échelle d'un PGRI. Mais PLU(i)</td>
</tr>
<tr>
<td>Documents</td>
<td>Retenu (OUI/NON)</td>
<td>Justification</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>code des transports</td>
<td>NON</td>
<td>doivent être compatibles</td>
</tr>
<tr>
<td>Prescriptions particulières de massif prévues à l'article L.122-24 du code de l'urbanisme</td>
<td>NON</td>
<td>Sans lien direct avec le PGRI</td>
</tr>
<tr>
<td>Schéma d'aménagement prévu à l'article L.121-28 du code de l'urbanisme</td>
<td>NON</td>
<td>Concerne une échelle très locale, non appreciable à l'échelle d'un PGRI.</td>
</tr>
<tr>
<td>Carte communale (CC) dont le territoire comprend en tout ou partie un site Natura 2000</td>
<td>OUI</td>
<td>Concerne une échelle très locale, non appreciable à l'échelle d'un PGRI. Mais CC doivent être compatibles</td>
</tr>
<tr>
<td>Plan local d'urbanisme dont le territoire comprend en tout ou partie un site Natura 2000</td>
<td>OUI</td>
<td>Concerne une échelle très locale, non appreciable à l'échelle d'un PGRI. Mais PLU doivent être compatibles</td>
</tr>
<tr>
<td>Plan local d'urbanisme couvrant le territoire d'au moins une commune littorale au sens de l'article L. 321-2 du code de l'environnement</td>
<td>OUI</td>
<td>Concerne une échelle très locale, non appreciable à l'échelle d'un PGRI. Mais PLU doivent être compatibles</td>
</tr>
<tr>
<td>Plan local d'urbanisme situé en zone de montagne qui prévoit une unité touristique nouvelle au sens de l'article L. 122-16 du code de l'urbanisme</td>
<td>OUI</td>
<td>Concerne une échelle très locale, non appreciable à l'échelle d'un PGRI. Mais PLU doivent être compatibles</td>
</tr>
<tr>
<td>Directive de protection et de mise en valeur (DPMV) des paysages prévue par l'article L. 350-1 du code de l'environnement</td>
<td>NON</td>
<td>Sans lien direct avec le PGRI</td>
</tr>
<tr>
<td>Plan de prévention des risques technologiques (PPRT) prévu par l'article L.515-15 du code de l'environnement et Plan de prévention des risques naturels prévisibles prévu par l'article L.562-1 du même code</td>
<td>OUI</td>
<td>Concerne une échelle très locale, non appreciable à l'échelle d'un PGRI. Mais PPRn doivent être compatibles</td>
</tr>
<tr>
<td>Stratégie locale de développement forestier (SLDF) prévue par l'article L.123-1 du code forestier</td>
<td>NON</td>
<td>Sans lien direct avec le PGRI</td>
</tr>
<tr>
<td>Zones mentionnées aux 1° à 4° de l'article L.2224-10 du code général des collectivités territoriales</td>
<td>NON</td>
<td>Très localisé</td>
</tr>
<tr>
<td>Plan de prévention des risques miniers (PPRM) prévu par l'article L.174-5 du code minier</td>
<td>NON</td>
<td>Sans lien direct avec le PGRI</td>
</tr>
<tr>
<td>Zone spéciale de carrière prévue par l'article L.321-1 du code minier</td>
<td>NON</td>
<td>Très localisé (et souvent obsolète)</td>
</tr>
<tr>
<td>Zone d'exploitation coordonnée des carrières prévue par l'article L.334-1 du code minier</td>
<td>NON</td>
<td>Très localisé</td>
</tr>
<tr>
<td>Plan de sauvegarde et de mise en valeur (PSMV) prévu par l'article L.631-3 du code du patrimoine</td>
<td>NON</td>
<td>Très localisé</td>
</tr>
<tr>
<td>Plan de valorisation de l'architecture et du patrimoine (PVAP) prévu par l'article L.631-4 du code du patrimoine</td>
<td>NON</td>
<td>Très localisé</td>
</tr>
<tr>
<td>Plan local de déplacement prévu par l'article L.1214-30 du code des transports</td>
<td>NON</td>
<td>Très localisé</td>
</tr>
<tr>
<td>Plan de sauvegarde et de mise en valeur prévu par l'article L.313-1 du code de l'urbanisme</td>
<td>NON</td>
<td>Sans lien direct avec le PGRI</td>
</tr>
<tr>
<td>Plan local d'urbanisme (PLU) ne relevant pas du I du présent</td>
<td>OUI</td>
<td>Concerne une échelle très locale, non</td>
</tr>
</tbody>
</table>
En plus des plans, programmes et schémas listés ci-dessus, plusieurs qui sont non soumis à évaluation environnementale disposent d'objectifs qui peuvent entrer en interaction avec ceux du PGRI. Par la suite, la nécessité de réalisation d'une évaluation environnementale pour chaque document est indiquée.

2.3.3.c - Cohérence avec les autres plans, schémas et programmes nationaux

Le Plan National d'Adaptation au Changement Climatique (PNACC-2)

<table>
<thead>
<tr>
<th>État d'avancement</th>
<th>Mis en œuvre depuis le 20 décembre 2018 pour la période 2018-2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>Évaluation environnementale</td>
<td>Non</td>
</tr>
</tbody>
</table>

Le deuxième Plan National d'Adaptation au Changement Climatique (PNACC-2), définit pour la période 2018-2022, vise l'adaptation effective du territoire français, dès le milieu du XXIème siècle, à un climat régional (métropole et outre-mer) cohérent avec une hausse de température de 1,5 à 2 °C au niveau mondial par rapport au XIXème siècle.

Ce plan développe ainsi 58 actions réparties selon 6 axes : Gouvernance et pilotage ; Connaissance et information (y compris la sensibilisation) ; Prévention et résilience ; Adaptation et préservation des milieux ; Vulnérabilité de filières économiques ; Renforcement de l'action internationale.

Le risque inondation est un risque amené à évoluer avec le changement climatique, de façon encore relativement incertaine toutefois. Le PGRI 2022-2027 prend bien en compte ce changement et notamment le développement de la connaissance dans ce contexte (sous-objectif « Développer la connaissance du risque inondation », dispositions D.5-2 et D.5-3) en intégrant les précautions à prendre face à cette évolution.

De plus, de nombreuses autres dispositions du PGRI présentent une évolution favorable de l'adaptation au changement climatique, particulièrement au sein du GO2 (« Augmenter la sécurité des populations exposées aux inondations en tenant compte du fonctionnement naturels des milieux aquatiques »). L'adaptation au changement climatique de ce GO se ressent à la fois vis-à-vis de la prévention des inondations, mais également vis-à-vis de la qualité des milieux liés à l'eau (gestion durable de la ressource).

Un des objectifs du PNACC-2 est particulièrement cohérent avec le PGRI : Protéger les français des risques liés aux catastrophes dépendant des conditions climatiques.
La Stratégie Nationale pour la Biodiversité 2011-2020 et le Plan Biodiversité

<table>
<thead>
<tr>
<th>État d'avancement (SNB)</th>
<th>Mis en œuvre depuis le 19 mai 2011 pour la période 2011-2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>3ème stratégie nationale en cours d’élaboration</td>
<td></td>
</tr>
<tr>
<td>État d'avancement (Plan Biodiversité)</td>
<td>Mis en œuvre depuis le 4 juillet 2018</td>
</tr>
<tr>
<td>Évaluation environnementale</td>
<td>Non</td>
</tr>
</tbody>
</table>

La stratégie nationale pour la biodiversité 2011-2020 fixe pour ambition de « préserver et restaurer, renforcer et valoriser la biodiversité, en assurer l’usage durable et équitable, réussir pour cela l’implication de tous et de tous les secteurs d’activité ». Cela s’entend dans tous les espaces dont la France est responsable, en métropole et en outre-mer, mais également dans les cadres européen et international, là où la France peut contribuer à cette ambition. Six orientations stratégiques, réparties en vingt objectifs, couvrent tous les domaines d’enjeux pour la société :

- Susciter l’envie d’agir pour la biodiversité ;
- Préserver le vivant et sa capacité à évoluer ;
- Investir dans un bien commun, le capital écologique ;
- Assurer un usage durable et équitable de la biodiversité ;
- Assurer la cohérence des politiques et l’efficacité de l’action ;
- Développer, partager, valoriser les connaissances.

Quant au Plan Biodiversité, il vise à renforcer l’action de la France pour la préservation de la biodiversité et à mobiliser des leviers pour la restaurer lorsqu’elle est dégradée. L’objectif est d’améliorer le quotidien des Français à court et à long termes. Structuré en 6 axes stratégiques, 24 objectifs et 90 actions, le Plan biodiversité aborde la lutte pour la préservation et la restauration de la biodiversité dans sa globalité :

- Reconquérir la biodiversité dans les territoires ;
- Construire une économie sans pollution et à faible impact sur la biodiversité ;
- Protéger et restaurer la nature dans toutes ses composantes ;
- Développer une feuille de route européenne et internationale ambitieuse pour la biodiversité ;
- Connaître, éduquer, former ;
- Améliorer l'efficacité des politiques de biodiversité.

Le PGRI agit particulièrement sur la thématique de la biodiversité à travers le GO2 (« Augmenter la sécurité des populations exposées aux inondations en tenant compte du fonctionnement naturels des milieux aquatiques ») avec la prise en compte et la restauration du fonctionnement naturel des milieux aquatiques, importants supports de diversité biologique.
2.3.3.d - Cohérence avec les autres plans, schémas et programmes régionaux

Les Schémas Régionaux des Carrières (SRC) ou Schémas Départementaux des Carrières (SDC)

<table>
<thead>
<tr>
<th>État d'avancement</th>
<th>En cours d'élaboration pour les 5 régions du bassin RMed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Évaluation environnementale</td>
<td>Oui</td>
</tr>
</tbody>
</table>

La mise en place des Schémas Régionaux de Carrières (SRC), en substitution des schémas départementaux, fait notamment suite à l’application de la *Stratégie nationale de gestion des granulats terrestres et marins et des matériaux et substances de carrières* de mars 2012. Cette dernière proposait alors :

- l’évolution des outils de programmation, notamment par rapport à leur échelle de mise en œuvre, à savoir la régionalisation des Schémas de Carrières ;
- une plus large reconnaissance des ressources issues de recyclage ;
- une modification de la portée juridique de ces schémas (SCoT et PLU(i)).

La loi pour l’accès au logement et un urbanisme rénové du 24 mars 2014 a ainsi institué le SRC. Elle réforme notamment l’échelle de planification de ces schémas, du département à la région, pour avoir une vision plus large des enjeux et des besoins.

L'application des schémas départementaux des carrières se poursuit tant que les SRC n’ont pas été approuvés. Les schémas départementaux des carrières des 28 départements du bassin contiennent des prescriptions environnementales, visant notamment la protection du lit majeur des cours d’eau, la prise en compte des périmètres de protection de captages pour l’alimentation en eau potable, la prise en compte des sites classés, ainsi que des protections fortes des milieux naturels.

À l'automne 2021, aucun SRC n'est approuvé.

Il faut noter que le PGRI (GO2), en lien avec le SDAGE, définit des objectifs de préservation des champs d'expansion des crues, des zones humides, de gestion sédimentaire et de limitation des remblais en zone inondable. L'activité de carrière, notamment en lit majeur, peut interagir avec ces objectifs. L'effet des carrières alluviales sur les inondations et l'hydromorphologie peut également être important.

Les Programmes Opérationnels FEDER-FSE et Programmes de Développement Rural (PDR) 2021-2027

<table>
<thead>
<tr>
<th>État d'avancement</th>
<th>En cours d'élaboration pour l'ensemble des régions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Évaluation environnementale</td>
<td>Oui</td>
</tr>
</tbody>
</table>

Ces Fonds sont affectés à des programmes opérationnels et sont construits à l'échelle régionale ou interrégionale voire internationale dans le cas du bassin Rhône-Méditerranée.

En outre, le **Fonds Européen Agricole pour le Développement Rural (FEADER)** intervient dans le cadre de la politique de développement rural et constitue le second pilier de la politique agricole commune. Il contribue au développement des territoires ruraux et d'un secteur agricole plus équilibré, plus respectueux du climat, plus résilient face au changement climatique, plus compétitif et plus innovant. Pour la période 2014-2020, les crédits FEADER alloués à la France s'élevaient à 11,4 milliards d'euros. A l'image du FEDER, sa gestion est confiée aux Conseils Régionaux, qui élaborent leur Programme de Développement Rural (PDR), sur la base d'un cadre national.

Les Contrats de Plan État Région (CPER) 2021-2027

<table>
<thead>
<tr>
<th>État d'avancement</th>
<th>En cours d'élaboration pour l'ensemble des régions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Évaluation environnementale</td>
<td>Oui</td>
</tr>
</tbody>
</table>

Les Contrats de Projets État-Région (CPER) sont les documents par lesquels l’État et chaque Région s'engagent sur la programmation et le financement pluriannuels de projets importants tels que la création d'infrastructures ou le soutien à des filières d'avenir.

Le Plan Rhône

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Évaluation environnementale</td>
<td>Oui (CPIER)</td>
</tr>
</tbody>
</table>

Le Plan Rhône est une stratégie élaborée pour la période 2004-2025, dont l'objectif est de définir et mettre en œuvre un programme de développement durable autour du Rhône et de la Saône, prenant en compte l'ensemble des usages, par le biais de la labellisation et du financement de projets portés par les acteurs de ces territoires (collectivités, associations, entreprises, etc.).

La stratégie s'articule autour de six thématiques : la culture rhodanienne ; les inondations ; la qualité des eaux, ressource et biodiversité ; l'énergie ; les transports ; le tourisme, et son ambition est multiple :

- Concilier la prévention des risques liés aux inondations et les pressions du développement des activités en zones inondables ;
• Respecter et améliorer le cadre de vie des habitants : améliorer la qualité des eaux, maintenir la biodiversité, valoriser le patrimoine lié au fleuve, développer un tourisme responsable autour des richesses naturelles, historiques et culturelles de la vallée ;
• Assurer un développement économique pérenne.

Le volet inondation de la stratégie 2004-2025 vise à :
• agir sur l'aléa en favorisant les opérations qui permettent au fleuve d'accueillir au maximum la crue, en sécurisant les ouvrages de protection, en minimisant les durées de submersion des terres inondées, et en préservant (voire en optimisant) les champs d'expansion des crues ;
• réduire la vulnérabilité des territoires en maîtrisant l'urbanisation nouvelle et en agissant sur les enjeux présents ;
• savoir mieux vivre avec le risque en informant sur les risques et en développant la « conscience du risque ».

L'ensemble des dispositions contenues dans le PGRI 2022-2027 permettent de répondre aux objectifs de la stratégie, notamment les dispositions suivantes :
• D.1-3 sur la maîtrise de l'urbanisation nouvelle ;
• D.1-1 sur la réduction de la vulnérabilité ;
• D.2-14 et D.2-15 sur la performance et la pérennité des systèmes de protection ;
• D.2-1 et D.2-2 sur la préservation et l'optimisation des champs d'expansion des crues ;
• D.2-6 sur la restauration des fonctionnalités naturelles des milieux permettant de réduire les crues ;
• D.3-14 sur le développement de la culture du risque.

Les Plans Régionaux Forêt Bois (PRFB)

<table>
<thead>
<tr>
<th>État d'avancement</th>
<th>Auvergne-Rhône-Alpes : Approuvé le 28 novembre 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bourgogne-Franche-Comté : Approuvé le 19 juin 2019</td>
</tr>
<tr>
<td></td>
<td>Grand-Est : Approuvé le 23 septembre 2019</td>
</tr>
<tr>
<td></td>
<td>Occitanie : Approuvé le 19 juin 2019</td>
</tr>
<tr>
<td></td>
<td>Provence-Alpes-Côte d'Azur : Approuvé le 18 novembre 2020</td>
</tr>
</tbody>
</table>

| Évaluation environnementale | Oui |

Issus de la loi d'avenir pour l'agriculture, l'alimentation et la forêt, les Programmes Régionaux de la Forêt et du Bois (PRFB) sont élaborés afin de décliner les orientations et les objectifs du programme national à l'échelle régionale. Les PRFB se substituent ainsi aux Programmes Pluriannuels Régionaux de Développement Forestier et aux Orientations Régionales Forestières.

En particulier, les PRFB ont pour objectif de contribuer directement à l’objectif national d’augmentation de la mobilisation et de la valeur ajoutée de la biomasse forestière, en cohérence avec l’évolution de la demande identifiée à l’échelle régionale. Les PRFB jouent ainsi un rôle central concernant la mobilisation de la biomasse
Les Stratégies Régionales de Gestion Sylvicoles (SRGS)

<table>
<thead>
<tr>
<th>État d'avancement</th>
<th>En cours de révision pour l'ensemble des régions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Évaluation environnementale</td>
<td>Oui</td>
</tr>
</tbody>
</table>

Les Stratégies Régionales de Gestion Sylvicoles (SRGS) indiquent les méthodes de gestion préconisées pour les différents types de forêts privées.

Y sont développées les mêmes préoccupations et préconisation générales que dans les documents d'aménagement des forêts publiques en ce qui concerne l'attention à porter aux milieux aquatiques :
• les interactions entre gestion sylvicole et régimes hydrologiques des cours d'eau, notamment dans une perspective de lutte contre les inondations : contrôle des ruissellements ou inversement risque d'embâcles ;
• l'utilisation raisonnée (voire l'interdiction) des intrants à proximité des milieux aquatiques et dans les zones de captage ;
• le maintien de la diversité des peuplements, notamment dans les ripisylves, et la nécessité de conserver des corridors de végétation lors des coupes pour assurer la connexion entre les écossystèmes.

Selon les régions, les orientations de gestion sont déclinées sur l'ensemble du territoire, par type d'essence ou par massif.

Les Directives Régionales et Schémas Régionaux d'Aménagement

| État d'avancement | Auvergne-Rhône-Alpes : septembre 2019
| | Bourgogne : mars 2011
| | Champagne-Ardenne : décembre 2011
| | Lorraine : mai 2006
| | Margeride Aubrac : mai 2013
| | Montagnes Pyrénéennes : juillet 2006
| | Grands Causses : juillet 2006
| | Basse altitude (LR) : juillet 2006
| | Bordure du Massif Central : juin 2006
| | Préalpes du Sud : juin 2006
| | Basse altitude (PACA) : juin 2006
| | Montagnes alpines : avril 2006 |

| Évaluation environnementale | Oui |

Les DRA et SRA sont des documents de planification forestière. Ils déclinent, à l’échelle de régions forestières, les engagements internationaux et nationaux de la France en matière de gestion durable des forêts. Leur portée est à la fois politique et technique. Ces documents précisent les principaux objectifs et critères de choix permettant de mettre en œuvre une gestion durable sylvicole relevant du régime forestier. Ils encadrent l’élaboration et assurent la cohérence des aménagements de ces milieux.

Les Directives Régionales d'Aménagement (DRA) sont des documents directeurs qui encadrent la réalisation des aménagements forestiers pour les forêts domaniales, et les Schémas Régionaux d'Aménagement (SRA) pour les forêts des collectivités.

Dans les DRA et les SRA, l'eau et les milieux aquatiques sont pris en compte à deux niveaux :
• dans les objectifs de gestion durable des bois et forêts ;
• dans les décisions sur les modalités de gestion.
Les objectifs de gestion durable sont déclinés en réalisant un parallèle avec les critères d'Helsinki (critères de gestion durable des forêts défini lors de la conférence d'Helsinki en 1993). Y sont notamment retrouvés des objectifs d'aménagement rattachés au critère C4 « Maintien, conservation et amélioration appropriée de la diversité biologique dans les écosystèmes forestiers » et C5 « Maintien et amélioration appropriée des fonctions de protection dans la gestion des forêts (vis-à-vis du sol et de l’eau) ».

Les décisions sur les modalités de gestion sont déclinées pour différentes dimensions de l'aménagement du territoire et de la gestion sylvicole à proprement parler. On retrouve ainsi des décisions relatives aux risques naturels.

La bonne gestion de la ripisylve, le respect des zones humides sur les chantiers et l'attention à porter aux plantations qui permettent de limiter les ruissellements sont des recommandations également présentes dans la majorité des documents.

Le tableau suivant récapitule les décisions d'aménagement qui participent à l'atteinte des objectifs du PGRI selon les territoires :

Tableau 5 : Analyse de la cohérence entre les DRA/SRA et le PGRI 2022-2027

<table>
<thead>
<tr>
<th>Décisions d'aménagement</th>
<th>Bourgogne</th>
<th>Franche-Comté</th>
<th>Champagne-Ardèche</th>
<th>Lorraine</th>
<th>Auvergne-Rhône-Alpes</th>
<th>Basses altitudes</th>
<th>Pré-Alpes</th>
<th>Montagnes alpines</th>
<th>Languedoc-Roussillon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limiter les ruissellements, facteurs aggravant des phénomènes d'érosion et de crues, en maintenant les peuplements forestiers.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Limiter les ruissellements en veillant à l'orientation des pistes et en évitant au maximum le compactage des sols.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Ne pas créer d'obstacles à l'écoulement des eaux et d’embâcles en évitant les dépôts de bois à proximité ou dans les cours d'eau et en veillant aux arbres sénescents dans les ripisylves.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>
2.3.3.e - Cohérence avec les autres plans, schémas et programmes de bassin ou locaux

Les Schémas d'Aménagement et de Gestion des Eaux (SAGE)

<table>
<thead>
<tr>
<th>État d'avancement</th>
<th>35 SAGE mis en œuvre</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 en phase d’élaboration et 3 en phase de révision</td>
</tr>
</tbody>
</table>

Les Schémas d’Aménagement et de Gestion des Eaux (SAGE), comme les SDAGE, sont issus de la loi n°92-3 du 03 janvier 1992 sur l'eau (articles L.212-3 à L.212-7 du Code de l'Environnement).

Le SAGE, à une échelle plus locale (bassin versant ou partie de bassin versant), fixe les objectifs généraux d'utilisation, de mise en valeur et de protection quantitative et qualitative des ressources en eau. Ils sont le fruit d’une concertation locale réunie en Commission Locale de l’Eau (CLE).

La disposition D.4-3 (« Intégrer les priorités du SDAGE dans les PAPI et SLGRI et améliorer leur cohérence avec les SAGE et les contrats de milieux et de bassin versant ») du GO4 du PGRI fixe les modalités de la cohérence à trouver entre les objectifs des SAGE avec ceux portés par le PGRI et déclinés dans les SLGRI et PAPI. Un des principes est notamment la mutualisation, lorsque l’opportunité existe (même périmètre par exemple) des instances de concertation et de pilotage.

Les Programmes d’Action de Prévention des Inondations (PAPI)

<table>
<thead>
<tr>
<th>État d'avancement</th>
<th>74 PAPI dénombrés au 1er janvier 2022, dont 52 PAPI en cours d'exécution, 13 émergents et 5 achevés sans suite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Évaluation environnementale</td>
<td>Non</td>
</tr>
</tbody>
</table>

Les Programmes d'Actions de Prévention des Inondations (PAPI) ont pour objectif de promouvoir une gestion intégrée des risques d’inondation en vue de réduire leurs conséquences dommageables sur la santé humaine, les biens, les activités économiques et l’environnement. Outil de contractualisation entre l’État et les collectivités, le dispositif PAPI permet la mise en œuvre d’une politique globale, pensée à l’échelle du bassin de risque.

Depuis le 1er janvier 2018, le cahier des charges « PAPI 3 » est appliqué aux dossiers de candidature. Dans le cas d'un périmètre de PAPI couvrant tout ou partie d'un TRI, le PAPI décline la SLGRI. Les PAPI participent donc pleinement à la mise en œuvre de la directive inondation.

Les PAPI sont élaborés en trois grandes phases :
- la déclaration d'intention (analyse d'opportunité) ;
- l'élaboration du dossier de PAPI d'intention (analyse de l'état initial et élaboration du programme d'études) et la finalisation de la convention PAPI d'intention ;
- la mise en œuvre du PAPI d'intention, l'élaboration du dossier PAPI, la consultation du public et la finalisation de la convention PAPI complet.

Les PAPI permettent de répondre à l'enjeu de réalisation concrète sur le terrain des orientations portées par le PGRI et les SLGRI. Cela est décliné au sein de la disposition D.1-2 (« Maîtriser le coût des dommages en cas... »)
d'inondation en agissant sur la vulnérabilité des biens, au travers des stratégies locales, des programmes d'action ou réglementaire»).

La disposition D.2-2 («Rechercher la mobilisation de nouvelles capacités d'expansion des crues») demande aux PAPI de mettre en œuvre un programme d'action intégrés visant simultanément les objectifs de prévention des inondations et ceux du fonctionnement naturel des milieux aquatiques sur certains secteurs.

Enfin, la disposition D.4-3 («Intégrer les priorités du SDAGE dans les PAPI et SLGRI et améliorer leur cohérence avec les SAGE et les contrats de milieux et de bassin versant») du GO4 du PGRI rappelle l'obligation pour les PAPI de contribuer à l'atteinte des objectifs du SDAGE dont la gestion du risque inondation fait partie.

Les Chartes des Parcs Naturels Nationaux et Régionaux

<table>
<thead>
<tr>
<th>État d'avancement PN</th>
<th>7 chartes de PN mises en œuvre</th>
</tr>
</thead>
<tbody>
<tr>
<td>État d'avancement PNR</td>
<td>22 chartes de PNR mises en œuvre</td>
</tr>
<tr>
<td>Évaluation environnementale</td>
<td>Oui</td>
</tr>
</tbody>
</table>

Les Parcs Nationaux (PN) sont destinés à protéger un territoire dont le milieu naturel présente un intérêt patrimonial exceptionnel. Ils ont vocation à constituer un réseau représentatif des grands écosystèmes les plus emblématiques du territoire français. Le bassin Rhône-Méditerranée est concerné par 7 des 8 parcs nationaux français métropolitains, dont 2 littoraux (Parc National des Calanques et Parc National Port-Cros). Aucune charte n'est actuellement en révision.

Parmi les chartes de parcs nationaux, deux évoquent directement le risque inondation ou littoral. Il s'agit :

- de la charte du PN des Calanques : en lien avec l'aménagement du territoire au sein de son défi n°2 «Permettre la bonne coexistence de la métropole et de l'espace naturel exceptionnel» et de son défi n°3 «Inscrire les usages dans le développement durable»;
- de la charte du PN de Port-Cros : à travers son orientation 5.6 «Réduire la vulnérabilité du territoire face aux aléas naturels et aux changement climatique», déclinée par 5 mesures partenariales visant la conscience du risque, l'adaptation au changement climatique vis-à-vis des risques, l'aménagement du littoral en prenant en compte le risque littoral, la résilience des exploitations agricoles vis-à-vis du risque inondation, et une bonne gestion forestière participant à la réduction du risque tempête.

D'autre part, l'ensemble des chartes participent à la prévention des inondations, notamment vis-à-vis du GO2 du PGRI visant un fonctionnement naturel des milieux aquatiques (préservation des espaces de bon fonctionnement ou encore des zones humides, gestion sédimentaire durable, etc.) et particulièremen la disposition D.2-6 («Restaurer les fonctionnalités naturelles des milieux qui permettent de réduire les crues et les submersions marines»).

Quant aux Parcs Naturels Régionaux (PNR), ils ont pour objectif de valoriser de vastes espaces de for intérêt culturel et naturel, et de veiller au développement durable de ces territoires, dont le caractère rural est souvent très affirmé. Le bassin Rhône-Méditerranée est concerné par 22 PNR. La plupart de ces parcs est située sur des zones de montagnes. Toutefois les parcs du Verdon, de la Narbonnaise en Méditerranée et encore plus spécifiquement de la Camargue concernent des secteurs où la présence de l'eau est incontournable.
De nombreux parcs ont lancé la procédure de révision de leur charte, arrivant à terme en 2022, 2023, 2024 ou 2025. Il s'agit notamment des PNR des Alpilles, de Chartreuse, des Grands Causses, du Massif des Bauges, du Vercors, du Verdon, du Lubéron, de la Camargue, etc.

Sur la thématique des risques d'inondation, les parcs naturels régionaux, à travers leur charte, s'impliquent dans la prévention du risque. A ce titre, certains programmes d'actions de prévention des inondations sont portés par des syndicats de PNR (à l'image du PAPI du Guil porté par le syndicat mixte du PNR du Queyras).

Cette volonté se retrouve au sein des chartes des parcs, qui souhaitent notamment (selon les PNR) :

- accompagner et conseiller les collectivités dans leur démarche d'information sur les risques (dont inondation) et développer la sensibilisation du public ;
- améliorer la prise en compte les risques au sein des documents locaux de planification et d'urbanisme ;
- développer la connaissance du risque en prenant en compte le changement climatique pour anticiper et s'adapter aux risques ;
- soutenir la maîtrise d'ouvrage pour les opérations d'entretien des cours d'eau (embâcles) et améliorer la gestion de la ripisylve ;
- préserver les zones agricoles ou pastorales importantes au regard des risques naturels ainsi que les zones humides ;
- intégrer le risque inondation et de submersion marine dans l'aménagement et la gestion du territoire ;
- intégrer le bon fonctionnement des milieux aquatiques et humides dans la prévention des inondations ;
- mettre en place des systèmes d'alerte sur les crues ;
- améliorer la gestion des eaux pluviales.
3 - État initial de l'environnement

3.1 - Présentation du territoire

3.1.1 - Situation géographique

L'évaluation environnementale du PGRI porte sur le périmètre du district Rhône et côtières méditerranéens. Ce district hydrographique regroupe l’ensemble du bassin versant du Rhône en France ainsi que l’ensemble des bassins versants français dont le cours d’eau principal se jette dans la Méditerranée5.

Il couvre, en tout ou partie, 29 départements (dont 11 partiellement) répartis sur 5 régions : Provence-Alpes-Côte d'Azur (PACA) en totalité, Occitanie, Auvergne-Rhône-Alpes (AURA) et Bourgogne-Franche-Comté (BFC) en partie, ainsi que la région Grand-Est de façon très partielle. Cela représente une superficie d'environ 121 600 km², soit près de 20 % du territoire national métropolitain. Le territoire du bassin comprend également les masses d'eau côtière en mer qui s'étendent jusqu'à 1 mille marin des côtes (soit environ 1,85 km).

Le périmètre est volontairement arrêté aux limites administratives du bassin présentées ci-dessus, car il s'agit du périmètre d'application du PGRI. Il existe dans ce district une bonne cohérence entre les limites des grands bassins versants et les frontières entre États. Quelques écarts à cette règle générale sont toutefois rencontrés, suivant trois cas de figure :

- **Têtes de bassin situées en France** alimentant des bassins versants appartenant au territoire d’un autre État :
 - vers l’Espagne : le Segre (475 km²), affluent de l’Ebre ;
 - vers l’Italie : la Roya (609 km²) et des affluents du Pô (145 km²) ;
 - vers la Suisse : l’Eau noire, bassin versant du Rhône avant le Léman (45 km²) et la Jougnena (44 km²).

- **Têtes de bassin situées dans un autre État** alimentant des bassins versants appartenant au territoire français :
 - de Suisse : l’Allaine (263 km²), le Rhône et le Léman ;
 - sans oublier le cas particulier de la boucle du Doubs qui, venant de France, entre en Suisse puis revient en France, déterminant ainsi un bassin de 95 km² en dehors du périmètre Rhône-Méditerranée.

Sur le terrain, les modalités de gestion et la mise en œuvre technique du PGRI sont prises en charge dans les dispositifs de gestion des risques d'inondation qui existent à l'échelle locale : SLGRI et PAPI principalement.

5 À l'exception du bassin de Corse, considéré comme un district à part entière.
À noter que certaines masses d'eau souterraines concernent également plusieurs districts. C'est le cas de la masse d'eau Grès vosgien captif non minéralisé, présente sur le territoire Rhône-Méditerranée mais qui est rattachée au bassin Rhin-Meuse.
3.1.2 - Démographie et occupation de l'espace

3.1.2.a - Population municipale et projections

Avec une population municipale de 15,6 millions d'habitants (INSEE, 2016) soit 3,4 % de plus par rapport au recensement de 2011 et près de 102 000 habitants de plus par an, le bassin Rhône-Méditerranée présente une densité de population de 131 hab./km² supérieure à la moyenne française (105 hab./km²). La croissance de la population apparaît comme régulière depuis 1955, celle-ci ayant quasiment doublé en 60 ans (environ 8 millions d'habitants alors).

Cette densité de population dissimule cependant une répartition spatiale très hétérogène. Le développement de l’urbanisation avec une extension des agglomérations et l’attraction du littoral sont à l’origine de zones à forte densité de population tandis que les zones montagneuses (Alpes du Sud, hautes terres de la bordure orientale du Massif Central, etc.) présentent des niveaux de population plus faibles.

L'hétérogénéité de la répartition spatiale de la population dans le bassin implique des conséquences en termes de gestion de l’eau : concentration des usagers et donc de la demande et des rejets dans les zones à faible ressource, surcoût des infrastructures dans les secteurs à faible densité de population.

La région AURA occupe le 2ᵉ rang des régions françaises en termes de population, et figure, avec l'Occitanie, parmi les régions les plus dynamiques en termes de croissance démographique. Ce dynamisme démographique du bassin devrait se poursuivre. En effet, au niveau des 23 départements dont la majorité des communes sont concernées par le district hydrographique Rhône-Méditerranée, la population en 2016 était de 15,8 millions d’habitants et est projetée par l'INSEE en 2027 (Omphale 2017) à 16,7 millions, puis à 18,1 millions en 2050.

L'évolution démographique est l’un des principaux facteurs à l’origine des pressions sur la ressource en eau.
Illustration 10 : Carte de la population municipale en 2016 par commune
3.1.2.b - Occupation du sol

Données utilisées : Corine Land Cover

D’une manière générale, l’occupation des sols se trouve étroitement liée au contexte géographique.

Le bassin Rhône-Méditerranée présente la particularité d’être plus boisé que la moyenne du territoire français (36 % de forêts contre 26 % au niveau national), et d’avoir une moindre proportion de terres agricoles (36 % contre 59 %) et de surfaces en herbe (14 % contre 18 %). Son recouvrement en milieux aquatiques est quant à lui supérieur au national (1,3 % contre 0,9 %).

La surface des territoires artificialisés a augmenté de près de 60 000 ha entre 2006 et 2018 (soit environ +8 %). Cette tendance est plus forte qu'au niveau national (+4 % sur la même période). De plus, elle s'est intensifiée entre 2012 et 2018, par rapport à la période 2006-2012 (respectivement +3 % et +5 %).\(^\text{6}\)

Plus de 82 % de ces sols nouvellement artificialisés proviennent de terres agricoles et environ 17 % de forêts et milieux semi-naturels, le reste provenant de milieux aquatiques. Cette artificialisation concerne surtout les vallées alluviales et le littoral méditerranéen. Il faut noter que, sur l'ensemble du bassin, la tendance est plutôt à l'artificialisation des terres agricoles. Toutefois, au niveau du littoral, particulièrement en région PACA, la consommation d'espace concerne majoritairement des milieux semi-naturels ou des forêts.

\(^\text{Résultats à prendre avec précautions (évolutions techniques ou méthodologiques, échelle). Par exemple, l'enquête Teruti-Lucas 2015, pour la période 2010-2015, estime une progression des sols artificiels de près de 17 % au niveau des anciennes régions avec une part significative dans le bassin (PACA, Rhône-Alpes, Languedoc-Roussillon et Franche-Comté) (+12 % pour la France métropolitaine).}\)

Illustration 11 : Changement d'occupation des sols entre 2006 et 2018 (source : Corine Land Cover)
Illustration 12 : Carte de l’occupation du sol du bassin (CLC 2018)
Illustration 13 : Carte de l'évolution de l'occupation du sol sur le bassin entre 2006 et 2018
3.1.3 - **Activités et usages**

3.1.3.a - **L'agriculture**

Principale source : Recensement agricole 2010, Agreste

Le bassin possède une agriculture particulièrement diversifiée, même si chaque région a sa propre spécialité. Le sud du bassin est principalement spécialisé dans la viticulture et l'arboriculture. Le nord a une activité d'élevage très importante. Enfin la région Rhône-Alpes est une des régions les plus diversifiées de France (viticulture, grandes cultures, élevage, pastoralisme, etc.).

Avec 3,8 millions d'hectares de Surface Agricole Utile (SAU), le bassin Rhône-Méditerranée représente un peu plus de 14 % de la SAU française. Elle se répartit principalement dans les zones du bassin situées en Auvergne-Rhône-Alpes (33 %) et en Bourgogne-Franche-Comté (30 %).

L’ensemble du territoire Rhône-Méditerranée n’échappe pas au phénomène de concentration des exploitations observé en France. Cette tendance, déjà constatée en 2000, se confirme donc. Entre 2000 et 2010, le nombre d’exploitations du bassin a fortement baissé (-28 %), alors que le bassin n’a perdu que 6 % de sa SAU pour la même période. La disparition de certaines exploitations entraîne donc la formation de plus grandes exploitations.

Entre 2000 et 2010, le produit brut standard (PBS, indicateur décrivant un potentiel de production des exploitations) a diminué sur l’ensemble du bassin (excepté en Savoie) pour aboutir à une baisse d’environ 10 % du PBS total de Rhône-Méditerranée. Une forte diminution de la population active agricole dans l’ensemble des régions, du fait de la mécanisation et de la hausse de la productivité, est aussi constatée.

La viticulture

La culture de la vigne revêt une importance toute particulière pour le bassin, économique (activité agricole la plus importante sur le territoire en potentiel de production et en emploi) mais aussi culturelle. Trois des 10 grands bassins viticoles de France métropolitaine sont situés sur le bassin Rhône-Méditerranée. Le Languedoc-Roussillon est la 1ère région de France pour sa surface viticole avec 30 % de sa SAU destinés à la viticulture. La région PACA est elle aussi particulièrement active dans ce domaine puisque plus d’un tiers des exploitations et 15 % de la SAU y sont destinés. En Rhône-Alpes, la viticulture est la seconde activité agricole. En Bourgogne c’est une activité qualitative importante avec des vins de renommée et des petits vignobles sont également situés dans le Jura et la Savoie. L'activité viticole est toutefois en déclin sur le bassin, avec une baisse de 15 % de la SAU dédiée à l'activité et une baisse de 32 % du nombre d'exploitations entre 2000 et 2010.

L’élevage

L'activité d'élevage occupe une part importante dans le bassin. L’élevage bovin concerne surtout le nord du bassin (Bourgogne pour la viande, Franche-Comté et Alpes pour le lait). L’élevage ovin est réparti dans tout le Sud du bassin, depuis l'Ardèche et la bordure du Massif Central jusqu'aux Alpes du Sud où se trouve la moitié du cheptel. L'élevage caprin se concentre en Saône-et-Loire et Rhône-Alpes. L'élevage porcin demeure important dans quelques zones de production traditionnelle du bassin. Enfin, l'élevage de volailles, dont l'AOP des volailles de Bresse, constitue également une production importante, marquée par la pluriactivité des exploitations et la diversification des ateliers. En Savoie, 90 % de la SAU est destinée à l’élevage (principalement pour la production laitière) mais la majorité des exploitations exercent une pluriactivité.
notamment avec la transformation du lait.

Les grandes cultures

Les grandes cultures céréalières et de protéagineux occupent une part minoritaire de la SAU (moins de 30 %) dans le bassin. Les cultures céréalières sont marginales et principalement localisées en Auvergne-Rhône-Alpes, Bourgogne-Franche-Comté et généralement le long des grands cours d'eau du bassin. La totalité de la production de riz française est fournie par le Gard et les Bouches-du-Rhône.

L’irrigation

En 2017, l’irrigation a prélevé 1,28 milliard de m3 d’eau sur le bassin (hors prélèvements pour alimentation des canaux). En 2010, 6,1% de la SAU du bassin est irriguée. Des techniques d’irrigation plus économiques en eau se développent, ainsi la micro-aspersion est de plus en plus utilisée. Depuis 2009, la quantité prélevée ne marque pas de tendance à la hausse ou à la baisse particulière (très dépendante des conditions hydrologiques annuelles).

Une agriculture plus durable

L’activité agricole voit se multiplier les productions biologiques, les labels, les écocertifications, etc. Ainsi, en 2017, le territoire Rhône-Méditerranée compte 474 270 ha certifiés en agriculture biologique ou en conversion (soit environ 12 % de la SAU du bassin). Il en comptait 314 562 ha en 2014, soit une progression de 43 % en 3 ans.

Le vin est le premier produit concerné. Des techniques de production alternatives sont de plus en plus répandues. Ainsi, de plus en plus d’exploitants du bassin mettent en place un couvert végétal dans leur exploitation afin de piéger les nitrates ou utilisent des engrais verts.

Parallèlement, la surface agricole couverte par des mesures agro-environnementales (MAE) comprenant un engagement de réduction de l'usage des pesticides est passé de 264 ha en 2009 à 9 600 ha en 2014.
La pêche et les activités aquacoles

La pêche professionnelle constitue une activité structurante du littoral au niveau des eaux côtières et des lagunes. Ces milieux sont, de ce point de vue, porteurs d’enjeux économiques et environnementaux très importants dans le bassin. En Méditerranée, la pêche professionnelle est une activité majoritairement artisanale. L’essentiel de cette activité est représenté par les « petits métiers », qui se caractérisent par la diversité des...
La pêche professionnelle se pratique également dans les fleuves et les grands lacs alpins comme une activité artisanale, souvent familiale, et n'impliquant en moyenne qu'une ou deux personnes. Le bassin accueille ainsi les pêcheries des grands lacs naturels et réservoirs que sont les lacs Léman, du Bourget et d'Annecy, ainsi que des pêcheries d'estuaire, des parties moyennes ou des étangs intérieurs. En 2019, les Associations Agréées de Pêche Professionnelle en Eau Douce (AAPED) du bassin comptent 128 pêcheurs recensés (Lacs Alpins ; Saône, Doubs et Haut-Rhône ; Rhône aval Méditerranée). Ils représentent un chiffre d’affaires annuel d’environ 3,5 M€ (très variable selon les poissons pêchés, l'évolution de leur prix de vente et la transformation que prend en charge l'entreprise). Après une forte diminution du nombre de pêcheurs professionnels en eau douce de 1997 à 2011, une hausse est observée depuis 2011 (plus bas niveau).

La conchyliculture

Sur le bassin Rhône-Méditerranée, la conchyliculture représente la principale activité aquacole. Principalement développée dans les étangs littoraux et la bande côtière, mais incluant également quelques élevages en pleine mer, cette activité génère environ 44 M€ de chiffre d’affaires par an et emploie environ 1 200 personnes. L’étang de Thau est la principale zone de production des huîtres méditerranéennes. La production de moules est quant à elle plus diversifiée géographiquement et se répartit entre production de lagune et de pleine mer. Le bassin Rhône-Méditerranée couvre 22 % de la production mytilicole française.

La pisciculture

La production de poissons marins sur le bassin Rhône-Méditerranée est principalement orientée vers l'activité de grossissement. La région PACA représente la 1ère région de production de France en termes de pisciculture marine côtière (20 % de la production nationale) et représente trois quarts des sites de production de poissons marins sur le bassin. Les principales espèces produites sont le bar, la daurade et les salmonidés. Les étangs de Dombes par exemple, représentent un site particulièrement important vis-à-vis de cette activité (carpes, brochets, sandres, etc.).

Les eaux continentales accueillent également des activités de pisciculture, majoritairement spécialisée dans la salmoniculture. Le bassin Rhône-Méditerranée produit environ 4 200 tonnes de salmonidés par an dont les deux tiers sont produits en Auvergne-Rhône-Alpes. Le secteur compte environ 440 emplois pour un chiffre d’affaires de 19 M€/an. Les poissons élevés sont destinés à la consommation (58 %), à la vente pour la pisciculture (19 %), au repeuplement des cours d'eau (13 %) ou à la pêche de loisir (10 %).

A noter que la salmoniculture peut générer des rejets importants dans le milieu naturel (matières en suspension, nitrites et substances). Des efforts importants sont menés pour équiper les installations de dispositifs de récupération et de traitement de leurs rejets.

La saliculture

La production totale de sel est estimée à 590 000 tonnes par an (près de 230 emplois) issues en grande majorité des deux principaux sites en activité que sont le salin de Giraud au Sud d'Arles et le salin d'Aigues-Mortes. Ils
constituent les deux principaux sites de production de sel à partir de prélèvements en mer. L'eau salée est acheminée par un réseau de canaux vers une succession d'étangs (salines) pour extraire le sel grâce aux effets d'évaporation cumulés du soleil et du vent. Les salines de Berre (520 hectares) produisent du sel de déneigement (entre 25 000 et 45 000 tonnes). Les saumures proviennent de sel gemme extraits sur le site de Manosque par injection de volumes importants d'eau douce.

La saliculture, qui entraîne une salinisation du sol importante et persistante, conduit au développement d'habitats particuliers représentatifs des zones humides littorales qui sont les hôtes d'une biodiversité remarquable et riche. De ce fait, la grande majorité des salins sont inclus dans des périmètres Natura 2000, intègrent des programmes LIFE Nature (exemple du salin d'Aigues-Mortes) ou bénéficient d'autres statuts de protection (APPB, PNR, etc.).

L'industrie

Avec 1,2 million de salariés (30 % des salariés industriels nationaux) et un chiffre d'affaire de 363 milliards d'euros en 2016, le secteur de l'industrie est très important pour l'économie du bassin Rhône-Méditerranée.

L'emploi industriel est particulièrement concentré le long du Rhône navigable et à proximité des grands ports maritimes. Le tissu industriel reste également relativement dense dans la partie nord du bassin Rhône-Méditerranée, contrairement à la partie sud, en dehors du secteur de Marseille-Fos. Les grands groupes industriels se sont implantés autour des principales agglomérations comme Lyon et Marseille.

Grâce à ces deux pôles d'attraction, les régions Auvergne-Rhône-Alpes et PACA réalisent respectivement 39 % et 33 % du chiffre d'affaire industriel du bassin. Leur situation géographique ainsi que leur accessibilité les ont rendus incontournables pour certains secteurs. L'attractivité de ces grandes villes rayonne sur les agglomérations voisines qui ont su développer des activités spécifiques : industrie électronique dans la région de Grenoble, Plastic Valley dans la vallée d'Oyonnax, la chimie de spécialité vers Grasse, Vallée de Valserine dans le Jura, etc.

L'industrie pétrochimique et celle des équipements automobiles et mécaniques se sont largement implantées dans le bassin et interviennent de façon importante dans sa création de richesse (notamment au nord du bassin autour de Sochaux-Montbéliard). L'industrie agroalimentaire reste un secteur fort du bassin. Il est d'une rare diversité grâce à une grande variété de paysages. La diversité de l'agriculture qui en résulte a permis l'implantation de grandes industries agroalimentaires concentrées près des zones de production.

La production d'eau embouteillée (eaux minérales et de source)

Dans le domaine des eaux minérales et de source, le bassin compte 32 établissements d'embouteillage et emploie plus de 3 700 personnes, majoritairement dans des zones rurales et des zones de montagne. Cette filière réalise un chiffre d'affaires de 2,5 milliards d'euros sur le bassin. En 2017, 42 des 184 eaux conditionnées en France le sont dans le bassin. La production d'eau conditionnée représentait alors une quantité de 14 millions de m³ (France entière)³.

Le commerce maritime et fluviale

Le trafic fluvial de marchandises, essentiellement réalisé sur l'axe Fos-Chalon, représente 5,8 millions de tonnes en 2017. Il a fortement diminué depuis 2011 (7,2 millions de tonnes alors). Il est principalement tourné

³ La qualité des eaux conditionnées en France, Ministère des Solidarités et de la Santé, données 2017
vers le transport de matériaux de construction, de conteneurs et produits pétroliers, agricoles et chimiques.

Le trafic maritime de marchandises représente quant à lui 89,1 millions de tonnes en 2017 (près de 25 % du fret transitant dans l'ensemble des ports français). Marseille est le premier port français et méditerranéen en termes de trafic de marchandises (unique grand port maritime méditerranéen français). Les autres ports maritimes français du bassin Rhône-Méditerranée sont Sète, Toulon, Port-la-Nouvelle, Nice et Port-Vendres.

Illustration 16 : Les ports maritimes français du bassin RMed et leur tonnage en 2017 (en millions de tonnes) (source : SDES)

3.1.3.c - Le tourisme et les activités de loisirs liées à l'eau

Les enjeux touristiques sont très importants dans le bassin Rhône-Méditerranée, les zones de montagne et le littoral méditerranéen étant des secteurs géographiques très attractifs. Le développement du tourisme et des activités qui y sont liées pose la question de l’aménagement du territoire adéquat pour concilier un afflux saisonnier de population avec une pression la plus limitée possible sur les milieux aquatiques et la ressource en eau.

Du point de vue de la ressource en eau, le tourisme et la navigation sont les usages qui semblent avoir les plus forts impacts écologiques sur les milieux. La pêche et la baignade sont les activités ayant la plus forte dépendance à l'état sanitaire et écologique des milieux.
Le tourisme (hébergements et restauration)

Avec 105,8 millions de nuitées en hôtels et campings, le bassin Rhône-Méditerranée apparaît très attractif, générant environ 32 % des dépenses touristiques nationales. Les retombées économiques sont très importantes, et le secteur présente environ 330 000 emplois, les grandes agglomérations et le littoral sont les zones concentrant le plus de structures touristiques.

Dans le bassin, certaines communes peuvent ainsi voir leur population être multipliée par plus de 20 durant la haute saison, impliquant des prélèvements en eau fortement augmentés en conséquence, sur des ressources parfois en tension (cas de certaines nappes souterraines du littoral languedocien notamment) et pendant les périodes d'étiage.

La navigation de plaisance

Le bassin Rhône-Méditerranée est un site majeur pour le tourisme fluvial à l’échelle nationale. Il compte 1 200 km de voies navigables sur le bassin Rhône-Saône, pour environ 700 000 passagers et 225 M€ de retombées économiques. Ces voies d’eau sont les plus développées au plan national pour les croisières fluviales.

Concernant la plaisance maritime, la flotte de navires de plaisance est estimée à plus de 180 000 unités actives sur le littoral. Le bassin Rhône-Méditerranée compte 81 680 places de ports. Le nombre de passagers en ferries est estimé à 4 millions et celui de croisiéristes à 3,8 millions. Cette activité montre un poids économique très important, estimé à 817 M€ de retombées.
La baignade et les sports d'eaux vives

La **baignade** reste la première activité du tourisme balnéaire mais attire également de nombreux locaux durant la période estivale. Il existe 533 sites de baignade en mer et 500 points de baignade en eau douce surveillés par l'Agence Régionale de la Santé (ARS) dans le bassin. De plus, 49 plages maritimes sont labellisées « pavillon bleu »8. La qualité des eaux de baignade fait l'objet d'une surveillance particulière afin d'assurer la sécurité sanitaire des usagers.

Les activités sportives liées à l'eau sur le bassin sont principalement la voile et planche à voile, le ski nautique, le canoë-kayak, le cayonisme, la plongée, la spéléologie, l'aviron, le kitesurf, le paddle et le surf. Les activités récréatives liées à l'eau étant de plus en plus préaturées par les touristes, elles devraient continuer à se développer (exemples : +9,3 % de licenciés entre 2017 et 2018 pour la pratique du canoë-kayak, +36 % pour l'aviron entre 2013 et 2017, etc.).

Les sports liés à l'eau sont porteurs d'enjeux sociaux et économiques forts, mais aussi environnementaux dans la mesure où les aménagements induits et la sur-fréquentation de milieux naturels aquatiques sensibles peuvent perturber ces écosystèmes fragiles.

Les loisirs touristiques et récréatifs liés aux espèces aquatiques

La **pêche de loisir** est très présente en Rhône-Méditerranée du fait de la richesse des cours d'eau et plans d'eau dans ce bassin. Ce sont ainsi environ 420 000 participants (30 % du total des pêcheurs recensé au niveau national) qui génèrent 600 M€ de retombées économiques par an. Le nombre de licenciés tend toutefois à diminuer (-1,5 % entre 2014 et 2017).

La pêche de loisir concerne également la Méditerranée : les quantités de ressources pêchées sont estimées à 4 814 tonnes de poissons, 887 tonnes de coquillages, 743 tonnes de crustacés et 704 tonnes de céphalopodes.

La **chasse aux gibiers d'eau** compte environ 16 000 participants sur le bassin. Elle est particulièrement pratiquée dans les départements riches en zones humides (Ain, Hérault et Bouches-du-Rhône).

Ces activités sont très dépendantes de la qualité de l'eau et des milieux aquatiques, qui conditionne la présence des espèces recherchées.

Les golfs

Le bassin Rhône-Méditerranée compte environ 181 clubs de golfs, répartis sur près de 7 114 ha, pour un chiffre d'affaire de 4,6 M€/an. La région Auvergne-Rhône-Alpes figure parmi les régions de France les plus pourvues en offres de golfs (avec la Nouvelle-Aquitaine). Les golfs sont de gros consommateurs d'eau, principalement pour l'arrosage et l'irrigation des parcours. Au total les consommations d'eau sont importantes et concentrées sur 6 mois de l'année, coïncidant avec la période d'étiage. Par ailleurs, ces activités sont également utilisatrices de produits phytosanitaires.

La neige de culture dans les stations de ski

Le bassin Rhône-Méditerranée concentre la majeure partie des stations de ski françaises : 90 % de la

8 Label créé en 1985 à forte connotation touristique, décerné aux communes et ports de plaisance dotés d'une qualité environnementale exemplaire.
fréquentation est réalisée sur le bassin (298 stations de ski). L'activité des stations de ski représente un enjeu économique majeur dans certaines parties du territoire, et notamment dans les Alpes. Dans un contexte de changement climatique, le développement de la neige de culture (lui-même accru par ce phénomène) et les prélèvements en eau qu'il provoque pourraient induire des pressions fortes, notamment sur les zones humides d'altitude.

Le thermalisme et la thalassothérapie

Les stations thermales et les centres de thalassothérapie accueillent chacun environ 70 000 curistes à l'année, pour près de 1 940 emplois.

Les autres loisirs récréatifs et touristiques de pleine nature

La *randonnée pédestre*, avec une forte concentration de chemins de Grandes Randonnées, figure également parmi les activités fortement représentées sur le bassin en termes de clubs et de licenciés.

Le *cyclotourisme* est également une pratique en développement, avec notamment 1 500 km d'Eurovéloroutes. Il génère le plus de retombées économiques, à hauteur de 55 M€ annuels sur le bassin.

3.1.4 - Gestion de l'eau et des milieux aquatiques

3.1.4.a - Petit cycle de l'eau : grandes caractéristiques

Les prélèvements annuels pour l'alimentation en eau potable représentent un volume situé entre 1,5 et 1,6 milliard de m3 sur le bassin (entre 2009 et 2017), avec une légère tendance à la baisse. Les eaux proviennent d'environ 9 250 captages, qui prélèvent essentiellement dans les eaux souterraines. Les populations alimentées par des eaux d'origine superficielle sont principalement situées dans les régions Occitanie et Provence-Alpes-Côte-d'Azur. Le bassin compte environ 600 unités de production d'eau potable pour lesquelles la filière est plus complexe qu'une simple désinfection.

Concernant l'assainissement, on compte environ 3 600 stations d'épuration de plus de 200 EH, qui possèdent une capacité globale de traitement nettement supérieure au nombre d'habitants du bassin. Cette situation s'explique par la prise en compte des rejets d'origine industrielle d'une part et la capacité nécessaire pour recevoir les effluents générés par les saisonniers d'autre part. La moitié des stations a été mise en service avant 1985. À cela s'ajoute près d'un million d'installations pour l'assainissement non collectif.

On estime à plus de 120 000 le nombre d'emplois en France dans le domaine de l'eau, soit environ 30 000 dans le bassin Rhône-Méditerranée.
3.1.4.b - Gouvernance (dont aspects frontaliers et inter-bassin)

Une approche globale et intégrée à l'échelle des bassins versants

L’action publique sur les thématiques environnementales liées à l’eau se caractérise par une co-construction et un partage des compétences et des ressources entre différents niveaux initiés par la loi sur l’eau de 1992 et poursuivis par la Loi sur l'Eau et les Milieux Aquatiques de 2006 (LEMA).

La réglementation a instauré une gestion planifiée et concertée par bassin, permettant de nouvelles formes d’action publique locale participatives grâce aux dispositifs que sont les Schémas d’Aménagement et de Gestion des Eaux (SAGE) et les Schémas Directeurs d’Aménagement et de Gestion des Eaux (SDAGE). Il renforce également les conditions d’un contrôle de l’État (instauré par la Loi sur L’Eau de 1992), en soumettant :

- les activités et les opérations liées à l’eau et aux milieux aquatiques à un système de nomenclature définissant des seuils d’autorisation ou de déclaration ;
- les documents de planification à la signature du préfet coordonnateur de bassin.

Tableau 6 : État des lieux des principaux outils de gestion de l'eau sur le bassin RMed (source : Gest'eau, consulté en juin 2020)

<table>
<thead>
<tr>
<th></th>
<th>Émergence</th>
<th>Élaboration</th>
<th>Mis en œuvre</th>
<th>Achevé</th>
<th>Révision</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contrat de milieu</td>
<td>3</td>
<td>10</td>
<td>54</td>
<td>111</td>
<td>/</td>
<td>178</td>
</tr>
<tr>
<td>SAGE</td>
<td>0</td>
<td>8</td>
<td>34</td>
<td>/</td>
<td>4</td>
<td>46</td>
</tr>
</tbody>
</table>

En novembre 2019, près de 50 % de la surface du bassin est couverte par au moins un document de gestion de l'eau (SAGE ou contrat de milieu). A noter que, sur plusieurs bassins versants, ces deux outils sont mis en œuvre parallèlement.

Les SAGE ouvrent le processus local de décision à des « représentants qualifiés » de la société civile, au sein des Commissions Locales de l’Eau (CLE). La création des CLE s’est traduite par un réel déplacement du pouvoir, du niveau central vers le niveau local, en ouvrant le processus de décision à une multitude de parties prenantes locales et en favorisant les débats locaux.

Néanmoins, si la CLE a la compétence pour édicter des règles sur l’eau, elle ne dispose que de ressources limitées mises à disposition par une « structure porteuse ». En effet, ce lieu de concertation, de planification et de maîtrise d’usages n’est pas maître d’ouvrage. Cette lacune a été en partie comblée par la LEMA qui permet à la CLE de confier l’exécution de certaines de ses missions à un Établissement Public Territorial de bassin (EPTB), à un Établissement Public d’Aménagement et de Gestion des Eaux (EPAGE), à une collectivité territoriale ou à un groupement de collectivités territoriales. La loi du 30 juillet 2003 relative à la prévention des risques technologiques et naturels et à la réparation des dommages avait déjà fait des EPTB des acteurs officiels de la politique de l'eau à l'échelle d'un bassin versant ou d'un sous bassin.

Avec la LEMA, la portée juridique des SAGE est accrue, le règlement du SAGE et ses documents cartographiques sont désormais soumis à enquête publique et opposables aux tiers.
Des liens inter-États et inter bassins

Administrativement limité à la partie française, le bassin Rhône-Méditerranée, dans le sens géographique, possède des ramifications avec plusieurs états voisins (Suisse, Italie, Espagne).

Le plus important, le bassin versant du Rhône, couvre ainsi 97 800 km² dont 7 800 km² en Suisse. De même, plusieurs nappes souterraines dépassent également les frontières (aquifères du Pays de Gex, nappe profonde du Genevois, systèmes karstiques du Jura, etc.).

Les EPCI-FP, nouveaux piliers de la gestion de l'eau

Depuis 2006 et la LEMA, la loi de Modernisation de l'Action Publique Territoriale et d'Affirmation des Métropoles du 27 janvier 2014 (MAPTAM) et la loi portant Nouvelle Organisation de la République du 8 août 2015 (NOTRe) marquent un nouvel acte de décentralisation.

Elles favorisent la spécialisation de chaque catégorie de collectivité (communes et groupements, Départements, Régions) tout en supprimant la clause de compétence générale des Départements et des Régions. Suite à cela, l'intégralité du territoire est couverte par des Établissements Publics de Coopération Intercommunale à Fiscalité Propre (EPCI-FP) : métropoles, communautés urbaines, communautés d'agglomération et communautés de communes. Elles réorganisent les compétences de chacun, notamment dans le domaine de l'eau.

C'est ainsi qu'une compétence dans le domaine de l'eau, appelée « Gestion des Milieux Aquatiques et Prévention des Inondations (GEMAPI) », a été créée, et assignée aux EPCI-FP. Elle leur donne pour mission (sur la base de l'article L.211-7 du Code de l'Environnement) :

- d'intervenir dans l'aménagement des bassins hydrographiques (rétention, ralentissement et ressuyage des crues par exemple) ;
- la défense contre les inondations et contre la mer ;
- d'agir pour la protection et la restauration des sites, des écosystèmes aquatiques et des zones humides ainsi que des formations boisées riveraines ;
- d'intervenir, de façon facultative (en cas d'urgence ou d'intérêt général) dans la gestion des cours d'eau, canaux, lacs et plans d'eau (y compris leurs accès), en lieu et place du propriétaire riverain si celui-ci manque à ses obligations (propriétaire privé ou public).

La loi prévoit également le passage systématique progressif de la responsabilité des compétences « eau potable » et « assainissement » aux EPCI-FP. L'enjeu est d'évoluer vers une mutualisation, permettant l'augmentation de l'expertise et des moyens financiers.

Avec ces réformes, les EPCI-FP ont un rôle central à jouer dans les domaines de l'eau. Ils sont en effet les maîtres d'ouvrages désignés pour porter, en propre ou via des syndicats mixtes, les études et travaux relatifs à l'assainissement (collectif, non collectif et pluvial), l'eau potable (protection de captage, traitement, adduction, stockage, distribution), la gestion des milieux aquatiques et la prévention des inondations. Il leur incombe donc de mobiliser les moyens nécessaires pour porter à la bonne échelle l'ensemble des enjeux identifiés par les SDAGE, leur PDM et par les PGRI.

Afin d'accompagner les collectivités dans ces évolutions, une Stratégie d'Organisation des Compétences Locales de l'Eau (SOCLE) est élaborée. La première a été arrêtée fin 2017 et se concentre sur les compétences GEMAPI, eau potable et assainissement.
Les EPTB et EPAGE, structures de référence de l'exercice des compétences liées au grand cycle de l'eau (GEMAPI et hors GEMAPI)

L'enjeu majeur de la réforme est de faire en sorte que chaque cours d'eau bénéficie d'un gestionnaire unique et clairement identifié, tout en permettant de conserver le principe de gestion de l'eau par bassin versant et les solidarités amont-aval qui en découlent.

En effet, le travail à l'échelle de bassins versants est nécessaire pour intégrer les Espaces de Bon Fonctionnement (EBF), les axes de vie utilisés par les espèces et les impacts réciproques entre l'amont et l'aval. Les EBF incluent les champs d'expansion des crues et zones humides connectées à la rivière, qui contribuent à la fois à l'absorption des crues et au fonctionnement naturel des milieux.

Dans cet objectif, la loi renforce les syndicats mixtes de bassins versants, en leur donnant la possibilité d'être reconnus comme Établissements Publics d'Aménagement et de Gestion des Eaux (EPAGE) ou comme Établissements Publics Territorial de Bassin (EPTB):

- un EPAGE vise à assurer une mission opérationnelle en vue de porter la maîtrise d'ouvrage des études et travaux de restauration des cours d'eau et de protection contre les crues à une échelle de taille équivalente à un sous bassin du SDAGE ;
- un EPTB exerce une mission d'animation et de coordination à grande échelle, garant de la solidarité de bassin.

La possibilité est donnée, pour les EPCI-FP, de confier tout ou partie de ces compétences sur tout ou partie de son territoire à ces structures spécialisées dans la gestion intégrée et solidaire de ces compétences à l'échelle d'un bassin versant, par délégation ou transfert.

En novembre 2016, l'agence de l'eau Rhône-Méditerranée publiait une doctrine pour la reconnaissance et la promotion des EPTB et des EPAGE9. Par la suite, la SOCLE (Stratégie d'Organisation des Compétences Locales de l'Eau) s'est appuyée sur cette doctrine pour établir 21 recommandations visant une structuration de la gouvernance du bassin Rhône-Méditerranée cohérente avec les enjeux. Il s'agit notamment d'assurer une gestion intégrée des enjeux de l'eau dans toutes ses dimensions, d'anticiper les changements, d'assurer la continuité des opérations engagées, de renforcer les liens entre les compétences de l'eau et de l'aménagement, etc.

Ainsi, fin 2018, l'exercice complet de la GEMAPI était assuré par une entité dans l'intégralité du sous bassin versant pour 37 % d'entre eux (soit par un syndicat de bassin versant dans 30 % des cas, soit par un EPCI-FP pour les autres). Par ailleurs, dans 32 % des cas, l'exercice de la GEMAPI était partagé entre EPCI-FP(s) et syndicat(s). Dans 26 % des sous-bassins versants, il était partagé, soit entre plusieurs EPCI-FP (23 %), soit entre plusieurs syndicats (3 %). Pour le reste (5 %), la situation n'était pas connue. Enfin, la loi MAPTAM donne la possibilité aux EPCI-FP de financer l'exercice de la compétence GEMAPI par l'instauration d'une taxe dédiée. Fin 2018, 65 % des sous-bassins versants sont concernés par cette taxe.

A noter que la prise de compétence exclusive est effective depuis le 1er janvier 2018. Les états d'avancement présentés précédemment résultent donc d'une évolution très récente.

3.1.4.c - Connaissances et sensibilisation

Source : État des lieux du SDAGE RM, 2019

Depuis au moins une vingtaine d'années, les enquêtes d'opinion témoignent d'une sensibilisation croissante des français aux enjeux environnementaux. Dans le même temps, la volonté d'adapter son mode de vie pour adopter une consommation plus durable est aussi croissante. Même si ces changements de comportements sont

principalement motivés par des préoccupations économiques, la prise de conscience des problèmes environnementaux et sanitaires y participe également.

Le contexte récent de crise économique a pu avoir tendance à faire passer au second plan les enjeux environnementaux par rapport aux questions sur le niveau de vie et l'emploi. Toutefois, compte tenu de la visibilité toujours plus forte des crises climatiques et d'effondrement de la biodiversité, il est raisonnablement envisageable que les préoccupations environnementales se maintiennent à un niveau important voire croissant dans les préoccupations des français.

Cette sensibilité croissante des citoyens aux enjeux écologiques se traduit aussi par une recherche accrue de contact avec la nature et de loisirs de plein air, d’autant plus que d’autres tendances vont dans le même sens :

• la demande croissante pour les activités de baignade de plein air ;
• la recherche de fraîcheur en cas d’épisode de forte chaleur, dont la fréquence va augmenter en lien avec le changement climatique ;
• les aspirations des urbains pour un cadre de vie plus « vert », dont témoigne notamment la montée en puissance du thème de la « nature en ville » dans les projets d'urbanisme.

Ces éléments convergent et dressent un décor favorable à une demande accrue pour l’accès à des usages des milieux aquatiques. Cependant, on peut s’interroger sur les risques de concurrence entre usages de l’eau, dans un contexte de réduction des débits d’étiage causée par le changement climatique.
3.2 - Analyse des thématiques de l'environnement

3.2.1 - Ressources en eau

Au sein de cette thématique, nous traitons de l'ensemble du périmètre relatif à l'état des masses d'eau, superficielle et souterraine. C'est-à-dire ce qui concerne l'état chimique, l'état quantitatif des masses d'eau souterraine et l'état écologique des masses d'eau superficielle (incluant l'hydromorphologie).

Comparées à l'ensemble des ressources hydriques de la France, celles du bassin Rhône-Méditerranée apparaissent relativement abondantes : importance du ruissellement drainé par un chevelu dense d'environ 11 000 cours d'eau de plus de 2 km, richesse exceptionnelle en plans d'eau (Léman, lac d'Annecy, lac du Bourget...), présence de glaciers (15,5 milliards de m³ d'eau emmagasinés), etc.

Le terme « masses d’eau » désigne une portion de cours d’eau, d'eau côtière, des nappes souterraines (en totalité ou en partie) ou des lacs. Chaque masse d'eau présente en son sein des caractéristiques physiques, biologiques, physico-chimiques homogènes. Ce découpage voulu par la DCE, permet de créer des unités d'évaluation cohérentes et comparables à l’échelle européenne.

Le bassin comprend au total 2 792 masses d'eau de surface, dont 2 639 cours d'eau, 94 plans d'eau, 32 eaux côtieres et 27 eaux de transition (lagunes littorales et delta, entre milieu continental et milieu marin), et 241 masses d'eau souterraine (référentiel 2022-2027 provisoire). Le référentiel des masses d'eau est relativement stable depuis le dernier cycle DCE (2016-2021), avec seules quelques masses d'eau modifiées (regroupement de masses d'eau souterraine et ajout de masses d'eau superficielle).

Pour évaluer le bon état, deux grands types de masses d’eau sont distingués :

• les masses d’eau de surface (rivières, lacs, étangs, eaux côtières) pour lesquelles deux objectifs sont fixés : le bon état écologique et le bon état chimique. Les deux critères doivent être remplis pour que la masse d'eau soit en bon état ;
• les masses d’eau souterraine pour lesquelles sont fixés un objectif de bon état quantitatif et un objectif de bon état chimique. Ici aussi les deux critères doivent être remplis pour que la masse d'eau soit en bon état.

Le diagnostic de l’impact des pressions a été actualisé avec des méthodes globalement équivalentes à celles employées en 2013. De plus, l'évaluation des pressions a été consolidée avec les connaissances des acteurs locaux (structures de gestion de l'eau, SAGE, collectivités, organismes socio-professionnels, associations).

3.2.1.a - Caractéristiques

Le bassin Rhône-Méditerranée bénéficie d’une ressource en eau globalement abondante en raison d’un réseau hydrographique dense, de grands plans d’eau, de nombreuses zones humides, de glaciers alpins et d’une grande diversité des systèmes aquifères. Cependant, elle apparaît inégalement répartie, certains secteurs connaissant des situations de déséquilibre entre l'eau disponible dans le milieu naturel et les prélèvements effectués (littoral méditerranéen notamment).

La disponibilité d'une eau de qualité et en quantité suffisante constitue un enjeu vital pour l’ensemble de la population, pour son économie et pour le bon fonctionnement des milieux aquatiques.

Plusieurs types de milieux aquatiques sont recensés sur le bassin. On distingue ainsi :

• les milieux aquatiques continentaux, qui intègrent les nappes d’eau souterraine, les cours d’eau et les
plans d'eau ;
- les milieux aquatiques marins, qui concernent les masses d'eau côtière et les masses d'eau de transition (lagunes littorales).

Les eaux continentales

État des masses d'eau souterraine

La détermination de l'état d'une masse d'eau souterraine repose sur deux paramètres :
- l'état quantitatif, qui s'apprécie au regard des prélèvements réalisés dans la masse d'eau, comparés à la capacité de renouvellement de la ressource disponible, compte tenu de la nécessaire alimentation des écosystèmes aquatiques. Une masse d'eau souterraine en bon état quantitatif ne témoigne pas d'une évolution défavorable et durable de la piézométrie, et permet de satisfaire l'ensemble des besoins sans risque d'effets induits préjudiciables sur les milieux aquatiques et terrestres associés, ni d'intrusion saline en bordure littorale ;
- l'état chimique, qui est évalué par la comparaison des concentrations de plusieurs polluants dus aux activités humaines dans les eaux (ou substances « prioritaires » et « prioritaires dangereuses » de la DCE) avec les Normes de Qualité Environnementale (NQE)10. Une masse d'eau souterraine en bon état chimique présente des eaux dont les concentrations de certains polluants ne dépassent pas les NQE établies au niveau européen.

En 2019, ce sont 88 % des masses d'eau souterraine qui sont en bon état quantitatif. Ainsi, 28 masses d'eau sont évaluées en déséquilibre quantitatif.

En ce qui concerne l'état chimique, 85 % des masses d'eau souterraine du bassin sont en bon état en 2019. Ce sont donc 36 masses d'eau qui sont considérées comme en état médiocre. Les principales causes de dégradation sont les pollutions par les pesticides, par les apports de nutriments et par les autres substances toxiques.

Évolutions de l'état des masses d'eau souterraine

Le SDAGE 2010-2015 présentait comme objectif l'atteinte du bon état quantitatif pour 100 % des masses d'eau souterraine à l'échéance 2015 (92 % estimées en bon état quantitatif en 2010).

Le bilan 2015 a montré, pour un référentiel inchangé, que 91 % des masses d'eau souterraine atteignaient le bon état (3 masses d'eau avaient atteint le bon état, 8 restaient en état médiocre et 5 avaient vu leur état quantitatif dégradé).

Ces résultats s'expliquaient par l'évolution des méthodes de suivi, conduisant à une évaluation de l'état plus précise que celle mise en œuvre pour établir l'état des lieux de 2005 : amélioration de la quantification des prélèvements, association de ces pressions aux masses d'eau pertinentes et précision du taux de sollicitation de la ressource. Ces améliorations avaient notamment été permises par les études d'évaluation des volumes prélevables globaux conduites sur les masses d'eau identifiées comme en déséquilibre quantitatif (ou en équilibre fragile).

Du fait des évolutions de découpage de nombreuses masses d'eau souterraine (de 131 à 236 masses d'eau souterraine), le SDAGE 2016-2021 indiquait un taux de bon état quantitatif de 89 % en 2015, avec l'objectif d'atteinte du bon état pour 99 % des masses d'eau souterraine en 2021, et de 100 % en 2027.

10 Sont recherchés les substances ou ions indicateurs qui peuvent être naturellement présents ou résulter de l'activité humaine (arsenic, cadmium, plomb, mercure, ammonium, chlorure, sulfates, etc.), des substances de synthèse artificielles (pesticides notamment) ainsi que des paramètres indiquant les intrusions d'eau salée ou autre (conductivité, etc.).
En 2019, à partir de masses d'eau comparables, le pourcentage de masses d'eau en bon état est resté identique (89 %) :

- quatre masses d'eau en bon état en 2013 ont été évaluées en état médiocre en 2019 (FRDG171, 205, 385, 353). De plus, une nouvelle masse d'eau (FDG249) est également évaluée en état médiocre. Pour ces masses d'eau, la réévaluation ou l'évaluation des volumes prélevés montre que la pression de prélèvement exercée dépasse les capacités de renouvellement de la nappe. Il faut noter que ce constat n'est pas conforme à la DCE, pour laquelle une fois le bon état atteint, il est indispensable de ne pas le dégrader. La DCE n'admet pas la possibilité de déclassement de l'état d'une masse d'eau vers un état inférieur ;

- trois masses d'eau (FRDG223, 231, 330) passent d'un état médiocre en 2013 à un bon état en 2019. Sur ces dernières, l'exercice de réévaluation des prélèvements par rapport à la recharge et l'observation de l'évolution des niveaux piézométriques et des surfaces affectées par les déséquilibres permet de montrer que la pression a baissé et que la situation s'est améliorée.

Notons que le délai court de 4 ans n'a pas permis de tirer le bénéfice des actions de réduction des prélèvements, par économie d'eau ou par la mise en place d'infrastructures de transfert des prélèvements sur des ressources plus abondantes.

En 2010, 80 % des masses d'eau souterraine présentaient un bon état chimique. L'objectif du SDAGE 2010-2015 était d'atteindre 82 % de bon état en 2015, 98 % en 2021 et 100 % en 2027. Le bilan 2015 avait fait état, sur la base du même référentiel de masses d'eau, d'un taux de bon état chimique atteint pour 85 % des masses d'eau souterraine du bassin.

En raison du nouveau découpage des masses d'eau, le SDAGE 2016-2021 indiquait un taux de bon état chimique de 82 % en 2015 et présentait un objectif de bon état de 85 % à l'horizon 2021. Cet objectif a été atteint, avec des évolutions plus marquées que pour l'état quantitatif. En effet, le nombre de masses d'eau souterraine en état médiocre est passé de 44 en 2013 à 36 en 2019 :

- l'état de 11 masses d'eau s'est amélioré, grâce notamment à la diminution de concentrations de pesticides (terbuthylazine déséthyl, atrazine déséthyl) ou de solvant dans les eaux ;
- l'état de 3 masses d'eau s'est dégradé (FRDG361, 411, 510), en raison de l'augmentation de présence de pesticides (déisopropyl-déséthyl-atrazine, simazine, métolachlore ESA).

État des masses d'eau superficielle

La détermination de l'état d'une masse d'eau superficielle repose également sur deux paramètres :

- l'état écologique, qui représente l'appréciation de la structure et du fonctionnement des écosystèmes aquatiques. Il est évalué à partir d'éléments de qualité hydromorphologique, physico-chimique (macropolluants notamment) associés au déroulement des cycles biologiques (espèces végétales et animales). Il est déterminé par un écart à des conditions de référence. Pour certaines masses d'eau (fortement modifiées et artificielles), l'objectif est le bon potentiel écologique ;
- l'état chimique, qui est évalué selon une méthode similaire à celui des masses d'eau souterraine.

Pour les masses d'eau « cours d'eau », en 2019, 47 % sont au moins en bon état écologique (35 % en bon état et 12 % en très bon état), 31 % sont en état moyen, 20 % en état médiocre et 2 % en état mauvais. En ce qui concerne les masses d'eau « plans d'eau », le taux de bon état au moins grimpe à 69 % (60 % en bon état et 9 % en très bon état), tandis que 26 % sont en état moyen, 1 % en état médiocre et 4 % en état mauvais.

Enfin, concernant l'état chimique, il apparaît mauvais pour 4 % des masses d'eau « cours d'eau » et pour 3 % des masses d'eau « plans d'eau ». Lorsque les substances ubiquistes sont retirées (hydrocarbures aromatiques polycycliques, tributyrine, diphenylétherbromé, mercure), ce sont 2 % des masses d'eau « cours d'eau » qui sont évaluées en mauvais état chimique et 1 % des masses d'eau « plans d'eau ».
Evolutions de l'état des masses d'eau superficielles

Le SDAGE 2010-2015 fixait comme objectif le **bon état ou le bon potentiel écologique** pour 66 % des masses d'eau superficielle à l'échéance 2015, pour 88 % en 2021 et pour 100 % en 2027. En 2009, le bon état ou le bon potentiel écologique était atteint pour 53 % de ces masses d'eau.

En 2015, le bilan indiquait que 52 % des masses d'eau superficielle avaient atteint le bon état ou le bon potentiel écologique (sur la base référentiel de masses d'eau comparable directement) : tandis que 379 masses d'eau présentaient une amélioration de leur état pour atteindre un bon état écologique en 2015, 386 avaient vu leur bon état écologique être dégradé. Les principales causes de l'évolution alors identifiées étaient liées à :

- l'évolution des règles d'évaluation, avec l'ajout de nouveaux critères, provoquant mécaniquement une augmentation des paramètres devant présenter un bon état pour que la masse d'eau soit considérée en bon état ;
- la variabilité naturelle des milieux en raison d'années plus sèches ou plus humides par exemple, pouvant avoir des effets sur les chroniques de données courtes de quelques années ;
- la meilleure connaissance des milieux et des pressions, avec un réseau de surveillance de l'état des eaux renforcé à partir de 2011 et une notion de risque (RNAOE) reconstruite (non plus fondée sur le seul "dire d'expert").

Le SDAGE 2016-2021 mentionnait 52 % des masses d'eau superficielle en bon état ou bon potentiel écologique en 2015 et fixait l'objectif d'atteindre ce bon état pour 66 % des masses d'eau à l'échéance de 2021 et pour 100 % à 2027.

En 2019, l'actualisation de l'état des masses d'eau révélait que 48 % des masses d'eau comparables ont atteint le bon état ou le bon potentiel écologique. Quelques 176 masses d'eau atteignaient le bon état ou le bon potentiel écologique mais 295 masses d'eau perdaient leur bon état de 2015. Bien que les changements de méthodes d'évaluation aient une influence importante dans l'évolution négative constatée (pour les cours d'eau), d'autres causes peuvent être incriminées, comme en 2015 (variabilité naturelle et meilleure connaissance des milieux et des pressions). Plus précisément, en 2019 :

- 48 % des cours d'eau atteignaient au moins le bon état, soit une baisse de 4 points de pourcentage depuis 2015 ;
- 69 % des plans d'eau étaient au moins en bon état écologique, soit une augmentation de 3 points de pourcentage depuis 2015.

Partant de 92 % de masses d'eau superficielle en bon **état chimique** en 2009 (hormis les 37 % de masses d'eau à l'état indéterminé), le SDAGE 2010-2015 avait fixé un objectif de bon état de 94 % en 2015. Le bilan 2015 montrait que le taux de bon état chimique atteignait alors 93 %.

L'analyse de l'évolution de l'état chimique entre 2009 et 2015 montre une relative stabilité en ce qui concerne les cours d'eau. Pour les eaux côtières, une légère dégradation a été constatée, due à des détectons de la présence de pesticides (en particulier de l'endosulfan, dont l'utilisation a été interdite en 2007). Enfin, pour les plans d'eau et les eaux de transition, le développement des réseaux de surveillance avait permis de mieux connaître l'état de ces milieux et la dégradation chimique s'était révélée plus marquée que supposée en 2009.

Le SDAGE 2016-2021 avait pour objectif l'atteinte du bon état chimique (avec ubiquistes) pour 93 % des masses d'eau superficielle en 2021, soit le maintien du taux de bon état constaté en 2015. En 2019, le bilan du SDAGE fait état d'un taux de bon état chimique de 96 %.

Entre 2015 et 2019, la tendance pour les cours d'eau semble être à l'amélioration, avec notamment, +3 points de pourcentage de masses d'eau en bon état, même si cette évolution est à considérer avec précaution. Au niveau
des plans d'eau, une 3ème masse d'eau (plan d'eau de Charmine-Moux) est venue s'ajouter aux 2 déjà en mauvais état chimique en 2013 (Chaillexon et Châtelot).

Finalement, selon la mise à jour de l'évaluation de l'état des masses d'eau de ce cycle DCE, 48 % des masses d'eau superficielle sont en bon état (chimique et écologique) : 47 % des masses d'eau « cours d'eau » ; 69 % des...
masses d'eau « plans d'eau » : 22 % des masses d'eau de transition ; 47 % des masses d'eau côtières. En ce qui concerne les masses d'eau souterraine, ce sont 76 % d'entre elles qui sont en bon état (quantitatif et chimique).

Les eaux de transition et eaux côtières

Les masses d'eau de transition, ou lagunes littorales, sont définies, au sens de la DCE, comme des plans d'eau saumâtre libres, permanents, de surface supérieure ou égale à 50 hectares. Elles sont peu profondes, à la fois séparées de la mer par un cordon littoral, et reliées par des communications étroites. Elles sont constituées d'eau saumâtre avec un gradient de salinité très variable (oligo-mésohaline à poly-euhaline).

Les masses d'eau côtière sont constituées d’une bande marine adjacente à la côte et prennent donc en compte l’espace littoral de proximité (la zone marine où la diversité écologique est importante, et la zone littorale où se cumulent les pressions de toutes sortes comme les rejets directs, les aménagements littoraux ou les activités nautiques). Au sens de la DCE, la limite des masses d'eau côtière en mer se situe à 1 mille des côtes.

L'état écologique de ces masses d'eau en 2019 est présenté ci-après :

<table>
<thead>
<tr>
<th>État écologique</th>
<th>Très bon</th>
<th>Bon</th>
<th>Moyen</th>
<th>Médiocre</th>
<th>mauvais</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eaux de transition</td>
<td>1 (4 %)</td>
<td>5 (18,5 %)</td>
<td>6 (22 %)</td>
<td>6 (22 %)</td>
<td>9 (33,5 %)</td>
</tr>
<tr>
<td>Eaux côtières</td>
<td>2 (6 %)</td>
<td>13 (41 %)</td>
<td>15 (47 %)</td>
<td>0 (0 %)</td>
<td>2 (6 %)</td>
</tr>
</tbody>
</table>

Tableau 7 : État écologique des masses d'eau de transition et côtières en 2019

L'évolution de l'état écologique des masses d'eau de transition doit être menée par type de milieu concerné (faible nombre de masses d'eau) :

- l'état des eaux de transition correspondant aux bras et à l'estuaire du Rhône (respectivement en état moyen et bon) est directement dépendant de celui du fleuve directement en amont. Leur état écologique était évalué comme bon en 2013 ;
- l'évolution de l'état des lagunes oligo-mésohalines entre 2013 et 2019 ne peut pas être définie. En effet, il s'agit d'écosystèmes au fonctionnement très complexe dont les méthodes d'évaluation restent à stabiliser ;
- enfin, l'état écologique des lagunes poly-euhalines est à l'amélioration en moyenne : sur les 17 masses d'eau, l'évaluation de 7 d'entre elles apparaît comme meilleure qu'en 2013 et 7 autres ont un état stable.

Quant à l'évolution de l'état écologique des masses d'eau côtières entre 2013 et 2019, elle apparaît comme défavorable. En effet, un taux important de masses d'eau est déclassé notamment par les résultats de suivi du benthos de substrat meuble, seul paramètre ayant significativement évolué.

<table>
<thead>
<tr>
<th>État chimique</th>
<th>Bon</th>
<th>Mauvais</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eaux de transition</td>
<td>27 (100 %)</td>
<td>0 (0 %)</td>
</tr>
<tr>
<td>Eaux côtières</td>
<td>32 (100 %)</td>
<td>0 (0 %)</td>
</tr>
</tbody>
</table>

Tableau 8 : État chimique des masses d'eau de transition et côtières en 2019

L'état chimique apparaît comme bon pour l'ensemble de ces masses d'eau (pas de dépassement des NQE). Les concentrations de certaines substances interdites d'utilisation (déclassantes en 2013) ont diminué depuis la dernière évaluation, notamment au niveau des eaux de transition. Toutefois, la présence d'autres molécules peut
y être constatée, comme certains pesticides non pris en compte dans l'évaluation de l'état chimique.

Concernant les eaux côtières, l'évaluation de l'état de ces masses d'eau est amenée à évoluer avec la Directive Cadre Stratégie pour le Milieu Marin (DCSMM).

3.2.1.b - *Les pressions s'exerçant sur l'état des eaux*

Des progrès significatifs ont été enregistrés depuis 2010 pour réduire les facteurs de pressions, notamment observés sur la mise aux normes des stations d'épuration ou sur la restauration physique des milieux aquatiques.
La ressource reste néanmoins soumise à des pressions de différentes formes et origines.

Les pressions physiques

Sur le bassin Rhône-Méditerranée, les altérations physiques des eaux de surface (morphologie, hydrologie, continuité écologique) constituent le facteur de pression dominant sur l'état des masses d'eau superficielle.

Les **altérations de la morphologie** des eaux superficielles (recalibrages, endiguements des cours d'eau, enrochement des berges, extraction de matériaux, etc.) dégradent et détruisent les habitats nécessaires à de nombreuses communautés aquatiques. Qui plus est, le cloisonnement de ces milieux par des ouvrages (seuils et barrages) empêche la circulation des espèces et le transport des sédiments.

Sur le bassin Rhône-Méditerranée, près de la moitié des masses d'eau « cours d'eau » possède des formes fluviales contraintes, voire fortement modifiées, susceptibles d'impacter les écosystèmes aquatiques, et d'induire la réduction voire la disparition de certaines espèces. Par ailleurs, 12 % des masses d'eau « plans d'eau » et plus de la moitié des étangs saumâtres présentent des zones de berges et des rives fortement bétonnées ou enrochées par des aménagements.

D'autre part, le bassin Rhône-Méditerranée compte 2 800 km de voies navigables, le Rhône et la Saône accueillant la grande majorité du trafic fluvial. La navigation fluviale peut avoir des impacts hydromorphologiques sur les milieux aquatiques (dragages, écluses, barrages, batillage, etc.) et engendrer des conséquences écologiques fortes telles que la perte d'habitats ou une diminution de l'emprise et de la diversité des zones humides. Notons également que la navigation fluviale est une source potentielle de pollution (remise en suspension de micropolluants suite à des opérations de dragages, rejets des eaux usées des navires dans le milieu, etc.).

Par ailleurs, les modalités de gestion des ouvrages de stockage de l'eau (seuils et barrages) peuvent perturber le cycle de vie des communautés aquatiques par les **modifications du régime des eaux** qu'ils induisent dans ces milieux.

En plus de différents paramètres décrits par la suite (éléments de qualité), les indicateurs biologiques présentent une sensibilité certaine à l'hydromorphologie des cours d'eau. Deux indices permettent de mesurer la qualité biologique des cours d'eau : l'Indice Biologique Global Normalisé (IBGN) qui se base sur la faune macroinvertébrés benthiques et l'Indice Invertébrés Multimétrique (I2M2), plus discriminant, appelé à remplacer l'IBGN.

Le suivi de ces indices permet d'estimer l'évolution de la qualité des cours d'eau. La part de stations en bon ou très bon état au regard de la biologie a fortement augmenté au cours des 20 dernières années pour l'IBGN, passant de 65 % en 1997 à près de 88 % en 2018. Depuis 2008, le suivi de cet indicateur montre toutefois une certaine stabilité. La part de stations en bon état ou mieux avec l'I2M2 est quant à elle passée de 76 % en 2009 à 82 % en 2018.
Malgré ces résultats, les altérations de la morphologie concernent 53 % de masses d'eau « cours d'eau », 14 % de masses d'eau « plan d'eau », 67 % de lagunes et 13 % de masses d'eau côtière du littoral méditerranéen. De plus, les altérations de la continuité biologique et sédimentaire représentent un risque pour plus de 39 % des cours d'eau et 20 % des plans d'eau.

Les prélèvements d'eau

Données : Agence de l'eau RMC

Les prélèvements d'eau, hors ceux destinés aux usages hydroélectricité et refroidissement industriel, étaient de 6,2 milliards de m3 en 2017.

L'évolution de ces prélèvements entre 2009 et 2017 fait apparaître une tendance globale à la baisse, même s'ils se sont stabilisés depuis 2014. Cependant, la forte baisse observée en 2013 est essentiellement due à la diminution de prélèvements liés à l'alimentation des canaux (environ 0,26 milliard de m3 entre 2012 et 2013). Hors de cet usage, aucune tendance significative n'est observée depuis 2010.

Les prélèvements liés à l'alimentation des canaux sont principalement destinés à la navigation (CTB Saône-Doubs, CTB Rhône-Isère) ou à l'irrigation (CTB Littoral PACA-Durance, CTB Gard-Côtiers ouest).

Concernant l'hydroélectricité, dont les prélèvements peuvent également être à l'origine de pressions hydrologiques (éclusées, tronçons court-circuités, etc.), ils sont fortement dépendants des besoins énergétiques et varient entre 500 et 800 millions de m3 selon les années. Les prélèvements à usage refroidissement industriel peuvent également être à l'origine d'impacts comme le réchauffement des eaux.

Les prélèvements d'eau superficielle sont majoritaires (73 % en 2017) et l'irrigation pour l'agriculture constitue l'usage le plus consommateur d'eau prélevée dans ce milieu. Les prélèvements en eaux souterraines servent essentiellement à l'alimentation en eau potable et à l'industrie.

En 2017, 1,5 milliard de m3 d'eau ont été prélevés pour l'alimentation en eau potable. Ces volumes sont assez

11 Ces prélèvements sont réputés totalement ou quasiment totalement restitués aux milieux (>= 99 %) et concernent la grande majorité des prélèvements du bassin (99 % en 2017).
stables depuis 2012 (-1 %), avec une baisse relative observée uniquement sur les prélèvements en eau superficielle du fait de l’abandon de captages en eaux superficielles remplacés par des prélèvements en nappe. Rapporté à la population totale majorée12, le volume moyen prélevé par habitant dans le bassin est de 89 m3 d’eau potable par an sur la période 2012-2017.

Ces prélèvements peuvent contribuer à la concentration des pollutions, et à la réduction de la capacité d’autoépuration des cours d’eau et plans d’eau, ainsi qu’à l’intrusion d’eau salée dans les eaux souterraines proches du littoral. Des usages plus récents, comme la neige de culture, peuvent également menacer les cours d’eau et les zones humides de haute montagne.

Plus concrètement, 74 sous-bassins versants et masses d'eau souterraine ont été identifiés en déséquilibre quantitatif. Ces territoires montrent une inadéquation entre les prélèvements et la disponibilité de la ressource. Des études de volumes prélevables ont ainsi été conduites sur ces territoires pour permettre un ajustement des autorisations de prélèvement d'eau dans les rivières ou les nappes concernées, en conformité avec les ressources disponibles et sans perturber le fonctionnement des milieux naturels.

De plus, les modifications du régime des eaux liées aux seuls prélèvements d'eau génèrent un risque de non-atteinte du bon état pour 22 % des masses d'eau « cours d'eau » et 12 % des masses d'eau souterraine.

\textit{Les pollutions par les nutriments}

Elles sont majoritairement issues de rejets des eaux usées traitées et des pollutions diffuses d'origine urbaine et agricole. Elles se retrouvent dans l'eau sous forme de nutriments (matières organiques, phosphorées et azotées).

En termes d'assainissement, les efforts initiés depuis de nombreuses années par les collectivités sont à l’origine d’une réduction significative des rejets polluants. En effet, sur les 5 294 Stations de Traitement des Eaux Usées (STEU) que comptait le bassin Rhône-Méditerranée en 2017, le taux de conformité globale performances était de 88,5 % (86,4 % en termes de capacité de traitement). Il était de 78 % en 2012, soit une progression de 10 %. La grande majorité des STEU traitant plus de 2 000 équivalents habitants (EH) sont aux normes (94 %). Notons toutefois 41 STEU importantes (traitant plus de 10 000 EH) non conformes en performances fin 2018, dont 4 présentant une capacité nominale de traitement de plus de 100 000 EH13.

Des efforts restent donc à poursuivre pour accompagner la mise en conformité du parc des stations d'épuration14, ainsi que la mise à niveau des ouvrages d'assainissement vieillissant ou mal entretenus susceptibles de présenter de nouvelles situations de non-conformité dans le futur.

Les efforts doivent également se poursuivre au niveau des installations d'assainissement non collectif, dont les connaissances sur l’état du parc sont moins développées. En 2017, l'assainissement non collectif concernait environ 10 % de la population du bassin. Il est estimé que 15 à 20 % de ces dispositifs présentent des dysfonctionnements majeurs (sur environ 1 million d'installations)15. Les impacts cumulés induits par ces dysfonctionnements peuvent devenir localement importants.

Concernant la gestion des rejets par temps de pluie, la part des réseaux équipés ou non concernés par la mise en œuvre de l'auto surveillance des réseaux de collecte (de capacités supérieures ou égales à 2 000 EH) était de 86 % en septembre 2018 et a progressé de 8 points de pourcentage depuis 2015. La gestion des rejets par temps de

12 Population résultant du dernier recensement (majorée le cas échéant des accroissements de population) + 1 habitant/résidence secondaire + 1 habitant/place de caravane située sur une aire d'accueil des gens du voyage (article L.2334-2 du Code général des collectivités territoriales)

13 Portail d'information sur l'assainissement communal (http://assainissement.developpement-durable.gouv.fr/index.php), Ministère de la transition écologique et solidaire (MTES)

14 Une mise en demeure a été envoyée à la France par la Commission Européenne en octobre 2017 pour non conformité d'un nombre significatif de STEU à la DERU

15 Agence de l'eau (bassin Corse inclus)
Plan de Gestion des Risques d'Inondation 2022-2027 | Bassin Rhône-Méditerranée

pluie occasionnés, notamment par les déversoirs d'orage, la mise en place de systèmes d'auto surveillance sur les petits réseaux, la réduction des déversements sur les réseaux unitaires, et la rétention à la source des eaux pluviales sont autant d'actions à poursuivre. Ces rejets de déversoirs d'orage représentent 45 millions de m3 d'eau en 2017 (par comparaison, 1,1 milliard de m3 sont rejetés par les STEU).

Concernant l'activité agricole, elle est représentée par une grande variété de systèmes de production. Quelles qu'elles soient, les pratiques culturelles intensives présentes actuellement sur le bassin sont susceptibles de dégrader les milieux aquatiques par des apports de matières organiques, de matières azotées et de phosphore engendrant des problèmes d'eutrophisation.

Au niveau des eaux superficielles, il résulte des actions entreprises des améliorations notables en termes de concentration moyenne en DBO$_{5}$, en ammonium (NH$_4$) et en orthophosphates (PO$_4$) dans les eaux superficielles notamment. Toutefois, même si des changements de pratiques de la profession agricole sont constatés, les concentrations en nitrates des eaux souterraines restent relativement stables.

La quantité de pollution organique présente dans le cours d'eau a, en moyenne, été divisée par 5 pour la DBO$_{5}$ et 20 pour le NH$_4$ entre 1990 et 2017. Concernant les PO$_4$, leur concentration moyenne a été divisée par 10 dans les cours d'eau sur la même période.

Ces trois paramètres se trouvent ainsi dans les classes de qualité bonne à très bonne pour 95 % ou plus des 400 stations suivies en 2017 dans le cadre du programme de surveillance de l'état des eaux.

Ainsi, l'état physicochimique des cours d'eau s'est globalement amélioré, avec un pourcentage de stations en bon ou très bon état passant de 35 % en 1995 à 84 % en 2018.

En 2019, les rejets de nutriments urbains ou industriels des systèmes d’assainissement menacent encore 23 % des masses d'eau « cours d'eau » et 21 % des masses d'eau « plan d'eau ». Le risque généré par les nutriments d'origine agricole concerne 12 % des masses d'eau « cours d'eau », 34 % des masses d'eau « plan d'eau » et 67 % des masses d'eau de transition. Par ailleurs, ce risque concerne 7 % des masses d'eau souterraine.

Les pollutions par les substances dangereuses

Les substances dangereuses concernent l'ensemble des substances surveillées dans le bassin : pesticides, métabolites, nanomatériaux, micro-plastiques, autres micropolluants organiques et minéraux. Les effets sur la santé humaine, les activités et la biodiversité sont variables et fortement dépendants des concentrations impliquées, ainsi que de l'interaction entre celles-ci (effet « cocktail »).

Les contaminations des eaux superficielles et souterraines par les substances peuvent provenir des eaux
Les autres sources d'émission sont écartées du fait du manque de données et de méthode pour les estimer.

16 Les autres sources d'émission sont écartées du fait du manque de données et de méthode pour les estimer.

17 Ecartant les HAP, les PCB et les produits phytosanitaires.

Par ailleurs, la contamination des eaux superficielles, seules 13 % des 400 stations suivies sont indemnes de toute contamination (plus de 600 substances régulièrement recherchées), et 277 substances actives (ou leurs métabolites) quantifiées au moins une fois en 2017. L'imprégnation des eaux d'eau du bassin par les pesticides est donc généralisée. Cependant, la moyenne des rapports des concentrations des pesticides sur leur NQE ou
VGE a été divisée par 2,5 sur la période 2008-2017, pour atteindre un ratio de l'ordre de 50 %.

Ce résultat est largement dû aux retraits des autorisations de mise sur le marché des substances les plus mobiles et les plus solubles (cas du dichlorvos par exemple, retiré du marché en 2013).

La pollution par les pesticides des eaux souterraines apparaît comme légèrement plus faible, avec la présence de ces produits mesurée sur plus de 55 % des 366 stations suivies et 119 substances actives (ou leurs métabolites) quantifiées au moins une fois en 2017.

De plus, globalement, sur les stations identifiées dans le SDAGE comme subissant les plus fortes pressions par les pesticides (Réseau de Contrôles Opérationnels ou RCO), aucune amélioration significative n'est observée, aussi bien pour les eaux superficielles que souterraines. L'ensemble de ces stations sont contaminées sur les cours d'eau et la proportion de stations de suivi des eaux souterraines contaminée augmente. Ces résultats sont cohérents avec l'évolution des quantités de substances vendues sur le bassin, qui ne montre pas de tendance à la baisse entre 2009 et 2016 (augmentation entre 2009 et 2013, puis stable jusqu'à 2016).

Ainsi, le risque dû aux pollutions par les pesticides reste important. Quelques 28 % des cours d'eau, 3 % des plans d'eau, 67 % des lagunes et 14 % des masses d'eau souterraine sont concernés. Hors pesticides, le risque de pollution par les autres substances toxiques reste à des niveaux importants : 10 % des cours d'eau, 41 % des eaux de transition, 5 % des plans d'eau et 5 % des eaux souterraines.

Enfin, il faut noter la présence de polluants dits émergents dans les cours d'eau, dont la surveillance a été mise en place récemment. Il s'agit de substances pharmaceutiques, de stéroïdes, d'hormones, de stimulants, de cosmétiques, etc. (cf. partie 3.2.6.5, pressions sur les milieux naturels et la biodiversité et partie 3.2.11 relative aux déchets).

Les pressions spécifiques aux milieux marins et littoraux

La navigation, et notamment celle de plaisance, est une source potentielle de pollutions (remise en suspension des sédiments induisant une augmentation de la turbidité, apports particulaires provoquant l'envasement des fonds, macro-déchets, hydrocarbures…).

Cependant, les mouillages des bateaux de plaisance constituent une des altérations les plus importantes sur les habitats marins du bassin. Par effet mécanique, ils détruisent les herbiers de posidonie et altèrent physiquement les fonds rocheux. Les petits fonds rocheux, notamment ceux du Var et des Alpes maritimes, sont les plus concernés par ces pressions.

Le trafic maritime peut en outre avoir des incidences sur les peuplements marins et lagunaires en constituant un vecteur d'introduction ou de dispersion d'espèces non indigènes, en entraînant une surmortalité par collision des cétacés comme le cachalot, et en engendrant des émissions sonores empêchant certaines espèces de se localiser.
ou de se nourrir. Il constitue en outre un risque de pollutions accidentelles.

Les eaux côtières peuvent également faire l'objet d'aménagements variés (ports, digues, enrochement…) qui modifient le fonctionnement hydrologique et hydrodynamique des masses d'eau. Les départements du Gard, de l'Hérault et des Alpes Maritimes s'avèrent être les plus aménagés, principalement par des installations portuaires.

Des opérations de restauration sont ainsi menées sur le littoral du bassin. Elles ciblent en priorité les zones portuaires et leur fonctionnalité de frayère, et les sites présentant des habitats marins, dont la dégradation est due soit à des rejets urbains importants (Marseille et Toulon) soit à des aménagements littoraux (rade Sud de Marseille).

3.2.1.c - La réglementation et les dispositifs de connaissance, de suivi ou d'action

Le cadre réglementaire

Le schéma directeur d'aménagement et de gestion des eaux (SDAGE) est l’instrument français de la mise en œuvre de la politique communautaire dans le domaine de l’eau fixée par la directive cadre sur l’eau (DCE) de 2000.

Institué par la loi sur l'eau de 1992, le SDAGE, document de planification, a évolué suite à la DCE. Lors du passage du SDAGE 1996 au SDAGE 2010-2015, la DCE a enrichi le dispositif avec de nombreuses innovations importantes, en particulier :

- le passage d’une logique de moyens à une logique de résultats avec une échéance fixée,
- un renforcement de la planification des nouveaux documents (durée du SDAGE 6 ans et échéance de remise à jour fixée),
- la définition d’un programme de mesures à partir d’actions identifiées au niveau du territoire,
- la définition d’objectifs de qualité pour l’ensemble du bassin via les objectifs par masse d’eau,
- la transparence des coûts,
- la prise en compte des considérations socio-économiques à différents stade du projet,
- la participation du public,
- et une obligation de rapportage au niveau européen.

Outre la DCE, de nombreuses réglementations européennes et nationales concourent à renforcer la préservation de la ressource notamment la directive sur les eaux résiduaires urbaines (DERU) de 1991, la loi sur l’eau et les milieux aquatiques (LEMA) de 2006, ou encore la directive cadre stratégie pour le milieu marin (DCSMM) de 2008.

Des politiques publiques « hors eau » participent également à la préservation de la ressource telles que l’éco-

18 Loi n°2015-992 de transition énergétique pour la croissance verte du 18 août 2015
19 Loi n° 2016-1087 du 8 août 2016 pour la reconquête de la biodiversité, de la nature et des paysages
conditionnalité des aides dans le cadre de la Politique Agricole Commune, le plan Ecophyto 2018, le Plan National Santé Environnement, les Plans régionaux d’agriculture durable, etc.

Localement, le SAGE, qui doit être compatible avec le SDAGE, est un document qui fixe les objectifs généraux d’utilisation, de mise en valeur et de protection quantitative et qualitative des ressources en eau.

Le bassin Rhône-Méditerranée compte une quarantaine de SAGE : sept en émergence ou en cours d’élaboration et 35 en phase de mise en œuvre. Par ailleurs, le bassin compte 180 contrats de milieux, recouvrant plus de 80 % de sa superficie. Les structures porteuses de ces démarches menées le plus souvent à l’échelle des bassins versants constituent les relais essentiels pour la mise en œuvre de la politique de l’eau.

Le registre des zones protégées

L’objectif du registre est de répertorier les zones faisant l’objet de dispositions législatives ou réglementaires particulières en application d’une législation communautaire spécifique portant sur la protection des eaux de surface ou des eaux souterraines ou la conservation des habitats ou des espèces directement dépendants de l’eau. Il s’agit des zones suivantes :

- zones désignées pour le captage d’eau destinée à la consommation humaine ;
- masses d’eau destinées dans le futur au captage d’eau destinée à la consommation humaine ;
- masses d’eau désignées en tant qu’eaux de baignade dans le cadre de la directive 2006/7/CEE ;
- zones désignées pour la protection des espèces aquatiques importantes du point de vue économique (conchyliculture) ;
- zones désignées pour la protection des habitats et des espèces dans le cadre de Natura 2000 (partie approfondie dans la composante environnementale « Biodiversité ») (cf. partie 3.2.6) ;
- zones désignées comme sensibles dans le cadre de la directive 91/271/CEE relative au traitement des eaux résiduaires urbaines ;
- zones désignées comme vulnérables dans le cadre de la directive 91/676/CEE sur les nitrates.

Les objectifs de qualité issus de l’application des réglementations spécifiques des zones protégées doivent être atteints au plus tard fin 2015 sauf si ces réglementations prévoient déjà des dispositions plus exigeantes. Le respect des engagements communautaires est un objectif au même titre que celui de l’atteinte du bon état ou du bon potentiel.

Zones désignées pour le captage d’eau destinée à la consommation humaine

Le bassin de Rhône-Méditerranée compte près de 9 250 captages prélevant plus de 10 m³ par jour d’eau à destination d’alimentation en eau potable ou agroalimentaire, et 96 % de ces captages prélèvent en eaux souterraines. Les eaux souterraines et les nappes d’accompagnement des grands cours d’eau du bassin sont largement sollicitées.

Toutefois, en volume, les prélèvements en eaux superficielles représentent 26 % des prélèvements globaux et concernent notamment de grandes agglomérations (Marseille, Annecy, Carcassonne, etc.). Les ressources
soliectées sont les lacs naturels, des retenues artificielles et les grands canaux (BRL, SCP, canal usinier de la Durance, etc.).

Sur l'ensemble des points de prélèvement recensés, 269 sont identifiés par le SDAGE comme « prioritaires ». Ils représentent un enjeu fort de reconquête de la qualité des eaux brutes. Sur ces captages, des actions sont à mener sur leur aire d’alimentation.

Masses d’eau destinées dans le futur au captage d’eau destiné à la consommation humaine

En application de l’article 7 de la DCE, des masses d’eau susceptibles de receler des ressources en eau destinées à la consommation humaine dans le futur sont identifiées dans le SDAGE.

Au total, 126 masses d'eau ou aquifères sont désignées, certaines sont déjà en partie exploitées. Plus de la moitié de ces masses d’eau ou aquifères (70) ont déjà fait l’objet d’études identifiant précisément les ressources en jeu et délimitant 645 zones de sauvegarde (fin 2020).

Sur ces zones de sauvegarde, l'objectif est d'assurer la non-dégradation de la ressource en eau au plan qualitatif et quantitatif. Cette dernière doit alors être en capacité d’assurer une production d'eau potable sans traitement ou avec un traitement limité.

Masses d'eau désignées en tant qu'eaux de baignade dans le cadre de la directive 2006/7/CEE

Il existe 561 sites de baignade en mer et 587 sites de baignade en eau douce dans le bassin. Les baignades en eau douce concernent aussi bien les rivières que les plans d’eau. Il s’agit d’un usage important dans le bassin en lien avec la fréquentation touristique.

L'objectif sur ces zones est de protéger la santé humaine, tout en préservant ou en améliorant la qualité de l'environnement. Les sites de baignade peuvent faire l'objet d’arrêtés d’interdiction temporaire ou permanent de la baignade au vu des données qualité.

Zones désignées pour la protection des espèces aquatiques importantes du point de vue économique (conchyliculture)

Seules les zones conchylicoles, lieux de production professionnelle de coquillages vivants destinés à la consommation humaine, bénéficient d’une réglementation particulière. Sur le littoral méditerranéen du bassin, cette activité est essentiellement concentrée sur le littoral languedocien avec une production d’huîtres et de moules.

Dans ces zones, des normes spécifiques de contamination microbiologique et chimique doivent être respectées au minimum.

Zones désignées comme vulnérables dans le cadre de la directive 91/676/CEE sur les nitrates

La révision des zones vulnérables en 2021 a conduit à augmenter le nombre de communes concernées qui s'élève désormais à 1 909 pour le bassin Rhône-Méditerranée (1 385 auparavant). Les zones désignées se trouvent essentiellement autour de l'axe Saône-Rhône. La révision des zones vulnérables est précédée d’une campagne de surveillance de la qualité des eaux.

Sur les zones vulnérables ainsi définies, des objectifs de qualité sont poursuivis (réduction des concentrations de nitrates dans les eaux et suppression des phénomènes d'eutrophisation liés aux apports d'azote). Pour cela, des programmes d’actions régionaux sont mis en œuvre, en déclinaison d’un programme d’action national.
Zones désignées comme sensibles dans le cadre de la directive 91/271/CEE relative au traitement des eaux résiduaires urbaines

La révision des zones sensibles du 30 septembre 2021 identifie près de 60 zones sensibles sur le bassin Rhône-Méditerranée de taille inégale, les parties de régions Bourgogne-Franche-Comté et Occitanie dans le bassin étant quasiement intégralement couvertes.

Des objectifs de moyen y sont déployés (mise en conformité des agglomérations d'assainissement). Zones désignées pour la protection des habitats et des espèces dans le cadre de Natura 2000 (partie approfondie dans la composante environnementale « Biodiversité »)

Ces zones sont évoquées plus précisément au sein de la partie dédiée aux milieux naturels et à la biodiversité (cf. partie 3.2.6.6).

Les Plans de Gestion de la Ressource en Eau (PGRE)

Le SDAGE 2016-2021, dans sa disposition 7-01, désigne 74 sous-bassins et masses d'eau souterraines qui nécessitent des actions de résorption des déséquilibres quantitatifs. Pour cela, des Plans de Gestion de la Ressource en Eau (PGRE) sont réalisés sur la base d'Études des Volumes Prélevables (EVP).

Les PGRE sont donc des outils qui regroupent les différentes actions et décisions de gestion quantitative au sein d'un périmètre défini. Il est élaboré de manière concertée et peut correspondre au volet quantitatif d'un SAGE.

En septembre 2019, 55 PGRE sont adoptés et mis en œuvre, 14 sont en cours d'élaboration et 5 n'ont pas démarré.

La connaissance et la préservation des Espaces de Bon Fonctionnement (EBF)

Évolution de la notion d'espace de mobilité, l'Espace de Bon Fonctionnement désigne l'espace nécessaire à un écosystème aquatique pour assurer ses diverses fonctionnalités : écoulement des crues, dissipation de l’énergie hydraulique/équilibre sédimentaire, échanges entre ressource souterraine et superficielle équilibrés, épuration des eaux, vie et libre circulation des organismes, cadre de vie et paysage, etc. La préservation de plusieurs de ces fonctions nécessite donc celle de zones plus importantes que l'espace de mobilité.

La délimitation des Espaces de Bon Fonctionnement (EBF), lequel inclut notamment le cours d'eau lui-même, ses annexes hydrographiques et les zones humides associées, est une démarche concertée et intégrée. La méthode préconisée dans le guide technique de délimitation des EBF engage à prendre en compte les enjeux hydrauliques, écologiques et socio-économiques tout en préconisant des méthodes pour organiser la concertation.

Fin 2018, dans le bassin Rhône-Méditerranée, des Espaces de Bon Fonctionnement ont été validés sur 18 sous-bassins versants et sont en cours de délimitation sur 26 autres.

20 « Zone dans laquelle la population et/ou les activités économiques sont suffisamment concentrées pour qu'il soit possible de collecter les eaux urbaines résiduaires pour les acheminer vers un système de traitement des eaux usées ou un point de rejet final » (article R.2224-6 du Code Général des Collectivités Territoriales)
Illustration 29 : Carte des zones sensibles (eutrophisation) et des zones vulnérables (nitrites) du bassin RMed
Plan de Gestion des Risques d'Inondation 2022-2027 | Bassin Rhône-Méditerranée

Rapport environnemental | Version modifiée suite à l'avis de l'Ae et les consultations, février 2022

Illustration 30 : Carte des zones de répartition des eaux du bassin
Les Zones de Répartition des Eaux (ZRE)

Les ZRE sont définies comme des « zones présentant une insuffisance, autre qu'exceptionnelle, des ressources par rapport aux besoins » (article R.211-71 du Code de l'Environnement). Elles peuvent comprendre des bassins, des sous-bassins, des fractions de sous-bassins hydrographiques ou des systèmes aquifères et sont déterminées par arrêté du Préfet coordonnateur de bassin. Ce classement permet d’assurer une gestion plus fine et renforcée des prélèvements, d’abaisser les seuils d’autorisation et d’initier des démarches de connaissance et de réduction des volumes prélevés (étude d’évaluation des volumes prélevables, plan de gestion quantitative des ressources en eau, etc.).

En novembre 2021, le bassin compte 24 ZRE souterraines arrêtées et 38 ZRE superficielles arrêtées.

3.2.1.d - Tendances évolutives

L’évaluation du risque de non-atteinte des objectifs environnementaux (RNAOE) réalisé en 2019 dans le cadre de la révision du SDAGE est une projection de l’incidence des pressions à l’horizon 2027 qui peut être liée à l’évolution de certains facteurs, dont la démographie.

Le RNAOE 2027 est le résultat de l’étude de l’incidence des pressions demandée par la DCE sous l’hypothèse que rien ne se ferait en plus des politiques déjà engagées à l’horizon 2027. Les pressions prises en compte sont celles responsables des dégradations actuelles des masses d’eau et celles dépassant certains seuils.

Risque de non atteinte des objectifs de bon état écologique des eaux superficielles et de bon état quantitatif et qualitatif des eaux souterraines

L’évaluation du risque pour 2027 concerne ainsi :

- 72 % des cours d’eau ;
- 50 % des plans d’eau ;
- 85 % des eaux de transition ;
- 15 % des eaux côtières ;
- 26 % des eaux souterraines.

Il ressort donc de l’état des lieux que les masses d’eau superficielle présentent un risque de non atteinte des objectifs relativement élevé. Les masses d’eau de transition et les cours d’eau sont les plus concernées par un risque, suivies par les plans d’eau. Les eaux côtières et les masses d’eau souterraine ont un niveau de risque plus faible.

Par rapport à l’état des lieux précédent qui avait conduit à l’évaluation du risque de non atteinte du bon état à l’horizon 2021 (RNAOE 2021), les pourcentages de masses d'eau en RNAOE 2027 augmentent pour les masses d'eau « cours d'eau » (+ 4 %), restent relativement stable pour les autres masses d'eau superficielle et diminuent pour les masses d'eau souterraine (- 7 %). Par ailleurs, près de 20 % des masses d’eau superficielle en bon état sont néanmoins à risque, à cause de pressions non maîtrisées.

L’analyse de l'état des lieux révèle un poids dominant des altérations de l'hydromorphologie (altération de la morphologie, de la continuité et de l'hydrologie) comme cause majeure de RNAOE 2027 des cours d'eau.

Viennent ensuite les diverses pollutions (nutriments, pesticides, substances toxiques) et les prélèvements d'eau.

Pour les plans d'eau, les principales causes de risque sont les pollutions par les nutriments, suivies des altérations de l'hydromorphologie (régime hydrologique, continuité écologique, morphologie) et des autres pollutions (pesticides et autres substances toxiques).
Concernant les eaux de transition, l'état des lieux indique un poids relativement similaire entre les altérations de l'hydromorphologie, les pollutions par les pesticides et les pollutions par les nutriments. Un fort pourcentage de masses d'eau en RNAOE 2027 découle également des pollutions par les autres substances toxiques.

Les causes de RNAOE 2027 des eaux côtières sont de deux ordres : les altérations de la morphologie et les activités marines.

Enfin, les eaux souterraines sont surtout affectées par les pollutions par les pesticides (15 %) et les prélèvements d'eau (10 %). Dans une moindre mesure, les pollutions par les nutriments (7 %) et par les autres substances toxiques (5 %) sont également à l'origine du RNAOE 2027 de quelques masses d'eau souterraine.

Risque de non atteinte de l'objectif de bon état chimique

Des centaines de substances sont rejetées par les pressions ponctuelles et diffuses et contribuent au risque de non atteinte du bon état par leur niveau de contamination des eaux. Dans le cadre de l'état des lieux du SDAGE 2022-2027, l'analyse du risque est évaluée à partir de la présence dans la masse d'eau des 50 substances qui définissent l'état chimique (sans les substances considérées comme ubiquistes).

Parmi les 50 substances ou familles de substances prises en compte dans l’évaluation de l’état chimique, seules 42 peuvent donner lieu à des orientations et des mesures de réduction ou de suppression pouvant être inscrites dans des plans de gestion des milieux aquatiques. Les 8 autres substances ou familles de substances sont des composés considérés comme ubiquistes qui sont apportés par des voies diversifiées, dont les apports atmosphériques. Il s’agit des hydrocarbures aromatiques polycycliques, des dioxines et composés de type dioxine, de l’acide perfluorooctanesulfonique (PFOS), de l’hexabromocyclodécané (HBCDD), de...
l'heptachlore, du tributylétain, des diphenylétherbromés et du mercure.

Compte tenu de ces spécificités, et notamment le ciblage sur un nombre limité de substances, peu de masses d'eau sont considérées comme risquant de ne pas atteindre l'objectif de bon état chimique :

- pour les cours d'eau, 100 masses d'eau sont à risque (54 en ne considérant que les substances non ubiquistes sur lesquelles le programme de mesure peut avoir un effet). Ces dernières sont essentiellement situées en aval d’activités industrielles ou viticoles, le Rhône, la Saône, la Durance, le Fier, le Chéran, l’Avène ainsi que quelques petits cours d’eau situés en secteur viticole bourguignon. Les contaminants concernés sont principalement le fluoranthène et sur quelques cas en nombre limité les métaux (plomb, cadmium, nickel… et leurs composés), des alkylphénols (octyphénols), des chlorobenzènes, des chloroalcanes, des solvants chlorés principalement d’activités industrielles chimiques. Parmi les pesticides, ce sont à la fois des produits relativement anciens qui sont identifiés (isoproturon, diuron, simazine, endosulfan) et des produits encore en usage actuellement (cyperméthrine, chlorpyrifos) ;

- pour les plans d'eau, une masse d'eau est considérée comme étant à risque (plan d'eau de Challeixon), en raison de la présence de fluoranthène (HAP) ;

- pour le littoral, aucune masse d'eau côtière ou de transition n'est identifiée comme à risque de non atteinte du bon état chimique. La présence de contamination résiduelle par des substances interdites lors de l’état des lieux de 2013 n’est aujourd’hui plus observée ;

- enfin, pour les eaux souterraines, 36 masses d’eau sont à risque de non atteinte de l’état chimique, dont 30 en raison de la présence de pesticides. Les solvants sont aussi la cause de risque, au cas par cas.

3.2.1.e - Atouts-Faiblesses, Opportunités-Menaces

<table>
<thead>
<tr>
<th>ATOUTS</th>
<th>FAIBLESSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Bon état chimique des masses d'eau superficielle (96 %)</td>
<td>• Moins de 50 % des masses d'eau superficielle en bon ou très bon état écologique</td>
</tr>
<tr>
<td>• Bon état quantitatif des masses d'eau souterraine (88 %)</td>
<td>• Un risque de non atteinte des objectifs environnementaux d'ici 2027 concernant une majorité des masses d'eau superficielle</td>
</tr>
<tr>
<td>• Amélioration de l'état chimique des masses d'eau souterraine (+3 points de pourcentage entre 2013 et 2019)</td>
<td>• De nombreux territoires en tension quantitative</td>
</tr>
<tr>
<td>• Des démarches notables : entre 2013 et 2019, 500 km de cours d'eau ont été restaurés, plus de 1 000 ouvrages ont été rendus franchissables et environ 15 000 ha de zones humides ont été restaurés ou acquis.</td>
<td>• Une imprégnation des cours d'eau par les pesticides quasi-généralisée (contamination sur 87 % des stations du RCS)</td>
</tr>
<tr>
<td>• Des connaissances qui s'affinent : délimitation des EBF, connaissance des volumes maximum prélevables, méthodologie de détermination de l'état des masses d'eau, techniques de détection, etc.</td>
<td>• Une stabilité globale des concentrations moyennes en nitrates dans les eaux</td>
</tr>
<tr>
<td>• Une structuration de la gouvernance avec la compétence GEMAPI, les EPTB, EPAGE et EPCI-FP</td>
<td>• Un taux de STEU non conformes encore significatif, dont certaines parmi les plus grosses du bassin</td>
</tr>
<tr>
<td>• Une diminution des flux de substances dangereuses</td>
<td>• Des connaissances fragmentées sur l'assainissement non collectif</td>
</tr>
<tr>
<td>• Une diminution de la contamination des cours d'eau par les pesticides pris en compte dans l'évaluation de</td>
<td>• Une stabilité globale des usages de l'eau</td>
</tr>
</tbody>
</table>
Plan de Gestion des Risques d'Inondation 2022-2027 | Bassin Rhône-Méditerranée

l'état des eaux
• Une expérience de 2 cycles DCE

<table>
<thead>
<tr>
<th>OPPORTUNITÉS</th>
<th>MENACES</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Amélioration des connaissances sur les besoins du milieu naturel en eau, sur les usages de l'eau et sur l'intérêt économique du bon état</td>
<td>• Impacts du changement climatique : tension en période d'étiage, diminution de la capacité d'autopéuration des milieux, intrusions salines, etc.</td>
</tr>
<tr>
<td>• Une progression dans la structuration de la gouvernance dans les domaines de l'eau</td>
<td>• De probables tensions quantitatives à venir sur d'autres territoires</td>
</tr>
<tr>
<td>• Les objectifs réglementaires (bon état des eaux, assainissement, usage et vente des pesticides, substances dangereuses, nitrates, réseaux AEP, etc.)</td>
<td>• Croissance démographique attendue et développement du tourisme</td>
</tr>
<tr>
<td>• Amélioration des techniques et technologies</td>
<td>• Développement d'usages participant à l'augmentation de la vulnérabilité des territoires vis-à-vis du changement climatique</td>
</tr>
<tr>
<td></td>
<td>• Resserrement global des budgets d'intervention des agences de l'eau</td>
</tr>
</tbody>
</table>

3.2.1.f - Enjeux

Concernant les ressources en eau, l'enjeu principal est le bon état des masses d'eau superficielle et souterraine, comprenant notamment :

• l'équilibre quantitatif des masses d'eau ;
• la qualité des eaux souterraines et superficielles ;
• la morphologie des cours d'eau et plans d'eau.
3.2.2 - **Climat et changement climatique**

3.2.2.a - **Le climat sur le bassin Rhône-Méditerranée**

Principale source utilisée : Météo France

Contexte

Le bassin Rhône-Méditerranée présente quatre des cinq grands types de climat métropolitains :

- le littoral méditerranéen ainsi que la vallée du Rhône depuis Valence est soumis à un **climat méditerranéen**. Il présente des hivers doux, des étés chauds et secs, ainsi que des pluies printanières et automnales ;
- les Alpes, le massif du Jura, ainsi que les premiers contreforts des Pyrénées et du Massif Central présentent un **climat de montagne**. Ce climat, très hétérogène en fonction des secteurs et de l'altitude, présente des températures relativement froides et de nombreux jours de neige ;
- au nord du bassin, un **climat semi-continental** est observé. Il se caractérise par des étés chauds et des hivers rudes, avec un grand nombre de jours de neige ou de gel et une pluviométrie annuelle plutôt élevée ;
- enfin, dans les parties les plus occidentales du bassin (Occitanie et Bourgogne-Franche-Comté), un **climat océanique altéré** est ressenti. La variabilité infra-annuelle des températures est assez importante (éloignement de l'océan) et la pluviométrie peut être assez importante aux abords des reliefs, sur les versants ouest.

Ainsi, selon les secteurs du bassin, les caractéristiques climatiques seront très différentes :

<table>
<thead>
<tr>
<th>Station</th>
<th>Température moyenne</th>
<th>Hauteur de précipitations</th>
<th>Nb de jours avec précipitations</th>
<th>Durée d’ensoleillement (1991-2010)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marignane</td>
<td>15,5 °C</td>
<td>515,4 mm</td>
<td>53,2 j</td>
<td>2857,8 h</td>
</tr>
<tr>
<td>Montpellier</td>
<td>15,1 °C</td>
<td>629,1 mm</td>
<td>57,8 j</td>
<td>2668,2 h</td>
</tr>
<tr>
<td>Nice</td>
<td>16,0 °C</td>
<td>733,0 mm</td>
<td>61,2 j</td>
<td>2724,2 h</td>
</tr>
<tr>
<td>Carcassonne</td>
<td>14,2 °C</td>
<td>648,5 mm</td>
<td>87,5 j</td>
<td>2119,3 h</td>
</tr>
<tr>
<td>Grenoble</td>
<td>11,2 °C</td>
<td>934,3 mm</td>
<td>106,4 j</td>
<td>2065,9 h</td>
</tr>
<tr>
<td>Briançon</td>
<td>8,3 °C</td>
<td>759,1 mm</td>
<td>89,0 j</td>
<td>2236,5 h</td>
</tr>
<tr>
<td>Meythet</td>
<td>10,9 °C</td>
<td>1249,4 mm</td>
<td>124,6 j</td>
<td>2053,1 h</td>
</tr>
<tr>
<td>Lyon</td>
<td>12,5 °C</td>
<td>831,9 mm</td>
<td>104,1 j</td>
<td>2001,9 h</td>
</tr>
<tr>
<td>Dijon</td>
<td>11,0 °C</td>
<td>760,5 mm</td>
<td>115,3 j</td>
<td>1848,8 h</td>
</tr>
<tr>
<td>Besançon</td>
<td>11,0 °C</td>
<td>1187,0 mm</td>
<td>141,0 j</td>
<td>1836,4 h</td>
</tr>
</tbody>
</table>

Tableau 10 : Normales annuelles (1981-2010) à différentes stations météorologiques du bassin (Source : Météo France)

Le changement climatique

Le changement climatique est un phénomène global provoqué par une augmentation trop importante de la concentration dans l’atmosphère des Gaz à Effet de Serre (GES) liée à des activités humaines. Les trois principaux GES, représentant plus de 95 % des émissions (hors vapeurs d'eau), sont le gaz carbonique (CO2), le
méthane (CH₄) et le protoxyde d'azote (N₂O). Trois autres GES sont réglementés par le protocole de Kyoto²¹ : il s'agit de trois gaz fluorés (le chlorofluocarbone (CFC), l'hydrofluorocarbone (HFC), l'hexafluorure de Soufre (SF₆)).

A un niveau global, les teneurs élevées en GES rompent l’équilibre thermique sur Terre. Dans son rapport spécial de 2019²², le Groupe d’experts Internationaux sur l’Évolution du Climat (GIEC) souligne qu’au niveau mondial, la température moyenne à la surface du globe observée pour la décennie 2006-2015 a été supérieure de 0,87°C à la température moyenne pour la période 1850-1900, avec un degré de confiance très élevé. La vitesse de ce réchauffement est sans équivalent depuis plusieurs milliers d’années.

Dans le bassin Rhône-Méditerranée

Selon les secteurs, l'intensité du changement climatique est différente. Toutefois, sur l'ensemble du bassin, ce phénomène se traduit principalement par une hausse des températures, surtout depuis les années 1980.

Les différences les plus importantes entre zone géographique se ressentent particulièrement au niveau de l'évolution des précipitations. En effet, en région PACA, les cumuls annuels de précipitation sont en baisse, particulièrement en hiver et en été. Cette diminution n'est pas significative au niveau des anciennes régions Languedoc-Roussillon et Rhône-Alpes. En Franche-Comté, la tendance d'évolution des cumuls de précipitation

21 Traité international pour la réduction des émissions des gaz à effet de serre arrêté le 15 mars 1999
22 Rapport spécial du GIEC sur les conséquences d'un réchauffement planétaire de 1,5°C par rapport aux niveaux préindustriels, GIEC, 2019
est à la hausse, essentiellement en automne. Cependant, pour l'ensemble du territoire, la variabilité inter-
annuelle des précipitations est importante, rendant la recherche de tendance difficile et très sensible à la période
prise en compte. De plus, si peu d'évolutions sont observées en cumul annuel dans certains territoires, il peut en
être différemment en termes d'intensité, en particulier sur le pourtour méditerranéen (cf. les conséquences
observées du changement climatique, 3.2.2.2b).

Enfin, en termes d'enneigement, une baisse de sa durée en moyenne montagne est observée, tout en conservant
une forte variabilité inter-annuelle. Cette tendance n'est pas, à ce jour, relevée dans les Alpes du sud.

3.2.2.2b - Les causes et conséquences du changement climatique

Les pressions sur le climat

L'une des causes principales du réchauffement climatique est l'accumulation dans l'atmosphère de gaz à effet de
serre (GES). Ces gaz à effet de serre proviennent essentiellement de la consommation d'énergies fossiles
(pétrole, gaz, charbon). Les autres sources d'émission de GES sont liées à l'agriculture (protoxyde d'azote, lié à
l'utilisation des engrais azotés, méthane provenant de l'élevage de ruminants), au traitement des déchets, aux
procédés industriels et à l'utilisation de gaz fluorés et de solvants.

De plus, certains effets du réchauffement intensifient « naturellement » ce dernier (diminution de l'albédo,
relargage de méthane par le dégel de certains milieux, etc.).

Sur le bassin Rhône-Méditerranée23, en 2016, les émissions de GES24 était de 116,5 Mt eq.CO2. Cela
correspond à environ 7,4 teq.CO2/hab. C'est un peu plus élevé que la moyenne nationale (7,2 teq.CO2/hab.).

Une forte hétérogénéité des émissions entre les territoires du bassin existe, du fait des spécificités socio-
économiques notamment. A l'échelle des régions actuelles (BFC, ARA, PACA), ces émissions sont globalement
en baisse depuis 1990, date du protocole de Kyoto. Cependant, quelques évolutions plus récentes ne suivent pas
cette tendance (exemple : les émissions de la région PACA ont augmenté entre 2014 et 2016 de près de 3 %,
principalement en raison de la hausse de la consommation d'énergie primaire des centrales thermiques à gaz).

La grande majorité de ces émissions de GES sont liées aux consommations énergétiques (généralement à plus
de 70 %). En termes de secteurs d'activités les plus émetteurs, les transports routiers sont généralement
majoritaires (plus ou moins un tiers des émissions selon les régions). En région PACA, le poids de l'industrie est
important, principalement dans les Bouches-du-Rhône. Concernant les évolutions par secteur d'activité, les
tendances sont à la baisse, sauf pour les transports routiers qui apparaissent relativement stabilisés (voire en légère
augmentation) depuis une dizaine d'année.

Par ailleurs, du carbone est également stocké ou émis via les modifications (ou changements d'affectation des
sols) réalisées dans les puits de carbone : océan, sols et biomasse aérienne (forêt, prairies, zones humides,
cultures, etc.). A l'échelle de la région ARA, une analyse des émissions ou stockage de carbone liés aux
changements d'affectation du sol entre 2006 et 2012 montre une tendance plutôt à l'émission, et donc une perte
de puits de carbone.

L'atténuation ou lutte contre le changement climatique vise à diminuer les émissions de GES tout en préservant,
voire en optimisant les puits de carbone. L'objectif est de maintenir une augmentation de température « raisonnable » à long terme par rapport au niveau préindustriel, soit +2°C (soit 450 parties par million (ppm) de

23 Région PACA et départements comportant plus de 50 % de leur superficie dans le bassin RM. Concernant l'Occitanie, émissions de GES estimé
sur la base des émissions par habitant
24 Émissions des trois principaux GES (CO2, CH4 et N2O)
gaz à effet de serre dans l’atmosphère25).
La réduction des émissions de gaz à effet de serre passe obligatoirement par la maîtrise de la demande énergétique et le développement des énergies non émettrices de gaz à effet de serre.

\textit{Les conséquences observées du changement climatique}

Les conséquences du changement climatique sont multiples et touchent une grande diversité de thématiques. Ils sont regroupés en 5 grands thèmes (hors climat) par l'Observatoire National sur les Effets du Réchauffement Climatique (ONERC) décrits ci-dessous.

\textbf{Montagne et glaciers}

Plusieurs indicateurs suivis par l'ONERC permettent de décrire l'évolution de la masse des glaciers, notamment dans les Alpes ainsi que du manteau neigeux.

Les zones de montagne telles que les Alpes et les Pyrénées constituent de véritables châteaux d'eau du bassin. Ce service est notamment rendu par l'intermédiaire des glaciers et de la neige qui favorise le stockage de l'eau en hiver et sa restitution en été (régime nival des cours d'eau). Ainsi, le changement climatique a pour effet de considérablement diminuer les performances de ce stockage.

Les indicateurs décrits font notamment apparaître :

- une forte décroissance de la masse cumulée de trois glaciers des Alpes françaises depuis 1985, avec une accentuation depuis 2003 ;
- une diminution de 39 cm de la hauteur moyenne du manteau neigeux du 1er décembre au 30 avril entre les périodes de 1960-1990 et 1990-2017 au niveau du Col de Porte (massif de la Chartreuse) ;
- au 1er mai, une diminution moyenne de 12 % du stock nival sur tous les massifs montagneux français par rapport à la normale 1981-2010 (soit -20 kg/m² par décennie).

\textbf{Eau et biodiversité}

Les effets du changement climatique sur l'évolution des débits des cours d'eau sont difficiles à préciser. En effet, les régimes hydrologiques sont complexes et le changement climatique n'explique pas à lui seul les variations passées (modifications morphologiques et des caractéristiques du bassin versant, prélèvements et gestion des ouvrages, cyclicité naturelle des débits, etc.).

Toutefois, certains travaux comme ceux de l'Agence Française de la Biodiversité (AFB)26, ont permis d'observer plusieurs grandes tendances à partir de l'analyse des mesures de 250 stations hydrométriques peu influencées par les activités humaines sur 40 ans (1968-2007)27 :

- une tendance à l'aggravation de la sévérité des étiages est observée dans les régions du sud de la France, notamment les Pyrénées, les Alpes, le Massif Central, le Jura et le pourtour méditerranéen. Pour les Alpes et les Pyrénées, cette tendance n'est pas observée pour les stations à régime purement nival ;
- la saisonnalité des étiages présente des évolutions significatives, décrivant globalement un décalage vers plus de précocité (particulièrement pour le début de la période d'étiage).

25 Ce taux est d'environ 415 ppm au printemps 2019, pour un réchauffement global estimé en 2017 à +1°C (+/- 0,2°C). Au rythme actuel, les 450 ppm devrait être atteint dès 2031.
26 A noter que l'Office National de l'Eau et des Milieux Aquatiques (ONEMA), créé par la loi sur l'eau le 30 décembre 2006 en remplacement du Conseil Supérieur de la Pêche, a été remplacé depuis le 1er janvier 2018 par l'Agence Française de la Biodiversité (AFB), elle-même remplacée le 1er janvier 2020 par l'Office Français de la Biodiversité (OFB)
27 Identification des impacts hydrologiques du changement climatique : constitution d'un réseau de référence pour la surveillance des étiages, ONEMA et CEMAGREF, déc. 2010
Plusieurs autres projets ont permis d'étudier les évolutions passées et les tendances à venir. Le projet européen AdaptAlp s'appuie sur l'analyse de 177 séries de débits journaliers ayant une chronique supérieure ou égale à 40 ans avec une faible influence anthropique, représentant 119 rivières alpines. L'étude conclut à une tendance à une moindre sévérité des étiages hivernaux, avec des évolutions de la temporalité marquée mais différentes en fonction des régimes hydrologiques considérés. Concernant les étiages estivaux (rivières nivo-pluviales et pluvio-nivales du piémont des Alpes), les tendances sont à une sévérité accrue (résultats non significatifs à l'échelle régionale) et, dans 30 % des cas, à une avancée significative des dates de début, centre et fin d'étiage. Aucune tendance globale n'est observée concernant les moyennes eaux.

Le projet RIWER 2030 s'est intéressé plus spécifiquement au bassin versant de la Durance, à l'amont du barrage de Serre-Ponçon. Un changement de saisonnalité des débits via un avancement du début de la période de fonte entraînant un pic printanier plus précoce avec une moindre amplitude et une augmentation des débits d'étiage hivernaux est observé. Le nombre important de modèles hydrologiques et de projection climatiques permet de dégager des signaux assez robustes, tel qu'une diminution attendue des débits moyens annuels comprise entre -4,4 m3/s et -10 m3/s à Serre-Ponçon.

Concernant le Rhône, il ressort de l'étude de l'évolution des débits à Beaucaire de 1921 à 2008 une tendance à l'avancement du pic du débit printanier d'environ 22 jours (+/- 4 jours) par siècle (Zampieri et al., 2015). Par ailleurs, plusieurs études projettent une avancée et une diminution du pic crue printanier du Rhône sous l'effet du changement climatique (Schneider et al., 2013 ; Van Vliet et al., 2013). Quelques auteurs considèrent toutefois la diminution des débits attendues comme davantage du fait de l'usage des sols que du changement climatique (Rahman et al., 2015). Vis-à-vis de l'étiage, une diminution des débits estivaux est projetée.

Un travail similaire a été réalisé par le BRGM, en collaboration avec l'ONEMA, sur les eaux souterraines28. Il n'a toutefois pas pu, à ce stade, mettre en évidence un impact d'une tendance climatique significative sur le niveau des nappes. Le projet Aqui-FR, à partir de modélisations hydrogéologiques, vise à développer ces connaissances.

En termes de biodiversité, les impacts du changement climatique sont de plusieurs ordres :

- modifications phénologiques des espèces (date de reproduction, de végétation, flétrissement plus fréquent par fermeture des stomates et arrêt de la transpiration, etc.) ;
- changement de l'aire de répartition des espèces ;
- disparition de certaines espèces vulnérables et surmortalité d'individus ;
- adaptation génétique de certaines espèces ;

28 Établissement d'un réseau de référence piézométrique pour le suivi de l'impact du changement climatique sur les eaux souterraines - Année 2, BRGM et ONEMA, avr. 2012
Plan de Gestion des Risques d'Inondation 2022-2027 | Bassin Rhône-Méditerranée

- proliférations parasitaires (exemple de la progression de la chenille processionnaire du pin) ;
- modification dans le fonctionnement des écosystèmes (productivité, vulnérabilité, résilience).

En ce qui concerne plus particulièrement la biodiversité aquatique, les effets du changement climatique impactant seront nombreux : baisse des débits, hausse de la température de l'eau, dégradation de la qualité des eaux, etc.

Agriculture

Le changement climatique fait évoluer les pratiques agricoles. Ainsi, par exemple, la date de début de vendanges en Côtes du Rhône méridionales, située plutôt pendant la 2ème quinzaine de septembre entre 1945 et 1955, s'établit dans la 2ème quinzaine d'août entre 2005 et 2015.

Des tendances similaires sont observées sur la date de début de semis du blé et du maïs, et sur la durée des cycles physiologiques (raccourcissement de 3 à 4 semaines et demie en moyenne sur 30 ans respectivement pour le blé et le maïs). Ce sont l'ensemble des choix culturaux et des pratiques qui sont modifiés (choix de variétés, systèmes de culture, stratégie de travail du sol, d'irrigation, etc.).

Littoral et milieu marin

De janvier 2008 à janvier 2018, le niveau de la mer s'est élevé de 4,3 cm dans le monde, soit une élévation de 4,3 mm par an. Celui de la Méditerranée suit globalement la même tendance (élévation annuelle d'environ 3 mm depuis les années 2000).

L'élévation du niveau de la mer entraîne un impact érosif sur les littoraux (recol du trait de côte), une vulnérabilité accrue des zones côtières habitées aux phénomènes de submersions marines, des pollutions des ressources en eau souterraine par infiltration d'eau salée, et un impact sur divers écosystèmes côtiers (marins et terrestres) sensibles à ces variations.

Risques d'inondation

Il est estimé que les inondations ont provoqué 25 fois plus de dommages en 2010 qu'en 1970 à l'échelle mondiale. Toutefois, cette augmentation est essentiellement due à l'accroissement important au cours des dernières décennies de la présence d'enjeux vulnérables (populations, biens, activités, etc.) dans les zones inondables ainsi qu'aux modifications des usages des sols (imperméabilisation)29.

Ainsi, le climat, et son évolution, n'est pas le seul facteur responsable de la modification du risque inondation. Il peut cependant participer à augmenter le risque.

Plusieurs évolutions climatiques observées ces dernières décennies semblent converger vers une hausse des facteurs de risque d'inondation. En particulier, sur le pourtour méditerranéen, une augmentation de l'intensité et de la fréquence des pluies extrêmes (cumul quotidien supérieur à 150 mm) est observée entre 1961 et 2015, avec une grande variabilité du nombre d'événements d'une année à l'autre. Ainsi, sur cette même période, une augmentation d'environ 22 % des maximums annuels de cumuls quotidiens a été observée.

Dans les Alpes, une recrudescence apparente des crues torrentielles dans certains secteurs depuis les années 1980 est observée. Cela reste toutefois à relativiser (XXème siècle pauvre en crues) et variable en fonction des secteurs : il est parfois remarqué une augmentation de fourniture en matériaux solides due au retrait glaciaire et à la dégradation du permafrost, et parfois une réduction de la fourniture en matériaux solides avec une diminution de la largeur des lits torrentiels. Il en est de même pour le rôle joué par les variables climatiques.

29 Changement climatique, vers une aggravation du risque inondation en France et en Europe ?, Centre Européen de Prévention du Risque Inondation (CEPRI)
Plan de Gestion des Risques d'Inondation 2022-2027 | Bassin Rhône-Méditerranée

dans la probabilité d'occurrence des laves torrentielles : effet du réchauffement estival dans certains secteurs, contrôle de la temporalité des laves torrentielles par celle de la recharge sédimentaire ailleurs.

Santé et société

Plus globalement, le changement climatique entraîne notamment une augmentation des risques climatiques (inondation, feux de forêt, tempêtes, avalanches et mouvements de terrain). En 2015, 18 % des communes françaises sont exposées de manière forte ou très forte aux risques climatiques. Ce taux grimpe à 44 % en région PACA. Entre 2005 et 2015, le nombre de communes fortement exposées aux risques climatiques a augmenté de 175 % (en lien avec l'amélioration des connaissances et l'augmentation de la population).

Par ailleurs, la présence de certains allergènes apparaît également comme favorisée par les effets du changement climatiques (exemple du pollen de bouleau). Certaines espèces peuvent également profiter de ce phénomène, dont certains peuvent être des vecteurs de maladies (moustiques, tiques, etc.).

Enfin, les effets du changement climatique ont également des conséquences directes sur la survenue et la fréquence des épisodes de pollution atmosphérique (exemple de l'ozone, dont la formation est favorisée par les plus fortes températures).

Dans ce cadre, l'adaptation aux effets du changement climatique a pour objectif d’anticiper les impacts actuels et attendus du changement climatique, de limiter leurs dégâts éventuels en intervenant sur les facteurs qui contrôlent leur ampleur et de profiter des opportunités.

3.2.2.c - Tendances évolutives

Depuis le 5ème rapport du Groupe d'experts Intergouvernemental sur l’Évolution du Climat (GIEC), publié en 2014, les différents scénarios prospectifs sont construits sur la base de quatre trajectoires d'émissions et de concentrations de GES, d'ozone et d'aérosols, ainsi que d'occupation des sols. Ils sont baptisés « RCP » (Representative Concentration Pathways).

Les RCP sont traduits en termes de modification du bilan radiatif de la planète ou forçage radiatif31. Les 4 RCP correspondent à une évolution différente de ce dernier à l'horizon 2300.

30 Impacts du changement climatique sur le massif alpin : stratégies d'adaptation et de gestion intégrée des risques naturels, Pôle Alpin Risques Naturels, juin 2021

31 La différence entre le rayonnement solaire reçu et le rayonnement infrarouge réémis par la planète, exprimé en W/m2 (puissance par unité de surface).
Le scénario RCP 8.5 constitue le scénario le plus pessimiste tandis que le RCP 2.6 est le plus optimiste (trajectoire visant une limitation du réchauffement à 2°C).

Quel que soit le scénario envisagé, les scientifiques du GIEC prévoient une intensification du phénomène. Les changements sont certains mais les contours et l’ampleur sont encore imprécis. Les conséquences sont multiples, notamment pour l’environnement : acidification des océans, fonte des glaces, augmentation du niveau des mers, augmentation de la fréquence des phénomènes climatiques extrêmes, saisons perturbées, etc.

Évolutions probables du climat

Les précipitations ne montrent que peu d'évolution en termes de cumul annuel, mais des contrastes saisonniers. Sur le pourtour méditerranéen et sur le bassin amont du Rhône, une diminution des précipitations hivernales au cours de la 2nde moitié du XXIᵉ siècle est possible, particulièrement selon le scénario RCP 8.5. Les tendances passées sur les nombres de jours de gel et de journées chaudes se poursuivent tout au long du XXIᵉ siècle, peu importe le scénario envisagé.

En termes d'événements météorologiques extrêmes, la probabilité de réalisation des tendances suivantes est forte32 :
- des vagues de chaleur à la fois plus fréquentes, plus longues et plus intenses, avec des pics de chaleurs atteignant des niveaux plus élevés ;
- des vagues de froid moins intenses et moins fréquentes, avec des périodes affectées moins longues ;
- dans le cadre des projections RCP 8.5 : une augmentation de 30 à 40 % du temps passé en sécheresse

32 Les événements météorologiques extrêmes dans un contexte de changement climatique, ONERC, 2018
agricole (contenu en eau du sol superficiel) en France à l'horizon 2100 (jusqu'à 50 % sur le littoral méditerranéen) par rapport à la période 1961-2008 et une augmentation des sécheresses hydrologiques (débit des cours d'eau et niveau des nappes), que ce soit en termes de sévérité ou en termes de temps passé (sauf pour les Alpes, en lien avec l'évolution du manteau neigeux). Une diminution des modules et des débits d'étiage est attendue dans le bassin. Par exemple, le débit annuel du Rhône à Beaucaire pourrait diminuer d'environ 400 m3/s selon le scénario RCP 8.5 par rapport à 1975 (pour un module d'environ 2 000 m3/s en 2015) (Dayon, thèse 2015) ;

- un pourcentage de précipitations intenses33 augmenté en hiver à un horizon proche (2021-2050) et lointain (2071-2100), même pour le scénario RCP 4.5. Cependant, la résolution des modèles actuels ne permet pas de conclure sur l'évolution des phénomènes orageux (pluies les plus extrêmes associées).

Ces prévisions restent soumises à de fortes incertitudes.

Les conséquences observées du changement climatique sont donc appelées à se poursuivre tout en s'intensifiant globalement. Le bon état des eaux s'impose comme un prérequis indispensable pour faire face aux impacts du changement climatique. Toute mesure qui permettrait d’améliorer la résilience des milieux aux pressions va dans le sens d’une adaptation au changement climatique.

De manière globale, le pourtour méditerranéen apparaît comme particulièrement vulnérable aux effets du phénomène. Sur cette zone, les évolutions probables sont les plus intenses sur de nombreuses variables. Notons également que les Alpes ont subi le réchauffement le plus prononcé au cours du XXe siècle.

3.2.2.d - La réglementation et les dispositifs de connaissance, de suivi ou d'action

Les réponses au changement climatique sont de deux ordres complémentaires : l'atténuation (ou lutte) et l'adaptation.

Le cadre réglementaire

La Loi de Transition Énergétique pour la Croissance Verte (LTECV) vise à engager la France dans une démarche de lutte contre le dérèglement climatique et de préservation de l'environnement, indispensable au respect de ses engagements internationaux. Elle souhaite également renforcer l’indépendance énergétique du pays. Concernant les émissions de GES, la loi porte comme objectif leur réduction de 40 % à l’horizon 2030 (par rapport à 1990).

La Loi Énergie et Climat, promulguée le 8 novembre 2019, actualise les objectifs et vise la neutralité carbone à l'horizon 2050 par la combinaison de la baisse des émissions de GES associée à un développement des puits de carbone. Plusieurs leviers sont activés pour l’atteinte de ces objectifs : rénovation du parc de bâtiments existants, amélioration des performances énergétiques et environnementales des bâtiments neufs, développement des transports propres, lutte contre le gaspillage et promotion de l’économie circulaire, développement des énergies renouvelables, renforcement de la sûreté nucléaire, simplification des procédures et lutte contre la précarité énergétique.

La Loi Climat et Résilience, du 22 août 2021, actualise les objectifs de baisse des émissions de GES avec ceux de l’Accord de Paris et du pacte vert pour l’Europe, soit une diminution d'au moins 55 % des émissions de GES d'ici 2030. Pour cela, elle décline des mesures visant la consommation, la production, le travail, les déplacements, l'artificialisation des sols, le logement et l'alimentation.

33 Cumul quotidien de précipitations dépassant le 90e centile
Les plans nationaux

Présenté en juillet 2017 en réponse aux accords de Paris, le Plan Climat de la France fixe de nouveaux objectifs plus ambitieux pour le pays. Il vise la neutralité carbone à l’horizon 2050. Sur cette base, la Stratégie Nationale Bas-Carbone donne les orientations stratégiques pour mettre en œuvre, dans tous les secteurs d’activité, la transition vers une économie bas-carbone et durable.

En matière d’adaptation, le plan national d’adaptation au changement climatique 2, présenté le 20 décembre 2018, décline de nombreuses actions de préparation regroupées en six domaines d’action : Gouvernance et pilotage ; Connaissance et information ; Prévention et résilience ; Adaptation et préservation des milieux ; Vulnérabilité de filières économiques ; Renforcement de l’action internationale.

Les stratégies territoriales

Au niveau régional, les Schémas Régionaux d'Aménagement, de Développement Durable et d’Égalité des Territoires (SRADDET), intégrant les anciens Schémas Régionaux Climat Air Énergie (SRCAE), fixent des objectifs régionaux en termes de réduction des émissions de GES. Afin d'atteindre ces objectifs, les régions se dotent d'observatoires qui permettent d'améliorer et de diffuser la connaissance sur le climat, ses évolutions et ses effets.

A l'échelle intercommunale, les Plans Climat Air Énergie Territoriaux (PCAET), dont l'élaboration est obligatoire pour les collectivités territoriales de plus de 20 000 habitants, ont pour objectif d'agir localement pour l’atténuation et l’adaptation de la collectivité au changement climatique par la réduction des émissions de GES et la réduction de la consommation d’énergie notamment.

Le Plan de bassin d’adaptation du changement climatique dans le domaine de l’eau

Les actions développées se basent sur plusieurs principes à respecter :

- réaliser des économies d'eau en priorité ;
- éviter la mal-adaptation ;
- préserver les potentialités actuelles et futures des ressources et des milieux ;
- s'assurer d'une ambition reconnue et partagée ;
- savoir garder raison économiquement ;
- explorer l'univers des possibles et privilégier la combinaison de mesures.

Le SDAGE 2016-2021 s'appuie notamment sur ce plan (orientation fondamentale n°0 - S'adapter au changement climatique).

Par ailleurs, le changement climatique étant un phénomène impactant l’ensemble des thématiques de l’environnement, les différents plans sectoriels visant le développement durable (agriculture, forêt, déchets, eau, air, etc.) contribueront généralement à l’adaptation.
3.2.2.e - Atouts-Faiblesses, Opportunités-Menaces

<table>
<thead>
<tr>
<th>ATOUTS</th>
<th>FAIBLESSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Un territoire aux climats multiples et variés</td>
<td>• Un secteur des transports routier qui ne suit pas la tendance à la réduction des émissions de GES</td>
</tr>
<tr>
<td>• Un niveau de conscience et de connaissances désormais important sur le changement climatique, ses causes et ses effets</td>
<td>• Des connaissances territoriales encore insuffisantes</td>
</tr>
<tr>
<td>• Des outils de lutte et d'adaptation mis en place</td>
<td>• Des zones fortement impactées</td>
</tr>
<tr>
<td></td>
<td>• Des changements d' affectation du sol défavorables au stockage de carbone (artificialisation)</td>
</tr>
<tr>
<td></td>
<td>• Des cultures toujours plus gourmandes en eau (irrigation de la vigne par exemple), de nouvelles ressources utilisées en supplément des prélèvements, plus qu'en substitution (peu de renoncement)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OPPORTUNITÉS</th>
<th>MENACES</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Des objectifs forts en termes de bilan carbone (neutralité carbone d'ici 2050), à la fois au niveau national et au niveau local</td>
<td>• ...mais une trajectoire insuffisante pour le respect des objectifs (à l'échelle nationale et mondiale)</td>
</tr>
<tr>
<td>• Meilleure prise en compte des aspects climat-énergie dans les documents stratégiques territoriaux (SCoT, PLUi, PCAET)</td>
<td>• Plusieurs sous-bassins versants particulièrement vulnérables au changement climatique</td>
</tr>
<tr>
<td>• Des connaissances qui ne cessent de progresser</td>
<td>• Des réponses aux enjeux pas toujours adaptées (augmentation de la vulnérabilité ou aboutissant à des augmentions les émissions de GES) ou trop peu ambitieuses</td>
</tr>
<tr>
<td>• Une tendance nationale à la baisse des émissions de GES...</td>
<td></td>
</tr>
</tbody>
</table>

3.2.2.f - Enjeux

En termes de climat et de changement climatique, les enjeux environnementaux sont multiples et touchant à l'ensemble des domaines (eau, air, sols, santé, biodiversité, etc.). Néanmoins, ils peuvent se résumer à deux enjeux principaux :

- l'adaptation aux effets du changement climatique ;
- la lutte contre le changement climatique.
3.2.3 - **Énergie**

3.2.3.a - **Caractéristiques**

Principale source : Statistiques MTES\(^{34}\)

Une production énergétique importante sur le bassin

Au niveau de la production d'énergie, trois types de filière sont distinguées : la filière classique (centrales nucléaires et thermiques), la filière d'énergie renouvelable thermique (bois énergie, pompes à chaleur, solaire, etc.) et la filière d'énergie renouvelable électrique (hydraulique, éolien, photovoltaïque, etc.).

Actuellement, la production d'énergie finale est largement dominée par la production électrique. La filière d'énergie renouvelable thermique la complète.

Le bassin Rhône-Méditerranée se caractérise par une production électrique importante : les deux tiers de la production hydroélectrique française sont situés sur le bassin et le quart de l'énergie nucléaire française est produite sur le bassin.

En termes de production électrique via la filière classique, elle était de 110,8 TWh en 2017 et est largement dominée par le nucléaire\(^{35}\). En effet, la partie rhônalpine du bassin Rhône-Méditerranée comprend près de 22 % de la puissance nucléaire installée nationale, répartie sur 4 sites. Plusieurs centrales thermiques fonctionnant avec des ressources fossiles produisent également de l'électricité sur le bassin (environ 15,8 TWh).

La filière d'énergie renouvelable (EnR) électrique a produit 54,7 TWh en 2017. Dans les régions ne comprenant pas de réacteur nucléaire (BFC et PACA), cette filière apparaît comme majoritaire en termes de production d'électricité (plus de 80 % en BFC).

Avec 41,8 TWh délivrés, l'hydroélectricité constitue le moyen de production d'électricité d'origine renouvelable le plus développé (76 % de l'ensemble des EnR électriques). En effet, les trois régions comportant les puissances installées les plus importantes sont, par ordre de grandeur, AURA (11 744 MW), Occitanie (5 364 MW) et PACA (3 327 MW). Elles représentent près de 80 % du parc hydraulique français. L'hydroélectricité en BFC est plus modeste, portée notamment par le barrage de Vouglans, construit sur l'Ain dans le Jura. Avec une puissance installée de plus de 3 500 MW chacun, les départements de l'Isère et de Savoie sont les territoires les plus équipés. La production hydroélectrique reste relativement stable et dépend principalement de la demande et des conditions hydrologiques annuelles.

Concernant les autres moyens de production d'électricité à partir de ressources renouvelables, l'éolien est le plus important (5,3 TWh), suivi du solaire photovoltaïque (4,7 TWh) et du thermique à partir de biomasse (estimé à 2,8 TWh). Ces productions d'électricité suivent une forte tendance d'augmentation globale.

Le potentiel de développement des énergies renouvelables est important sur le bassin (conditions climatiques favorables au solaire et à l'éolien, un potentiel encore important en bois-énergie (dans le respect de la gestion durable des milieux) et en biogaz pour certaines régions). L'éolien est notamment appelé à se développer grâce à plusieurs projets en mer.

\(^{34}\) Les données n'étant pas accessibles sur le périmètre géographique du bassin RM, elles sont présentées ici selon les régions majeures du bassin : AURA, BFC, Occitanie et PACA.

\(^{35}\) A noter que ce chiffre de production prend en compte celle de Golfech, dont la centrale nucléaire n'est pas située sur le bassin (région Occitanie).
En termes de production d'énergies renouvelables thermiques, la filière bois-énergie constitue l'une des sources d'énergie renouvelable les plus importantes sur le territoire (estimée à environ 3 700 ktep en 2017). Les autres sources sont essentiellement la valorisation des déchets, le solaire thermique, la géothermie et la production de chaleur à partir de biogaz.

Des consommations énergétiques élevées

Du fait des caractéristiques démographiques et économiques du bassin, les consommations énergétiques sur le territoire sont particulièrement élevées, avec des écarts territoriaux importants. Ainsi, la consommation d'énergie finale du territoire était de 50,1 Mtep (millions de tonnes équivalent pétrole) en 2017, soit 36 % de la consommation nationale. Les régions AURA et, dans une moindre mesure, PACA apparaissent comme les deux territoires les plus consommateurs.

La consommation moyenne par habitant est donc de 2,3 tep/hab. (similaire à la moyenne nationale). Elle est toutefois très inégale en fonction des régions, de 1,8 tep/hab. en Occitanie à 2,7 tep/hab. en PACA.

La consommation d'énergie finale reste dominée par les produits pétroliers (43 %), suivi de l'électricité (26 %) et du gaz naturel (16 %). Viennent ensuite le charbon, le bois-énergie et les biocarburants notamment. La part des produits pétroliers tend à diminuer (- 1,2 % entre 2014 et 2017).

D'une manière générale les consommations d'énergie sont principalement portées par le secteur résidentiel-tertiaire (en grande partie par le chauffage) (40 %), suivi du transport (34 %), de l'industrie (25 %) et dans une moindre mesure par l'agriculture (2 %). Les caractéristiques des consommations varient toutefois d'un territoire à l'autre, reflétant les disparités de structures socio-économiques. Ainsi le poids de l'industrie est le plus élevé en région PACA où il est le premier consommateur d'énergie (41 %), suivi du secteur résidentiel-tertiaire et des
transports (29 % chacun).

ZOOM : Énergie et traitement de l'eau

Le traitement des eaux usées en station d'épuration a un coût énergétique. C'est pourquoi, au même titre que les autres postes de consommation d'énergie, la connaissance de ce coût et sa maîtrise doivent contribuer à la sobriété énergétique de la société.

L'Irstea, associé à l'Agence de l'eau RMC, a travaillé sur la consommation énergétique des procédés de traitement les plus utilisés en France. Ils ont ainsi mis en évidence une tendance de consommation énergétique plus importante pour une STEU française que pour une STEU étrangère similaire. Ceci peut être dû à une stratégie de dimensionnement des installations basée sur la semaine la plus chargée en eaux usées à traiter (sur le bassin pour les STEU de plus de 200 EH : capacité totale de 27 millions d'EH pour une charge polluante mesurée en entrée des stations de 12 millions d'EH). Par ailleurs, le procédé le plus utilisé (boues activées) est le moins consommateur d'énergie, mais celui des bioréacteurs à membranes, en plein développement, reste très énergivore (bien que globalement plus performant).

Les postes d'économie d'énergie dans le processus de traitement sont nombreux et passent par une meilleure connaissance des consommations individuelles. Par exemple, l'optimisation de l'aération des bassins dans lesquels se développent les bactéries peut entraîner une diminution de 5 % à 20 % de consommation énergétique selon les STEU. Parallèlement, les économies de consommation d'eau potable font également partie des solutions de diminution des consommations d'énergie, à la fois pour les prélèvements, le traitement en amont et le traitement en aval. Enfin, des systèmes associés aux STEU permettant de rendre l'installation bien moins consommatrice (en termes de bilan net), voire à « énergie positive » ou autonomes, sont possibles : valorisation des déchets (méthanisation, compostage, épandage, etc.), production d'énergie hydraulique, solaire ou éolienne, récupération de calories, recyclage des matières premières, etc.

3.2.3.b - Des pressions sur la ressource en eau

La ressource en eau est une composante essentielle à un bon nombre de filières de production d'énergie : nucléaire, hydroélectricité, géothermie et, plus indirectement, biomasse. Ainsi, ces productions peuvent être à l'origine de pressions qu'il convient de maîtriser.

La production nucléaire nécessite une grande quantité d'eau pour refroidir les centrales (environ 12 milliards de m3 d'eau prélevés par an en Auvergne-Rhône-Alpes), dont plus de 99 % sont restitués au milieu, à proximité du point de prélèvement. Concernant les impacts potentiels :

- comme beaucoup d'autres activités industrielles, l'exploitation d'une centrale nucléaire entraîne des rejets d'effluents par voies liquides qui sont strictement réglementés. Sur la base des études d'impact et de la surveillance de l'environnement autour des installations, l'Autorité de Sûreté Nucléaire fixe les prescriptions relatives aux modalités de prélèvements et de consommations d'eau et de rejets dans l'environnement des effluents liquides ;
- les rejets thermiques contribuent, avec d'autres facteurs tels que le changement climatique et les débits du fleuve et de ses affluents, au réchauffement des eaux du Rhône. À ce titre, ils font l'objet d'une attention particulière depuis de nombreuses années compte-tenu de l'enjeu pour les milieux aquatiques.

L'hydroélectricité, dont le principe est l'usage direct de l'eau pour la production électrique, nécessite également de grandes quantités d'eau. Cependant, les impacts sont différents en fonction du type de centrale hydroélectrique : de lac (ou de haute chute), d'écluse (ou de moyenne chute) et au fil de l'eau (ou de basse

36 Consommation énergétique du traitement intensif des eaux usées en France : état des lieux et facteurs de variation, IRSTEA et Agence de l'eau RMC, décembre 2017

37 Étude thermique du Rhône, EDF, avec la participation d'équipes scientifiques (ARALEP, INRA, CARRTEL, IRSTEA, CNRS, LEHNA), mai 2016
chute). Selon les conditions, la création d'obstacles à l'écoulement peut créer des désordres en termes d'hydromorphologie (coupure de la continuité sédimentaire) et de biodiversité (coupure de la continuité écologique). La création de grands plans d'eau provoque également des impacts (évaporation, pollutions, réchauffement). La réalisation de conduite forcée (pour les barrages de haute chute) entraîne des tronçons de cours d'eau court-circuités, et donc aux débits fortement réduits par rapport à une situation naturelle. Par ailleurs, les éclusées engendrées par la production hydraulique de moyenne chute peuvent également créer des désordres hydromorphologiques et impacter la biodiversité (marnage).

A noter que l'hydroélectricité, associée à un réservoir, est la seule énergie renouvelable modulable (production possible en fonction des besoins) et joue à ce titre un rôle crucial dans la sécurité et l'équilibre du système électrique. Elle constitue, de plus, un moyen de production d'électricité particulièrement peu émetteur de carbone.

La géothermie, bien que moins développée, est également susceptible de provoquer des impacts négatifs sur la ressource en eau, principalement par les risques de pollution des nappes souterraines qu'elle peut entraîner. L’épandage de digestats issus de la méthanisation peut également entraîner des désordres hydromorphologiques.

Plus globalement, le développement des énergies renouvelables peut aller à l'encontre d'autres enjeux environnementaux : l'augmentation des volumes de bois exploités pour la production d'énergie peut avoir des incidences sur les milieux forestiers et les paysages et la combustion du bois est responsable d'une grande part des émissions de certains polluants atmosphériques nocifs pour la santé (hydrocarbures aromatiques polycycliques, particules). L'implantation des centrales photovoltaïques au sol peut entraîner en concurrence avec l’usage agricole des terres ou les milieux naturels et impacter les paysages. L’éolien se heurte à des difficultés d'acceptation sociale, notamment en raison de son impact sur les paysages. Il convient alors de trouver les bons équilibres, à l'aide d'analyses bénéfices-risques par exemple.

3.2.3.c - La réglementation et les dispositifs de connaissance, de suivi ou d'action

Le « paquet énergie-climat 2020 », adopté en 2009, est un ensemble d’actes législatifs européens contraignants qui fixent des objectifs précis à l’horizon 2020. Ainsi, les États membres se sont notamment engagés à :

- porter à 20 % la part des énergies renouvelables dans la consommation d'énergie de l’UE ;
- améliorer l’efficacité énergétique de 20 %.

En 2014, il a été décidé de faire évoluer ces objectifs à l’horizon 2030 en les portant à 27 % pour la part des énergies renouvelables et à 27 % pour l’amélioration de l’efficacité énergétique.

De plus, la loi de transition énergétique pour la croissance verte de 2015 a fixé des objectifs nationaux plus ambitieux, avec une part de production en énergie renouvelable de 23 % en 2020 et de 32 % en 2030. Publiée en novembre 2019, la loi Énergie-Climat prévoit une baisse de 40 % de la consommation d'énergies fossiles d'ici à 2030 par rapport à 2012 ainsi que la réduction à 50 % de la part du nucléaire dans la production électrique à 2035. Par ailleurs, les centrales à charbon devraient être fermées d'ici 2022 (dans le bassin Rhône-Méditerranée, dans les Bouches-du-Rhône).

Dans cette optique, la Programmation Pluriannuelle de l’Énergie 2019-2028 publiée en 2020 a fixé des objectifs en termes de puissance installée pour les différentes filières de production d’énergie renouvelable en France métropolitaine d’ici 2023 et 2028. En termes d'objectifs sur l'hydroélectricité, la programmation vise à augmenter la puissance installée du parc français de 200 MW d'ici 2023 (soit +0,8 % par rapport à 2017) et de 900 à 1 200 MW d'ici 2028 (soit +3,5 % à +4,7 % par rapport à 2017).

Vis-à-vis de l'installation et de l'exploitation de centrales hydroélectriques, plusieurs réglementations s'appliquent. En particulier, l'exploitant doit garantir un débit minimum à l'aval de l'ouvrage (appelé débit réservé). Il doit aussi assurer la libre circulation des poissons et le transit sédimentaire. Pour les petites
installations (dont la puissance maximale brute est inférieure à 4,5 mégawatts) une autorisation d’exploitation est délivrée par le préfet pour un temps déterminé et précise les règles d’exploitation ayant trait aux enjeux environnementaux. Pour les grandes installations (au-delà de 4,5 mégawatts), une concession est délivrée par le préfet ou le ministre en charge de l’énergie. Les modalités de la concession précisent les règles s’appliquant à l’installation.

Concernant les **installations nucléaires**, et notamment leur usage de l’eau, elles sont encadrées par une réglementation spécifique, ayant trait à la sûreté nucléaire. La **géothermie** fait également l'objet d'une réglementation dédiée avec, notamment, une carte des zones sur lesquelles la géothermie est interdite/autorisée, en fonction de son type de fonctionnement (ouvert ou fermé).

Les **SRADDET** (AURA, BFC, Occitanie et PACA) fixent également des objectifs en termes de production d'énergies renouvelables et de diminution des consommations énergétiques (sobriété énergétique). Les objectifs définis en termes d'hydroélectricité sont :

- **AURA** : augmenter la puissance installée d'environ 4 % d'ici 2030 par rapport à 2015 (11 600 MW installés alors), en optimisant les centrales existantes et en développant la micro et pico hydraulique ;
- **BFC** : augmenter la puissance installée à 534 MW en 2030 (527 MW en 2021), principalement par le développement de la micro-hydroélectricité sur les seuils existants ;
- **Occitanie** : pas de développement prévu sur la puissance cumulée, mais des enjeux forts sur les grands barrages et des expérimentations pour développer une micro-hydroélectricité exemplaire ;
- **PACA** : augmenter la puissance installée à 3 956 MW d'ici 2030 (3 889 MW en 2015), en optimisant les centrales existantes et en développant la micro et pico hydraulique.

3.2.3.d - Tendances évolutives

Les perspectives d'évolution en termes de ressources énergétiques ont été largement étudiées, notamment en vue d’atteindre les objectifs de diminution de consommations énergétiques, de production d'énergie renouvelable et de neutralité carbone.

Sur la base des tendances observées ces dernières années, les perspectives d'évolution des ressources énergétiques semblent mener vers une diminution insuffisante des consommations énergétiques et en parallèle, un développement fort des énergies renouvelables.

Pour l'hydroélectricité spécifiquement, le potentiel de développement semble en revanche plus limité. Ainsi, en juin 2013, le potentiel technique de développement de nouveaux sites et le potentiel technique d'équipement de seuils existants ont été estimés\(^{38}\). Ils ont servi de base aux objectifs du projet de Programmation Plurianuelle de l’Énergie 2019-2028.

\(^{38}\) Connaissance du potentiel hydroélectrique français, MEDE, novembre 2013
Plan de Gestion des Risques d'Inondation 2022-2027 | Bassin Rhône-Méditerranée

Tableau 11 : Puissance hydroélectrique installée et potentiels

<table>
<thead>
<tr>
<th></th>
<th>Puissance actuelle (MW)</th>
<th>Potentiel technique de développement (MW)</th>
<th>Potentiel technique d'équipement (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bourgogne</td>
<td>510</td>
<td>6,9</td>
<td>26</td>
</tr>
<tr>
<td>Franche-Comté</td>
<td></td>
<td>22,9</td>
<td>96,0</td>
</tr>
<tr>
<td>Languedoc-Roussillon</td>
<td>5 364 (Occitanie)</td>
<td>204,5</td>
<td>21 à 26</td>
</tr>
<tr>
<td>PACA</td>
<td>3 835</td>
<td>612,7(^{39})</td>
<td>0,3 à 9</td>
</tr>
<tr>
<td>Rhône-Alpes</td>
<td>11 744 (AURA)</td>
<td>753,0</td>
<td>25</td>
</tr>
</tbody>
</table>

Ainsi, le Ministère de la Transition Écologique et Solidaire (MTES) construit tous les deux ans des scénarios prospectifs énergie-climat-air. Il s'agit notamment de comparer un scénario « avec mesures existantes » (AME), comprenant l'ensemble des mesures mises en œuvre en France, avec un scénario visant l'atteinte des objectifs climatiques et énergétiques.

En 2014-2015, le scénario AME (mesures existantes au 1er janvier 2014) a été construit parallèlement au scénario AMS2 prenant en compte, en plus, les mesures annoncées mais non encore adoptées, notamment la LTECV. Ils visent l'horizon 2035.

En termes de consommation d'énergie finale, le scénario décrit une stabilité de la demande au niveau de celui de 2010. La prise en compte des mesures annoncées en 2014 (AMS2) amène à une diminution de la demande finale de 21,7 % par rapport à celle de 2010. La part de renouvelable dans la consommation finale brute d'énergie augmente, quel que soit le scénario, de 12,6 % en 2010 à 20,7 % en 2030 selon AME et à 33,7 % selon AMS2. La consommation primaire d'énergie fossile diminue très peu dans AME (-1,6 % entre 2012 et 2030) et sensiblement dans AMS2 (-39,3 % sur la même période).

Par comparaison, le scénario de référence 2018-2019 « avec mesures supplémentaires » (AMS) visant l'atteinte des objectifs climatiques et énergétiques de la France, estime une consommation finale énergétique de 117,6 Mtep en 2030 (soit -16,6 % par rapport à 2017). Les principales ressources renouvelables à fort potentiel de développement identifiées sont la biomasse, l'éolien et le solaire photovoltaïque.

A l'échelle de chaque région, des scénarios prospectifs ont également été construits, afin de déterminer les conditions d'atteinte des objectifs pris dans le cadre de l'élaboration des SRADDET. Selon les projets, ces objectifs sont (Occitanie non disponible) :

- en Bourgogne-Franche-Comté, d'ici 2030 par rapport à 2012, la réduction de la consommation énergétique finale de 25 % et de 56 % de la consommation d'énergie fossile ainsi qu'un taux d'EnR dans la consommation finale brute atteignant 55 % ;
- en Auvergne-Rhône-Alpes, d'ici 2030 par rapport à 2015, la diminution des consommations énergétiques de 23 % par habitant et d'augmenter de 54 % la production d'énergie renouvelable ;
- en PACA, d'ici 2030 par rapport à 2012, la diminution de la consommation totale d'énergie finale de 15 % et d'augmenter la puissance installée des unités de production d'énergie renouvelable de 376 %.

\(^{39}\) En 2015, ce potentiel a été mis à jour et évalué à environ 480 MW (Mise à jour du potentiel hydroélectrique en région PACA, CEREMA, octobre 2015)
3.2.3.e - Atouts-Faiblesses, Opportunités-Menaces

<table>
<thead>
<tr>
<th>AOUTS</th>
<th>FAIBLESSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Un territoire producteur net d'électricité (14,2 Mtep produit pour 13,2 Mtep consommé en 2017) malgré des disparités importantes</td>
<td>• Une consommation d'énergie qui reste relativement stable depuis 2014 (voire augmente légèrement)</td>
</tr>
<tr>
<td>• Une couverture élevée de la consommation d'électricité par la production issue de l'ensemble des sources d'énergies renouvelables (36 % en 2017, contre 18,4 % pour la France)</td>
<td>• Une tendance similaire sur la consommation d'énergie fossile (produits pétroliers, charbon et gaz naturel)</td>
</tr>
<tr>
<td>• Une production énergétique relativement peu émettrice de carbone (nucléaire et renouvelables, en particulier l'hydroélectricité)</td>
<td>• Un impact écologique significatif de la production d'hydroélectricité sur la ressource en eau et la morphologie des cours d'eau</td>
</tr>
<tr>
<td>• Une forte tendance d'augmentation de la production d'énergie renouvelable</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OPPORTUNITÉS</th>
<th>MENANCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Des objectifs forts en termes de part des énergies renouvelables et de réduction de consommation d'énergie</td>
<td>• Des difficultés rencontrées à réduire la dépendance aux énergies non durables (transports en particulier). Concernant l'électricité, cette complexité provient notamment de la nécessité d'assurer les besoins en termes de production de base et de flexibilité</td>
</tr>
<tr>
<td>• Un potentiel de développement des énergies renouvelables important</td>
<td>• Des coûts pour la réduction des consommations énergétiques parfois très élevés</td>
</tr>
<tr>
<td>• Des investissements qui ne cessent de croître sur les filières renouvelables</td>
<td>• Une non atteinte des objectifs en termes de baisse des consommations énergétiques</td>
</tr>
<tr>
<td>• La fermeture programmée de la centrale à charbon d'ici 2022</td>
<td></td>
</tr>
</tbody>
</table>

3.2.3.f - Enjeux

En termes de ressources énergétiques, l'enjeu environnemental du PGRI est :

- la conciliation des objectifs de production d'énergie renouvelable et du bon état des eaux.
3.2.4 - Sols et sous-sols

3.2.4.a - Grandes caractéristiques des sols et sous-sols du bassin

Du fait de sa grande extension Nord-Sud, le bassin Rhône-Méditerranée est une zone de contrastes et de transition, entre le pied des Vosges, les Alpes françaises et le littoral méditerranéen (plus de 1 000 km de côtes).

Le bassin Rhône-Méditerranée se caractérise par une grande diversité sur le plan de la géologie et de l’hydrogéologie. La formation des Alpes et des Pyrénées, conjuguée avec la présence des massifs anciens, déjà en place, a conduit à la segmentation de ce territoire en de multiples unités morphologiques qui forment les reliefs ou délimitent des dépressions sédimentaires d’âge tertiaire. Les érosions intenses et les héritages climatiques glaciaires quaternaires ont ensuite favorisé la constitution de puissants aquifères alluviaux associés aux grands cours d’eau du bassin.

Plusieurs grands ensembles naturels caractérisent ainsi le bassin :

- les plateaux septentrionaux bourguignons et de Haute-Saône au nord ;
- le couloir médian (Saône-Rhône) qui s’étend du nord au sud sur plus de 500 km et constitue une vaste région déprimée recouverte de terrains tertiaires et quaternaires ;
- la bordure orientale du Massif Central, fragment de la chaîne hercynienne à l’ouest de l’axe Saône-Rhône ;
- les massifs jurassiens et alpins à l’est ;
- le pourtour méditerranéen au sud, morphologiquement plus hétérogène ;
- la Chaîne pyrénéenne à l’extrême sud-ouest.

La variété géologique, topographique et climatique du territoire a conduit à une grande diversité des sols et une grande richesse minérale, avec des ressources très variées : charbon, métaux, roches massives, roches alluvionnaires glaciaires et fluviatives, etc.

Le sol, système vivant complexe, est en constante interaction avec les autres milieux. Il est le support des activités humaines et notamment des activités agricole et forestière qui fournissent les éléments indispensables à la production végétale utilisée pour nourrir les animaux et les hommes, et produire des fibres, des matériaux et de l’énergie renouvelable. Il est également essentiel dans le fonctionnement des écosystèmes en rendant de multiples services écosystémiques (régulation du cycle du carbone et de l’azote, filtration de l’eau, support de biodiversité, etc.).
Illustration 34 : Carte des grands types de formations hydrogéologiques
Les ressources en matériaux

La production minérale la plus importante est celle du granulat, qui est constitué d'un ensemble de matériaux inerties (sable, gravier, etc.) utilisé dans la réalisation des ouvrages de travaux publics, de génie civil et de bâtiment. Les extractions liées à cette production sont principalement de deux types : en roches massives ou en roches meubles (carrières alluvionnaires). Les granulats recyclés et artificiels complètent cette production.

Les granulats sont extraits sur l’ensemble du bassin, et tout particulièrement à proximité des grands pôles économiques et urbains tels que Lyon, Marseille, Montpellier, Grenoble ou de Dijon. En 2017, le bassin RM40 présentait une production de 93,5 millions de tonnes de granulats, soit près de 30 % de la production nationale. L’ancienne région Rhône-Alpes est la première région productrice de granulats (y compris à l'échelle des grandes régions). Au niveau national, une forte diminution de la production de granulats est observée depuis 2007 (de 7,2 t/hab. en 2007 à 5 t/hab. en 2017), même si une reprise récente est constatée (depuis 2015).

A noter que la zone Rhône-Alpes présente la particularité de présenter une production de granulats issus de roches meubles environ deux fois plus importante que celle issue de roche massive. Cela n'est pas le cas des régions PACA, ancienne Languedoc-Roussillon et ancienne Franche-Comté (production en roche massive 3 à 8 fois plus importante) (source : UNICEM).

Les autres matériaux extraits sont destinés à usage de roches ornementales ou de construction, à la fabrication de produits en terre cuite (brique, tuiles, etc.) ou à destination de l'industrie (verrerie, électronique, céramique, chimie, etc.) et de l'agriculture. Les matériaux concernés sont les argiles, roches sédimentaires, métamorphiques, magmatiques ou alluvionnaires, gypse, diatomite, quartz, etc.

Enfin, le sous-sol est également le support d'activités minières. En 2019, le bassin Rhône-Méditerranée présente cinq mines de sel en activité, ainsi que deux mines de bauxite dans l'Hérault (source : BRGM).

3.2.4.b - Des pressions aux impacts multiples

Les atteintes à l'environnement et à la santé humaine que peut porter l'usage des sols et sous-sols à l'environnement et à la santé humaine sont variables selon les sites. Les pressions sur la qualité des sols ont des répercussions directes sur d'autres enjeux environnementaux : qualité des eaux, qualité de l'air, paysage, biodiversité et fonctionnement des écosystèmes, etc.

L'artificialisation et l'imperméabilisation des sols

L'artificialisation des sols résulte principalement de l’étallement urbain et de la construction d’infrastructures de transport. Ce phénomène altère le fonctionnement des écosystèmes de manière importante (fragmentation des habitats naturels et des corridors biologiques, perte de ressources naturelles et agricoles, augmentation du ruissellement des eaux et dégradation de leur qualité, etc.). L'imperméabilisation des sols quant à lui provoque la dégradation quasi complète de l’ensemble de ses fonctions.

Pour rappel, près de 60 000 ha supplémentaires ont été artificialisés dans le bassin entre 2006 et 2018 (Corine Land Cover).

40 Anciennes régions Rhône-Alpes (département de la Loire exclu), Languedoc-Roussillon et Franche-Comté, région PACA et départements de Côte-d'Or et de Haute-Saône
La pollution des sols

La qualité des eaux souterraines (et superficielles) est largement liée à la qualité des sols : leur surveillance est donc indispensable.

Les pollutions du sol peuvent être diverses et sont essentiellement d'origines anthropiques.

Les pollutions agricoles

Les pratiques agricoles intensives, l’irrigation et les rotations des cultures accélérées font baisser localement le taux de matière organique et génèrent une pollution diffuse par les substances phytosanitaires.

Les pollutions industrielles

Plusieurs décennies d’activités industrielles, exercées dans des conditions précaires de protection de l’environnement, ont laissé un héritage lourd en matière de pollution du sol et du sous-sol. Il s’agit généralement d’anciens sites industriels, d’anciens dépôts de déchets, ainsi que des conséquences des retombées, des infiltrations ou des déversements issus de ces établissements.

La problématique multi-sources de l’accumulation des éléments traces métalliques

Les Éléments Traces Métalliques (ETM) comme le cadmium, le chrome, le cuivre, le nickel, le plomb et le zinc, sont naturellement présents dans les sols mais proviennent également de contaminations locales liées à des activités industrielles, agricoles et de transport. L’accumulation des ETM dans les différentes chaînes alimentaires et dans les sols peut devenir toxique pour l’homme, l’environnement et pour le fonctionnement même du sol.

La pollution radiologique

La pollution radiologique des sols est surveillée, tant au niveau des déchets radioactifs présents sur le territoire qu'au niveau des activités utilisant des substances naturellement radioactives (combustion de charbon, traitement de minerai).

Les données sur les sols pollués

La base de données BASOL (http://basol.developpement-durable.gouv.fr/) identifie les sites pollués les plus problématiques, et qui nécessitent une action des pouvoirs publics, à titre préventif ou curatif. La base de données BASIAS (http://basias.brgm.fr/) recense quant à elle l’ensemble des sites dont l’activité (actuelle ou passée) est « potentiellement » polluante. Il ne s’agit donc pas de sites où la pollution est avérée.

La base de données BASOL sur les sites et sols pollués (ou potentiellement pollués) appelant une action des pouvoirs publics, à titre préventif ou curatif, recense 1 397 sites sur le bassin Rhône-Méditerranée (données novembre 2019), dont près de 18 % sont des sites traités et libres de toute restriction (245 sites dans ce cas). Le reste correspond à des sites traités avec surveillance et/ou restriction d’usage, en cours de travaux, d'évaluation ou devant faire l'objet d'un diagnostic.

Quant aux sites dont l’activité (actuelle ou passée) est « potentiellement » polluante, la base de données BASIAS en recense environ 85 500 dans le bassin. Les Bouches-du-Rhône et le Rhône en comptent plus de 9 000 chacun.

L'érosion des sols

Il s'agit d'un phénomène naturel qui correspond au décapage des particules de surface sous l’action du vent, de l’eau, de l’homme, etc. Elle peut provoquer, au final, une dégradation irréversible des sols et est souvent
renforcée par l’action de l’homme (terrassement, imperméabilisation, pratiques culturales, surpâturage, déforestation notamment).

Dans le bassin, le Groupement d'Intérêt Scientifique Sol (GisSol) identifie un aléa annuel d'érosion des sols très fort dans le nord-Isère ainsi que dans le sud de la Drôme et le centre des Alpes-Maritimes. Un aléa fort est observé dans le sud des Pyrénées-Orientales et dans plusieurs secteurs du territoire rhônalpin (Beaujolais, plaine de l’Ain, couloir rhodanien).

Par exemple, au niveau rhônalpin, l'érosion est observée sur 14 % de la SAU, pour une perte moyenne de 4 tonnes de sol par hectare par an. Sur ces territoires, l’importance du phénomène est principalement liée à la présence de fortes pentes, à l’agressivité des aléas pluvieux et à l’artificialisation croissante des surfaces.

Le cas de l’érosion du trait de côte

Le phénomène d’érosion du trait de côte est important sur l’ensemble du littoral français. Il est principalement dû à l’élévation du niveau des mers et des océans, aux phénomènes climatiques de plus en plus violents et récurrents, et à une urbanisation forte de la côte (création de points durs ne permettant plus l’amortissement des houles). A noter que le trait de côte peut également évoluer vers une avancée selon les secteurs.

L’érosion littorale résulte de la conjonction de nombreux facteurs comme la houle, les courants, le vent, la variation du niveau de la mer ou l'importance des apports sédimentaires des fleuves côtiers.

Le littoral méditerranéen, constitué à 51 % de côtes rocheuses et à 32 % de plages, apparaît comme fortement exposé (PACA) à très fortement exposé (Occitanie) vis-à-vis de l'érosion du trait de côte. Sur certains secteurs comme la Camargue, le recul du trait de côte est un phénomène particulièrement soutenu (supérieur à 3 m/an) (source : Observatoire national de la mer et du littoral et CEREMA).

Ce phénomène entraîne des impacts écologiques (disparition de milieux dunaires, de plages, dégradation des cordons littoraux et de milieux lagunaires) et économiques (risques de submersion marine et pressions sur les infrastructures, habitations et activités littorales).

Les moyens de lutte sont variés et concernent principalement la reconstitution de cordons dunaires, afin de retrouver un système naturel d’échanges hydrosédimentaires, et le maintien ou la restauration des herbiers de posidonies, dont le système racinaire permet de stabiliser le sable.

L'exploitation des ressources minérales

Les carrières et gravières sont consommatrices d'espaces et modifient de façon importante le paysage en créant de nouveaux éléments géo-morphologiques (falaises, cavités de plaines, collines déstructurées, etc.).

Elles présentent également des atteintes sur la ressource en eau (perturbations des écoulements et risques de pollutions), ainsi que sur les écosystèmes. Les anciennes extractions dans le lit mineur des cours d'eau ont eu des impacts majeurs, comme les ruptures de leur profil d'équilibre avec diverses conséquences (abaissement du lit et des nappes, érosion, instabilité des ouvrages d'art, etc.). Ce type d'extraction est interdit depuis 1993. Les carrières de granulats alluvionnaires situées dans les vallées alluviales à proximité des cours d’eau peuvent avoir des impacts sur les aquifères sous-jacents par leur mise à nu, ou sur l’hydromorphologie du cours d’eau par une modification de la topographie. Une carrière de granulats peut également impacter la qualité physico-chimique du cours d’eau par le rejet de matières en suspension. Ces risques de dégradation de la ressource en eau en raison des activités d'extraction de matériaux sont d'autant plus importants si celle-ci est utilisée pour...

41 Programme de Développement Rural (PDR) Rhône-Alpes, FEADER 2014-2020, Version 4, 5 mai 2017
42 Living with coastal erosion in Europe : Sediment and Space for Sustainability, EUROSION project, 2004
l'alimentation en eau potable.

Selon les conditions de remise en état ou de réaménagement, les anciennes carrières peuvent également présenter des impacts négatifs (mitage du paysage de plaine par des plans d’eau) ou positifs (création de milieux à forte valeur environnementale).

3.2.4.c - La réglementation et les dispositifs de connaissance, de suivi ou d’action

La consommation de l’espace et l’artificialisation des terres

La loi MAP44 prévoit une réduction de 50 % de la consommation des terres agricoles d’ici 2020. La feuille de route pour la transition écologique, publiée en 2012, indiquait vouloir freiner l'artificialisation des sols pour atteindre la stabilité à l’horizon 2025. Au niveau européen, l'objectif est l’arrêt du phénomène en 2050.

Les lois Grenelle I et II45 visent notamment la lutte contre l'étalement urbain. Elles ont notamment renforcé le rôle des SCoT, qui doivent alors insister sur une consommation des espaces mieux maîtrisée.

L’exploitation des matériaux du sous-sol

L’exploitation de la ressource sols et sous-sols est strictement encadrée par la réglementation des Installations Classées pour la Protection de l’Environnement (ICPE). A ce titre, l’exploitation des ressources du sol et du sous-sol est soumise à autorisation pour une durée déterminée (30 ans au maximum). Cette autorisation intègre la remise en état des sites exploités une fois la période d’activité terminée. De plus, tout au long de la vie de l’exploitation, l’inspection des installations classées contrôle la mise en œuvre effective des mesures préventives et curatives de lutte contre les pollutions. Les projets peuvent également entraîner des opérations (prélèvements, rejets, modification des écoulements, etc.) soumises à la réglementation des Installations, Ouvrages, Travaux et Activités (IOTA).

La loi ALUR46 a réformé les schémas de carrières, les faisant désormais appliquer à une échelle régionale. De plus, elle a introduit une reconnaissance plus large des ressources marines et issues du recyclage et a modifié la portée juridique de ces schémas (SRC). Toutes les régions doivent élaborer un SRC, remplaçant les anciens schémas départementaux. Leur objectif est notamment d’atteindre une gestion rationnelle et éco-nomie des matériaux de carrière. En novembre 2021, aucune région du bassin Rhône-Méditerranée n’a approuvé son SRC.

En région Rhône-Alpes (1ère région productrice de matériaux d’extraction), un cadre régional « matériaux et carrières » a été élaboré (validation en février 2013). Il fixe des orientations et des objectifs à l’échelle régionale en termes de réduction de la part de l’exploitation de matériaux alluvionnaires, au profit de matériaux recyclés et de l’exploitation de gisements de roche massive. Parmi les points forts de ce document figure une réduction de 50 % de la capacité maximale autorisée des carrières en eau à l’horizon 2023 avec la nécessité de trouver des substituts en roche massive ou par le recyclage. L’élaboration du SRC Auvergne-Rhône-Alpes s’appuie

43 Loi n°2016-1087 du 8 août 2016 pour la reconquête de la biodiversité, de la nature et des paysages
44 Loi n°2010-874 du 27 juillet 2010 de modernisation de l’agriculture et de la pêche
45 Loi n°2009-967 du 3 août 2009 de programmation relative à la mise en œuvre du Grenelle de l’environnement et n° 2010-788 du 12 juillet 2010 portant engagement national pour l'environnement
46 Loi n°2014-366 du 24 mars 2014 pour l'accès au logement et urbanisme
La loi MAP, avec les lois Grenelle, visent la transition vers une agriculture durable. La loi Agriculture et Alimentation prévoit également d'améliorer les conditions sanitaires et environnementales de production (interdiction des néonicotinoïdes, et séparation des activités de vente et de conseil pour les produits phytosanitaires notamment).

Concernant l'impact de l'agriculture, les Plans Régionaux de l’Agriculture Durable (PRAD), instaurés par la loi MAP, fixent les grandes orientations de la politique agricole, agro-alimentaire et agro-industrielle de l’État dans la région, en tenant compte les spécificités des territoires ainsi que les enjeux économiques, sociaux et environnementaux.

La protection et reconnaissance des sites remarquables

Le territoire comprend plusieurs sites exceptionnels et remarquables par les formations géologiques présentes. Ainsi, plusieurs réserves naturelles, nationales ou régionales, visent spécifiquement la préservation du patrimoine géologique (réserve naturelle géologique des Alpes de Haute-Provence, du Lubéron, de la Sainte-Victoire, réserve naturelle régionale Récif fossile de Marchon - Christian Gourrat par exemple).

De plus, des Arrêtés Préfectoraux de Protection de Géotope (APPG) sont en cours de définition, suite aux inventaires du patrimoine géologique (**deux dans le bassin en novembre 2021 dans les communes de Saint-Bauzy et de Saint-Pierre-la-Palud**). Enfin, le bassin comprend six Géoparcs UNESCO (label permettant une reconnaissance nationale et internationale du patrimoine géologique) : les Monts d'Ardèche, le Massif des Bauges, le Lubéron, les Hautes-Provence, le Chablais et le Beaujolais.

3.2.4.d - Tendances évolutives

L'évolution de l'état des sols s'apprécie au regard de ses fonctions, des services écosystémiques qu'il rend et de leur durabilité. Les tendances liées au changement d'occupation des sols sont décrites précédemment (**cf. partie 3.1.2.2, Occupation du sol**). Certaines activités humaines augmentent les éléments traces métalliques (ETM) entrant sur les sols (épandage de boues de STEU, valorisation des déjections animales, apports chimiques et de fertilisants minéraux, retombées atmosphériques d'aérosols d'origine anthropique et naturelle, etc.).

Le changement climatique, notamment avec l'augmentation des phénomènes de sécheresse, devrait influencer la dynamique de la structure des sols ainsi que l'intensité et la profondeur de la fissuration estivale (entrainant des transferts verticaux rapides). Des changements locaux de pH sont également possibles (certains sols issus d'alluvions marines ou fluviomarines et contenant des sulfates comme le delta du Rhône). L'augmentation potentielle des incendies de forêt, des pluies intenses et des submersions marines auront également des effets importants sur les sols (pertes de sol par exemple).

En termes de fertilité chimique, les grandes tendances observées sont notamment un accroissement des déséquilibres apports/exports : une augmentation du phosphore dans les sols excédentaires (due à l'importation de phosphore via la nourriture animale dans les régions d'élevage) et une diminution dans les sols déficitaires.

47 Loi n° 2018-938 du 30 octobre 2018 pour l'équilibre des relations commerciales dans le secteur agricole et alimentaire et une alimentation saine, durable et accessible à tous.
Enfin, la richesse que constitue le patrimoine géologique s'intègre de plus en plus dans les stratégies locales, et le déploiement en cours des Arrêtés de Protection de Géotope marque cette tendance. L'élaboration des Schémas Régionaux de Carrières (SRC) prend également en compte cet enjeu.

3.2.4.e - Atouts-Faiblesses, Opportunités-Menaces

<table>
<thead>
<tr>
<th>ATOUTS</th>
<th>FAIBLESSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Une grande richesse minérale et pédologique du territoire</td>
<td>• Des phénomènes d'érosion (sols agricoles et trait de côte) particulièrement importants</td>
</tr>
<tr>
<td>• Des sites géologiques remarquables (6 des 7 Géoparcs UNESCO français)</td>
<td>• Un nombre de sites potentiellement pollués ou à risque très important</td>
</tr>
<tr>
<td></td>
<td>• Une activité extractive historique à l'origine de fortes pressions sur certains cours d'eau</td>
</tr>
<tr>
<td></td>
<td>• Une absence de cadre de protection des sols (directive cadre par exemple)</td>
</tr>
<tr>
<td></td>
<td>• L'artificialisation croissante des sols</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OPPORTUNITÉS</th>
<th>MENACES</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Des connaissances sur les caractéristiques des sols, des sous-sols et de leurs rôles en constante augmentation</td>
<td>• Une augmentation des sites et sols potentiellement pollués ou des activités à risque</td>
</tr>
<tr>
<td>• Une prise en main de plus en plus forte des enjeux liés aux sols par les plans et programmes de développement du territoire</td>
<td>• Des difficultés locales de plus en plus fortes à répondre aux besoins en termes de granulat</td>
</tr>
<tr>
<td>• Des Schémas Régionaux des Carrières qui intégreront les enjeux environnementaux les plus récents</td>
<td>• Une probable intensification des phénomènes d'érosion sous l'impulsion du changement climatique</td>
</tr>
<tr>
<td>• Le développement du recyclage des granulats</td>
<td>• La baisse de fertilité des sols agricoles</td>
</tr>
<tr>
<td></td>
<td>• Des prédispositions à l'érosion, une activité biologique et une perméabilité réduites</td>
</tr>
</tbody>
</table>

3.2.4.f - Enjeux

Concernant les sols et sous-sols, les enjeux environnementaux principaux sont :

- la lutte contre les pollutions ;
- la maîtrise de l'artificialisation des sols.

48 L'état des sols de France, Groupement d'intérêt scientifique Sol (GisSol), 2011
3.2.5 - Qualité de l'air

Les polluants atmosphériques peuvent être classés en deux catégories :

• les polluants primaires, les polluants directement émis dans l’atmosphère, généralement issus de toutes les combustions incomplètes (industrie, transport, etc.) mais peuvent également provenir de l’agriculture ou être d’origine naturelle ;

• les polluants secondaires issus de la réaction physico-chimique des polluants primaires avec des conditions météorologiques particulières.

Les particules sont classées suivant leur taille : PM10 pour des particules au diamètre inférieur à 10 µm (retenues au niveau du nez et des voies aériennes supérieures) et PM2,5 pour des particules de diamètre inférieur à 2,5 µm (pénétration possible dans l’appareil respiratoire et la circulation sanguine).

3.2.5.a - Qualité de l'air dans le bassin

Le bassin présente de fortes disparités du point de vue de la qualité de l’air. Ainsi, des espaces naturels apparaissent comme préservés vis-à-vis des pollutions tandis que certaines zones sensibles y sont très exposées. Il s’agit en particulier de territoires densément peuplés (notamment Lyon, Grenoble, Marseille, Montpellier, Nice, Dijon, etc.) et de secteurs sensibles comme certaines vallées alpines. Les bordures des grands axes de circulation routière sont également affectées par des niveaux importants de dioxyde d’azote.

Selon les secteurs, les polluants atmosphériques responsables de pics de pollution diffèrent. Ainsi, l'ancien Languedoc-Roussillon et la région PACA subissent des épisodes importants de pollution à l'ozone :

• en Occitanie, il est responsable de 22 procédures départementales d’information sur les 27 totales en Occitanie. Ainsi, dans le Gard, les concentrations d'ozone ont amené 28 à 47 jours de dépassement des 120 µg/m³ en moyenne glissante sur 8 heures (stations de Nîmes, Saze et Vallabrégues) sur la moyenne 2016-2018 ;

• en PACA, en 2018, la population exposée aux dépassements de valeurs recommandées par l'Organisation Mondiale de la Santé (OMS) a atteint 4 150 000 habitants, soit 83 % de la population totale.

En région AURA, même si l'ozone reste problématique (1 037 000 habitants concernés par le dépassement de la valeur cible de l'OMS en 2016), les particules fines (PM2,5 et PM10) apparaissent comme des pollutions à forts enjeux (respectivement 2 104 000 habitants et 4 830 000 concernés par le dépassement des valeurs cibles de l'OMS en 2016).

En région BFC, les concentrations mesurées en PM2,5 restent également problématiques (près de la moitié de la population concernés par le dépassement de la valeur cible de l'OMS en 2017).

Au-delà de la pollution chimique, principalement liée aux activités anthropiques, la pollution atmosphérique peut être biologique (pollens, légionelles) et radiologique (radon, gaz radioactif d'origine naturelle). La question de la qualité de l'air intérieur est également devenue une préoccupation importante.
3.2.5.b - Les conséquences et impacts

La qualité de l’air constitue un enjeu sanitaire majeur. Selon le Centre International de Recherche sur le Cancer (CIRC), la pollution atmosphérique est l'une des premières causes environnementales de décès par cancer.

<table>
<thead>
<tr>
<th>Polluant</th>
<th>Sources d'émissions</th>
<th>Effets sur l'homme</th>
<th>Effets sur l'environnement</th>
<th>Réactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxydes d'azote (NOx)</td>
<td>Anthropique : combustion, agricole, industrie Naturelle : volcans, éclairs, sols</td>
<td>Irritation des bronches provoquant crises d'asthme, infections pulmonaires</td>
<td>Acidification des milieux Eutrophisation</td>
<td>Avec les COV -> ozone troposphérique Avec l'ammoniac (NH₃) -> particules secondaires</td>
</tr>
<tr>
<td>Dioxyde de souffre (SO₂)</td>
<td>Anthropique : combustion d'énergies fossiles, industrie Naturelle : volcans</td>
<td>Irritation des muqueuses, de la peau, des voies respiratoires</td>
<td>Pluies acides</td>
<td>Avec les NOx -> particules secondaires</td>
</tr>
<tr>
<td>Composés organiques volatils (COV)</td>
<td>Évaporation lors de l'utilisation (solvants à usage domestique, peintures, transports) Naturelle : plantes, émissions de gaz</td>
<td>Irritation, diminution des capacités respiratoires, nuisances Certains cancérigènes</td>
<td>Effet de serre additionnel, pluie acide Surproduction d’ozone</td>
<td>Avec d'autres polluants -> ozone, particules secondaires, GES</td>
</tr>
<tr>
<td>Métaux lourds</td>
<td>Anthropiques : mine, aciérie, transformation, incinération de déchets, transport routier Naturelles : érosion, volcans, feux de forêts</td>
<td>Accumulation : affection du système nerveux, des reins, du système respiratoire, etc. Certains cancérigènes</td>
<td>Inhibition de la photosynthèse, retards de développement, bioaccumulation, etc.</td>
<td></td>
</tr>
<tr>
<td>Ozone (O₃)</td>
<td>Polluant secondaire résultant de transformations complexes (NOx, CO, COV)</td>
<td>Irritation de l'appareil respiratoire et des yeux</td>
<td>Perturbation de la photosynthèse, GES, pouvoir oxydant</td>
<td></td>
</tr>
<tr>
<td>Ammoniac (NH₃)</td>
<td>Activités agricoles</td>
<td>Irritation des yeux et des poumons, mortel à très haute dose Eutrophisation et acidification des eaux et des sols</td>
<td>Formation de particules fines avec d'autres substances</td>
<td></td>
</tr>
<tr>
<td>Hydrocarbures Aromatiques Polycycliques (HAP)</td>
<td>Combustions incomplètes, solvants, dégraissants, produits de remplissage des réservoirs, etc.</td>
<td>Irritations, diminution des capacités respiratoires, nuisances Certains cancérigènes</td>
<td>Persistance dans l'environnement, bioaccumulation dans les graisses et bioconcentration dans les chaînes trophiques</td>
<td>Formation d'ozone</td>
</tr>
</tbody>
</table>

Les effets les plus courants et les plus légers de la pollution atmosphérique sont des irritations (nez, yeux, gorge, peau, poumons, etc.) et des toux. Selon les concentrations et la durée de l’exposition, la pollution atmosphérique peut également provoquer des problèmes pulmonaires et respiratoires (inflammation et diminution de la fonction pulmonaire, troubles respiratoires, etc.) ainsi qu’une aggravation de certaines pathologies existantes (asthme, bronchites chroniques, maladies respiratoires, cardiovasculaires et des insuffisances respiratoires).

Certains polluants peuvent aussi provoquer des effets spécifiques tels que des troubles neurologiques (pour les métaux lourds) ou neuropsychiques (pour le benzène), des cancers (pour les particules fines, le benzène, les métaux lourds, les HAP…) des troubles du comportement, de la mémoire ou une cécité (pour le plomb), des
troubles sanguins, rénaux, digestifs (pour les métaux).

Certaines populations sont plus sensibles aux effets de la pollution atmosphérique. Il s'agit notamment des enfants, des personnes âgées, des personnes souffrant de maladies respiratoires ou d’insuffisances coronariennes et cardiaques, des femmes enceintes et de leur fœtus, des diabétiques, des fumeurs, etc.

Des études sont menées par l’Institut de Veille Sanitaire afin de quantifier les effets de la qualité de l'air sur la santé. Il est démontré qu’à court terme, réduire les concentrations moyennes de polluants dans l’air apporte un gain sanitaire plus important (plus grand nombre de décès évités) que de réduire uniquement les pics de pollution.

En 2016, une nouvelle évaluation quantitative réalisée par Santé publique France sur l'impact sanitaire de la pollution atmosphérique par les particules fines PM2,5 en lien avec l'activité humaine a été publiée. Elle estime le nombre de décès par an en France liés à cette pollution à 48 000. Elle valide également la plus grande importance des effets sur la santé de l'exposition chronique aux pollutions par rapport aux pics de pollution.

La pollution atmosphérique a également des impacts sur l'environnement : pluies acides (acidification des lacs et des cours d’eau, perturbation des écosystèmes forestiers), dépôts de particules (accumulation possible dans la chaine alimentaire), altération de la croissance des végétaux et baisse de leur productivité.

ZOOM : Qualité de l’air et ressource en eau

Les pollutions atmosphériques peuvent également présenter des effets sur la qualité de l’eau. Elles ont notamment des impacts directs sur la qualité des eaux météoriques, dont les usages sont réglementairement limités, et même sur la quantité des précipitations. Par ailleurs, la pluie peut avoir des effets bénéfiques sur la qualité de l'air (interactions de l'eau avec les polluants présents lors de sa chute entraînant leur transformation ou leur dépôt sur le sol, voire leur ruissellement jusqu'aux milieux aquatiques).

A l'inverse, la pluie peut avoir un impact négatif sur la qualité de la ressource en eau. Par exemple, sous l'effet des oxydes d'azote (NOx) et du dioxyde de souffre (SO2), les pluies, neiges et brouillard s'acidifient et peuvent ainsi altérer les cours d'eau (acidification des eaux, perte des éléments minéraux nutritifs). Plusieurs polluants comme les Hydrocarbures Aromatiques Polycycliques (HAP) peuvent également être transférés de l’air aux ressources en eau, sous forme de dépôts humides ou de dépôts secs.

La qualité de l'eau des eaux météoriques est suivie à partir d'un réseau de points de collecte répartis sur le territoire, comme celui de la station du Casset, situé dans les Écrins (bassin RM). Depuis 1990, des améliorations sont observées : augmentation du pH (9 % sur 27 ans), diminution du sulfate (-65 %) et de l'ammonium (-70 %) notamment. Ces améliorations sont dépendantes des baisses des émissions de polluants primaires atmosphériques, attribuées aux politiques de régulation et de réduction en France et en Europe. Les tendances sur la concentration des nitrates sont cependant moins marquées (légère diminution) et restent problématiques en termes de charge critique eutrophisante.

3.2.5.c - La réglementation et les dispositifs de connaissance, de suivi ou d'action

Deux directives européennes (2004/107 et 2008/50/CE) fixent les normes sanitaires à respecter, ce qui aboutit à la nécessité de surveiller la qualité de l’air, d’en informer les populations, de respecter les valeurs...
limites pour les polluants et de mettre en œuvre des actions en cas de dépassements.

Le protocole de Göteborg de 1999 a fixé des plafonds d’émissions pour certains polluants au niveau international, ainsi que des objectifs de réduction à l’horizon 2020. La directive 2016/2284\(^54\) intègre ces objectifs tout en en apportant de nouveaux aux horizons 2020 et 2030. Ainsi, les États doivent mettre en place un système d’inventaires nationaux d’émissions de polluants atmosphériques et un plan d’action national de réduction des émissions de polluants atmosphériques. Les objectifs doivent permettre de réduire de 50 % la mortalité prématurée due à la pollution atmosphérique au niveau européen.

<table>
<thead>
<tr>
<th></th>
<th>Horizon 2020</th>
<th>Horizon 2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO(_2)</td>
<td>-55 %</td>
<td>-77 %</td>
</tr>
<tr>
<td>NO(_x)</td>
<td>-50 %</td>
<td>-69 %</td>
</tr>
<tr>
<td>CO(_{VN}M)</td>
<td>-43 %</td>
<td>-52 %</td>
</tr>
<tr>
<td>NH(_3)</td>
<td>-4 %</td>
<td>-13 %</td>
</tr>
<tr>
<td>PM(_{10})</td>
<td>-27 %</td>
<td>-57 %</td>
</tr>
</tbody>
</table>

Tableau 12 : Objectifs de réduction fixés pour la France (exprimés en pourcentage par rapport à 2005)

De multiples secteurs ayant des impacts sur la qualité de l’air font également l’objet de réglementations, européennes et nationales, notamment :

- les transports (qualité des carburants et combustibles, entretien moteurs, etc.) ;
- les activités industrielles et leurs rejets dans l’atmosphère ;
- certains appareils domestiques (chauffage, etc.) ;
- l’utilisation de certains produits (solvants) ;
- l’interdiction de brûlage des déchets verts.

A noter que, depuis fin 2011, des valeurs réglementaires sont définies pour deux polluants de l’air intérieur, le formaldéhyde et le benzène. De plus, des dispositifs réglementaires de surveillance de la qualité de l'air dans les établissements recevant du public ont été institués (écoles, accueil de loisirs, etc.). Un plan d'actions national sur la qualité de l'air intérieur est en cours de mise en œuvre.

Le Plan national de Réduction des Émissions de Polluants Atmosphériques (PREPA) fixe la stratégie de l’État pour réduire les émissions de polluants atmosphériques au niveau national et respecter les exigences européennes. C’est l’un des outils de déclinaison de la politique climat-air-énergie. Il combine les différents outils de politique publique : réglementations sectorielles, mesures fiscales, incitatives, actions de sensibilisation et de mobilisation des acteurs, action d’amélioration des connaissances.

A l’échelle régionale, un des objectifs des SRADDET est la lutte contre la pollution atmosphérique. Il s'agit principalement de réduire les émissions de polluants. Ils s'appuient sur un bilan des Schémas Régionaux Climat Air Énergie (SRCAE) et un ajustement des enjeux en fonction. Par ailleurs, les Plans Régionaux Santé Environnement 3 (PRSE 3) visent également une amélioration de la protection de la santé des populations vis-à-vis des nuisances environnementales, dont la qualité de l'air.

Au niveau des agglomérations de plus de 250 000 habitants, ainsi que des zones dans lesquelles les valeurs limites de qualité de l’air ne sont pas respectées, un Plan de Protection de l’Atmosphère (PPA) doit être mis en œuvre. Ce document vise à ramener les concentrations en polluants à des niveaux inférieurs aux valeurs limites en prenant des prescriptions particulières applicables aux différentes sources d’émission. Sur le

À la vue des nombreuses actions déjà initiées sur son territoire, Chambéry Métropole a décidé d’opter pour un Plan Local d’amélioration de la Qualité de l’Air (PLQA) afin de « lister, coordonner, renforcer et organiser le suivi des actions spécifiques mises en œuvre sur le territoire afin d’améliorer la qualité de l’air de l’agglomération chambérienne ».

Localement, les Plans Climat Air Énergie Territoriaux (PCAET) visent également la réduction des pollutions atmosphériques.

3.2.5.d - Tendances évolutives

Selon les régions, les émissions ou concentrations de SO\(_2\) ont très largement diminué depuis 10 ans (-65 % d'émissions en AURA et BFC entre 2000 et 2016, -75 % de concentration en PACA entre 2007 et 2017).

Concernant les particules fines (PM2.5 et PM10), les baisses sont également significatives (autour de -30 % d'émissions en AURA et BFC entre 2000 et 2016, autour de -16 % en Occitanie entre 2010 et 2016, autour de -45 % de concentration en PACA).

Les baisses sont également importantes sur les NOx et COVNM. Elles sont moins marquées en termes de NH\(_3\) (baisses inférieures à 10 % en AURA et BFC entre 2000 et 2016).

Cependant, concernant l'ozone (O\(_3\)), les tendances sont inverses. Par exemple, la région PACA enregistre une hausse de 10 % de la concentration de ce polluant dans l'atmosphère entre 2007 et 2017 (+16 % en AURA).

La tendance sur les dix dernières années est à l’amélioration globale de la qualité de l’air, malgré quelques épisodes de pollution conséquents et plusieurs polluants qui ne suivent pas cette tendance.

Les situations de baisse devraient se poursuivre, sous l'impulsion des objectifs réglementaires, de la mise en œuvre des SRADDET et, plus localement, des PCAET. Toutefois, ces tendances globales peuvent masquer des évolutions locales différentes (grandes agglomérations, grands axes de communication, etc.) au niveau desquels des efforts conséquents devront être réalisés (notamment à travers les PPA). Par ailleurs, la pollution à l'ozone apparaît comme un enjeu important.
3.2.5.e - **Atouts-Faiblesses, Opportunités-Menaces**

<table>
<thead>
<tr>
<th>ATOUTS</th>
<th>FAIBLESSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Des connaissances bien développées pour la qualité de l'air</td>
<td>• Des territoires fortement concernés par les problématiques de pollution de l'air</td>
</tr>
<tr>
<td>• Des dispositifs de surveillance répartis sur l'ensemble du territoire</td>
<td>• Facteurs climatiques et géophysiques défavorables (soleil et relief bloquant les masses d'air) sur certains territoires</td>
</tr>
<tr>
<td>• Une baisse globale des émissions/concentrations de plusieurs polluants atmosphériques depuis plusieurs années</td>
<td>• La pollution à l'ozone difficile à maîtriser et pas de tendance à la baisse</td>
</tr>
<tr>
<td></td>
<td>• Des valeurs cibles de l'OMS en termes de concentrations de polluants régulièrement dépassées (ozone, dioxyde d'azote, particules fines, etc.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OPPORTUNITÉS</th>
<th>MENACES</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Mise en œuvre progressive des SRADDET, des PRSE et des PCAET</td>
<td>• Certaines pollutions, comme l'ozone, risquant de s'intensifier avec le changement climatique</td>
</tr>
<tr>
<td>• Prise en main de ces enjeux de plus en plus importante dans les stratégies locales, et notamment les documents d'urbanisme</td>
<td>• Développement démographique et économique prévisible, source d’accroissement des émissions</td>
</tr>
<tr>
<td>• Pressions fortes sur l'atteinte des objectifs (population, Union Européenne, etc.)</td>
<td>• Certaines tendances, comme sur les transports routiers, allant à l'encontre des objectifs de réduction des émissions</td>
</tr>
</tbody>
</table>

3.2.5.f - **Enjeu**

En termes de qualité de l'air, l'enjeu environnemental principal est :

- la protection de la santé humaine.
3.2.6 - Milieux naturels et biodiversité

Le bassin Rhône-Méditerranée s'étend sur environ un cinquième du territoire français continental et se trouve au carrefour de trois des quatre zones biogéographiques terrestres de France métropolitaine : les zones continentale, alpine et méditerranéenne. Cette diversité de climats, d'altitudes, la présence du littoral méditerranéen (zone biogéographique marine) lui confèrent une très grande richesse de milieux et d'espèces dont une part importante est liée aux milieux aquatiques au sens large.

Les milieux suivants sont directement liés à la présence de l'eau :

- glaciers ;
- cours d'eau naturels ou modifiés ;
- canaux ;
- plans d'eau naturels ou artificiels ;
- retenues sur cours d'eau ;
- zones humides ;
- lagunes littorales ;
- eaux côtières ;
- eaux souterraines.

Notons que les glaciers et les zones humides ne sont pas considérés comme des masses d'eau par la DCE. Ils sont toutefois pris en compte dans le SDAGE car ils contribuent à l'atteinte des objectifs de bon état écologique.

Bien que non directement aquatiques, les milieux terrestres sont fortement liés à l'eau par leur rôle dans le fonctionnement du cycle de l'eau (infiltration, évapotranspiration, ruissellement) et leur dépendance à la pluviométrie.
3.2.6.a - Les milieux terrestres non humides

Les milieux non humides ou aquatiques peuvent être caractérisés en deux grands types en fonction de leurs principaux usages.

Les milieux dits « naturels »

D’une part les milieux dits naturels regroupent les zones de montagnes avec les milieux forestiers, les milieux ouverts (pelouses, prairies) et dans la zone méditerranéenne du bassin, les maquis et garrigues (qui se distinguent en fonction de la nature du sol sur lequel ils reposent). Ils occupent 56 % de la surface du bassin.

La qualification de « naturels » n'exclut pas la présence de l'homme dans ces milieux qui sont le support de nombreuses activités touristiques et de loisir notamment en raison de cette apparente naturalité. D'autre part l'agriculture y reste présente notamment à travers les pâturages, ce qui participe au maintien de l'ouverture des milieux et de leur différenciation.

Les zones de montagne

Le bassin Rhône-Méditerranée présente plusieurs secteurs de montagne qui présentent une grande variété topographique et d'altitude : moyenne montagne avec les contreforts du Massif Central, les monts du Lyonnais, les Vosges, le Jura et des zones de haute montagne principalement dans le massif des Alpes. Ces zones présentent de grandes diversités de milieux mais sont marquées par l'urbanisation et son extension, en particulier dans les Alpes du nord et le Jura. Les fonds de vallées qui jouent le rôle de corridors écologiques sont très sollicités par le développement de voies de transports et l'urbanisation. Dans les Alpes, de nombreux versants sont occupés par les domaines skiables. Ils sont à l'origine de la création de retenues d'eau pour l'alimentation des canons à neige et soumis à des pics de demande en eau potable durant des périodes où la ressource est peu disponible dans un système de fonctionnement majoritairement nival.

La richesse de paysages et la forte naturalité des zones de montagne du bassin les rendent très attractives en période estivale pour des activités de plein air récréatives et sportives. Les fortes fréquentations de certains massifs impliquent le dérangement des espèces, le piétinement de pelouses, la production de déchets, etc.

Les milieux forestiers

La forêt occupe une grande part des espaces naturels du bassin (65 %, soit 36 % de la surface totale). Elle accueille de nombreuses espèces, aussi bien ordinaires que protégées. Les lisières, les ripisylves, ou encore les zones humides forestières (mares, tourbières) abritent une biodiversité particulièrement riche. Cependant, la forte mécanisation de l'exploitation forestière, notamment dans le nord du bassin en région Bourgogne-Franche-Comté, a été à l'origine de nombreux comblements de zones humides.

En outre, les forêts contribuent à la qualité des milieux aquatiques à travers la maîtrise de l’érosion torrentielle, la limitation des crues, et l'infiltration des eaux (végétation des lits ou des berges).

Dans le territoire du bassin, les espaces forestiers sont en progression, au détriment de milieux plus ouverts comme les prairies ou les garrigues et maquis dans la zone méditerranéenne soumis à la déprise agricole. Cette tendance participe à une réduction de la diversité des milieux notamment dans les territoires agro-pastoraux.

Les milieux ouverts

Ces milieux se rencontrent dans tout le bassin : coteaux bourguignons et Jura, pré-Alpes, sud et est des
Cévennes. L'eau n'y est pas toujours visible, mais elle a façonné le territoire, notamment le sous-sol. Les réseaux karstiques présentent de nombreuses cavités, avens, rivières souterraines qui sont autant de milieux particuliers très spécifiques, abris pour les chiroptères, et sensibles aux régimes hydrologiques ainsi qu'à la qualité de l'eau. En surface, les pelouses calcicoles accueillent des espèces à forte valeur patrimoniale telles que de nombreuses orchidées. Ces milieux participent à l'identité paysagère des territoires : garrigues et pelouses sèches dans les régions méridionales, vallées encaissées, corniches, éboulis au nord du bassin. En plus des régions calcaires, des zones de landes et de maquis où la végétation peut être plus arbustive sont observées.

Les territoires à vocation agricole

Les territoires agricoles représentent 37 % de la superficie du bassin. En raison d'une très grande variété d'activités et de pratiques, ils participent de façon importante à la diversité des milieux du territoire. Deux tendances persistantes viennent toutefois minimiser cette affirmation : la recherche de productivité et la déprise agricole.

Les plaines et prairies agricoles

Ce type de milieux est observé dans les secteurs où l'élevage persiste et où l'agriculture peut être qualifiée d'extensive : bassin de la Saône et amont du Rhône, secteur alpin de moyenne altitude. Ces milieux sont généralement riches en zones humides naturelles (exemple de la plaine inondable de la Saône) ou créées pour le besoin des troupeaux. Ces mares présentent un intérêt important pour le maintien d'une trame eau, et des espèces associées, dans le paysage. Dans les zones de bocages, les haies ont un rôle important de refuge pour les espèces, elles permettent une bonne connectivité biologique des milieux et remplissent un rôle essentiel dans le cycle de l'eau (infiltration, interception de ruissellement, etc.).

Toutefois la modification des pratiques agricoles (fauches précoces et fertilisation des prairies, recul de la jachère et de l'estivage, etc.), la diminution des activités d'élevage, les conséquences des remembrements agricoles, contribuent à amoindrir les fonctions écologiques des espaces concernés.

Les zones pastorales et d'élevage

L'activité pastorale ovine (plutôt dans les Alpes du sud) et bovine (Alpes du nord, plateaux du Jura, plaine de Saône, etc.) permet le maintien de prairies et pelouses qui accueillent de nombreuses espèces, en particulier dans les secteurs d'altitude où reliefs et climat créent des conditions bioclimatiques rares à l'échelle nationale et internationale. De nombreuses productions bénéficient d'une reconnaissance géographique pour la qualité de leurs produits (fromage, viande, beurre, etc.). Pour des raisons économiques, le pastoralisme est en régression ou tend à s'intensifier sur certains secteurs. Ces évolutions sont respectivement responsables de phénomènes de fermeture des milieux ouverts, et de sur-pâturage. Les deux tendances ont pour conséquence une diminution de la biodiversité, par disparition des habitats et par sur-exploitation et piétinement des prairies. Par ailleurs, en montagne, le recul du pastoralisme peut entraîner une prédisposition des sols pentus aux avalanches. En effet, le pâturage des alpages favorise, en hiver, la tenue du manteau neigeuse.

Les cultures

Les variabilités topographiques, climatiques, pédologiques du bassin se traduisent sur le plan agricole par une grande diversité de systèmes culturaux. Grandes cultures dans la moitié nord du territoire, au niveau des plaines et plateaux, viticulture le long des vallées du Rhône et du fossé bressan (Côte dijonnaise, Revermont) ainsi que dans les régions méditerranéennes, arboriculture et maraîchage dans les grandes plaines alluviales sont autant de milieux qui participent à la diversité agricole du bassin.
Il faut noter que les pratiques d'irrigation, traditionnellement gravitaires dans les plaines alluviales et les zones de montagne (Queyras par exemple), ont façonné le territoire. Les canaux de transfert et d'irrigation sillonnent le tiers sud du bassin et sont indispensables au maintien des activités agricoles. Ils permettent d'amener l'eau du Rhône et des montagnes vers les secteurs plus propices à l'agriculture et où la ressource est plus rare. Le maintien de ces mosaïques agricoles, sensibles à l'urbanisation et à la simplification des pratiques est un enjeu pour la préservation de la biodiversité globale du territoire et de la connectivité des milieux.

3.2.6.b - Les milieux terrestres aquatiques et humides

Les milieux aquatiques occupent une place importante dans les paysages du bassin, avec 375 km² de glaciers, 490 km² de lacs et plans d'eau dont les plus vastes de France (Léman, Serre-Ponçon, Bourget, Annecy, Sainte-Croix) et 86 450 km de cours d'eau. Les milieux humides sont souvent associés à des espaces emblématiques de la région : milieux alluviaux du Rhône et de ses affluents, prairies humides du Val de Saône, étangs de la Dombes, petits lacs et leurs abords, zones humides de montagne, tourbières, Camargue (rizières, marais salants, etc.), etc.

Les cours d'eau

Au total, le bassin compte la moitié des types de cours d'eau que l'on peut rencontrer sur l'ensemble du territoire métropolitain. Cette diversité s'explique par les différentes influences climatiques du territoire et ses variabilités géologiques et topographiques.

Les cours d'eau et les zones humides afférentes (prairies naturelles humides, ripisylves, lônes, etc.) assurent des fonctions importantes pour la biodiversité en tant que lieux d'alimentation, reproduction et de circulation. La diversité de typologie de cours d'eau se traduit par une forte diversité d'hydro-écosystèmes : régimes cévenol et méditerranéen caractérisés par de violentes crues et des étiages sévères, torrents alpins avec un régime hydrologique nival ou pluvio-nival, grandes plaines inondables du Val de Saône, etc. Le Rhône et ses affluents sont des axes majeurs de migration piscicole.

Toutefois, à cette richesse morphologique et biologique s'oppose un phénomène de banalisation et de segmentation des cours d'eau et en conséquence la modification des habitats associés. L'ensemble du chevelu hydrographique du bassin est impacté par les activités anthropiques : production d'énergie hydroélectrique et nucléaire, navigation, extraction de matériaux, irrigation, prélèvements pour l'eau potable, etc. Ces différents usages de l'eau ont pu conduire à la chenalisation des cours d'eau, l'enfoncement des lits, la réduction des débits, la déconnexion longitudinal et latérale des hydrosystèmes. Les diverses pollutions liées à la présence de l'homme ajoutent à ces modifications morphologiques des problématiques qualitatives : polychlorobiphényles (PCB) dans les sédiments du Rhône, apports de matières organiques dans les lagunes et les lacs, etc.

Les plans d'eau et zones humides

Ces types de milieux rassemblent les lacs de faible profondeur et leurs abords, les étangs continentaux, les prairies humides, les mares temporaires, les tourbières, les plaines alluviales fonctionnelles régulièrement inondées, etc. Ils se rencontrent sur l'ensemble du territoire.

Les régions d'étangs (val de Saône, Dombes, plateau des milles étangs), façonnées par l'homme, présentent de hauts niveaux de biodiversité, notamment par le grand nombre d'oiseaux (site d'hivernage) qu'elles accueillent. Les tourbières et zones humides, rares à l'échelle nationale et particulièrement riches du point de vue de la biodiversité, sont fortement présentes dans les régions Auvergne-Rhône-Alpes (1ère région française) et
Bourgogne-Franche-Comté. La valeur patrimoniale de ces milieux tient également à une édification très lente (2 000 à 5 000 ans). Les zones de haute altitude comptent de très nombreux lacs, de superficie souvent modeste (15 à 20 hectares en moyenne). Les lacs les plus froids (lacs polaires), aux eaux très minérales et en glace une partie de l'année, abritent peu ou pas d'organismes vivants mais présentent un intérêt du fait de leur rareté. Ces plans d'eau et milieux humides de montagne, ainsi que les mares temporaires méditerranéennes sont caractérisées par un fort taux d'endémisme au niveau des populations d'invertébrés (gastéropodes, insectes, etc.) et d'amphibiens (Salamandre de Lanza, espèce endémique du Mont Viso dans les Hautes-Alpes, Salamandre noire en Haute-Savoie).

3.2.6.c - Les milieux côtiers et marins

Le littoral méditerranéen du bassin s'étend sur un peu plus de 1000 km. On y trouve deux grands types de côtes : sableuse d'Argelès-sur-mer à la Camargue, et rocheuse plus à l'est et jusqu'à l'Italie ainsi qu'au niveau de la frontière espagnole.

La côte sableuse

L'Occitanie occupe une place originale sur la façade méditerranéenne française, avec ses vastes zones de sable fonctionnant en interaction avec les écosystèmes lagunaires littoraux : cet ensemble constitue un éco-complexe de premier plan en regard notamment des ressources halieutiques.

Ce territoire présente dans l'ensemble des cordons dunaires étroits et fragiles. Les milieux dunaires de l'Espiguette (Gard), des Orpellières (Hérault) et de Canet-en-Roussillon (Pyrénées-Orientales) sont remarquables, avec de riches associations végétales et animales. Toutefois l'érosion du littoral, liée en grande partie à la réduction des apports sédimentaires des fleuves côtiers, menace l'ensemble des côtes sableuses, en particulier dans les départements du Gard et de l'Hérault.

A l'Espiguette, le cordon dunaire est très actif. Il s'agit de la principale zone d'engraissement du littoral languedocien mais sur le reste de la côte, la progression de l'artificialisation a été particulièrement vive durant les dernières décennies et contribue à la modification du littoral.

Le Golfe du Lion se caractérise par une étendue exceptionnelle du plateau continental, le plus important de la méditerranée occidentale. Il s'étend jusqu'à une centaine de kilomètres des côtes et couvre une surface de 14 000 km². Intéressant par son originalité, il l'est moins d'un point de vue écologique. En effet les fonds sont surtout constitués de sédiments meubles qui accueillent une moins grande diversité d'espèces que dans les zones de substrat dur.

Les lagunes littorales

Les lagunes sont une des originalités du littoral du Golfe du Lion. Elles forment un ensemble rare dans le domaine méditerranéen, constituent des zones humides importantes sur le plan écologique, et regroupent des ensembles paysagers remarquables. La Camargue, l'étang de Thau, les marais salant du Grau du Roi ou d'Aigue Morte sont autant de paysages emblématiques de cette portion de la côte.

Les côtes rocheuses et fonds marins

Les côtes rocheuses sont observées de la métropole marseillaise à la frontière italienne ainsi qu'à et à l'extrême sud du littoral languedocien.

Le long de la côte de la région PACA, les fonds plongent souvent de façon abrupte à de fortes profondeurs avec un plateau continental étroit. L'étage infralittoral présente une grande richesse spécifique et une forte biomasse. Y sont observés des habitats marins qui présentent un intérêt majeur au niveau du bassin : les herbiers de posidonies, le coralligène, les grottes sous-marines, etc. :

- les herbiers à posidonie constituent d'immenses prairies sous-marines, de la surface jusqu'à 30-40 m de profondeur. C'est l'un des écosystèmes les plus importants des espaces littoraux méditerranéens par ses fonctions d'abris, de frayère et sa production primaire élevée. Près du quart des espèces animales connues en Méditerranée y sont observées ;
- les fonds rocheux, regroupant 14 communautés d'algues différentes et de nombreux invertébrés (polychètes, mollusques, crustacés, échinodermes). Les grands peuplements de cystoseires constituent des biocénoses de très haute valeur patrimoniale. Ces milieux constituent un lieu de recrutement pour de nombreuses espèces de poissons ;
- les fonds coralligènes, couvrant les tombants rocheux, dont les espèces les plus remarquables sont le corail rouge et les grandes gorgones ;
- les grottes sous-marines, parmi les plus riches et les plus importantes au monde.

Ces milieux se caractérisent par leur grande fragilité, du fait de la complexité de leur structure, de leur fonctionnement et de leur rôle écologique majeur dans le réseau trophique (producteurs primaires et petite faune participant aux échelons secondaires et tertiaires). Cette fragilité est accentuée par leur concentration sur une bande étroite du plateau continental et les fortes densités de population présente sur la côte, en particulier dans le département des Alpes-Maritimes.

Du côté terrestre, les massifs littoraux et les îles sont le royaume des oiseaux de falaise, tels que le faucon pèlerin. Les îles d'Hyères et les archipels marseillais (Frioul et Riou) accueillent des colonies d'oiseaux de haute mer (seuls couples de cormorans huppés de France continentale) et la côte, la plus grande colonie d'Europe de goéland leucophée. L'expansion de cette espèce pose des problèmes de compétition entre les espèces et de modification des milieux insulaires.

3.2.6.d - Les espèces

Depuis le XIXe siècle, une érosion de la biodiversité est observée, en particulier sur la flore. Le bassin Rhône-Méditerranée garde toutefois une grande richesse faunique et botanique. Cette richesse, comme c'est le cas pour les milieux, peut s'expliquer par le positionnement au carrefour de trois des quatre zones bioclimatiques présentent en France, ainsi que par les grandes variations d'altitude et de topographie sur le bassin.

Les deux régions côtières illustrent tout particulièrement cette diversité : deux tiers des espèces floristiques
françaises sont retrouvés en Occitanie ou en Provence-Alpes-Côte d'Azur. Par exemple, la région PACA abrite également 31 espèces végétales endémiques (observables nulle part ailleurs).

Les poissons d'eau douce

Les cours d'eau du bassin et notamment le Rhône sont le lieu de vie historique d'espèces emblématiques de poissons comme le Barbeau méridional, le Chabot du Lez ou le Blageaon. L'Apron du Rhône est endémique du bassin. Il est considéré comme un très bon indicateur de la qualité écologique des milieux. Les ruptures de continuité longitudinale du fleuve et de ses affluents (seuils, barrages…) limitent toutefois les déplacements et déconnectent les populations (*cf. chapitre 3.2.7 sur les continuités écologiques*).

Les migrateurs amphihalins

Les poissons migrateurs amphihalins sont rares dans le bassin : Anguilles, Lamproies et Aloose feinte. Tous sont confrontés au même phénomène de cloisonnement le long des cours d'eau, associé aux pollutions et à la surexploitation des ressources. Cette situation a entraîné un déclin des populations depuis le milieu du XXᵉ siècle, voire la disparition de certaines espèces (esturgeon par exemple). Cette problématique est désormais présente à l'esprit des gestionnaires des différents cours d'eau.

Les espèces marines

Les principales richesses marines sont situées au niveau des côtes rocheuses du bassin. C'est sur ces fonds que les herbiers de posidonie se développent. Outre le caractère indigène de cette plante, menacée par les espèces enahissantantes et le racle des fonds marins par les ancre ou les activités de pêches, ce milieu est particulièrement important pour la richesse et la diversité écologique qu'il abrite. Les corallines qui sont au centre du milieu coralligène ont un caractère emblématique. Ces algues calcaires ne sont plus aujourd'hui menacées par leur exploitation mais restent très fragiles, notamment en raison de leur croissance très lente.

Le bassin méditerranéen constitue un des 34 « hotspot » mondiaux de la biodiversité. La Méditerranée abrite 10 % des espèces répertoriées dans le monde pour une surface de 1 %. Elle accueille notamment 74 espèces de poissons marins endémiques. Au large de la région PACA, des espèces emblématiques comme le mérou, le rorqual commun, plusieurs espèces de dauphins, etc. sont observées.

Les espèces inféodées aux milieux humides et aquatiques

Les zones humides sont des lieux de concentration de la biodiversité. Dans le bassin, des espèces dont les populations sont réduites comme les écrevisses à pieds blancs ou qui sont présentes aujourd'hui par des opérations de réintroduction, comme le castor, sont recensées dans divers compartiments hydrologiques du bassin.

Parmi les amphibiens, sur l'ensemble du territoire du bassin Rhône-Méditerranée, le crapaud sonneur à ventre jaune qui est une espèce protégée observée. Il fait partie, comme le Discoglosse peint, endémique de la région Occitanie, des amphibiens menacés sur le territoire métropolitain.

A noter que les grandes zones humides, étangs et prairies alluviale du Rhône et de la Saône (Dombes, Forez, etc.)

55 Incluant la région PACA et l'ancienne région Languedoc-Roussillon. Pour être qualifiée de « hotspot », le territoire doit présenter une grande richesse (au moins 1 500 espèces endémiques recensées) mais également de fortes pressions (perte de 70 % de l'habitat d'origine).
Camargue, etc.) sont particulièrement riches en espèces d'oiseaux (Grèbe à cou noir, Nette rousse, etc.). Une partie s'y rassemble dans ces secteurs au cours de leur migration (Balbuzard pêcheur, Cigogne noire, etc.) ou pour hiverner.

L'importance de la nature ordinaire

En complément des espèces menacées, emblématiques ou endémiques du territoire, il est important de noter que les autres espèces végétales et animales jouent un rôle d'égale importance dans le fonctionnement des écosystèmes. Elles peuvent avoir une valeur d'usage (cueillette, chasse) ou participer à la diversité génétique. Dans les milieux cultivés, leur rôle peut se trouver dans la lutte contre les plantes et espèces envahissantes, dans la régulation des populations par simple occupation de leur niche écologique.

Comme cela a déjà été souligné, la préservation de la nature « ordinaire » est primordiale pour le maintien des corridors écologiques, la protection des bassins versants contre l'érosion, ou encore l'auto-épuration des cours et plan d'eau.

3.2.6.e - **Pressions**

La richesse biologique rencontrée sur le bassin hydrographique Rhône-Méditerranée est un point fort du territoire. L'image véhiculée, les possibilités de loisirs offertes, le cadre de vie agréable sont autant de facteurs qui rendent le territoire attractif. Néanmoins, l'augmentation de la population (permanente ou touristique) ainsi que les évolutions de mode vie (multiplication des déplacements, modifications dans les usages des sols, etc.) sont des facteurs de pressions préjudiciables aux écosystèmes en place souvent fragiles. D'autre part, l'évolution des pratiques agricoles est responsable d'une modification des territoires qui participent à la simplification et la banalisation des habitats.

Pressions anthropiques

Modification des pratiques agricoles

Deux phénomènes opposés sont à l'origine d'une modification des milieux naturels et agricoles : d'une part la déprise agricole et d'autre part l'intensification des pratiques.

Les milieux semi-ouverts comme les bocages, les espaces agro-pastoraux ou agro-forestiers sont le résultat d'un équilibre fragile maintenu par les activités de pâturage qui font obstacle à la fermeture des milieux et par les activités sylvicoles des forêts associées ou l'entretien des haies. Les difficultés existantes dans les filières d'élevage extensif conduisent à des reconversions vers les cultures annuelles et la concentration des troupeaux dans des zones plus accessibles.

Certains milieux ouverts peuvent donc être soumis à des surpâturages, alors que d'autres vont être progressivement envahis par les broussailles et se refermer. Ce phénomène est d'autant plus marqué dans les régions de montagne en raison de la difficulté de la collecte laitière. Le résultat est une simplification des milieux dont découle une perte de biodiversité.

L'Ardèche par exemple a vu doubler sa couverture forestière au cours des 50 dernières années, en grande partie du fait de la déprise agricole sur les pentes des piémonts. Au-delà du Massif Central, d'autres territoires régionaux de moyenne montagne connaissent des problématiques similaires (montagnes de l'Ain et jurassienne, Préalpes drômoise...).
En parallèle la recherche de productivité en agriculture a conduit à une forte mécanisation des pratiques, à une rationalisation de l'espace et à l'augmentation de l'usage de produits phytosanitaires et de fertilisants. L'utilisation d'engins motorisés de plus en plus gros a eu pour effet le remembrement des parcelles (pour en faciliter l'accès et le parcours) et en particulier, le comblement de certaines mares et zones humides. Le remembrement de la propriété foncière a donc favorisé les regroupements d’îlots d’exploitation mieux adaptés à l’utilisation d’engins motorisés de grandes tailles et spécialisés. Il a également contribué à une simplification des paysages ruraux (suppression de haies, comblement de mares, grandes parcelles ouvertes, etc.). Ces pratiques ont également pour effet de réduire la biodiversité par la modification des milieux. Les pollutions diffuses (y compris par les pesticides) liées à la fertilisation de terres agricoles ou la lutte contre les nuisibles peuvent également affecter la qualité des milieux et la biodiversité (phénomène d'eutrophisation, mortalité, etc.).

Accroissement de la population

Le bassin Rhône-Méditerranée est un territoire attractif au sein duquel la population augmente davantage que la moyenne nationale (+51 % entre 1968 et 2016 contre +31 % pour la France).

- **Urbanisation**

La première conséquence de ce phénomène est l'urbanisation du territoire qui se fait par extension sur les milieux naturels et les zones agricoles proches des tâches urbaines existantes qui sont souvent les plus fertiles.

- **Fragmentation**

Ce phénomène et ses impacts sont décrits dans la partie suivante (*cf. chapitre 3.2.7 sur les continuités écologiques*).

- **Demande en eau potable**

La ressource en eau n'est pas également répartie sur le bassin et une demande forte peut exister dans les secteurs où la densité de population est élevée. Cela génère une pression quantitative sur la ressource. Dans les cas où les prélèvements se font dans les eaux de surface ou les nappes alluviales ils peuvent conduire à des réductions de débits ou à une déconnexion de la rivière et de ses espaces alluviaux préjudiciables pour le milieu (déplacement des espèces piscicoles, zones de reproduction plus calme déconnectée des cours d'eau). Le phénomène est d'autant plus marqué en périodes d'étiage pendant lesquelles les demandes de plusieurs usages s’additionnent (irrigation, activité nautique, AEP, biodiversité, etc.).

- **Pollutions domestiques**

Le traitement des pollutions d'origine domestiques est un enjeu fort pour les objectifs de qualité des eaux. Des actions en ce sens sont réalisées depuis de nombreuses années sur le bassin. La thématique reste toutefois d'actualité dans le contexte d'augmentation de la population urbaine et périurbaine en particulier lorsque les rejets se font dans des milieux clos et sensibles. En effet les apports de matières organiques peuvent être à l'origine de phénomènes d'eutrophisation dans les grands lacs ou les lagunes littorales où le renouvellement de l'eau est relativement lent. Les conséquences sont la multiplication des algues puis l'asphyxie des milieux qui conduisent à la mort des organismes aérobies et donc à une diminution drastique de la biodiversité.

Les résidus de médicaments constituent également une source de pollution, qu'ils proviennent des rejets urbains (rejets de STEU, boues, déversoirs d'orage) ou du monde vétérinaire (fermes aquacoles, fumiers et lisiers épandus, etc.). Les effets environnementaux restent à préciser, même si plusieurs éléments ressortent des différentes études menées :
• des concentrations retrouvées dans les eaux de surface et souterraine de l'ordre de la dizaine de nanogrammes par litre ;
• certains produits retrouvés dans les effluents de STEP à des concentrations proches des seuils d'écotoxicité et des effets chroniques des mélanges encore difficiles à évaluer ;
• plusieurs observations, telles la « féminisation » des poissons, confirmant le risque environnemental, même si d'autres molécules à effets perturbateurs endocriniens (pesticides, métaux, retardateurs de flamme, etc.) peuvent également intervenir.

Notons également que la présence de l'homme est synonyme de macro-pollution. Ainsi, des déchets non traités se retrouvent aux abords des agglomérations, sur terre ou en mer. Ils peuvent être responsables de pollutions chimiques, visuelles et provoquer l'étouffement des milieux et des espèces.

Activités économiques

• Pollutions industrielles

Les effluents domestiques ne sont pas la seule source de pollution des milieux aquatiques. Les activités industrielles sont à l'origine de pollutions chimique dans les cours d'eau et les lacs par exemple (métaux lourds, hydrocarbure, substances acides, etc.). La mise en place de stations de traitement dans les complexes industriels a permis de baisser fortement ce type de pollution. Toutefois les conséquences des anciennes pratiques sont toujours visibles dans l'environnement actuel notamment parce qu'une partie des polluants est stockée dans les sédiments alluviaux (PCB en particulier). Les activités d'extraction de matériaux (dragage pour limiter le comblement, récupération de matières premières pour le bâtiment) favorisent le relargage de ses substances dangereuses.

• Tourisme

La richesse écologique et paysagère du bassin en fait une destination particulièrement appréciée par les touristes, été comme hiver. Les pics de population qui en résultent viennent accentuer les différents phénomènes décrits plus haut et augmenter les pressions exercées sur la biodiversité terrestre et marine.

Une sur-fréquentation de certains sites pour les loisirs et les sports de nature peut alors apparaître. Ceci implique le dérangement des espèces, des altérations de milieux liés au passage : piétinement des stations floristiques, destruction des herbiers de posidonies en mer par les mouillages de plaisance, perturbation de la nidification, etc. Des pressions quantitatives sur les populations de poissons et gibiers exercées par les activités de chasse et pêche récréatives sont également ponctuellement observées.

Dans les zones d'altitude, les domaines skiables modifient les espaces naturels : terrassement et suppression de pans de forêt pour le passage des pistes de ski.

De manière générale, la fréquentation touristique est irrégulière au cours de l'année et à l'origine de pics de consommation d'eau et d'apport d'effluents vers les unités de dépollution. Les risques de pollutions domestiques sont donc importants et se concentrent dans des secteurs souvent fragiles : lagunes littorales, torrents et milieux humides de montagne, etc.
Plan de Gestion des Risques d'Inondation 2022-2027 | Bassin Rhône-Méditerranée

• Exploitation des milieux marins et littoraux

Les principales activités liées au milieu marin sont la pêche, la conchyliculture et le tourisme (plongée, plaisance). Ceci se traduit par une artificialisation de la côte, la construction de digues et une pression polluante importante sur ces écosystèmes complexes que sont ces milieux de transition entre terre et mer. Il faut noter que ces milieux particuliers permettent les productions de riz et de sel marin, originales sur le territoire du bassin Rhône-Méditerranée.

Espèces exotiques envahissantes

L'introduction et la prolifération de certaines espèces de plantes venant d'autres pays ou continents peuvent être nuisibles à la diversité des espèces locales et aux équilibres des écosystèmes, à travers l'envahissement des milieux naturels. Certaines de ces plantes invasives ont également des effets nocifs pour la santé, à l'image de l'ambroisie, plante allergène fortement présente dans les plaines et collines en région Auvergne-Rhône-Alpes ainsi que centre PACA.

Sur le continent, cette problématique est particulièrement forte sur les principaux axes de dispersion qui offrent des terrains favorables à la propagation des espèces exotiques (déplacements d'animaux, vents, cours d'eau, axes de transports et leurs bas-côtés). C'est également le cas dans les milieux urbains et périurbains (ex : renouée du Japon), car les jardins privés, les plantations publiques et les dépôts sauvages de déchets verts constituent des facteurs importants d'introduction et de diffusion de ces espèces. Les activités agricoles ou les chantiers, en remuant les sols et du fait des déplacements des véhicules, peuvent en favoriser la dissémination.

Le même type de phénomène se retrouve dans le milieu marin : l'étage infralittoral sur la partie est du bassin méditerranéen français est le lieu de prolifération des Caulerpa taxifolia et C. racemosa. Ces algues tropicales invasives peuvent s'étendre de 22 % à 25 % par an. Elles constituent une menace sérieuse pour l'écosystème en place, profitant notamment de la dégradation de l'herbier de posidonie par les sites d'ancrage au large.

La prolifération d'espèces animales invasives, favorisée par la mondialisation des échanges, est tout aussi préjudiciable à la biodiversité : développement des populations de ragondins dans les zones d'étangs, populations d'écrevisses américaines concurrençant les populations autochtones d'écrevisses à pattes blanches, tortues de Floride, etc.

Altération morphologique des cours d'eau

La présence de l'homme se traduit par la modification des formes naturelles des cours d'eau. Pour se protéger contre les inondations et permettre la navigation, les rivières sont endiguées et chenalisées : digue du Rhône en Camargue, bétonisation du Lez à Montpellier, etc. Pour permettre l'agriculture, les cours d'eau sont déviés, comme c'est le cas pour la Durance. Pour produire de l'hydroélectricité, les barrages ont été édifiés, plus ou moins importants : retenue de Serre-Ponçon, seuils en enfilade en tête des bassins pour des micro centrales, etc. Le positionnement des centres urbains sur le passage des cours d'eau a entraîné une artificialisation progressive des berges. L'ensemble de ces modifications sur les cours d'eau contribue à l'appauvrissement écologique des milieux aquatiques par destruction des habitats, des zones de frayères, et la déconnexion des cours d'eau avec leurs milieux annexes.

Une liste des EEE est disponible sur le bassin RMed et une stratégie est menée suite à l'étude « Savoirs et savoir-faire sur les populations d'espèces exotiques envahissantes »

Le programme de surveillance du PAMM liste les espèces non-indigènes de Méditerranée
Changement climatique

Ce phénomène et ses impacts sont décrits dans une partie spécifique (cf. chapitre 3.2.2, climat et changement climatique).

3.2.6.f - La réglementation et les dispositifs de connaissance, de suivi ou d’action

De très nombreux outils et engagements existent pour permettre la préservation de la biodiversité, définis au niveau international, national ou local. Ces dispositifs visent à la fois la protection et la bonne gestion des zones sur lesquelles ils s'appliquent.

Selon l'Union Internationale pour la Conservation de la Nature (UICN), un espace protégé est « un espace géographique clairement défini, reconnu, consacré et géré, par tout moyen efficace, juridique ou autre, afin d'assurer à long terme la conservation de la nature ainsi que les services écosystémiques et les valeurs culturelles qui lui sont associés ».

Outils d'inventaire et de connaissance

Les Zones Naturelles d'Intérêt Écologique Faunistique et Floristique (ZNIEFF)

Les Zones Naturelles d'Intérêt Écologique Faunistique et Floristique (ZNIEFF) sont des inventaires initiés par le Museum National d'Histoire Naturelle ayant pour objectif d'identifier et de décrire des secteurs présentant de fortes capacités biologiques et un bon état de conservation.

L’inventaire ZNIEFF a été lancé en 1982, modernisé à partir de 1996, et distingue deux types (INPN) :

• les ZNIEFF de type I sont des espaces homogènes écologiquement, définis par la présence d'espèces, d'associations d'espèces ou d'habitats rares, remarquables ou caractéristiques du patrimoine naturel régional. Ce sont les zones les plus remarquables du territoire ;
• les ZNIEFF de type II sont des espaces qui intègrent des ensembles naturels fonctionnels et paysagers, possédant une cohésion élevée et plus riche que les milieux alentours.

La surface des ZNIEFF représente 17 % du territoire du bassin Rhône-Méditerranée pour les ZNIEFF de type 1, et 47 % pour les ZNIEFF de type 2. Alors que le bassin représente 22 % du territoire français, 39 % des surfaces inventoriées (types 1 et 2) y sont situées (33 % de la superficie des ZNIEFF 1 et 36 % de la superficie des ZNIEFF 2). A noter également que la Méditerranée accueille des ZNIEFF marines. Ces quelques chiffres témoignent de la richesse écologique, biologique et de milieux du territoire.

La Trame Verte et Bleue (TVB)

La TVB est traitée au sein de la thématique suivante (cf. chapitre 3.2.7 sur les continuités écologique).
Illustration 36 : Carte des ZNIEFF du bassin RM
Outils de protection

Les Parcs Nationaux (PN)

Les parcs nationaux sont destinés à protéger un territoire dont le milieu naturel présente un intérêt patrimonial exceptionnel. Ils ont vocation à constituer un réseau représentatif des grands écosystèmes les plus emblématiques du territoire français. Ils sont divisés en deux zones distinctes : le cœur du parc qui fait l'objet d'une réglementation particulière, spécifique à chaque parc, et la zone d'adhésion qui résulte de la libre adhésion à la charte du parc national des communes situées à l'intérieur d'un périmètre optimal fixé par le décret de création. Ils sont gérés par des établissements publics spécifiques.

Le territoire métropolitain compte huit parcs nationaux (le parc national de forêts en Champagne et Bourgogne ayant été créé le 7 novembre 2019). À l'exception du Parc des Pyrénées occidentales, tous sont au moins en partie compris dans le bassin Rhône-Méditerranée : Vanoise, Port-Cros, Cévennes, Écrins, Mercantour, Calanques et forêts en Champagne et Bourgogne.

Ces parcs se concentrent sur des zones de montagnes ou côtières/maritimes. Ils sont garants de la préservation de ces territoires exceptionnels, prisés mais fragiles.

En outre, les parcs naturels marins ont pour but de concilier la protection et le développement durable de vastes espaces maritimes dont le patrimoine naturel est remarquable. Sur les six parcs français, le parc naturel marin du Golfe du Lion est situé en sur le bassin, au nord de la frontière espagnole.

A noter la présence de la réserve intégrale du Lauvitel, située dans les Écrins, l’une des rares de France. Elle a été créée en 1995 et a pour but le suivi de la dynamique naturelle d’écosystèmes peu soumis à l’action anthropique sur près de 700 ha dans le cœur du parc national. Ce statut implique que toute activité et pénétration humaines est interdite à l'intérieur du périmètre de la réserve, sauf pour motifs scientifiques ou sécuritaire.

Les Arrêtés Préfectoraux de Protection de Biotope (APPB)

Ils sont pris par le préfet de département et fixent des mesures pour favoriser la conservation de milieux fragiles et prévenir la disparition d'habitats d'espèces protégés. Pour les zones maritimes, c'est le ministre chargé des pêches maritime qui prend la décision. Ils promulguent l’interdiction de certaines activités susceptibles de porter atteinte à l’équilibre biologique des milieux et/ou à la survie des espèces protégées y vivant. Leur mise en œuvre est relativement souple et leur suivi est assuré soit directement à travers un comité placé sous l'autorité du préfet, soit indirectement dans le cadre de dispositifs tels que Natura 2000 et par appropriation par les acteurs locaux.

Le territoire du bassin Rhône-Méditerranée est concerné par 303 arrêtés de protection de biotope (52 200 ha). Cela représente 32 % des surfaces protégées en France métropolitaine par ce type de dispositif. La répartition est inégale sur le bassin, la majorité se trouve dans les Alpes du Nord et dans le Jura alors que très peu ont été pris dans les départements de la région Occitanie. Un tiers des périmètres concerne des milieux aquatiques et humides notamment :

- les habitats des écrevisses à pieds blancs ;
- des tourbières ;
- des marais ;
- certaines portions du lit de la Durance et des cours d'eau de tête de bassin dans le Jura.

Les réserves naturelles

Nationales ou régionales, les réserves naturelles sont créées par l’État et les régions lorsque la conservation du
milieu présente une importance particulière ou que des restrictions sont nécessaires pour éviter de le dégrader. Il s'agit donc d'un outil qui peut permettre l'interdiction de certaines activités en vue de la conservation des milieux. En France les réserves naturelles nationales couvrent une très faible proportion du territoire. Dans le bassin RMed, la proportion reste faible mais toutefois nettement plus importante avec près de 109 010 ha couverts (64 % de la surface couverte par cette protection au niveau de la France métropolitaine). Les milieux aquatiques et zones humides sont moins représentés que dans les arrêtés de protection du biotope, mais on peut notamment citer la réserve de Camargue et les marais du Vigueirat dans le delta du Rhône, les Gorges de l'Ardèche, le Lac d'Annecy (portions) ou la toundrière du Luitel qui fut la première réserve naturelle nationale créée. En termes de réserves régionales, l'outil est encore moins utilisé (moins de 36 000 ha couverts en France métropolitaine). Dans le bassin, ce type de protection est déployée sur 39 sites, pour près de 14 000 ha. Le lac d'Aiguebelette, les Isles du Drac, les Gorges du Gardon ou encore plusieurs sites de tourbières (Saisies-Beaufortain-Val d'Arly, Frasne-Bouverans, la Grande Pile, etc.) sont notamment concernés.

Remarque: d'autres outils de protection sont déployés sur le territoire, comme les réserves biologiques, plus spécifiquement dédiées à la protection des milieux forestier et les réserves nationales de chasse et de faune sauvage qui ciblent le maintien des activités cynégétiques et des espaces de migration de l'avifaune.

Les réserves biologiques

L'Office National des Forêts gère les forêts publiques. Pour certains sites, des réserves biologiques sont mises en place. Elles permettent, selon les cas, de préserver ces zones de toute activité humaine (intégrale) ou de cibler la protection sur une ou plusieurs espèces (dirigée). Le choix des mesures de protection s'effectue au cas par cas.

Les Parcs Naturels Régionaux (PNR)

Ils ont pour objectif de valoriser de vastes espaces de forêt d'intérêt culturel et naturel, et de veiller au développement durable de ces territoires, dont le caractère rural est souvent très affirmé. Ils sont créés suite à la volonté des collectivités territoriales (communes, communautés de communes, départements, régions) de mettre en œuvre un projet de territoire se concrétisant par la rédaction d'une charte. Un parc est labellisé pour une durée de 12 ans maximum par l’État, et peut être renouvelé.

Ce sont 22 des 51 Parcs Naturels Régionaux qui sont au moins en partie sur le territoire du bassin. La plupart de ces parcs est située sur des zones de montagnes. Toutefois les parcs du Verdon, de la Narbonnaise en Méditerranée et encore plus spécifiquement de la Camargue concernent des secteurs où la présence de l'eau est incontournable. A noter le projet de PNR du Mont-Ventoux, qui est actuellement en cours de finalisation (mi-2020).

Les réservoirs biologiques du SDAGE

En termes de masses d'eau superficielle, la progression vers le bon état (écologique et chimique) constitue également un enjeu de biodiversité et de bon fonctionnement des écosystèmes. Les efforts fournis dans cet objectif permettent d'envisager une restauration ou préservation des habitats à enjeu, tels que les zones humides et milieux alluviaux, une diminution des pollutions qui impactent pour la biodiversité, etc. Dans ce sens, les réservoirs biologiques, dont le maintien est une composante essentielle d'atteinte du bon état, représentent des cours d'eau ou parties de cours d'eau ou canaux qui comprennent une ou plusieurs zones de reproduction ou d'habitat des espèces aquatiques et permettent leur répartition dans un ou plusieurs cours d’eau du bassin versant. De plus, ils sont généralement situés dans les têtes de bassin versant, qui constituent des zones à forts enjeux pour l'ensemble de l'état des cours d'eau et milieux aquatiques en aval. Leur préservation est notamment encadrée par le SDAGE et les SAGE.
Illustration 37 : Carte des espaces naturels soumis à une protection forte dans le bassin RM
Tableau 13 : Carte des réservoirs biologiques du bassin RM
Outils de maîtrise foncière et/ou de gestion

Natura 2000

Il est mis en œuvre par voie contractuelle en France et a pour objectif de concilier maintien de la biodiversité et exigences économiques et sociales. Les orientations de gestion sont définies dans un document d'objectifs (DOCOB) établi par la concertation entre les différents acteurs du territoire. Sa mise en œuvre repose sur l'adhésion volontaire à des chartes, des contrats Natura 2000 ou des mesures agro-environnementales (MAE).

Un travail spécifique est conduit dans le SDAGE et son PDM pour intégrer ces sites dans les zones protégées. Les sites (SIC, ZPS) en relation avérée et potentiellement significative avec les masses d'eau superficielle et souterraine affleurantes sont pris en compte. L'analyse porte sur les habitats aquatiques et humides d'intérêt communautaire qui ne sont pas en état favorable de conservation. Pour les masses d'eau à risque et les pressions à l'origine du risque, il est vérifié que les mesures proposées au programme de mesures 2022-2027 permettent d'avoir un effet d'amélioration de l'état de conservation des habitats humides et aquatiques d'intérêt communautaire qui dépendent directement de l'état des masses d'eau. Dans le cas contraire, des mesures adaptées sont proposées. Pour les masses d'eau non à risque, une analyse des pressions qui altèrent l'état de conservation des habitats aquatiques et humides d'intérêt communautaire est conduite. En réponse, des mesures sont soit reconduites (sites Natura 2000 inclus dans le PDM 2016-2021), soit proposées (prise en compte de sites Natura 2000 postérieur à la construction du PDM 2016-2021) dans le PDM 2022-2027 au titre des zones protégées du SDAGE.

Les Espaces Naturels Sensibles (ENS)

Les ENS sont au centre des politiques environnementales des départements. Il s'agit d'un outil de protection des espaces naturels intermédiaires qui se traduit par de l'acquisition foncière ou par la signature de conventions avec les propriétaires privés ou publics. Les ENS sont mis en place dans le droit français et régis par le code de l'urbanisme. Depuis le 1er mars 2012, la taxe d'aménagement permet, entre autres, l’acquisition de ces terrains (elle remplace notamment la taxe départementale des espaces naturels sensibles, assise sur les permis de construire).
Illustration 38 : Carte des sites Natura 2000 du bassin RM
Les sites des conservatoires du littoral et des espaces naturels

Les Conservatoires d'Espaces Naturels sont des associations engagées à but non lucratif qui gèrent un réseau de sites naturels. Leur action est fondée sur la maîtrise foncière et d’usage, et s’appuie sur une approche concertée, au plus près des enjeux environnementaux, sociaux et économiques des territoires.

Pour assurer la protection foncière des sites, les parcelles sont acquises au gré de leur mise sur le marché par leurs propriétaires. L'objectif du conservatoire est donc d'acquérir pour réguler les usages et préservar les diversités biologiques et paysagères afin de ne pas les sanctuariser.

En 2018, le conservatoire du littoral est le propriétaire et le garant de la protection de 169 sites qui s'étendent sur une superficie de près de 55 000 ha sur le bassin. À noter que ces sites ne sont pas situés que sur le littoral méditerranéen, mais également au bord des grands lacs ou étangs intérieurs (Sainte-Croix, Serre Ponçon, Léman, Bourget, Annecy, Vouglans notamment).

Parallèlement, les conservatoires des espaces naturels (10 possédant au moins un site sur le bassin) ont acquis 253 sites, pour une superficie d'environ 18 700 ha. Parmi ceux-ci, de nombreux sont en lien avec la ressource en eau, tels que les milieux alluviaux de la rivière d'Ain, les Gorges du Gardon (réserve naturelle régionale), les prairies inondables du Val de Saône, les marais de Chautagne, etc.

Autres mesures

Les Plans Locaux d'Urbanisme (PLU), par la réglementation de l'usage des sols qu'ils créent à l'échelle des communes ou des intercommunalités, constituent des outils forts de protection des zones naturelles, et notamment de la biodiversité dite «ordinaire». En effet, ils délimitent les zones naturelles du territoire (zone N) sur lesquelles les constructions et autres usages du sol sont fortement contraints. De plus, différents outils comme les Espaces Boisés Classés permettent de sauvegarder les éléments naturels importants du territoire.

Ils sont notamment soumis au respect de l'article L.101-2 du Code de l'Urbanisme qui indique l’«utilisation économe des espaces naturels, la préservation des espaces affectés aux activités agricoles et forestières et la protection des sites, des milieux et paysages naturels» comme un objectif à atteindre.

Selon l'article L.151-23 du Code de l'Urbanisme, le règlement de PLU peut identifier et localiser les éléments de paysage et délimiter les sites et secteurs à protéger pour des motifs d'ordre écologique, notamment pour la préservation, le maintien ou la remise en état des continuités écologiques et définir, le cas échéant, les prescriptions de nature à assurer leur préservation. Lorsqu'il s'agit d'espaces boisés, ces prescriptions sont celles prévues à l'article L.421-4. Il peut localiser, dans les zones urbaines, les terrains cultivés et les espaces non bâtis nécessaires au maintien des continuités écologiques à protéger et inconstructibles quels que soient les équipements qui, le cas échéant, les desservent.

Sous l'impulsion de la stratégie nationale, les régions mettent en place des stratégies régionales pour la biodiversité. Elles sont réalisées sur la base de diagnostics, et les actions mises en place peuvent utilement servir dans le cadre de l'élaboration des SRADDET (au poids juridique plus fort).

Le classement de certains cours d'eau en liste 1 selon l'article L.214-17 du Code de l'Environnement participe également à la restauration et la préservation de la biodiversité (cf. partie 3.2.7.3).
La convention de Ramsar

Adoptée le 2 février 1971, elle vise «la conservation et l’utilisation rationnelle des zones humides par des actions locales, régionales et nationales et par la coopération internationale». Une liste des zones humides d’importance internationale est établie, qui compte aujourd’hui 2 200 sites, pour 2,1 millions km². Il s'agit d'une labellisation internationale.

Le bassin compte 11 sites Ramsar, localisés pour la plupart sur le littoral méditerranéen : l’Étang de Salses-Leucate, les Étangs littoraux de la Narbonnaise, les Étangs palavasiens, La petite Camargue, la Camargue, les Salins d’Hyères, les Étangs de Villepey, le Lac du Bourget - Marais de Chautagne, les Rives du Lac Léman, l'Impluvium d’Evian et le Bassin du Drugeon. Cette reconnaissance n’implique pas de protection particulière, celle-ci étant généralement appliquée par d'autres zonages des sites (réserves naturelles, arrêté de protection de biotope, sites du conservatoire des espaces naturels, etc.).

L'Agence de l'eau

Enfin, suite à la promulgation de la loi pour la reconquête de la biodiversité, de la nature et des paysages du 8 août 2016 disposant que les agences de l'eau peuvent désormais soutenir, au travers de leurs contribution financière à l'AFB, les actions sur le milieu marin ou la biodiversité et contribuer à la connaissance, à la protection et à la préservation de la biodiversité terrestre et marine, une étude a permis de renforcer l'analyse de l'Agence de l'eau en faveur de la préservation de la biodiversité, corrélativement aux objectifs d'atteinte du bon état écologique des masses d'eau.

Cette étude, EMEBIO, menée par BRL en 2018 et 2019, s'est appuyée sur l'analyse de 7 110 espaces de biodiversité, en lien avec 3 187 masses d'eau et a permis de disposer d'une vision géographique des relations fonctionnelles entre les masses d'eau et les différents espaces à enjeu de biodiversité dans les bassins Rhône-Méditerranée et Corse.
Illustration 39 : Carte issue de l'étude EMEBIO DIV identifiant les masses d'eau superficielle impactées par des pressions morphologiques avec les espaces à enjeux pour la biodiversité
Les Plans d'Actions Nationaux (PNA)

Le bassin est également concerné par plusieurs Plans d'Actions Nationaux (PNA) qui concernent les espèces menacées pour lesquelles des actions spécifiques, notamment volontaires, sont nécessaires afin de restaurer les populations et leurs habitats, en complément de la réglementation. Un PNA définit une stratégie sur 5 à 10 ans, qui vise à organiser le suivi cohérent de l’espèce ou des espèces concernées, mettre en œuvre des actions coordonnées, informer le public et faciliter l’intégration de la protection de l’espèce dans les activités humaines et dans les politiques publiques.

Dans le bassin, plusieurs PNA concernent des espèces aquatiques ou semi-aquatiques (Apron du Rhône, Moules perlières, Sonneur à ventre jaune, etc.). A noter que des PNA Habitats sont en cours de réflexion, notamment vis-à-vis des oiseaux des roselières et des oiseaux des prairies humides (MTES, 2017).

3.2.6.g - Tendances évolutives

Afin de connaître les grandes tendances vis-à-vis de l’évolution de la biodiversité et des milieux naturels, des observatoires ont été créés : observatoire national (ONB), observatoires régionaux PACA et BFC, lancement d'une Agence Régionale de la Biodiversité en Occitanie, en BFC et en PACA, etc. Ces observatoires développent notamment une série d'indicateurs qui permettent de déterminer les tendances passées et de décrire celles à venir selon un scénario « au fil de l'eau ».

Depuis 6 ans, la tendance est à l'augmentation des espaces protégés (de tout type). Ainsi, un parc national a été créé (forêts en Champagne et Bourgogne) ainsi que deux parcs naturels régionaux. Le Conservatoire du littoral est propriétaire d'environ deux fois plus de terrains (en surface). Plus de 40 arrêtés de biotope supplémentaires ont été pris, et la part de la surface du bassin en site Natura 2000 a augmenté de 3 %. Au niveau national, la part de la superficie terrestre classée en aires protégées a augmenté de 0,1 % entre 2011 et 2018 (1,37 % en 2018). Cette tendance devrait se poursuivre dans les années à venir.

Concernant les pressions, l'extension de ces zones protégées contraste avec la progression de l'artificialisation des sols (132 800 ha supplémentaires sur le bassin entre 2006 et 2018), faisant peser des pressions de plus en plus fortes sur la biodiversité (disparition et fragmentation des habitats). De plus, d'autres indicateurs comme la consommation de produits phytosanitaires en usage agricole, montrent également une absence d'amélioration (+25 % entre 2017 et 2020). Le nombre d'espèces exotiques envahissantes suit également une forte tendance à la hausse (+6,02 par département français tous les 10 ans en moyenne depuis 1979). Ainsi, en termes de pressions sur les milieux naturels et la biodiversité, leur intensité ne semble pas diminuer, voire s'intensifier (à l'image du changement climatique).

Ceci se ressent sur plusieurs groupes d'espèces. Par exemple, au niveau national, une tendance à la diminution des populations d'oiseaux communs spécialistes est observée (-23 % sur la période 1989-2018). Il en est de même pour les populations de chauve-souris (-38 % entre 2006 et 2016).

Cependant, certains indicateurs nationaux montrent une augmentation de l'importance de ces enjeux dans la société. Les efforts financiers annuels totaux pour la préservation de la biodiversité et des paysages ont augmenté de moins de 1 200 millions d'euros en 2000 à plus de 2 000 millions d'euros à partir de 2012. De même, la participation citoyenne aux actions d'éducation à la biodiversité et aux sciences participatives en lien est en constante augmentation.

Ainsi, entre 2000 et 2015, l'état des espèces protégées au niveau national (échantillon de 165 espèces) montre une amélioration, tandis que celle des espèces non protégées (échantillon de 117 espèces) montre une
dégradation, ce qui est cohérent avec une tendance d'érosion de la biodiversité dite « ordinaire ».

L'indice « Zones humides d'eau douce et plans d'eau » indique une amélioration sur cette période grâce, notamment, aux mesures de préservation de ces milieux qui ont permis une augmentation des populations d'oiseaux d'eau (Ibis falcinelle et Spatule blanche observés à nouveau en Camargue par exemple). Cependant, le nombre d'espèces exotiques envahissantes associées à ces milieux augmentent et les petites zones humides et mares temporaires restent fragiles et menacées.

Ce résultat n'est pas observé sur les Salins et lagunes côtières, qui montrent une tendance négative, en lien avec les pollutions et l'altération des échanges d'eau douce et d'eau salée. Ainsi, certaines populations, notamment laro-limicoles coloniaux, restent en déclin. Au niveau des milieux agricoles cultivés, la tendance est similaire (dégradation de l'état de la biodiversité), en témoigne notamment la régression des populations d'oiseaux (Chardonneret élégant et Tourterelle des bois par exemple) et de chauve-souris.

Au niveau du littoral, la forte densité d'espaces protégés profite à certaines espèces et milieux (indice relativement stable dans ces zones protégées). Dans la Provence intérieure, l'indice se dégrade, avec des déclinaisons significatives de populations (Pie-grièche, Murin de Capaccini, Alouette des champs, etc.). Enfin, dans les massifs alpins, l'indice montre une amélioration, également grâce aux espaces protégés et au relief limitant la progression de l'artificialisation.

L'indicateur sur les tendances d'évolution des populations d'oiseaux, suivi sur la période 2002-2013, en Bourgogne, montre des résultats similaires, avec notamment un fort déclin en milieu agricole et en milieu bâti, mais une augmentation en milieu forestier.

Ces éléments doivent être pris avec précaution, du fait du manque de connaissance, particulièrement en zones non protégées, et du faible nombre d'espèces suivies.

Les tendances globales dont témoignent ces indicateurs sont en cohérence avec le travail réalisé par le Commissariat Général au Développement Durable (CGDD) en 2013. L'état de la biodiversité en 2030 selon un scénario tendanciel (appelé « Biodiversité arbitrée ») montre une biodiversité ordinaire en baisse (fragmentation et artificialisation) mais une augmentation des espèces généralistes, résistantes et résilientes, associé à une biodiversité remarquable se maintenant dans quelques îlots de conservation58.

3.2.6.h - Atouts-Faiblesses, Opportunités-Menaces

<table>
<thead>
<tr>
<th>ATOUTS</th>
<th>FAIBLESSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Une situation favorable à une diversité de milieux et d'espèces remarquable</td>
<td>• Des habitats naturels globalement en situation de conservation défavorable. Par exemple, dans la région méditerranéenne sur la période 2013-201859 :</td>
</tr>
<tr>
<td>• Une proportion relativement importante d'espaces protégés ou gérés</td>
<td>- 79 % des habitats d'intérêt communautaire terrestres en état de conservation défavorable ;</td>
</tr>
<tr>
<td>• Des espaces protégés de plus en plus étendus</td>
<td>- 72 % des habitats d'intérêt communautaire marins en état défavorable.</td>
</tr>
<tr>
<td>• Une tendance d'amélioration de l'état de la biodiversité dans les zones protégées</td>
<td>• Pertes importantes de zones humides et de surface toujours en herbe constatées</td>
</tr>
<tr>
<td>• Des résultats encourageants vis-à-vis de plusieurs espèces sur le bassin (retours, augmentation des populations, etc.)</td>
<td>• Des conflits d'enjeux (développement des énergies renouvelables par exemple)</td>
</tr>
</tbody>
</table>

58 Biodiversité et Territoires 2030 : Cinq scénarios d'évolution, Etudes & documents n°86, CGDD, juin 2013
59 Indicateur de l'Observatoire National de la Biodiversité, janvier 2020, calculé à partir d'un échantillon
• Une érosion importante de la biodiversité en dehors des zones protégées
• Faible efficacité des stratégies de diminution des pressions sur la biodiversité

<table>
<thead>
<tr>
<th>OPPORTUNITÉS</th>
<th>MENACES</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Intérêt de la préservation des milieux (associée à celle des paysages) pour l'attractivité du territoire</td>
<td>• Impacts du changement climatique</td>
</tr>
<tr>
<td>• Développement de la conscience environnementale et de l'importance de la biodiversité</td>
<td>• Progression de la surface artificialisée et perte de milieux naturels (notamment surfaces en herbe)</td>
</tr>
<tr>
<td>• Développement du tourisme « vert »</td>
<td>• Augmentation de la pression touristique</td>
</tr>
<tr>
<td>• Tendance des communes (notamment importantes) à vouloir développer les espaces de nature en ville</td>
<td>• Développement des espèces exotiques envahissantes (en nombre et en aire de répartition)</td>
</tr>
<tr>
<td>• Fort développement de l'agriculture biologique et raisonnée</td>
<td>• Dégénération forte de l'état de la biodiversité ordinaire</td>
</tr>
<tr>
<td>• Amélioration continue des connaissances</td>
<td>• Augmentation de l'usage de pesticides agricoles</td>
</tr>
<tr>
<td>• Travaux sur les fonctions des zones humides et l'accompagnement des PGSZH</td>
<td>• Grandes difficultés à diminuer les pressions sur la biodiversité, multiples et variées</td>
</tr>
<tr>
<td>• Des compétences biodiversité nouvelles pour l'Agence de l'eau</td>
<td>• Création de l'Office Français de la Biodiversité</td>
</tr>
</tbody>
</table>

3.2.6.i - Enjeux

Concernant les milieux naturels et la biodiversité, les enjeux associés sont :

• la conciliation des usages de la ressource avec la restauration et la préservation des milieux ;
• la diminution des pressions (artificialisation, pollutions, espèces exotiques envahissantes, etc.) ;
• la préservation de la biodiversité ordinaire.
3.2.7 - Continuités écologiques

3.2.7.a - Caractéristiques

Les continuités écologiques comprennent des réservoirs de biodiversité et des corridors écologiques. Les réservoirs correspondent aux espaces dans lesquels la biodiversité est la plus riche ou la mieux représentée (noyaux de population, origine des dispersions, taille d'habitat suffisante pour la réalisation de tout ou partie des cycles de vie). Les corridors écologiques assurent des connexions entre des réservoirs de biodiversité.

Il faut également noter l'émergence du concept de trames noires, au côté des trames verte et bleue, qui sont utiles aux animaux nocturnes et aux oiseaux migrateurs notamment.

Le bon fonctionnement des écosystèmes et la sauvegarde des espèces reposent donc non seulement sur la préservation des espaces remarquables, mais aussi de manière décisive sur celle de milieux naturels ordinaires, clés sur le plan fonctionnel. Ils servent d'habitats pour la faune sauvage et assurent le rôle de corridors écologiques vers les milieux naturels remarquables. Ce constat est d'autant plus vrai pour les milieux humides. En effet, plus qu'une réelle continuité, les petits plans d'eau, mares, étangs créent une mosaïque de sites relais pour les espèces qui accomplissent une partie de leurs cycles de vie en milieux humides. Ces espaces sont souvent en forte interaction avec les activités humaines. On peut citer les prairies, haies, jardins, sentiers, friches, petits cours d'eau et mares ou plans d'eau de milieux urbains, etc. Ces milieux ordinaires font rarement l'objet de mesures de protection et peuvent être fréquemment et fortement modifiés.

Concernant les milieux aquatiques, la continuité écologique, qu'elle soit longitudinale ou transversale, est un élément contribuant au bon état des eaux. Cette continuité peut être interrompue (fragmentation) par des obstacles, tels que des barrages ou des digues, qui perturbent la circulation des espèces et les transports sédimentaires.

Dans le territoire du bassin Rhône-Méditerranée, il existe deux grands axes principaux de continuité de milieux aquatiques : l'ensemble de sillon rhodanien (poissons migrateurs, avifaune) et le littoral méditerranéen. Les affluents du Rhône et les fleuves côtiers forment également des grands axes de continuité.
Illustration 40 : Carte des réservoirs de biodiversité identifiés dans les SRADDET du bassin (d’après les SRCE)
3.2.7.b - Pressions

La topographie d'une partie du bassin (Alpes et littoral de la région PACA) conduit à une concentration de l'urbanisation dans les vallées et les zones côtières. Ces territoires sont des éléments clés de la biodiversité par leur richesse et le rôle qu'elles jouent dans les continuités écologiques. L'urbanisation se caractérise par l'augmentation des surfaces artificialisées et le développement d'infrastructures de transport qui peuvent fragmenter l'espace de façon significative. En outre, les infrastructures linéaires de transport impactent fortement les écoulements superficiels et souterrains (remblais).

Dans les milieux aquatiques, les multiples aménagements réalisés sur les cours d'eau sont autant d'obstacles pour le déplacement et la dispersion des espèces ainsi que le transport sédimentaire : seuils, chenalisation, barrages, endiguements, lutte contre les inondations, production d'hydroélectricité.

En termes de transit sédimentaire, les impacts de leur interruption sont nombreux :
- érosion du substrat (décapage) et perte d'habitats favorables à la biodiversité en aval de l'obstacle ;
- incision des cours d'eau et baisse du niveau des nappes d'accompagnement, avec possible déconnexion aux milieux alluviaux et impacts sur les prélèvements ;
- déficit sédimentaire parvenant à la Méditerranée, augmentant l'érosion du trait de côte ;
- risques pour la stabilité des ouvrages d'art dus à l'érosion ;
- potentielle augmentation des risques d'inondation en amont des barrages et diminution des capacités de stockage des retenues ;
- etc.

A noter que le déstockage massif de sédiments de barrages sur un temps court non maîtrisé peut également présenter des risques en aval, notamment sur la biodiversité : obstruction des branchies des poissons par les sédiments fins, réduction du taux d'oxygène dans l'eau, colmatage du lit, dégradation des habitats, contaminations des eaux, etc.

3.2.7.c - La réglementation et les dispositifs de connaissance, de suivi ou d'action

Le classement des cours d'eau en listes 1 et 2

La LEMA de 2006 a introduit le classement des cours d'eau, définit à l'article L.214-17 du Code de l'Environnement, afin de répondre aux objectifs de la DCE.

Ainsi, deux listes sont définies :
- les cours d'eau (ou tronçons) classés en liste 1 sont ceux sur lesquels aucune autorisation ou concession ne peut être accordée pour la construction de nouveaux ouvrages s'ils constituent un obstacle à la continuité écologique (au sens de l'article R.214-109 du même Code). Pour les ouvrages existants, le renouvellement de l'autorisation des ouvrages existants est subordonné à des prescriptions particulières (vis-à-vis de l'état écologique des eaux et de la protection des poissons migrateurs amphihalins) ;
- les cours d'eau (ou tronçons) classés en liste 2 sont ceux qui nécessitent des actions de restauration de la continuité écologique (transport des sédiments et circulation des espèces). Tout ouvrage faisant obstacle doit y être géré, entretenu et équipé selon des règles définies par l'autorité administrative, en concertation avec le propriétaire ou, à défaut, l'exploitant. Le délai donné pour la restauration de la continuité biologique et sédimentaire sur les ouvrages y faisant obstacle était fixé à fin 2018.
Les classements des cours d'eau ont été arrêtés par le Préfet coordonnateur de bassin le 19 juillet 2013.

Illustration 41 : Carte des classements en liste 1 et liste 2 des cours d'eau du bassin
Sur la base du classement liste 2 et du Plan de Gestion des Poissons Migrateurs (PLAGEPOMI), 1 375 ouvrages ont été désignés comme prioritaires pour la restauration de la continuité écologique dans le bassin RM. En 2018, les actions de restauration sont terminées (ou quasiment) sur 249 ouvrages prioritaires. Pour 481 autres, des études d'avant-projets ou des scénarios d'aménagement ont été établis. Enfin, une part non négligeable (16 %) des ouvrages prioritaires en sont toujours au stade prévisionnel.

Le Plan de Gestion des Poissons Migrateurs (PLAGEPOMI) Rhône-Méditerranée

Le PLAGEPOMI 2016-2021 définit, pour 6 ans, les objectifs, priorités et recommandations en faveur de la préservation de trois espèces (anguille, alose feinte du Rhône et lamproie marine). Le PLAGEPOMI 2022-2027 est en cours de révision.

Les actions sont regroupées selon cinq grandes orientations. L'orientation 1 porte sur les objectifs opérationnels de reconquête des axes de migration et de la restauration des habitats. La 2ème orientation décrit des recommandations en matière de pêche en eau douce et maritime. Les orientations 3 et 4 décrivent respectivement le dispositif de suivi et les besoins de connaissances. La dernière orientation porte sur la valorisation des actions menées et la sensibilisation du public.

A noter qu'un observatoire des poissons migrateurs amphihalins Rhône-Méditerranée a été créé. Il permet notamment de présenter les espèces suivies et de décrire l'état des populations à partir de sites de suivi.

La Trame Verte et Bleue (TVB)

La Trame verte et bleue est un réseau formé de continuités écologiques terrestres et aquatiques identifiées par les Schémas Régionaux de Cohérence Écologique (SRCE) ainsi que par les documents de l’État, des collectivités territoriales et de leurs groupements. Elle constitue un outil d'aménagement durable du territoire.

La Trame verte et bleue contribue à l'état de conservation favorable des habitats naturels et des espèces et au bon état écologique des masses d'eau. Elle s'étend jusqu'à la laisse de basse mer et dans les estuaires, à la limite transversale de la mer.

Dans chaque région administrative, le SRADDET constitue désormais l’outil de la mise en œuvre de la TVB (SRCE en annexe). Il comporte une cartographie au 1/100 000e des continuités écologiques à enjeu régional, opposable aux documents d’urbanisme et un plan d’action.

Autres domaines d'actions

A l'image des contrats de rivières, certains acteurs ont mis en place des contrats de corridors biologiques sur leur territoire. C'est notamment le cas sur le territoire franco-valdois-genevois (Grand Genève), sur le PNR du Pilat ou encore le Vesancy-Versoix.

D'autres actions peuvent présenter des effets bénéfiques sur la restauration ou la préservation des continuités écologiques. Il peut s'agir, par exemple, de la diminution des prélèvements d'eau, de la restauration de zones humides, de la préservation des espaces de bon fonctionnement, etc.
En termes de continuités écologiques des cours d'eau (trame bleue), les tendances sont à l'amélioration de la situation. Les objectifs réglementaires, notamment associés aux cours d'eau liste 2, se poursuivent et devraient être atteints dans les prochaines années.

Par ailleurs, la prise en compte des trames vertes et bleues de plus en plus forte par les documents de planification locale, en particulier les PLU et les SCoT, sous l'impulsion des SRCE puis des SRADDET, pourrait aboutir à de multiples opérations de restauration et à la limitation des dégradations de la trame bleue.

A l'image de l'évolution tendancielle des pressions évoquée dans le chapitre précédent (milieux naturels et biodiversité), la perte de fonctionnalité des trames vertes apparaît comme plus difficile à enrayer. Les espaces relais (milieux agricoles, prairies en herbe, etc.) et les éléments forts de continuité tels que les bosquets suivent toujours une tendance de perte de linéaire ou de surface (diminution de 5 700 ha par an de haies et d'alignements d'arbres entre 2006 et 2012, et de 8 000 ha entre 2012 et 201460).

La taille moyenne de maille des espaces naturels en France métropolitaine est ainsi passée de 100,44 km² en 1990 à 99,97 km² en 2006 (indicateur ONB).

La tendance est donc à la poursuite de la disparition de ces milieux, même si plusieurs leviers pourraient permettre d'améliorer la situation : le développement de la valorisation du bois des haies, le développement de l'agroforesterie, etc.

60 Enquête Terruti-Lucas du service statistique du ministère de l'Agriculture
3.2.7.e - Atouts-Faiblesses, Opportunités-Menaces

<table>
<thead>
<tr>
<th>ATOUTS</th>
<th>FAIBLESSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Une politique forte de restauration et de protection des continuités écologiques des cours d'eau</td>
<td>• Des territoires en Auvergne-Rhône-Alpes et Bourgogne-Franche-Comté comptant de nombreux obstacles (parfois plus de 40 obstacles pour 100 km de linéaire hydrographique)</td>
</tr>
<tr>
<td>• Une bonne connaissance scientifique et cartographique des grandes continuités écologiques, sous l'impulsion des SRCE</td>
<td>• A l'échelle de Rhône-Méditerranée, une moyenne d'un obstacle tous les 3,3 km</td>
</tr>
<tr>
<td>• Des régions PACA et ancien Languedoc-Roussillon présentant un nombre d'obstacles pour 100 km de linéaire hydrographique parmi les plus faibles de France métropolitaine</td>
<td>• Des secteurs, notamment en plaine du Rhône et littoral méditerranéen aux milieux naturels très fragmentés (zones avec une taille moyenne de maille des espaces naturels de moins de 4 km², voire entre 0 et 1 km²)</td>
</tr>
<tr>
<td>• Des secteurs alpin du sud et pyrénéen qui montrent une fragmentation des habitats relativement moins importante (taille moyenne de maille des espaces naturels de plus de 120 km²).</td>
<td>• Une proportion de territoires artificialisés en moyenne plus importante qu'au niveau national</td>
</tr>
<tr>
<td></td>
<td>• L'absence d'un cadre de protection des sols</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OPPORTUNITÉS</th>
<th>MENACES</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Mise en œuvre des SRADDET, reprenant les TVB, au poids juridique plus fort</td>
<td>• La progression de l'artificialisation des terres, participant à la fragmentation des habitats</td>
</tr>
<tr>
<td>• Le développement de la valorisation des haies, notamment du bois, sous l'impulsion des futurs schémas régionaux de biomasse</td>
<td>• Les conflits d'enjeux, notamment entre production d'énergie renouvelable et continuité écologique</td>
</tr>
<tr>
<td>• Des objectifs réglementaires à atteindre</td>
<td>• L’intensification des effets cumulés</td>
</tr>
<tr>
<td>• La progression vers le bon état des masses d'eau</td>
<td></td>
</tr>
<tr>
<td>• Une sensibilisation et des expériences qui se développent (acteurs, public, experts)</td>
<td></td>
</tr>
</tbody>
</table>

3.2.7.f - Enjeux

Les deux enjeux principaux associés aux continuités écologiques sont :

- la diminution de la fragmentation des milieux ;
- la préservation des continuités écologiques, y compris latérales.
3.2.8 - Paysage et patrimoine

Le paysage est défini comme « une partie de territoire telle que perçue par les populations, dont le caractère résulte de l'action de facteurs naturels ou humains et de leurs interrelations dynamiques. » (art. 171 de la loi biodiversité).

Les éléments forts du paysage et du patrimoine architectural structurent le territoire et créent un sentiment d’appartenance pour les habitants. Ils sont sources de nombreuses aménités pour la population, améliorent le cadre de vie et sont créateurs de lien social. Aujourd’hui, si la présence des reliefs, de l’eau et de la végétation constitue toujours une symbolique forte, comme les milieux naturels les paysages subissent des pressions anthropiques de plus en plus importantes, conduisant souvent à leur banalisation, leur dégradation ou leur disparition.

3.2.8.a - Caractéristiques

Au-delà des emblèmes du bassin tels que les Alpes, avec son sommet le plus haut, le Mont Blanc et ses lacs, les Gorges, notamment du Verdon, la Côte d’Azur et la Camargue, le Jura ou encore le Canal du Midi, le bassin présente un ensemble complet de paysages très variés : hautes terres, montagnes boisées, coteaux, campagnes d’altitude, bocages, terres de grandes cultures, fleuves majeurs de plaine, vallées, gorges et défilés, littoral sont autant d’entités paysagères remarquables du territoire. L’eau apparaît comme une composante majeure de nombre d’entre eux.

L’ensemble de ces paysages est marqué par les activités humaines, de façon plus ou moins intense, des petites communes rurales ou de montagne jusqu’aux centres urbains très denses où se concentrent plusieurs millions d’habitants. Les traces de l’implantation humaine sont millénaires (premières traces d’occupation au niveau de la grotte du Vallonet dans les Alpes-Maritimes et du bois de Riquet dans l’Hérault notamment).

Il existe dans le bassin Rhône-Méditerranée un important patrimoine architectural et culturel lié à l’eau (seuils, moulins, ponts, canaux, etc.), qui participe de l’identité culturelle et sociale des territoires et de la qualité des paysages.

Toutefois, le maintien de ce patrimoine peut (parfois) être remis en cause par la recherche d’une meilleure qualité physique et biologique des écosystèmes aquatiques, en particulier dans le cadre du rétablissement des continuités écologiques le long des cours d’eau.

3.2.8.b - Pressions

Les facteurs influençant les paysages sont nombreux, et la qualité de ceux-ci peut en être impactée de façon négative.

Les changements d’usages du sol

Des larges vallées alluviales aux plateaux de haute altitude, l’activité agricole continue d’influencer et de modeler les paysages. Ainsi, les changements d’usages du sol, que ce soit en perte ou création de surface
agricole, ou en changement de cultures ou de type d’agriculture modifient les paysages. L’abandon de l’activité pastorale sur certaines surfaces en herbe par exemple favorise la fermeture progressive de la zone par une végétation arbustive. Le retournement de prairies pour en faire des zones de culture change également les paysages en créant des zones monospécifiques.

Par ailleurs, l’évolution des pratiques agricoles peut se traduire par une diminution du cloisonnement des champs, une disparition des canaux et des paysages associés et à une homogénéisation sous l’influence de la spécialisation des pratiques culturelles. Tout un patrimoine culturel et architectural a tendance à disparaître, faute d’une utilité sociale ou économique ou du fait de l’effondrement urbain : canaux gravitaires d’irrigation, martelières, etc.

L’agriculture n’est pas le seul facteur de changement d’usages du sol. L’urbanisation, notamment à proximité des grandes zones urbaines et sur le littoral, change également le paysage par la reprise de territoire autrefois supports de l’activité agricole ou de milieux naturels. La réalisation de grands aménagements et de grands axes de communication, majoritairement dans les vallées et sur le littoral, ont également créé des structures linéaires marquantes dans le paysage.

Le développement des énergies renouvelables peut avoir des impacts sur les paysages. Les éoliennes, parcs photovoltaïques ou barrages hydroélectriques sont des aménagements qui sont particulièrement visibles. L’implantation d’installations de production d’énergies renouvelables implique donc de mener une réflexion de planification intégrant les enjeux paysagers en amont des projets et de mettre en place une concertation entre les acteurs pour faire émerger un vrai projet permettant son appropriation et la mesure des impacts par les acteurs du territoire.

Enfin, les activités de loisirs impactent également la qualité des paysages, particulièrement en zone de montagne. La multiplication de domaines skiables en haute montagne, associée au développement de stations de ski et d’aménagements permettant la pratique de ces activités, augmentent le taux d’artificialisation des paysages jusqu’aux plus hauts sommets.

Le changement climatique

Les paysages reposent sur la composition et la structuration des habitats « naturels ». Ils sont ainsi directement concernés par les évolutions qui touchent ces derniers. Ce phénomène a déjà modifié et modifiera certainement encore considérablement les paysages. Des bouleversements importants, notamment sur la répartition de la végétation sont donc susceptibles d’impacter les paysages dans les années et décennies à venir.

Ces changements sont d’ores et déjà particulièrement remarquables en montagne (disparition d’éléments marquants le paysage comme les glaciers, diminution des surfaces toujours enneigées, etc.).

Les risques naturels

Ces risques (qui peuvent découler de la modification profonde des paysages en favorisant le ruissellement, les coulées de boues, les avalanches ou l'intrusion marine), comme les inondations et les incendies, peuvent impacter le patrimoine paysager pour plusieurs dizaines d’années. Ils peuvent aussi être à l’origine de la destruction du patrimoine bâti (ouvrages d’art, patrimoine remarquable au fil de l’eau, etc.). De plus, la lutte contre les risques nécessite parfois la réalisation d’équipements qui modifient les paysages (vigies, endiguements, coupe-feux forestiers, dessertes anti-incendie, citernes, bassins de rétention, etc.).

A noter que le rétablissement de la continuité écologique peut parfois amener à entrer en conflit avec des enjeux paysagers ou culturels (miroir paysager des retenues d'eau de moulin par exemple). La construction d'un projet global visant une démarche multi-enjeux (culturels, paysagers, environnementaux, voire économiques) et associant les acteurs locaux apparaît alors comme primordiale afin de parvenir à l'aboutissement de l'opération.
3.2.8.c - La réglementation et les dispositifs de connaissance, de suivi ou d'action

Directement inspirée de la Convention européenne du paysage, adoptée le 20 octobre 2000, la politique nationale en matière de paysage poursuit deux objectifs :

- préserver et promouvoir la qualité et la diversité des paysages à l’échelle nationale ;
- faire du paysage une composante opérationnelle des démarches d’aménagement de l’espace.

Pour cela, elle vise à développer la connaissance des paysages (Atlas des paysages et observatoires photographiques des paysages), à formuler des objectifs de qualité paysagère (Plans de paysage, SCoT et Charte de PNR) et à promouvoir une culture du paysage.

Le patrimoine mondial de l’UNESCO

Sur la base de la Convention concernant la protection du patrimoine mondial, culturel et naturel, adoptée en 1972, l’UNESCO encourage l’identification, la protection et la préservation de sites considérés comme ayant une Valeur Universelle Exceptionnelle (VUE). Cette dernière concerne notamment le bien en lui-même, mais également les vues, à courte, moyenne et longue distances qui en font partie intégrante, autant qu’elles contribuent à une identité locale affirmée. En droit français, la préservation du site UNESCO est souvent réalisée à travers les autres outils (PN, PNR, RN, etc.).

Douze biens culturels sont inscrits au patrimoine mondial de l’UNESCO dans le bassin RM. Il s’agit du site historique de Lyon, de la Grotte ornée du Pont d’Arc (Grotte de Chauvet), des sites palafittiques autour des Alpes (9 sites, vestiges d’établissements préhistoriques sur pilotis), du Pont du Gard, de la ville fortifiée de Carcassonne, du Canal du Midi, du centre historique d'Avignon, des monuments romains et romans d'Arles, du Théâtre antique, de ses abords et « Arc de Triomphe » d'Orange, de la grande saline de Salins-les-Bains à la saline royale d'Arc-et-Senans, des Climats du vignoble de Bourgogne, et d'une des douze fortifications de Vauban inscrites (citadelle, enceinte urbaine et fort Griffon de Besançon).

Il ne compte pas de biens naturels ou mixtes (6 en France).

Les directives de protection et de mise en valeur des paysages

Les Alpilles et le Mont Salève sont les deux sites en France couvert par des directives de protection et de mise en valeur des paysages, au regard de la qualité et de la variété de ses paysages, menacés par une urbanisation croissante et une sur-fréquentation touristique.

Les sites classés et inscrits

La loi du 2 mai 1930 ayant pour objet de réorganiser la protection des monuments naturels et des sites de caractère artistique, historique, scientifique, légendaire ou pittoresque a mis en place l’inscription et la protection de sites remarquables. Les sites classés sont des espaces reconnus nationalement comme exceptionnel du point de vue du paysage, et intégrant à ce titre le patrimoine national. Les sites inscrits quant à eux, sont des monuments naturels et des sites dont la conservation ou la préservation présente un intérêt général. Il s’agit d’une protection moins forte que pour les sites classés.

Le bassin compte un peu plus d'un millier de sites inscrits ou classés. Les sites classés représentent une surface d’environ 900 500 ha et 20 d’entre eux ont une superficie de plus de 20 000 ha. Parmi ces sites, des sites naturels emblématiques sont recensés, comme le massif du Mont Blanc, la Camargue, la chaîne des Alpilles, le lac du Salagou, etc.
Parmi ces sites, le label « Grand site de France » peut être attribué à un site classé de grande notoriété et de forte fréquentation. Il est accompagné d’un projet de préservation, de gestion et de mise en valeur du site, dans une perspective de développement durable.

Les monuments historiques et leur abord

La protection au titre des monuments historiques constitue une servitude de droit public. Toute intervention d’entretien, de réparation, de restauration ou de modification doit être réalisée en maintenant l’intérêt culturel qui a justifié le classement de l’immeuble. La protection des monuments historiques est indissociable de l’espace qui les entoure. Une vigilance particulière est donc appliquée concernant toute modification sur cet espace. La région compte plusieurs milliers de monuments historiques classés ou inscrits.

Les Sites Patrimoniaux Remarquables (SPR)

Les sites patrimoniaux remarquables remplacent les Aires de mise en Valeur de l’Architecture et du Patrimoine (AVAP) ainsi que les secteurs sauvegardés au titre de la loi du 7 juillet 2016 relative à la liberté de la création, à l'architecture et au patrimoine. Ce sont « les villes, villages ou quartiers dont la conservation, la restauration, la réhabilitation ou la mise en valeur présente, au point de vue historique, architectural, archéologique, artistique ou paysager; un intérêt public » ainsi que « les espaces ruraux et les paysages qui forment avec ces villes, villages ou quartiers un ensemble cohérent ou qui sont susceptibles de contribuer à leur conservation ou à leur mise en valeur » (article L.631-1 du Code du Patrimoine). Le bassin compte près de 500 sites patrimoniaux remarquables.

Les autres mesures de gestion et de préservation des paysages

Les documents d’urbanisme doivent intégrer le paysage dans leurs projets d’aménagement. Ils offrent également la possibilité d’inscrire des règles de préservation des structures paysagères comme la préservation de cônes de vue, la protection d’éléments de paysage, etc. mais peu de collectivités utilisent encore pleinement ces outils.

A ces échelles, des plans de paysage (démarche volontaire de prise en compte des paysages dans les politiques sectorielles d’aménagement du territoire) peuvent être élaborés et parfois intégrés dans les SCoT.

Les politiques publiques foncières d’acquisitions et de gestion des espaces naturels sont aussi des outils de conservation des paysages, menées par les communes, les Conseils Départementaux à travers la politique des Espaces Naturels Sensibles ou le Conservatoire des Espaces Naturels. Les autres propriétés publiques, notamment forestières (forêt domaniale, départementale et communale) constituent aussi des outils de préservation et de gestion des paysages.

Enfin, à des fins de préservation des paysages notamment, plusieurs PNR identifient des espaces de paysage remarquable au sein de leur territoire à préserver et/ou à restaurer.
Illustration 42 : Carte des éléments de protection du paysage sur le bassin
3.2.8.d - Tendances évolutives

L'évolution des paysages est fortement liée à celle des pressions qui sont décrites par ailleurs : changement d'usage des sols, changement climatique, catastrophes naturelles, tourisme, fragmentation, etc., ou des changements de pratiques : pastoralisme, maintien des prairies naturelles, ouverture du paysage, etc.

Elle est toutefois très différente selon les territoires et les tendances de dégradation ou d'amélioration sont globalement propres aux sensibilités de chacun.

Une poursuite de l'aménagement des territoires (grands équipements, étalement urbain, etc.) est probable, associé à la continuité des déprès agricoles entraînant la fermeture des milieux, notamment en moyenne montagne.

Par ailleurs, les évolutions attendues sur les phénomènes climatiques intenses pourraient provoquer des dégradations du paysage et du patrimoine.

Enfin, à l'image des enjeux de biodiversité, un écart de plus en plus conséquent peut se creuser du fait de la préservation forte de certains sites, associée à la dégradation des paysages d'autres zones.

3.2.8.e - Atouts-Faiblesses, Opportunités-Menaces

<table>
<thead>
<tr>
<th>ATOUTS</th>
<th>FAIBLESSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Des paysages diversifiés, des plus hauts sommets d'Europe aux grands espaces littoraux</td>
<td>• Certains paysages fragmentés par les grands axes de communication et aménagements</td>
</tr>
<tr>
<td>• Une multitude de sites protégés, patrimoine naturel ou artificiel, à valeur locale, nationale et internationale (dont quelques-uns des sites les plus emblématiques de France)</td>
<td>• Des conflits entre qualité des paysages et enjeux économiques, voire énergétique, notamment en haute-montagne et sur le littoral</td>
</tr>
<tr>
<td>• Un patrimoine culturel et architectural lié à l'eau d'importance</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OPPORTUNITÉS</th>
<th>MENACES</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Une richesse de plus en plus intégrée par les politiques locales au travers des documents d'urbanisme notamment</td>
<td>• Une grande importance de l’enjeu touristique, sur un fond de changement climatique croissant</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.2.8.f - Enjeux

Concernant les paysages, les enjeux environnementaux associés sont principalement :

- la préservation de la qualité et de la diversité des paysages ;
- la conciliation des enjeux entre préservation du patrimoine lié à l'eau et restauration des continuités écologiques.
3.2.9 - *Risques naturels et technologiques*

On distingue les risques naturels et les risques technologiques :

- **les risques naturels** se rapportent à des aléas qui font intervenir des processus naturels variés : atmosphériques, hydrologiques, géologiques ou géomorphologiques ;
- **les risques technologiques** sont liés à l'action humaine et majoritairement à la manipulation, au transport ou au stockage de substances dangereuses pour la santé et l’environnement.

Le risque se situe à la croisée entre, d'une part, un ou plusieurs aléas et, d'autre part, la vulnérabilité d'une société et/ou d'un territoire qu'elle occupe. L'aléa ne devient un risque qu'en présence d'enjeux humains ou économiques.

Le risque, d'origine naturelle ou technologique, est dit majeur lorsqu'il peut faire de très nombreuses victimes et occasionner des dommages considérables, dépassant les capacités de réaction des instances concernées (États, sociétés civiles) à l'échelle de la zone touchée. Le risque majeur est caractérisé conjointement par une faible probabilité d’occurrence et des impacts énormes.

3.2.9.a - *Le risque naturel principal sur le bassin : l'inondation*

Différents types d'inondation

Les inondations du bassin Rhône-Méditerranée peuvent être classées en quatre catégories :

- les inondations par débordement de cours d’eau (inondations de plaine à crues lentes, inondations à crues rapides, laves torrentielles, et inondations par remontée de nappes phréatiques) ;
- les inondations par submersion marine ;
- les inondations liées aux phénomènes de ruissellement et indépendantes des débordements de cours d’eau ;
- les inondations par rupture d’ouvrages hydrauliques (digues et barrages), souvent liées à une inondation par débordement de cours d’eau ou submersion marine.

Les crues par débordement de cours d'eau

Les crues par débordements de cours d’eau sont très hétérogènes en fonction des spécificités hydroclimatiques et physiques de chaque territoire. Le bassin Rhône-Méditerranée peut faire l’objet d’inondations de plaine lentes et très étendues (sur la Saône ou le Rhône par exemple), rapides (inférieur à 12 h) et moins étendues sur les plus petits bassins-versants, voire torrentielles sur les territoires faisant l’objet de fortes précipitations (orages, précipitations méditerranéennes).

Les **crues océaniques** se produisent en saison froide et concernent plus particulièrement la partie nord du bassin (bassin de la Saône).

Les **crues cévenoles** se produisent en général entre mi-septembre et fin octobre, et se concentrent sur le rebord oriental du Massif Central. Elles sont exceptionnelles par leur puissance et par la rapidité de montée des eaux.

Les **crues méditerranéennes extensives** ont des caractéristiques proches des pluies cévenoles tout en se différenciant par l’extension du domaine d’action qui peut englober la totalité des bassins en aval de Valence et monter dans le couloir rhodanien jusqu’à Lyon voire au-delà, affectant l’extrémité aval des bassins de la

Les risques liés aux **crues torrentielles en zone de montagne**, qui peuvent dans certains cas s'accompagner de déferlements de boues (laves torrentielles) pouvant générer de gros dégâts à proximité de ces torrents parfois endigués dans des secteurs qui accueillent une partie de l'urbanisation souvent récente. Le bassin Rhône-Méditerranée, qui couvre 5 massifs (les Vosges, le Jura, les Alpes, le Massif Central et les Pyrénées) et la barrière rocheuse des Cévennes, est particulièrement concerné par ces phénomènes.

Enfin, certains phénomènes météorologiques peuvent entraîner des **crues générales** qui affectent la totalité du bassin rhodanien. Ces crues extrêmes correspondent à la succession, dans un intervalle plus ou moins rapproché, de plusieurs pluies dont l’une au moins est méditerranéenne extensive. L’examen des crues passées ne permet pas d’identifier une période plus propice à l’observation de ce type de crues. Un exemple en est la crue historique sur le Rhône et ses affluents en 1856.

Les inondations par submersion marine

Les risques liés aux **inondations par submersions marines** sont dus à une élévation temporaire du niveau de la mer et à son état d’agitation. Sont plus particulièrement concernées les côtes sableuses et les zones littorales les plus basses, qui peuvent être submergées lors de situations météorologiques particulières ou de phénomènes tectoniques sous-marins. Les houles généralement observées sont liées à des vents d’Est à Sud et impactent le plus souvent le Golfe du Lion (submersions de novembre 1982 et décembre 1997).

Le risque de submersion marine est particulièrement fort en Camargue (Saintes Maries de la Mer, Port-Saint-Louis) où plusieurs phénomènes sont susceptibles de se combiner et d’amplifier le risque : une forte marée, une marée de tempête, une crue du Rhône et de ses affluents et la rupture des digues littorales ou de cordons sédimentaires.

L'étude sur la caractérisation de l'aléa submersion marine sur le périmètre régional PACA61 a permis de caractériser la vulnérabilité du littoral méditerranéen selon les secteurs. Ainsi, les zones les plus affectées sont celles « situées au niveau des plaines alluviales des fleuves côtiers (Huveaune, Gapeau, Argens, Siagne, etc.), à la topographie basse et plane, et où interagissent des phénomènes d'inondation et de submersion marine ». Les plages accolées aux falaises plages urbaines avec un ouvrage de protection sont exposées plus faiblement, mais de façon plus forte aux submersions par franchissement (paquets de mer) et apparaissent comme faiblement résilientes vis-à-vis de l’augmentation du niveau de la mer. Quant à l'exposition des zones portuaires, elle est quasi-totale par des emprises d'aléa submersion marine. De plus, elles sont également probablement vulnérables à la surélévation du niveau marin par les vagues.

Les inondations par ruissellement

Les risques liés aux inondations dues aux **phénomènes de ruissellement** et indépendantes des débordements de cours d'eau sont observables dans les zones karstiques en cas de saturation des exutoires naturels (département du Doubs notamment) ou en site urbain comme à Nîmes en juillet 1988 ou à Marseille en 2000.

Les hauteurs d'eau et les vitesses d'écoulement peuvent causer des dégâts importants et mettre en danger la population.

Les inondations par rupture d'ouvrages hydrauliques

Enfin, les rivières du bassin Rhône-Méditerranée accueillant près de 20 000 seuils et barrages, la problématique d’inondation par rupture d'ouvrages hydrauliques est importante, avec des conséquences potentielles dévastatrices (exemple : barrage de Malpasset, en 1959). Les digues de protection, qui offrent une protection relative pour certaines crues, présentent un risque important pour les événements d’intensité supérieure au dimensionnement de l’ouvrage. Ainsi, la région PACA estime que les digues du Rhône sont essentielles pour la protection de 45 000 à 65 000 riverains vis-à-vis des crues.

Les inondations par remontées de nappe phréatique, quoique possibles, ne sont pas détaillées ici, aucune crue significative connue propre à ce phénomène n’ayant été recensée dans le bassin Rhône-Méditerranée en l’état des connaissances actuelles. Cependant, une étude récente a démontré que, pour le val de Saône en amont de la Seurre, le lit majeur se remplit avant même que la Saône ne déborde (phénomène de remontée de nappe et de remplissage du lit majeur par les tributaires).

Origine et facteurs aggravants

Les inondations par débordements de cours d'eau et ruissellements

Les inondations sont fonction des spécificités hydro-climatiques (précipitations océaniques, méditerranéennes, combinaison des deux, orages, fonte du manteau neigeux) et physiques (taille du bassin versant, résurgences karstiques, influence anthropique, zones de montagne) de chaque territoire. Sur le bassin Rhône-Méditerranée, les inondations sont souvent concomitantes à des épisodes pluvieux intenses de type méditerranéen ou océanique, qui surviennent généralement à l'automne mais aussi au printemps.

Sur les cours d'eau, l'aléa peut être aggravé par les activités humaines telles que :

- l'urbanisation, l'imperméabilisation et la dégradation des sols, l'utilisation de certaines pratiques agricoles pouvant accélérer les ruissellements ;
- la modification des régimes d'écoulements des cours d'eau (barrages, écluses, déficit d'entretien du lit, travaux de recalibrage voire de couverture des cours d'eau, endiguement, constructions de remblais dans les zones d'expansion des crues, etc.) ;
- l'absence de gestion et de coordination des barrages à l'approche des crues ;
- les activités anthropiques induisant des modifications climatiques globales.

L’activité agricole est principalement concentrée dans les plaines et les vallées alluviales, secteurs potentiellement en zone inondable. La compatibilité de cette activité dans les zones d’inondation constitue de fait un enjeu fort pour la préservation durable des champs d’expansion de crues.

L’évolution de la population traduit cependant une forte consommation de cet espace poussée par une expansion urbaine croissante (attraction forte des grands pôles urbains et du pourtour méditerranéen, périurbanisation aux abords des grandes agglomérations). Elle est d’autant plus accentuée lorsque le relief est marqué et tend à réduire les territoires interstitiels entre les pôles urbains. Cette forte pression démographique, susceptible d'entraîner une consommation des zones d'expansion de crues, une artificialisation des sols et une augmentation de la concentration d'enjeux en zone inondable, est un facteur de risque important.

A ce titre, la maîtrise des eaux pluviales constitue un enjeu majeur de l'urbanisation afin d'assurer la protection des biens et des personnes contre les inondations par temps de pluie et de limiter les pollutions par débordement de cours d'eau.
Les submersions marines et la mobilité du trait de côte

La vulnérabilité en zone littorale est particulièrement importante lorsque se conjuguent une forte pression humaine (urbanisation, développement touristique…) et un niveau des terres proche de celui de la mer.

Impacts historiques et potentiels

La lutte contre les risques inondations relève d'enjeux humains et financiers importants, comme en témoignent les conséquences de quelques crues majeures subies dans le bassin (non exhaustif) :

- Nîmes (octobre 1988) : orage à l'origine de crues par ruissellement à Nîmes ayant entraîné 9 victimes et 625 millions d'euros de dégâts matériels ;
- Vaison-la-Romaine (1992) : crue de l'Ouvèze par débordement à l'origine de 46 victimes et de 460 millions d'euros de dégâts matériels ;
- Aude (novembre 1999) : crue torrentielle et ruissellement de l'Aude et affluents, ayant entraîné 35 victimes et 530 millions d'euros de dégâts matériels ;
- Gard (septembre 2002) : crue des Gardons par débordement à l'origine de 23 victimes et de 1,2 milliards d'euros de dégâts matériels ;
- Bas-Rhône (décembre 2003) : crue du Rhône aval par débordement à l'origine de 7 victimes et d'un milliard d'euros de dégâts matériels ;
- Var (juin 2010) : crues de l'Argens et de la Nartuby ayant causé 23 victimes, 2 disparus et plus d'un milliard d'euros de dégâts matériels ;
- Arc méditerranéen (automne 2014) : multiples événements (débordement, crues torrentielles et submersion marine) à l'origine de 17 victimes ;
- Alpes-Maritimes (octobre 2015) : crues par débordement et ruissellement à l'origine de 20 victimes et de 550 à 650 millions d'euros de dégâts matériels estimés ;
- Aude (octobre 2018) : débordement suite à un épisode méditerranéen très violent, à l'origine de 14 victimes et 200 millions d'euros de dégâts matériels ;
- Alpes-Maritimes (octobre 2020) : crues rapides et laves torrentielles dans les vallées de la Roya, de la Vésubie, du Boréon et de la Tinée, suite au passage de la tempête Alex, à l'origine de 8 victimes (11 personnes disparues) et de près d'un milliard d'euros de dégâts matériels.

L’estimation de ces indicateurs s’est appuyée sur la définition d’une enveloppe approchée des inondations au regard de l’événement extrême potentiel pour les débordements de cours d’eau et les submersions marines.

Il ressort de ce diagnostic macroscopique que près de 18 % de la surface du district est concernée par ces deux enveloppes. La population du bassin versant en zone inondable est ainsi estimée à 5,5 millions d'habitants pour les débordements de cours d'eau et près de 230 000 pour la submersion marine. En termes d'emploi, 2,9 millions d'emplois sont susceptibles d'être directement impactés par des inondations par débordements de
cours d'eau et 133 200 par des phénomènes de submersion marine.

Comparativement aux autres districts français, l'évaluation de ces indicateurs fait ressortir le bassin Rhône-Méditerranée comme le premier district concerné par les inondations par débordements de cours d'eau et le troisième pour les submersions marines derrière les bassins Artois-Picardie et Loire-Bretagne.

D'après la base Gaspar (avril 2019), près de 66 % des communes du bassin sont concernées par le risque d'inondation. Parmi elles, 141 présentaient un coût cumulé des sinistres inondation, entre 1995 et 2015, de plus de 5 millions d'euros (source : Observatoire national des risques naturels). Le pourcentage des communes concernées est assez variable entre le nord et le sud du bassin. Par exemple, 91 % des communes de PACA sont concernées, quand 48 % des communes de BFC le sont.

L'activité touristique du bassin est source d’une forte variation démographique saisonnière principalement sur sa partie sud et dans les zones de montagne. Le pic de cette affluence peut être concomitant avec la survenue d'éventuelles inondations. Parmi la population saisonnière, les personnes résidant dans les campings sont particulièrement vulnérables aux inondations (Grand-Bornand en 1987, Vaison-la-Romaine en 1992, etc.).

Autre impact potentiel des inondations, la pollution de l'eau. La montée des eaux dans les zones artificialisées et agricoles peut provoquer de nombreuses contaminations (carburant, produits stockés et/ou entreposés, métaux, plastiques, etc.). D'autre part, dans le cas de submersions marines, l'apport important d'eau de mer entraîne la salinisation d'écosystèmes qui n'y sont adaptés. Les impacts sur les usages de l'eau, y compris sanitaires, sur la biodiversité et sur les milieux naturels peuvent alors être très importants.

ZOOM : Inondations et réseaux

On distingue plusieurs types de réseaux, de par l'échelle à laquelle ils fonctionnent ou par le secteur d'activité auquel ils correspondent :

<table>
<thead>
<tr>
<th>Eaux</th>
<th>Énergies</th>
<th>Télécoms</th>
<th>Transports</th>
<th>Déchets</th>
</tr>
</thead>
<tbody>
<tr>
<td>National</td>
<td>Transport d'électricité, transport de gaz et d'hydrocarbures</td>
<td>Téléphonie fixe, téléphonie mobile, téléphone satellite, radio, Internet…</td>
<td>Réseau ferré, autoroutes, voies navigables, aéroports…</td>
<td>Collecte, transport, traitement des déchets</td>
</tr>
<tr>
<td>Local</td>
<td>Production et approvisionnement en eau potable, assainissement</td>
<td>Distribution d'électricité, distribution de gaz et d'hydrocarbures, chauffage urbain, éclairage public</td>
<td>Réseau routier urbain et interurbain, tram, métro, bus</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 14 : Types de réseaux (source : Le territoire et ses réseaux techniques face au risque d'inondation)

La survenue d'une crue importante peut provoquer des dégâts considérables sur les réseaux avec un fort potentiel de détériorations et de nuisances, y compris sur la santé humaine : insalubrité, inconfort, perte d'accès aux secours, isolement, insécurité, etc.

Par ailleurs, la dangerosité peut également provenir du maintien en fonctionnement d'un réseau atteint par les eaux (poste de transformation électrique, réseau de chaleur urbain, etc.). Enfin, la défaillance de réseaux peut perturber la gestion de crise, venant potentiellement aggraver de manière importante les dommages liés à l'inondation, avec une forte variabilité dépendant notamment des délais de rétablissement des réseaux et de la survenue d'effets « dominos ».

En effet, étant donné les fortes interactions qui existent entre les différents réseaux, les perturbations liées à
l'inondation peuvent se propager d'un type de réseau à l'autre (exemple : une coupure électrique provoquant l'arrêt d'une station d'épuration et le rejet de pollutions dans le milieu), ou d'un territoire à l'autre (voire à l'extérieur de la seule zone inondée).

A titre d'exemple, l'inondation de Nîmes de 1988, dont les eaux ont stagné pendant 6 jours en ville, a provoqué:

- une privation d'électricité pendant un jour pour 40 000 foyers ;
- la coupure de 65 000 lignes téléphoniques ;
- la destruction de 25 km de voies et l'endommagement de la voie ferrée ;
- l'absence d'alimentation en eau potable pour 50 % des habitants de la ville pendant 4 jours ;
- la dégradation de 30 km de canalisations d'assainissement ;
- la destruction de 6 km de réseau d'éclairage urbain.

Le bassin Rhône-Méditerranée apparaît comme assez vulnérable au regard de la présence importante de réseaux au sein de l'enveloppe approchée des inondations potentielles par débordement de cours d'eau : 10 977 km de routes principales, 101 731 km de routes secondaires, 4 141 km de voies ferrées, 246 STEP de plus de 10 000 EH.

Ainsi, la connaissance des enjeux liés à ces réseaux en cas de survenue de ce type d'événement et de leurs vulnérabilités sont des facteurs majeurs de lutte contre le risque. Des actions de réduction de la vulnérabilité peuvent alors être mises en œuvre. Pendant la crise, l'anticipation des vulnérabilités et la diffusion des informations sont également des leviers importants, comme l'a montré le retour d'expérience de l'inondation de mars 2001 à Lyon et Mâcon : certains gestionnaires de réseaux (division éclairage public de la ville, EDF-GDF Service Lyon Métropole et France Télécoms) n'avaient pas été destinataires directs d'un message d'alerte, ni n'avaient été associés à une cellule de crise externe.

62 Le territoire et ses réseaux techniques face au risque d'inondation, Les guides du CEPRI, janvier 2016
Illustration 43 : Carte du risque d'inondation sur le bassin
3.2.9.b - Les autres risques naturels

Le territoire Rhône-Méditerranée est fortement soumis aux risques naturels : inondations (cf. partie précédente), incendie de forêt, mouvements de terrain, avalanches, séismes.

Après le risque inondation, ceux liés aux mouvements de terrain apparaissent comme les plus importants sur le bassin (54 % des communes concernées), suivi du risque feu de forêt (35 %) et du risque d'avalanche (5 %). Le risque sismique concerne l'ensemble des communes, de manière plus ou moins forte.

Hors risque sismique, près de 12 % des communes sont concernées par l'ensemble des 4 risques précités, tandis que 19 % ne le sont par aucun.

Le risque de mouvement de terrain

Le risque mouvements de terrain regroupe différents types d'aléas : le retrait-gonflement des argiles, les glissements de terrain, les chutes de blocs, les effondrements de cavités souterraines et les coulées de boues.

Il concerne l'ensemble du bassin Rhône-Méditerranée. Les zones de montagne sont particulièrement exposées à ces types de phénomènes. Les départements côtiers sont également concernés, notamment par les phénomènes de retrait-gonflement des sols argileux, les affaissements de terrain suite à des effondrements de cavités souterraines d’origines naturelles ou minières, et les phénomènes d’érosion de falaises côtières.

Enfin, à ces risques s'ajoute le risque d’érosion littorale, qui concerne fortement le bassin puisque celui-ci présente un linéaire de 1 030 km de côtes.

Les incendies de forêt

Le sud du territoire est particulièrement touché par ce risque incendie, du fait de ses caractéristiques climatiques notamment. A noter qu'aucune commune n'est estimée comme concernée au nord de la métropole lyonnaise (base Gaspar, 2018).

Le risque incendie constitue un enjeu environnemental localisé à l'échelle du bassin mais important localement vis-à-vis de la biodiversité et des paysages, mais aussi de la sécurité des biens et des personnes. Lié aux conditions climatiques, le risque incendie pourrait s'étendre vers le nord du territoire et s'aggraver du fait des conséquences du changement climatique.

Le risque d'avalanches

Le risque d'avalanches est enjeu localisé à l'échelle du bassin : il touche les zones montagneuses des Alpes et des Pyrénées. Les pratiques agropastorales et le pâturage notamment constituent une activité qui peut limiter le risque d'avalanche en favorisant l'ancrage de la neige au sol.

Les avalanches sont répertoriées et très précisément décrites à travers plusieurs outils : l'enquête permanente sur les avalanches, la carte de localisation des phénomènes d'avalanche et l'identification et la classification des sites d'avalanches les plus sensibles, c'est-à-dire ceux qui concernent au moins un bâtiment pouvant être habité en hiver et qui peuvent être soumis à un risque d'avalanche.
Le risque sismique

L’ensemble du bassin est exposé à ce risque avec des niveaux d’aléas très variables, compte tenu de la topographie et de la géologie. Les zones d’aléa les plus fortes sont principalement localisées dans la partie alpine et en région PACA : 16 % des communes du territoire sont en zone de sismicité moyenne et 44 % en zone modérée.

L’activité sismique française est suivie quotidiennement par le Réseau National de Surveillance Sismique (RéNaSS). La prévention du risque sismique porte en grande partie sur les règles de construction.

3.2.9.c - Les risques technologiques

Le risque industriel

Le territoire compte un grand nombre d'Installations Classés pour la Protection de l'Environnement (ICPE) : plus de 9 600 ICPE sur l'ensemble des départements compris à plus de 50 % dans le département, dont environ 4 500 sont soumis à autorisation. Il s'agit des exploitations susceptibles de créer des risques ou de provoquer des pollutions ou nuisances, notamment pour la sécurité, la santé des riverains et l'environnement. Ces établissements font l'objet d'un régime d'autorisation, d’enregistrement ou de déclaration en fonction de l’importance des risques ou des inconvénients qui peuvent être engendrés.

Parmi les ICPE, les établissements à haut risques (« SEVESO ») sont nombreux sur le territoire : 144 sont classées « seuil bas » et 192 « seuil haut ». Ils sont principalement concentrés dans l'agglomération lyonnaise, dans le secteur Fos-sur-Mer/Étang de Berre, et dans l'agglomération grenobloise, mais sont également présents sur le reste du territoire de manière plus épars.

Ces établissements à risque concernent principalement les secteurs de la chimie, du pétrole et de la métallurgie. En 2019, environ 7 % des communes du bassin sont concernées par le risque industriel, surtout présentes dans les régions PACA et AURA.

Le risque lié aux établissements nucléaires

Le nombre d'établissements liés au nucléaire sur le bassin Rhône-Méditerranée est relativement important, avec 4 sites de production d'électricité nucléaire, des usines de fabrication de combustibles nucléaires (Tricastin par exemple), des centres de recherches (CEA Cadarache, ITER, CEA Marcoule, etc.) et des centres de stockage de déchets radioactifs.

Le risque nucléaire provient de la survenance éventuelle d'accidents ou incidents, conduisant à un rejet d'éléments radioactifs à l'extérieur des conteneurs et enceintes prévus pour les contenir. Les accidents peuvent survenir lors d'accidents de transport (des sources radioactives intenses sont quotidiennement transportées par route, rail, bateau, voire avion), lors d'utilisations médicales ou industrielles de radioéléments (appareils de soudure ou de radiographie par exemple), ou en cas de dysfonctionnement grave sur une installation nucléaire industrielle.

Les centrales nucléaires font l'objet d'un contrôle réalisé par l'Autorité de Sûreté Nucléaire (ASN). A l’issue des évaluations complémentaires de sûreté des installations nucléaires prioritaires au regard de l’accident survenu à
la centrale nucléaire de Fukushima Daiichi, l’ASN considère que les installations examinées présentent un niveau de sûreté suffisant pour qu’elle ne demande l’arrêt immédiat d’aucune d’entre elles. Dans le même temps, l’ASN considère que la poursuite de leur exploitation nécessite d’augmenter dans les meilleurs délais, au-delà des marges de sûreté dont elles disposent déjà, leur robustesse face à des situations extrêmes (avis n°2012-AV-0139 de l’ASN du 3 janvier 2012).

Le risque de rupture de barrage

Le territoire compte de nombreux barrages, principalement localisés dans les Alpes et en PACA. Le risque de rupture de barrage est faible mais pourrait avoir des conséquences importantes (submersion de zones habitées, par exemple rupture du barrage de Malpasset dans le Var en 1959).

Par ailleurs, le risque de rupture de barrage peut être compris dans l'apparition d'autres risques, industriel ou nucléaire notamment.

Le risque lié au transport de matières dangereuses

Le risque lié au transport des matières dangereuses est très présent sur le territoire : plus de 42 % des communes du bassin Rhône-Méditerranée sont directement concernées par ce risque. Les axes de transport Italie-Espagne et Rhône sont particulièrement touchés. Ce risque concerne le transport routier, ferroviaire mais également souterrain (des milliers de kilomètres de canalisations de transport de fluides dangereux (hydrocarbures, gaz, produits chimiques) traversent le territoire).

Les liens entre risques technologiques et risques naturels

Dans la partie sud du territoire et le long des cours d'eau notamment, l’aléa technologique est accru du fait de l'exposition des établissements industriels aux risques naturels, notamment aux inondations, séismes et incendies. Le changement climatique, qui tend à accentuer les risques naturels, peut potentiellement être un facteur aggravant les risques technologiques.

3.2.9.d - **La réglementation et les dispositifs de connaissance, de suivi ou d'action**

La politique française en matière de réduction des risques naturels s'articule autour des axes suivants :

- informer les populations habitant les zones à risques ;
- définir et faire appliquer les règles de construction et d’aménagement du territoire, pour réduire le risque et ses conséquences ;
- améliorer la connaissance de l’aléa, de la vulnérabilité et du risque naturel ;
- préparer la gestion de crise.

Le risque inondation

- une Évaluation Préliminaires des Risques d’Inondation (EPRI) d’ores et déjà réalisée et arrêtée en 2011...
par le préfet, ainsi que son addendum 2018 ;

- l’identification de Territoires à Risques importants d’Inondation (TRI) à partir des résultats de l’EPRI. Sur le bassin Rhône-Méditerranée, 31 TRI ont été identifiés ;

- à l'échelle des grands bassins hydrographiques, des Plans de Gestion du Risque d'Inondation (PGRI), dont la période correspond aux cycles DCE. Le PGRI doit permettre de fixer les objectifs de réduction des conséquences dommageables des inondations et les dispositions à mettre en œuvre pour atteindre ces objectifs, en matière de prévention, de connaissance et de gestion de crise. Sur le bassin Rhône-Méditerranée, un premier PGRI est mis en œuvre pour la période 2016-2021.

En parallèle de l'élaboration du PGRI, des Stratégies Locales de Gestion des Risques d'Inondation (SLGRI) sont mises en œuvre, afin de décliner des objectifs spécifiques de gestion des risques pour les TRI. La mise en œuvre de la DI viendra renforcer ou faire évoluer les opérations préexistantes de prévention des inondations tels que les Plans de Prévention du risque d'inondation (PPRi), les Plans de Prévention des Risques Littoraux (PPRL), les Programmes d’Actions pour la Prévention des Inondations (PAPI) ou les Plans Grands Fleuves.

Différentes structures se sont organisées localement pour porter la maîtrise d'ouvrage d'actions de prévention du risque d'inondation : syndicats mixtes ou intercommunaux, Établissements Publics de Coopération Intercommunale (EPCI) à fiscalité propre (communauté urbaine, d'agglomération, de communes, etc.), Associations Syndicales Autorisées, etc. Mi 2017, le bassin Rhône-Méditerranée était en outre couvert par 13 Établissements Publics Territoriaux de Bassin (EPTB).

Par ailleurs, dans le cadre de la loi de Modernisation de l'Action Publique et d'Affirmation des Métropoles (MAPAM), qui crée une compétence obligatoire en matière de « Gestion des Milieux Aquatiques et Prévention des Inondations » (GEMAPI) et affirme la nécessité d'une coordination à l'échelle de périmètres hydrographiques pertinents assurée par les « Établissements Publics d'Aménagement et de Gestion de l'Eau » (EPAGE) et les EPTB, la cohérence de la maîtrise d'ouvrage en matière de prévention des inondations devrait être renforcée (cf. chapitre 3.1.4.2 sur la gouvernance).

En janvier 2022, dans le bassin Rhône-Méditerranée, 52 PAPI sont en cours de mise en œuvre (37 PAPI et 15 PAPI d'intention). Par ailleurs, 13 sont en phase d'émergence et 5 achevés sans suite.
Illustration 44 : Carte des Territoires à Risques importants d'Inondation (TRI) du bassin RM
Illustration 45 : Programmes d’Actions de Prévention des Inondations (PAPI) dans le bassin au 1er janvier 2022
(source : Tableau de bord, Bilan à mi-parcours du SDAGE 2016-2021, AERMC)
En outre, en cohérence avec les objectifs et dispositions du SDAGE Rhône-Méditerranée, de nombreuses actions ont été engagées sur le bassin pour renforcer la synergie entre gestion du risque d'inondation et gestion des milieux naturels, notamment grâce aux SAGE et contrats de milieux, associant l'agence de l'eau et les collectivités. Ces outils permettent notamment de favoriser la préservation et la restauration des champs d'expansion de crues, des zones humides et des capacités naturelles d'écoulement des cours d'eau. Ils permettent également, en lien avec les PAPI, de travailler sur la délimitation des Espaces de Bon Fonctionnement (EBF) des cours d'eau (cf. chapitre 3.2.6 sur les milieux naturels).

L'organisation de la prévision des crues est dévolue aux Services de Prévision des Crues (SPC) de l'État. Les SPC assurent trois missions essentielles : la vigilance (estimation du niveau de risque d'avoir une crue dans les prochaines 24 heures), la prévision et l’assistance aux communes. Au nombre de 5 sur le bassin Rhône-Méditerranée, ils couvrent un périmètre d'intervention de plus de 4 000 km de linéaire de cours d'eau. Un schéma directeur de prévision des crues du bassin est mis en œuvre depuis janvier 2012.

En lien avec les SPC, la circulaire du 28 avril 2011 a instauré la mission du Référent Départemental pour l'appui technique à la gestion des crises d'Inondation (RDI), dont l'objectif est d'améliorer l'information transmise aux acteurs de la sécurité civile et aux décideurs locaux pour la prise de décision relatives aux inondations. La mission se décline en deux phases :

- en période de crise : apporter une interprétation des données hydrologiques élaborées et transmises par le SPC, ainsi que leur traduction en termes d'enjeux territoriaux et de conséquences à attendre ;
- en préparation : rassembler, préparer et finaliser tous les éléments (connaissance des enjeux locaux, contribution aux exercices et formations, capitalisation des expériences, etc.).

Tous risques naturels

Principal instrument de l’action de l’État dans ce domaine, le Plan de Prévention des Risques naturels (PPRn), réalisé par l’État, vise à caractériser les zones soumises à des risques naturels et à réglementer l'aménagement du territoire dans ces zones.

La couverture des communes du bassin par un ou plusieurs PPRn est la suivante :

| Communes couvertes par un PPRn prescrit ou arrêté (sans compte double) |
|-----------------------------|-----------------|-------------------|-----------------|-----------------|
| Total | Inondation | Submersion marine | Mouvement de terrain | Avalanches | Feu de forêt | Séisme |
| 3 490 | 3 241 | 50 | 898 | 292 | 232 | 150 |

Tableau 15 : Communes couvertes par un PPRn (ou anciennement PER) (source : BD Gaspar, novembre 2019)

En outre, deux doctrines ont été établies pour la prise en compte du risque d'inondation dans l'aménagement du territoire : la doctrine Rhône et la doctrine Languedoc-Roussillon.

D'autres outils existent et doivent continuer d'être mis en œuvre pour renforcer la gestion du risque sur le bassin Rhône-Méditerranée :

- outils d'information : DDRM (Dossier Départemental sur les Risques Majeurs) réalisés par les Services de l’État ; Porter à Connaissance (PAC) des risques par les services de l’État dans le cadre de l’élaboration des documents d'urbanisme par les communes ; DICRIM (Dossier Communal
d'Information sur les Risques Majeurs, à réaliser par le maire dans les 2 ans après approbation d'un PPR) ; Information Acquéreurs-Locataires (IAL) ;

- outils relatifs à la gestion de crise : dispositif ORSEC réalisé par les Préfets, et Plans Communaux de Sauvegarde (PCS) à réaliser par les communes dans les 2 ans après approbation d'un PPR; Plans de Continuité d'Activité pour les entreprises ou les services publics, mise en place de mesure de sécurité dans les campings et parcs résidentiels de loisirs implantés dans les zones à risques est également en cours, etc.

Enfin, spécifiquement au risque feu de forêt, dans les départements concernés, un **plan de protection des forêts contre les incendies**, arrêté par le préfet, définit la stratégie de prévention des incendies adoptée par les pouvoirs publics.

Les risques technologiques

Comme pour les risques naturels, un **Plan de Prévention des Risques technologiques (PPRt)** est élaboré sur les zones à risque. Dans le bassin RM, 194 communes sont couvertes par un PPRt prescrit ou arrêté. Ils visent notamment la prévention contre les effets de surpression, thermique, toxique, de projection et les risques liés aux transports de matières dangereuses.

Par ailleurs, plusieurs études et plans sont destinées à la prévention et à la gestion de crise de certains risques technologiques spécifiques :

- vis-à-vis du risque de rupture de barrage, les barrages ayant une hauteur supérieure à 20 m et retenant un volume supérieur à 15 millions de m³ doivent être couverts par un **Plan Particulier d'Intervention (PPI)**, qui a pour objet de préciser notamment les mesures spécifiques relatives à l'information et à la protection de la population et, le cas échéant, les schémas d'évacuation éventuelle et les lieux d'hébergement ;

- vis-à-vis du risque nucléaire, une réglementation spécifique est appliquée, visant la protection des travailleurs, du public, la surveillance des installations, etc. Un PPI peut également être mis en œuvre par le Préfet autour des installations nucléaires ;

- des **études de dangers** doivent être réalisées pour les ICPE. Elles doivent aborder les dangers que peuvent présenter les installations pendant la phase de fonctionnement (normal, transitoire, accidentel).

3.2.9.e - Tendances évolutives

Le changement climatique devrait avoir des impacts notables sur l'évolution des risques naturels. Ainsi, une étude menée en 2018 par la Caisse Centrale de Réassurance (CCR) avec Météo France, visant l'estimation de l'impact que pourrait avoir le scénario du GIEC le plus pessimiste (RCP 8.5) sur le coût des catastrophes, envisage une augmentation des pertes annuelles moyennes de 50 % d'ici 2050 par rapport à 2018 (+35 % dus aux aléas et +15 % dus à la concentration des zones à risques). Sur le bassin, ce taux d'augmentation est particulièrement important (+40 % à +60 %) dans plusieurs départements de la région PACA (Var, Alpes-de-Haute-Provence, Hautes-Alpes) et en Côte-d'Or. A noter une possible diminution de ce taux (-20 % à 0 %) en Savoie, Haute-Savoie, Drôme et Ardèche.

Les phénomènes qui devraient voir leur intensité ou leur fréquence augmenter sont les vagues de chaleur, les sécheresses météorologiques et agricoles, les incendies de forêts et l'intensité des pluies extrêmes horaires (incertitude sur l'intensification des pluies extrêmes quotidiennes).

64 Les événements météorologiques extrêmes dans un contexte de changement climatique, Rapport au 1er ministre et au Parlement, ONERC, 2018
Cas des risques inondation

Deux tendances d'évolution principales sont susceptibles d'avoir un impact significatif sur l'évolution du risque d'inondation et d'érosion côtière sur le bassin Rhône-Méditerranée : la pression démographique d'une part et le changement climatique d'autre part.

Les politiques d'aménagement du territoire peuvent avoir des impacts importants et souvent irréversibles sur les milieux aquatiques. Dans le cas du risque d'inondation : l'urbanisation renforcée ces dernières années sur le littoral, l'axe Rhône-Saône et les Alpes du Nord influe de façon significative sur la gestion des inondations, car elle conduit à l'imperméabilisation du sol et à l'accroissement de la pression foncière sur les champs d'inondation et les zones humides. La population permanente a augmenté de quasiment 20 % depuis 1999 sur le bassin Rhône-Méditerranée, principalement concentrée sur ces axes. Il en de même pour la population saisonnière.

Enfin, l'évolution du climat, qui se traduira notamment par une élévation du niveau de la mer. Ainsi, beaucoup de zones côtières devront faire face à une multiplication des inondations, à une intensification de l'érosion, à la réduction des plages et à plus long terme, à la disparition de zones humides et à l'envahissement des nappes aquifères par l'eau de mer.

Il faut noter que de fortes incertitudes subsistent sur ces tendances potentielles, en lien avec celles subsistant sur le climat lui-même.

3.2.9.f - Atouts-Faiblesses, Opportunités-Menaces

<table>
<thead>
<tr>
<th>ATOUTS</th>
<th>FAIBLESSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>• De nombreuses actions de prévention et de réduction des risques (PPR, PGRI et SLGRI, PAPI, etc.)</td>
<td>• Un bassin très fortement concerné par les risques, notamment par les phénomènes d'inondation à dynamique rapide</td>
</tr>
<tr>
<td>• Une information et une culture du risque bien développée</td>
<td>• Une population importante concernée par les risques, permanente et touristique</td>
</tr>
<tr>
<td>• Une couverture importante du bassin par les structures de gestion de l'eau, EPTB ou EPAGE</td>
<td>• Environ un tiers des communes exposées au risque inondation non concernées par un PPRi</td>
</tr>
<tr>
<td></td>
<td>• Une combinaison de risques potentiellement très importante (exemple d'installations nucléaires en aval de grands barrages)</td>
</tr>
<tr>
<td></td>
<td>• Des épisodes récents témoignant de dysfonctionnements en termes d'aménagement, de prévention et d'information</td>
</tr>
<tr>
<td></td>
<td>• Une culture du risque qui s'effrite avec le temps après chaque événement</td>
</tr>
</tbody>
</table>
OPPORTUNITÉS

- Une couverture par les SLGRI, les PAPI et les PPR qui se développe
- Un PGRI révisé pour la période 2022-2027 s'appuyant sur une expérience de 6 ans de mise en œuvre
- Un développement de la prise en compte des risques par les politiques et planifications locales
- Une connaissance des zones à enjeux (espace de bon fonctionnement, zones d'expansion des crues) en développement
- Une multiplication des expériences

MENACES

- Des risques potentiellement accrus par une artificialisation ou une imperméabilisation croissante du territoire
- Parfois, un déséquilibre entre développement de l'urbanisation et diminution des risques
- Un potentiel accroissement des risques liés au changement climatique (incendies de forêt, submersion marine, inondation, etc.)
- Une augmentation de la population dans les secteurs exposés

3.2.9.g - Enjeux

Concernant les risques naturels et technologiques, l'enjeu principal est la protection des personnes et des biens vis-à-vis des risques, comprenant notamment :

- la diminution de l'aléa (préservation/restauration des champs d'expansion des crues et des zones humides connectées aux cours d'eau, préservation des EBF, diminution de l'imperméabilisation des sols, etc.) ;
- la diminution de la vulnérabilité (maîtrise de l'urbanisation et du coût des dommages, mise en place des PPR, etc.) ;
- la préparation et la gestion de crise, le développement de la conscience du risque et des connaissances.
3.2.10 - Santé humaine et nuisances

3.2.10.a - Liens santé et environnement

Parmi les multiples facteurs qui agissent sur la santé humaine et le développement des pathologies, la qualité des milieux (eau, sols, air) déterminée par les contaminant biologiques, chimiques, physiques et les nuisances qu’ils véhiculent, ainsi que les risques naturels et les changements environnementaux jouent un rôle fondamental (« Environnement d'aujourd'hui, santé de demain »). En effet, il est avéré que certaines pathologies sont aggravées, voire déterminées par l’environnement.

Toutefois, cette relation est difficile à appréhender. Ainsi, comme le décrit le Plan National Santé Environnement 3, « bien que les données sanitaires soient suffisamment inquiétantes pour qu'il y ait une réelle prise de conscience politique et citoyenne sur les risques en santé environnementale, ces derniers sont parfois difficiles à mettre en évidence pour plusieurs raisons :

- les facteurs environnementaux sont des co-facteurs pouvant influer sur l'état de santé. Il n'y a pas, le plus souvent en l'état actuel de nos connaissances, de spécificités des effets liés à l'environnement et ce que l'on observe peut être induit en plusieurs causes ;
- nous sommes exposés à une multitude de substances parfois mal connues et les effets combinés sont scientifiquement difficiles à appréhender ;
- les effets sur la santé surviennent souvent à long terme, il y a un décalage entre l'exposition au risque et le déclenchement d'une pathologie ;
- la durée et la fenêtre de l'exposition sont des paramètres qui peuvent fortement conditionner la survenue de pathologies ;
- il existe une différence de sensibilité individuelle, du fait notamment de la génétique. La question de la transmission intergénérationnelle se pose également pour certaines substances. »

Les liens entre santé et environnement ont été abordés au sein de plusieurs thématiques environnementale (notamment avec la qualité de l'air, le changement climatique et risques). Par la suite, nous abordons les liens entre santé humaine et usages de l'eau.

Eau potable et eau de baignade

Parmi les multiples facteurs qui déterminent la santé humaine et le développement des pathologies, la qualité de l'eau joue un rôle fondamental. Dans le bassin Rhône-Méditerranée, les risques pour la santé liés à l’eau peuvent être identifiés comme suit :

- l'eau destinée à la consommation humaine est globalement de bonne qualité. Selon les données utilisées pour l'élaboration du 8ème rapport annuel de l'observatoire des services publics d'eau et d'assainissement de l'Agence Française de la Biodiversité (AFB), le taux de conformité des prélèvements sur les eaux distribuées sur près de 1 900 communes, EPCI ou syndicats du bassin par rapport aux limites de qualité pour ce qui concerne la microbiologie (indicateur P101.1) était en moyenne de 94 % et, pour ce qui concerne les paramètres physico-chimiques (indicateur P102.1), de 97 % ;
- début 2018, 70 % des captages bénéficiaient d'une protection par une DUP, pour une part en termes de volume produit de près de 78 %. D'autre part, une forte progression des actions sur les captages dégradés.

65 Organisation Mondiale de la Santé (OMS)
est constatée, puisque sur les 269 ouvrages prioritaires identifiés par le SDAGE 2016-2021 (70 de plus que le précédent SDAGE), 201 ont leur aire d'alimentation de captage (AAC) cartographiée (près de 695 000 ha), 174 ont un plan d'action validé et 15 n'ont pas initié la démarche en 2018. Dans ces AAC, 18 % de la surface agricole a bénéficié en moyenne d'un changement de pratiques favorisant la réduction d'usage et de transfert des pesticides depuis 2010 ;

- les risques sanitaires liés aux baignades et aux loisirs nautiques résultent surtout d'infections microbiologiques (bactéries, virus, protozoaires, champignons) et des effets toxiques et allergiques liés à la prolifération d'algues et notamment de cyanobactéries. Le bilan de la qualité des eaux de baignade est globalement positif en 2017 (au regard de la directive de 1975) : parmi les 1 052 sites de baignade répertoriés, seuls 17 présentaient une qualité insuffisante (10 en eau douce et 7 en eau de mer), parallèlement à une augmentation des sites contrôlés (1 044).

Conchyliculture

Les milieux accueillant l'activité conchylicole sont soumis aux apports terrestres provoquant des contaminations par les nutriments et des toxiques. Ces pollutions sont issues des activités urbaines situées sur le bassin versant. Ces milieux présentent également une sensibilité particulière due au faible taux de renouvellement des eaux.

Sur la période la plus récente de suivi de la qualité microbiologique des zones de production (2015-2017), 35,5 % des zones ont une qualité mauvaise ou très mauvaise (9,7 % bonne et 54,8 % moyenne). La qualité microbiologique de ces zones apparaît comme s'améliorer pour les lotissements conchylicoles localisés en mer au large de la côte héraultaise, mais se dégrader sur les zones de production du groupe 3 (mollusques, bivalves, filtreurs) situées dans la Baie du Lazaret, en rade de Toulon et dans l'étang du Prévost.

Autres usages

D'autres usages tels que la pisciculture, la pêche et le thermalisme représentent un poids économique et social important sur le bassin Rhône-Méditerranée. Le thermalisme, qui doit répondre à des normes strictes en termes de qualité des eaux, mais aussi la pêche et la pisciculture, qui nécessitent des eaux de bonne qualité, peuvent directement être impactés par la pollution des eaux. En outre, les pressions hydromorphologiques exercées sur les milieux aquatiques (obstacle à la continuité écologique, altération des dynamiques fluviales, destruction des fonds marins…) peuvent induire une diminution de la richesse halieutique, et ainsi avoir un effet négatif sur les activités de pêche.

3.2.10.b - Les nuisances

Les nuisances peuvent être de plusieurs types : le bruit et les vibrations, la pollution électromagnétique, la pollution lumineuse et les nuisances olfactives. Les trois premiers types de nuisances sont essentiellement localisées au sein des zones urbaines et plus particulièrement au niveau des grandes agglomérations. Les problèmes d'odeurs ont trois origines principales : les activités industrielles, les sites de stockages et de retraitement des déchets et les dispositifs d'épuration des eaux. D'autres sources ne sont pas à exclure.

Le bruit et les vibrations sont des nuisances engendrées principalement par le trafic routier et aérien. Les ondes électromagnétiques sont présentes dans la vie quotidienne. Elles sont émises par les téléphones portables, antennes relais, etc. De nombreux appareils utilisés quotidiennement émettent ou reçoivent des champs électromagnétiques. La pollution lumineuse concerne les zones urbaines, et plus particulièrement les grandes
agglomérations, ainsi que les grands axes de communication.

Les nuisances sonores peuvent affecter la santé et la qualité de vie, avec des conséquences physiques et/ou psychologiques pour les personnes qui les subissent, et affecter également la biodiversité. Le bruit et les vibrations ont des effets nocifs sur la santé humaine : stress, troubles du sommeil, effets sur le système cardiovasculaire, immunitaires et endocrinien, etc. La pollution lumineuse peut elle aussi avoir des conséquences nocives sur la santé humaine, la faune et la flore. Les sources lumineuses nocturnes perturbent les écosystèmes : modification des relations proies/prédateurs, perturbation des cycles de reproductions et de migrations, retarder la chute des feuilles des arbres, etc.

Les nuisances olfactives apparaissent comme le deuxième motif de plaintes concernant les nuisances, après le bruit, et sont ressenties comme une réelle pollution de l’air. Ce sont des préoccupations environnementales croissantes, pour les riverains qui exigent le respect de leur cadre de vie, et pour les industriels qui cherchent à maîtriser ces nuisances. De multiples activités peuvent être à la source de mauvaises odeurs : l'équarrissage, la fabrication d'engrais, le stockage et le traitement des déchets, la fabrication de pâte à papier, le raffinage, l'épuration, l’élevage, etc. La plupart d'entre elles sont soumises à la réglementation sur les installations classées. Parmi ces différentes activités, l'épuration des eaux et le traitement des déchets qu'elle produit peuvent être concernés par la politique de l'eau.

Enfin, il convient de signaler parmi les nuisances, la prolifération de certaines espèces exotiques invasives (animales ou végétales). Le principal enjeu identifié ici est le risque de transmission de maladies par des insectes (exemple du moustique tigre (aedes albopictus) vecteur de la dengue, du Chikungunya ou d'autres maladies tropicales). Ces espèces relèvent d'une politique de santé publique.

3.2.10.c - La réglementation et les dispositifs de connaissance, de suivi ou d'action

Les Plans Régionaux Santé-Environnement (PRSE), déclinaisons du plan national, visent à réduire autant que possible et de façon la plus efficace les impacts des facteurs environnementaux sur la santé afin de permettre à chacun de vivre dans un environnement favorable à la santé. Ils s’articulent autour de quatre grandes catégories d’enjeux : les enjeux de santé prioritaires, de connaissance des expositions et de leurs effets, de recherche en santé environnement et d’actions territoriales, d’information, de communication et de formation. Ils visent également une meilleure prise en compte du risque radon dans les bâtiments et la protection de la population en matière de nuisances sonores.

Les réglementations associées aux ICPE déterminent des conditions et des limitations générales ou spécifiques associées, notamment à travers les arrêtés d'autorisation. Il s'agit de limiter les émissions de bruit, de poussières, de polluants, etc. Elles peuvent également déterminer des distances minimum à respecter avec les habitations. Des conditions d'autosurveillance (eau, air, sol et bruit) doivent parfois être respectées. Il s'agit aussi de s'assurer des moyens financiers de l'exploitant vis-à-vis du fonctionnement de son installation et de la remise en état du site après fermeture. Des contrôles peuvent être réalisés par les inspecteurs des installations classées.

La directive 2002/49/CE relative à l'évaluation et à la gestion du bruit dans l'environnement impose l'élaboration de cartes stratégiques du bruit, et à partir de ce diagnostic, de Plans de Prévention du Bruit dans l'Environnement (PPBE). L'objectif est de protéger la population, les zones calmes et les établissements scolaires ou de santé, des nuisances sonores excessives. Deux types de cartes sont ainsi établis :

- les cartes de bruit des agglomérations ;
- les cartes de bruit des grandes infrastructures de transport (8 200 véhicules/jour et 82 trains/jour). Les
voiries concernées sont autant les infrastructures de l’État que le réseau routier départemental et communal.

Enfin, le SDAGE établit une liste de masses d'eau souterraine recelant des **ressources stratégiques** majeures à préserver pour assurer l'alimentation actuelle et future en eau potable. Ce sont des ressources :
- soit déjà fortement sollicitées et dont l'altération poserait des problèmes pour les populations qui en dépendent ;
- soit faiblement sollicitées actuellement mais en forte potentialité et préservées du fait de leur faible vulnérabilité naturelle ou de l'absence de pression humaine et à conserver en l'état pour la satisfaction des besoins futures à moyen et long termes.

A l'échelle locale, des zones de sauvegarde sont identifiées dans ces ressources stratégiques en vue d'y préserver la ressource (mobilisation des outils et des acteurs). Fin octobre 2018, 85 masses d'eau souterraine à fort enjeu pour l'eau potable sur les 124 désignées par le SDAGE 2016-2021 ont fait l'objet de travaux de désignation des ressources et d'identification des zones de sauvegarde à protéger et 10 études étaient en cours.

3.2.10.d - Tendances évolutives

Les mesures et actions de protection de la ressource en eau potable montrent une progression constante qui devrait se poursuivre. En effet, le taux de captages AEP protégé par une DUP était de 57 % en 2009, de 60 % en 2013 et atteignait 70 % en 2018. L'évolution en termes de volume produit suit la même tendance.

Vis-à-vis des captages prioritaires, la situation progresse également, avec une augmentation de leur proportion dont l'AAC a été délimitée de 13 points de pourcentage depuis 2013 (associée à une augmentation de leur nombre), ainsi que plus de 90 supplémentaires faisant désormais l'objet d'un plan d'actions. Ceci se confirme sur l'amélioration de la qualité des eaux distribuées (+7 points de pourcentage pour la part de captages ne montrant aucune contamination ne dépassant les seuils de qualité de nitrates et/ou pesticides entre 2006-2009 et 2014-2016).

Ces tendances devraient se poursuivre sur le nouveau cycle, permettant d'envisager une stabilité, voire une amélioration globale de la qualité des eaux utilisées pour l'AEP.

Concernant les autres nuisances, les tendances sont à une meilleure prise en compte et un travail important est notamment réalisé sur les bruits liés au trafic, avec en particulier les PPBE et cartes de bruit.

A noter les impacts négatifs du changement climatique, en particulier sur la santé humaine, qui s'intensifient (disponibilité de l'eau, vagues de chaleur, espèces exotiques, etc.).
Illustration 46 : Carte des ressources stratégiques pour l'AEP, travaux de délimitation des zones de sauvegarde (source : Tableau de bord, Bilan à mi-parcours du SDAGE 2016-2021, AERMC)
3.2.10.e - Atouts-Faiblesses, Opportunités-Menaces

<table>
<thead>
<tr>
<th>ATOUTS</th>
<th>FAIBLESSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Une eau potable globalement de bonne qualité et une proportion de captages AEP faisant l'objet d'une DUP de plus en plus importante</td>
<td>• Une proportion importante des eaux de conchyliculture de qualité mauvaise ou très mauvaise</td>
</tr>
<tr>
<td>• Forte progression des actions sur les captages dégradés avec 75 % ayant leur AAC cartographiée (62 % en 2014)</td>
<td>• Des nuisances sonores importantes sur le bassin (grandes agglomérations et axes de communication)</td>
</tr>
<tr>
<td>• Près de 99 % des sites de baignade de qualité conforme</td>
<td>• Des nuisances olfactive inactive mal connues et encore peu prises en compte</td>
</tr>
<tr>
<td>• Un travail important sur les nuisances sonores (cartes de bruit, classement des voies, PPBE, etc.)</td>
<td>• Des connaissances très fragmentées sur les liens environnement-santé et sur les effets de certaines substances (notamment à long terme)</td>
</tr>
<tr>
<td></td>
<td>• Un PNSE et des PRSE à l'efficacité mise en cause</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OPPORTUNITÉS</th>
<th>MENACES</th>
</tr>
</thead>
<tbody>
<tr>
<td>• La poursuite de la protection des captages AEP</td>
<td>• Impacts du changement climatique : tension en période de sécheresse réduisant l'accès à la ressource, intrusion eau saline rendant impropre l'eau à la consommation, augmentation du risque d'inondation (fréquence et intensité des crues)</td>
</tr>
<tr>
<td>• La mise en œuvre des plans d'actions sur les captages prioritaires</td>
<td>• Apparition de conflits d'usage de la ressource en eau avec la moindre disponibilité en eau et l'apparition de nouveaux usages</td>
</tr>
<tr>
<td>• La poursuite du travail sur la délimitation et la protection des zones de sauvegarde permettant la préservation des ressources AEP actuelles et futures</td>
<td></td>
</tr>
<tr>
<td>• Un développement des connaissances sur les nuisances, notamment liées aux bruits et aux odeurs</td>
<td></td>
</tr>
</tbody>
</table>

3.2.10.f - Enjeux

En termes de santé humaine et nuisances, l'enjeu principal est la **bonne santé des personnes**, comprenant notamment *(au-delà des thématiques traitées par ailleurs)* :

- la bonne qualité de l'eau distribuée pour l'AEP et sa disponibilité ;
- la bonne qualité des eaux à usage récréatif ou de production ;
- la maîtrise des nuisances.
3.2.11 - Déchets

La gestion des déchets, qu’ils soient produits par les ménages, les entreprises, le monde agricole ou les collectivités territoriales, représente un enjeu majeur tant au regard des impacts environnementaux et sanitaires que de la nécessaire préservation des ressources.

3.2.11.a - Prévention et gestion des déchets

Classement des déchets

L’article R.541-8 du Code de l’Environnement détermine le classement réglementaire des déchets. Sont distingués selon leur dangerosité les déchets dangereux, les déchets non dangereux et les déchets inertes, ainsi que, selon leur provenance, les déchets ménagers, les déchets d’activités économiques et les biodéchets.

Les déchets dangereux sont ceux qui contiennent des éléments toxiques ou dangereux qui présentent des risques pour la santé humaine et l’environnement. Les déchets non dangereux sont, par défaut, ceux qui ne rentrent pas dans la catégorie des déchets dangereux. Enfin, les déchets inertes sont des déchets qui ne se décomposent pas, ne brûlent pas et ne produisent aucune réaction physique ou chimique avec l’environnement (souvent les déchets du BTP).

Les déchets ménagers sont tous les déchets provenant des ménages (dangereux ou non) tandis que les déchets d’activités économiques sont tous les déchets dont le producteur n’est pas un ménage. Enfin, les biodéchets sont tous les déchets non dangereux de jardin ou de parc, alimentaire ou de cuisine, ainsi que tout déchet comparable provenant des établissements de production ou de transformation de denrées alimentaires.

Gisements de déchets et filières de traitements

Sources principales : projets de PRPGD

Les déchets ménagers et assimilés

La production de déchets ménagers et assimilés s’établissait en 2015 à 568 kg/habitant au niveau national (source : Ademe). La collecte sélective représentait 104 kg par habitant et les apports volontaires en déchetterie 202 kg/hab. au niveau national. Ainsi, les ordures ménagères résiduelles (ou « poubelle grise »), complétant les déchets ménagers et assimilés, équivalaient à 261 kg/hab.

66 Ordures ménagères résiduelles (OMR) + collectes sélectives + apports en déchetterie
Les situations géographiques sur le bassin sont donc assez contrastées entre les territoires, avec les régions du sud du bassin présentant une production de déchets ménagers et assimilés plus importante que la moyenne nationale.

Les différentes filières de valorisation des déchets ménagers et assimilés sont les suivantes (classées par ordre d'importance au niveau national):

- incinération avec récupération d'énergie ;
- valorisation matière ;
- stockage ;
- valorisation organique ;
- stockage pour inertes ;
- incinération sans récupération d'énergie.

Le taux de valorisation de ce type de déchets est globalement bien développé avec, toutefois, une préférence pour la valorisation énergétique (non prioritaire au regard des objectifs).

Les déchets du BTP

En France, les déchets du BTP représentent presque trois quarts des déchets générés, soit 227,5 millions de tonnes, avec une majorité de déchets inertes (source : Ademe). Ce secteur d’activité produit trois catégories de déchets : des déchets inertes, des déchets non dangereux non inertes et des déchets dangereux.

A l'échelle des régions concernées par le bassin Rhône-Méditerranée (hors Grand-Est), le gisement de déchets du BTP représentait environ 61 millions de tonnes en 2015 (dont 58 millions de tonnes de déchets inertes). Avec 25 millions de tonnes, la région Auvergne-Rhône-Alpes est le territoire qui en génère le tonnage le plus important.

Ces chiffres sont issus d'estimations et une part du gisement qui échappe à la collecte, dont des pratiques de stockage illégal, est identifiée. Par exemple, en région PACA, 12 % des déchets inertes produits (soit 1,79 million de tonnes) sont évacués et stockés illégalement, et 2 % (soit 0,2 million de tonnes) sont non tracés.

Les destinations des déchets inertes du BTP sont diverses et peuvent être :

- le recyclage ;
- le remblayage (en carrières par exemple) ;
- le stockage en installation de stockage des déchets inertes ;
- la réutilisation.

Tableau 16 : Quantité de déchets ménagers et assimilés par région en kg/hab. en 2015 (Source : projets de PRPGD des régions)
La valorisation est majoritaire (entre 65 % et 80 % selon les régions).

Les déchets industriels et dangereux

Pour le bassin Rhône-Méditerranée, le gisement de déchets industriels est important étant donné le fort développement industriel des régions PACA et Auvergne-Rhône-Alpes. A l'échelle des régions concernées par le bassin (hors Grand-Est), le gisement de déchets dangereux représentait environ 2,2 millions de tonnes en 2015.

Les filières pour le traitement des déchets industriels, et plus particulièrement ceux dangereux, constituées au fil des années permettent une bonne adéquation entre les besoins de la production et les unités de traitement.

Néanmoins, des transferts de déchets dangereux très importants entre régions limitrophes sont réalisés. Cela s'explique par les choix des industriels (coût de traitement, contrats passés à l'échelle d'un groupe, etc.), par le recours à des filières spécialisées pour lesquelles il y a peu d'installations et par l'absence d'installation de stockage de déchets dangereux ultimes, notamment en Auvergne-Rhône-Alpes et PACA.

Les déchets d'assainissement

Les boues issues de l'épuration des eaux usées domestiques ou industrielles sont considérées comme des déchets. C'est pourquoi les projets de Plans Régionaux de Prévention et de Gestion des Déchets (PRPGD) intègrent la question des boues issues de l'assainissement urbain.

Le gisement de boues issues de l'assainissement urbain est ainsi estimé en 2015 à près de 390 000 tonnes de matière sèche (tMS) pour les régions du bassin Rhône-Méditerranée (hors Grand-Est). Le devenir des boues diffère selon les régions :

- en AURA (toutes boues), elles sont majoritairement traitées (incinération ou stockage), compostées, directement épandues ou autres ;
- en BFC, elles sont majoritairement épandues (61 %) ou compostées (30 %). Les autres filières sont l'incinération (5 %) ou la méthanisation (2 %). Enfin, les dernières filières sont très faibles (lit à macrophytes ou mise en décharge). Pour 2 % du tonnage, le devenir n'est pas connu ;
- en Occitanie, les deux-tiers des boues sont compostées (avec d'autres déchets verts), 20 % sont méthanisées, 18 % sont directement épandues, le reste étant traitées (incinération ou stockage pour les boues non valorisables) ;
- en PACA, environ 70 % des boues sont compostée, 18 % sont valorisées énergétiquement, 9 % sont directement épandues, 2 % sont stockées, et 1 % suivent une autre filière.

A noter que les déchets d'assainissement concernent également les matières de vidange de l'assainissement non collectif ainsi que les sous-produits de l'assainissement (refus, sable, graisse et matière de curage).

L'épandage est soumis à un cadre réglementaire strict prévoyant la réalisation de plans d'épandage et de suivis agronomiques ainsi que le respect de critères d'innocuité et d'intérêt agronomique. L'épandage est une filière indispensable d'élimination des boues sur le bassin, mais il est nécessaire de veiller à ce qu'il n'y ait pas d'atteinte à la qualité des eaux souterraines et superficielles, et qu'il ne compromette pas la santé des hommes et des écosystèmes. Il est à noter qu'en raison de nombreux secteurs où il n'est pas possible d'épandre (montagne, secteurs AOC, diminution de l'activité agricole, étalement urbain, etc.), des transferts importants de boues sont effectués entre départements et régions et le poids de cette filière d'élimination et de valorisation des boues tend à diminuer.
3.2.11.b - Impacts des déchets

L'utilisation intensive et abusive des ressources ainsi que le rejet des déchets dans l'environnement qui en découle contribuent à détériorer les milieux, avec des impacts sur la société, la santé humaine, l'économie, les espèces vivantes, la production alimentaire, le tourisme et les écosystèmes.

Le stockage et l'élimination non maîtrisés des déchets ont pour conséquence des pollutions atmosphériques, de l'eau et des sols. Elles sont notamment provoquées par le stockage des déchets organiques qui peuvent se dégrader et émettre du méthane, au potentiel de réchauffement global important. Des risques sanitaires sont également possibles (développement de bactéries, etc.). La bonne gestion des déchets dangereux est également un préalable indispensable à l'évitement des risques de pollutions.

De plus, la gestion des déchets est émettrice de gaz à effet de serre. Par exemple, elle a été estimée à 8,7 % des émissions de GES en Auvergne-Rhône-Alpes (*source : PRPGD*). Le type de gestion mise en place impacte fortement le niveau d'émissions, la valorisation matière, par exemple, permettant d'éviter de nombreuses émissions. Le transport est également émetteur, considéré comme responsable d'environ 30 % des émissions de GES générées dans le domaine de la gestion des déchets (*source : Ademe*).

Par ailleurs, en termes de déchets assainissement, les boues d'épuration peuvent être à l'origine de nuisances olfactives à proximité des dispositifs d'épuration des eaux mais également des sites de valorisation ou encore d'épandage. Les risques liés aux épandages des boues ou digestats (issus de la méthanisation) doivent être maîtrisés.

ZOOM déchets et milieux marins

Les déchets en milieu marin présentent un enjeu, car ils impactent les habitats et la faune marine. Les grandes métropoles du littoral du bassin Rhône-Méditerranée (Marseille, Toulon, Nice, Cannes), les zones sous l'influence de courants et les canyons sous-marins sont identifiés comme des secteurs présentant d'importantes concentrations de macro déchets. Pour autant, le manque d'informations précises, notamment sur l'évaluation des stocks présents est à souligner. Il en est de même pour les microparticules (particules de macro déchets décomposés).

La Méditerranée est considérée comme un pôle majeur en termes de contamination par des plastiques dans le monde (autour de 200 déchets par km² dont plus de 60 % est du plastique). Toutefois, les connaissances sur les flux de cette pollution sont à développer. En 2010, la pollution par les déchets plastiques a été estimée entre 4,8 et 12,7 millions de tonnes rejetées dans les mers du globe (*Jambeck et al., 2015*). Parmi celle-ci, entre 0,5 et 2,7 millions de tonnes par an sont estimées provenir des cours d'eau intérieurs (*Lebreton et al., 2017 ; Schmidt et al., 2017*).

En 2019, une étude sur l'observation des macro-déchets plastiques flottants sur le Rhône à Arles donne les résultats suivants : 22 catégories de macro-déchets flottants ont été observées (sacs, papiers plastiques, bouteilles, contenants, canettes, etc.), soit 181 éléments en 8,2 heures d'observation cumulées. Les éléments plastiques représentent 77 % des macro-déchets observés.

Ainsi, cette étude estime le nombre de déchets plastiques flottants transportés dans la mer par le Rhône annuellement à environ 223 000 éléments, pour un poids de 700 kg/an (estimation définie comme basse). Le poids total des déchets plastiques flottants (micro et macro) déversés dans la Méditerranée via le Rhône pourrait atteindre 8,5 tonnes/an (estimation définie comme basse) (*Schmidt et al., 2018*)

3.2.11.c - La réglementation et les dispositifs de connaissance, de suivi ou d'action

La directive n°2008/98/CE du 19 novembre 2008 relative aux déchets définit des notions de base telles que celles de déchets, de valorisation et d’élimination, met en place les exigences essentielles relatives à la gestion des déchets, à savoir l’obligation pour un établissement ou une entreprise exécutant des opérations de gestion des déchets de détenir une autorisation ou d’être enregistrés et l’obligation pour les États membres d’établir des plans de gestion des déchets. Elle arrête également les grands principes tels que l’obligation de traiter les déchets d’une manière qui ne soit pas nocive pour l’environnement et la santé humaine, l’encouragement à appliquer la hiérarchie des déchets et, conformément au principe du pollueur-payeur, l’exigence selon laquelle le coût de l’élimination des déchets doit être supporté par le détenteur des déchets, les détenteurs antérieurs ou les producteurs du produit générateur de déchets.

La loi Grenelle 2 donne de nouveaux objectifs en matière de gestion des déchets :
• prévenir et réduire la production et la nocivité des déchets ;
• traiter les déchets selon une certaine hiérarchie (préparation en vue de la réutilisation, recyclage, toute autre valorisation, élimination) ;
• gérer les déchets sans mettre en danger la santé humaine et sans nuire à l’environnement ;
• organiser le transport des déchets ;
• assurer l’information du public.

Enfin, la Loi de Transition Énergétique pour la Croissance Verte (LTECV) donne pour objectifs, sur la base de l'année 2010 :
• la réduction de 10 % des déchets ménagers et assimilés, calculés en kg/hab. d'ici 2020 ;
• la réduction de 50 % les déchets admis en stockage d'ici 2025 ;
• porter à 65 % les tonnages orientés vers le recyclage ou la valorisation organique d'ici 2025.

Les Plans Régionaux de Prévention et de Gestion des Déchets (PRPGD), créés par la loi NOTRe, établissent les références qui permettent aux pouvoirs publics et à tous les acteurs locaux de progresser sur la prévention et la gestion des déchets en assurant la protection de l’environnement et de la santé des personnes. Ils visent à définir les conditions d'atteinte des objectifs : réduction de la production de déchets, augmentation de la part des déchets valorisés, etc.

3.2.11.d - Tendances évolutives

En termes de production de déchets ménagers et assimilés, entre 2010 et 2015, l'évolution de leur quantité par habitant montre une tendance à la diminution sur l'ensemble des régions concernées comme à l'échelle nationale (-1 % en AuRA, -3 % en BFC, -2 % en Occitanie, -1 % en PACA). L'objectif est donc la réduction de 10 % sur cette période (LTECV). La poursuite de la tendance observée depuis 2010 ne permettra pas d'atteindre cet objectif. De plus, la mise en œuvre des PRPGD pour la plupart des régions ne devrait pas intervenir avant 2020. Cependant, plusieurs tendances positives sont observées, notamment la réduction de la production de ces déchets et l'augmentation générale des quantités collectées de façon sélective.

En termes de valorisation de ces déchets, les tendances globales sont également positives : augmentation des quantités valorisées et progression dans le respect de la hiérarchie d'usage. Elles devraient se poursuivre sous l'impulsion des PRPGD et de la progression vers l'économie circulaire. Des objectifs importants sont pris, entre 2011 et 2015.
autres, sur le développement de la valorisation matière des déchets (exemple : la région Auvergne-Rhône-Alpes prévoit un effort supplémentaire de 1,1 million de tonnes de déchets entrant dans les filières de valorisation matière à l'horizon 2031). Elle sera notamment permise par la généralisation du tri à la source des biodéchets à tous les acteurs d'ici 2025.

Concernant les déchets du BTP, les tendances sont difficiles à déterminer. En effet, les connaissances passées sur les gisements, notamment à travers les anciens plans départementaux de prévention et de gestion des déchets issus des chantiers de bâtiments et de travaux publics, étaient fragmentées et incomplètes.

Les projets de PRPGD prévoient la réalisation d'efforts supplémentaires en termes de recyclage, de traçabilité, de lutte contre les stockages illégaux qui devraient permettre d'affiner les connaissances sur les gisements et de réduire les quantités produites tout en progressant en termes de valorisation.

Les quantités produites de déchets dangereux ne montrent pas de tendance à la baisse (exemple : +1 % entre 2012 et 2015 en Auvergne-Rhône-Alpes). Les actions prévues dans les projets de PRPGD en termes de prévention, d'amélioration de tri à la source et du taux de captage devraient permettre d'améliorer leur gestion.

Enfin, en termes de déchets d'assainissement, l'augmentation dans le bassin de la population, entraînant celle du parc de stations d'épuration et le perfectionnement des processus de traitement, en lien avec l'amélioration des rejets, provoque un accroissement des volumes de boues produits, posant le problème de leur élimination et valorisation. Par exemple, le projet de PRPGD PACA estime une augmentation de la quantité produite d'environ 4 % d'ici 2031. La priorité est donnée à leur épandage (direct ou après compostage), en tant que valorisation organique.
3.2.11.e - Atouts-Faiblesses, Opportunités-Menaces

<table>
<thead>
<tr>
<th>ATOUTS</th>
<th>FAIBLESSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Un territoire bien équipé en termes d'installations de traitement des déchets</td>
<td></td>
</tr>
<tr>
<td>• Un travail de connaissance important réalisé à l'occasion de l'élaboration des plans régionaux</td>
<td></td>
</tr>
<tr>
<td>• Une part non négligeable de déchets du BTP échappant aux filières de traitement régionales</td>
<td></td>
</tr>
<tr>
<td>• Des connaissances incomplètes (quantités de déchets dangereux et du BTP souvent estimées)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OPPORTUNITÉS</th>
<th>MENACES</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Des objectifs ambitieux, portés par des plans régionaux récents prochainement mis en œuvre</td>
<td></td>
</tr>
<tr>
<td>• Une prise de conscience importante sur l'impact des déchets</td>
<td></td>
</tr>
<tr>
<td>• Le développement des principes de l'économie circulaire</td>
<td></td>
</tr>
<tr>
<td>• Un développement technologique important en termes de recyclage</td>
<td></td>
</tr>
<tr>
<td>• Une tendance à la baisse de la production de déchets ménagers et assimilés...</td>
<td></td>
</tr>
<tr>
<td>• … mais globalement insuffisante pour atteindre le respect de l'objectif à l'horizon 2020</td>
<td></td>
</tr>
<tr>
<td>• Des leviers d'action pour la réduction des déchets parfois difficiles à trouver</td>
<td></td>
</tr>
</tbody>
</table>

3.2.11.f - Enjeu

Concernant les déchets, l'enjeu environnemental principal lié au PGRI est :

• la lutte contre les déchets flottants.
3.3 - Synthèse de l'état initial de l'environnement

3.3.1 - Analyse des enjeux au regard des tendances d'évolution

Conformément au second alinéa de l’article R.122-20 du Code de l’Environnement, le rapport environnemental doit décrire « les perspectives de l’évolution probable du territoire si le plan, schéma, programme ou document de planification n’est pas mis en œuvre ».

Cet exercice de prospective s’avère assez complexe dans la mesure où il est réalisé à l’échelle de l’ensemble du bassin Rhône-Méditerranée. De plus, de nouveaux programmes et politiques européens, nationaux ou régionaux sont également susceptibles d’intervenir dans le même temps et d’impacter par ailleurs l’environnement. Les conditions d’incertitude dans lesquelles nous devons réaliser cet exercice nous ont contraint dans le corps du document à prolonger à grands traits les évolutions tendancielles actuelles, telles qu’identifiées dans la présentation générale du territoire et les matrices AFOM associées à chacune des thématiques environnementales et en fonction des tendances d'évolution présentées.

Sont ainsi présentées ici la synthèse des évolutions associées aux enjeux environnementaux telles que décrits préalablement.

Tableau 17 : Synthèse de l'évolution probable des enjeux

<table>
<thead>
<tr>
<th>THEMATIQUE</th>
<th>ENJEUX</th>
<th>PERSPECTIVES D'ÉVOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESSOURCES EN EAU</td>
<td>Le bon état des masses d'eau superficielle et souterraine</td>
<td>• Une progression dans la structuration de la gouvernance dans les domaines de l'eau</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Les objectifs réglementaires (bon état des eaux, assainissement, usage et vente des pesticides, substances dangereuses, nitrates, réseaux AEP, etc.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• À contrario plusieurs signaux contrastés concernant l'adaptation au changement climatique : augmentation tourisme, effets incertains, etc.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Impacts du changement climatique : tension en période d'étiage, diminution de la capacité d'autoépuration des milieux, intrusions salines, etc.</td>
</tr>
<tr>
<td>CLIMAT ET CHANGEMENT CLIMATIQUE</td>
<td>La lutte contre le changement climatique</td>
<td>• Des objectifs forts en termes de bilan carbone (neutralité carbone d'ici 2050), à la fois au niveau national et au niveau local</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Meilleure prise en compte des aspects climat-énergie dans les documents stratégiques territoriaux (SCoT, PLUi(i), PCAET)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Mais une tendance à la baisse des émissions de GES insuffisante pour le respect des objectifs (à l'échelle nationale et mondiale)</td>
</tr>
<tr>
<td></td>
<td>L'adaptation aux effets du changement climatique</td>
<td>• Plusieurs sous-bassins versants particulièrement vulnérables au changement climatique</td>
</tr>
<tr>
<td>ENERGIE</td>
<td>La conciliation des objectifs de production d'énergie renouvelable et du bon état des eaux</td>
<td>• Un potentiel de développement des énergies renouvelables important, porté par des objectifs réglementaires forts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Des investissements qui ne cessent de croître sur les filières renouvelables</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Des difficultés rencontrées à réduire la dépendance aux énergies non durables (transports en particulier). Concernant l'électricité, cette complexité provient notamment de la nécessité...</td>
</tr>
</tbody>
</table>
| SOLS ET SOUS-SOLS | La lutte contre les pollutions | d’assurer les besoins en termes de production de base et de flexibilité
 • Des coûts pour la réduction des consommations énergétiques parfois très élevés
| La maîtrise de l’artificialisation des sols | • Des connaissances sur les caractéristiques des sols, des sous-sols et de leurs rôles en constante augmentation
 • Une prise en main de plus en plus forte des enjeux liés aux sols par les plans et programmes de développement du territoire
 • Des Schémas Régionaux des Carrières qui intégreront les enjeux environnementaux les plus récents
 • Mais une augmentation des sites et sols potentiellement pollués ou des activités à risque ainsi qu’une probable intensification des phénomènes d’érosion sous l’impulsion du changement climatique |
| QUALITE DE L’AIR | La protection de la santé humaine | • Mise en œuvre progressive des SRADDET, des PRSE et des PCAET
 • Prise en main de ces enjeux de plus en plus importante dans les stratégies locales, et notamment les documents d’urbanisme
 • Pressions fortes sur l’atteinte des objectifs (population, Union Européenne, etc.)
 • Mais plusieurs facteurs contraires : risque d’intensification avec le changement climatique, développement démographique et économique prévisible source d’accroissement des émissions de polluants, faibles progrès vis-à-vis des transports routiers |
| BIODIVERSITE | La conciliation des usages de la ressource avec la restauration et la préservation des milieux | • Tendance des communes (notamment importantes) à vouloir développer les espaces de nature en ville
 • Développement de la conscience environnementale et de l’importance de la biodiversité
| La diminution des pressions (artificialisation, pollutions, espèces exotiques envahissantes, etc.) | • A contrario plusieurs signaux contrastés : augmentation de l’urbanisation et activités anthropiques, sensibilités de milieux et espèces au changement climatique, plusieurs espèces menacées, espèces exotiques envahissantes, fermeture de milieux etc. |
| La préservation de la biodiversité ordinaire | | |
| CONTINUITES ECOLOGIQUES | La diminution de la fragmentation des milieux | • Mise en œuvre des SRADDET, reprenant les TVB, au poids juridique plus fort
 • Une sensibilisation et des expériences qui se développent (acteurs, public, experts)
| La préservation des continuités écologiques, y compris latérales | • La progression de l’artificialisation des terres, participant à la fragmentation des habitats
 • Les conflits d’enjeux, notamment entre production d’énergie renouvelable et continuité écologique |
| PAYSAGE ET PATRIMOINE | La préservation de la qualité et de la diversité des paysages | • Une richesse de plus en plus intégrée par les politiques locales au travers des documents d’urbanisme notamment
 • Une grande importance de l’enjeu touristique, sur un fond de |
Plan de Gestion des Risques d'Inondation 2022-2027 | Bassin Rhône-Méditerranée

<table>
<thead>
<tr>
<th>Enjeux</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planification et Action</td>
<td>Changement climatique croissant
• Une dynamique d'artificialisation pas toujours cohérente avec les enjeux paysagers
• Des moyens économiques de plus en plus restreints pour l'entretien des sites (notamment ceux peu valorisés ou connus)
• Une poursuite de la déprise agricole</td>
</tr>
<tr>
<td>Risques Naturels et Technologiques</td>
<td>La protection des personnes et des biens vis-à-vis des risques
• Prise de conscience et intégration de la thématique dans de nombreux outils et programmes : PGRI, PPRi, GEMAPI, etc.
• Une multiplication des expériences
• Un potentiel accroissement des risques liés au changement climatique (incendies de forêt, submersion marine, inondation, etc.)
• Une augmentation de la population dans les secteurs exposés</td>
</tr>
<tr>
<td>Santé Humaine</td>
<td>La bonne santé des personnes
• La poursuite de la protection des actions (protection des captages, démarches sur les captages prioritaires, zones de sauvegarde, etc.)
• Un développement des connaissances sur les nuisances, notamment liées aux bruits et aux odeurs
• Impacts du changement climatique : tension en période de sécheresse réduisant l'accès à la ressource, intrusion eau saline rendant impropre l'eau à la consommation, augmentation du risque d'inondation (fréquence et intensité des crues)</td>
</tr>
<tr>
<td>Déchets</td>
<td>La lutte contre les déchets flottants
• Une prise de conscience importante sur l'impact des déchets
• Le développement des principes de l'économie circulaire
• Des leviers d'action pour la réduction des déchets parfois difficiles à trouver
• Problématiques fortes (macro-déchets, micro-polluants, etc.)</td>
</tr>
</tbody>
</table>

▲ : Tendance d'évolution positive de l'enjeu ▼ : Tendance d'évolution négative de l'enjeu ◄► : Enjeu stable ? : incertitude

3.3.2 - Hiérarchisation de enjeux

Afin de préparer l’évaluation des effets probables de la mise en œuvre du document sur l’environnement, il est proposé de hiérarchiser les enjeux préalablement identifiés selon différents critères. Cette priorisation permettra de mettre en avant les éléments les plus concernés par les applications du document et donc les plus sensibles.

La première étape de la priorisation repose sur une hiérarchisation des enjeux en croisant deux éléments clés, conformément aux préconisations du commissariat général au développement durable (CGDD, 2015) :

- leur sensibilité, évaluée au regard de préoccupations environnementales, économiques ou encore sociales et leurs évolutions probables, indépendamment de la mise en œuvre du document ;

Les enjeux sont ainsi classés en trois catégories en tenant compte de leur importance intrinsèque et de leur lien théorique avec le document. La nomenclature est la suivante :

- **structurant** : pour des thématiques environnementales d'une grande sensibilité pour ce territoire,
Plan de Gestion des Risques d'Inondation 2022-2027 | Bassin Rhône-Méditerranée

... soumises à de nombreuses pressions et sur lesquelles le document étudié est susceptible d'avoir des incidences importantes ;

- **fort** : pour des thématiques environnementales un peu moins sensibles, pour lesquelles les pressions potentielles sont indirectes et sur lesquelles le document étudié est susceptible d'avoir des incidences importantes ou alors des thématiques environnementales très sensibles mais sur lesquelles le document étudié est moins susceptible d'avoir des incidences importantes ;

- **modéré** : pour les thématiques présentant une sensibilité modérée et un lien faible avec le document.

Tableau 18 : Priorisation des enjeux environnementaux - PGRI

<table>
<thead>
<tr>
<th>THÉMATIQUE</th>
<th>ENJEU</th>
<th>NIVEAU</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESSOURCES EN EAU</td>
<td>Le bon état des masses d'eau superficielle et souterraine</td>
<td>FORT</td>
</tr>
<tr>
<td>CLIMAT ET CHANGEMENT CLIMATIQUE</td>
<td>La lutte contre le changement climatique</td>
<td>MODÈRE</td>
</tr>
<tr>
<td></td>
<td>L'adaptation aux effets du changement climatique</td>
<td>STRUCTURANT</td>
</tr>
<tr>
<td>ENERGIE</td>
<td>La conciliation des objectifs de production d'énergie renouvelable et du bon état des eaux</td>
<td>MODÈRE</td>
</tr>
<tr>
<td>SOLS ET SOUS-SOLS</td>
<td>La lutte contre les pollutions</td>
<td>MODÈRE</td>
</tr>
<tr>
<td></td>
<td>La maîtrise de l'artificialisation des sols</td>
<td>STRUCTURANT</td>
</tr>
<tr>
<td>QUALITÉ DE L'AIR</td>
<td>La protection de la santé humaine</td>
<td>MODÈRE</td>
</tr>
<tr>
<td>BIODIVERSITÉ</td>
<td>La conciliation des usages de la ressource avec la restauration et la préservation des milieux</td>
<td>FORT</td>
</tr>
<tr>
<td></td>
<td>La diminution des pressions (artificialisation, pollutions, espèces exotiques envahissantes, etc.)</td>
<td>FORT</td>
</tr>
<tr>
<td></td>
<td>La préservation de la biodiversité ordinaire</td>
<td>FORT</td>
</tr>
<tr>
<td>CONTINUITÉS ÉCOLOGIQUES</td>
<td>La diminution de la fragmentation des milieux</td>
<td>STRUCTURANT</td>
</tr>
<tr>
<td></td>
<td>La préservation des continuités écologiques, y compris latérale</td>
<td>STRUCTURANT</td>
</tr>
<tr>
<td>PAYSAGE ET PATRIMOINE</td>
<td>La préservation de la qualité et de la diversité des paysages</td>
<td>MODÈRE</td>
</tr>
<tr>
<td></td>
<td>La conciliation des enjeux entre préservation du patrimoine lié à l'eau et restauration des continuités écologiques</td>
<td>MODÈRE</td>
</tr>
<tr>
<td>RISQUES NATURELS ET TECHNOLOGIQUES</td>
<td>La protection des personnes et des biens vis-à-vis des risques</td>
<td>STRUCTURANT</td>
</tr>
<tr>
<td>SANTE HUMAINE</td>
<td>La bonne santé des personnes</td>
<td>MODÈRE</td>
</tr>
<tr>
<td>DECHETS</td>
<td>La lutte contre les déchets flottants</td>
<td>MODÈRE</td>
</tr>
</tbody>
</table>
Plan de Gestion des Risques d'Inondation 2022-2027 | Bassin Rhône-Méditerranée

4 - Présentation des solutions de substitution et exposé des motifs pour lesquels les objectifs du PGRI ont été retenues

En 2007, la directive 2007/60/CE relative à l'évaluation et à la gestion des risques d'inondation, dite Directive « inondation » a été approuvée. Ce texte a permis la refonte de la politique nationale de gestion du risque d'inondation en visant notamment la réduction des conséquences potentielles associées aux inondations dans un objectif de compétitivité, d’attractivité et d’aménagement durable des territoires exposés à l’inondation.

La directive préconise de travailler à l'échelle des grands bassins hydrographiques appelés « districts hydrographiques », en l'occurrence le district Rhône et côtes méditerranéens (Rhône-Méditerranée).

En France, la directive inondation a été transposée dans le droit national par la Loi d'Engagement National pour l'Environnement du 12 juillet 2010 et par le décret n°2011-227 du 2 mars 2011 relatif à l'évaluation et à la gestion des risques d'inondation.

Ce contexte réglementaire impose ainsi la réalisation d'un Plan de Gestion des Risques d'Inondations (PGRI), dont la mise en œuvre est calée sur les cycles de la directive cadre sur l'eau (6 ans).

4.1 - Contexte de l'élaboration du PGRI

4.1.1 - Application de la directive inondation et PGRI 2016-2021

Au cours du cycle DCE 2010-2015, les premières étapes de la mise en œuvre de la directive inondation ont été réalisées :

- **au niveau national**, par la réalisation et l'arrêt de la Stratégie Nationale de Gestion des Risques d'Inondation (SNGRI). Celle-ci définit les ambitions de l'État français pour répondre aux attentes réglementaires et rechercher une vision coordonnée à l'échelle nationale autour de 3 objectifs : augmenter la sécurité des populations ; réduire le coût des dommages ; raccourcir fortement le délai de retour à la normale des territoires sinistrés ;

- **au niveau des districts hydrographiques**, par plusieurs points au niveau du Préfet coordonnateur de bassin qui a :
 - élaboré une Évaluation Préaliminaire des Risques d'Inondations (EPRI) sur les districts, finalisée en décembre 2011 ;
 - sélectionné des Territoires à Risques Importants d'Inondation (TRI) sur la base de l'EPRI et des critères nationaux définis dans le cadre de la SNGRI, arrêtés le 12 décembre 2012 ;
 - élaboré les cartes des surfaces inondables et des risques d'inondations, finalisées en décembre 2013, août et septembre 2014 ;
 - défini la liste des Stratégies Locales de Gestion des Risques d'Inondations (SLGRI) à élaborer pour les TRI ;
 - élaboré le Plan de Gestion des Risques d'Inondations (PGRI) sur le district Rhône-Méditerranée.

Le Plan de Gestion des Risques d'Inondations 2016-2021, arrêté le 7 décembre 2015, a ainsi été le premier à être mis en œuvre.

La sélection des TRI s'est appuyée sur l'EPRI, sur les critères nationaux de caractérisation de l'importance du
risque d'inondation fixés par l'arrêté du 27 avril 2012 (impacts potentiels sur la santé humaine et ceux sur l'activité économique), ainsi que sur l'objectif que les TRI comprennent au moins 50 % de la population et des emplois potentiellement exposés du bassin.

Afin d'évaluer ces impacts, deux indicateurs principaux ont été mobilisés : la population permanente et le nombre d'emplois situés en zones potentiellement inondables. En effet, les résultats de l'EPRI ont montré que l'indicateur de la population permanente résidant en zone potentiellement inondable est intégrateur de l'ensemble des conséquences négatives des inondations sur la santé humaine, l'activité économique, le patrimoine et l'environnement. Là où se concentrent les habitants se trouve en effet la plus grande concentration de biens à caractère patrimonial, d'installations risquant d'avoir des conséquences sur l'environnement en cas d'inondation et d'activités économiques.

En Rhône-Méditerranée, deux autres indicateurs d'impacts ont été utilisés : l'emprise totale du bâti (intégrant l'ensemble du parc touristique) et l'habitat de plain-pied (information sur la vulnérabilité du bâti). Enfin, la notion de « facteur d'intérêt à agir » a également été prise en compte. Elle est basée sur la connaissance de la dynamique du territoire en termes d'aménagement de l'espace et de prise en charge des risques d'inondation.

Ainsi, 31 TRI ont été sélectionnés. Ils comprenaient une population permanente en Enveloppe Approchée des Inondations Potentielles par débordement de cours d'eau (EAPIce) d'un peu plus de 5 millions d'habitants et près de 2,8 millions d'emplois situés dans cette même enveloppe.

Sur cette base, 41 périmètres de SLGRI ont été arrêtés sur les TRI du bassin Rhône-Méditerranée.

Des risques d'inondation existent également en dehors des TRI. Une partie significative de ces territoires est inclue au sein des périmètres des SLGRI, qui couvrent une proportion du bassin bien plus importante. En dehors de ces périmètres, la lutte locale contre les risques d'inondation s'appuie principalement sur les autres dispositifs disponibles : Plans de Prévention des Risques d'inondations, Plans Communaux de Sauvegarde, Programmes d'Actions de Prévention des Inondations, etc.). A noter que le PGRI s'applique également sur ces territoires.

4.1.2 - Deuxième cycle et préparation du PGRI 2021-2027

Principales sources utilisées : Addendum de l'EPRI de 2011 ; Synthèse de la consultation des parties prenantes sur les cartographies nouvelles ou modifiées des TRI conduite en 2019

Publiée le 1er février 2017, une note technique du ministre de l'environnement, de l'énergie et de la mer vise à préparer le 2ème cycle de mise en œuvre de la directive inondation (2021-2027). Elle établit trois objectifs relatifs à cette nouvelle période :

- « finaliser les stratégies locales lorsqu'elles n'ont pu complètement aboutir au 31 décembre 2016, et les mettre en œuvre, le cas échéant au travers de PAPI en cours ou à construire […] ;
- réexaminer les documents issus du 1er cycle et les mettre à jour si nécessaire pour tenir compte d'une évolution de l'état des connaissances ou événements nouveaux significatifs intervenus après l'élaboration des documents et qui remettent en cause leur validité […] ;
- encourager la cohérence des nouvelles structures chargées de la responsabilité GEMAPI avec la gouvernance issue de l'élaboration des SLGRI. »

Cette démarche doit s'effectuer en maintenant les structures de concertation mises en place pour le premier cycle.

Ainsi, en 2017 et 2018, le Préfet coordonnateur de bassin a mis à jour l'EPRI réalisée en 2011, aboutissant à l'Addendum 2018 à l'évaluation préliminaire des risques d'inondation 2011. Le choix de compléter l'EPRI de
2011 par un addendum se justifie par le fait qu'aucune évolution majeure des données d'aléa et des données d'enjeux ne nécessiterait de refaire les Enveloppes Approchées des Inondations Potentielles (EAIP) et de recalculer les indicateurs associés.

Sur cette base, en concertation avec les parties prenantes, les 31 TRI arrêtés lors du 1er cycle ont été confirmés par l'arrêté du 16 octobre 2018.

Conformément à l'un des objectifs fixés sur le bassin Rhône-Méditerranée, un travail d'amélioration de la cartographie des TRI a été mené. En effet, au cours de la préparation du 1er cycle, certains cours d'eau n'avaient pas pu être cartographiés dans le temps imparti tandis que d'autres méritaient des améliorations. De plus, un certain nombre d'études hydrauliques ont été conduites sur de nombreux TRI, permettant de faire une amélioration de la connaissance dans ces secteurs.

Le travail s'est notamment concentré sur la mise en cohérence des cartographies des TRI avec celles des PPRi approuvés depuis 2013. Pour les PPRi en cours de révision ou de concertation ainsi que les autres éléments de connaissances, le choix d'intégrer les données ou non s'est fait au cas par cas. Ainsi, les études conduites ont permis d'améliorer la connaissance sur 24 cours d'eau et d'en cartographier 8 nouveaux. Ce sont donc 14 TRI qui ont vu leur cartographie évoluer :

Aix-en-Provence - Salon-de-Provence	Lyon
Annemasse - Cluses	Marseille-Aubagne
Avignon - Plaine du Tricastin - Basse vallée de la Durance	Montélimar
Belfort - Montbéliard	Montpellier - Lunel - Maugio - Palavas
Béziers - Agde	Romans-sur-Isère - Bourg-de-Péage
Grenoble-Voiron	Sète
Haute Vallée de l'Arve	Plaine de Valence

Sur ces TRI, des consultations ont été menées sur une période de deux mois afin de recueillir les observations issues des acteurs locaux sur les modifications proposées. Elles ont permis de collecter les remarques de 77 parties prenantes (communes, EPCI, Conseils Régionaux et Départementaux, Syndicats mixtes, acteurs de la gestion de crises, etc.).

Même si l'ensemble des requêtes n'ont pas pu être satisfaites pour des raisons d'homogénéité à l'échelle du bassin ou de délais, plusieurs modifications ont été intégrées pour 7 TRI sur les 14 (en gras dans le tableau précédent) : compléments cartographiques, mises à jour de rapports ou précisions supplémentaires, corrections, etc.

Le PGRI 2021-2027 constitue donc le prolongement de l'ensemble de ces démarches et l'évolution du PGRI
2016-2021 qui en découle.

===

4.2 - Un travail itératif pour étudier les évolutions possibles du PGRI 2022-2027

4.2.1 - Les questions importantes inondation sur le bassin Rhône-Méditerranée

Afin de préparer l’élaboration du PGRI 2022-2027, une large consultation s’est tenue pendant six mois entre novembre 2018 et mai 2019 sur la base de questions importantes relatives au plan. Cette démarche a été réalisée parallèlement à celle menée dans le cadre de l’élaboration du SDAGE 2022-2027.

Un public « mixte » était visé : le grand public, mais aussi les acteurs de la gestion des risques d'inondations, les structures publiques, les associations, les acteurs socio-économiques, etc.

Les questions importantes du PGRI 2022-2027 visaient trois objectifs :

- rappeler les grands enjeux du PGRI actuellement en vigueur et questionner la connaissance et la mobilisation des acteurs du territoire sur la stratégie déployée ;
- identifier les besoins d'évolution de ce document au vu des nouveaux éléments de contexte, de connaissance et des expériences locales ;
- profiter de cette étape pour questionner les territoires sur la démarche structurante proposée par la directive inondation, de manière à mesurer l'efficacité de cette démarche et les difficultés rencontrées par les acteurs, porteurs de ces stratégies.

La consultation a permis de recueillir des avis de 22 contributeurs issus du grand public et de 51 contributeurs issus des parties prenantes sur ces questions importantes.

Q1 - En termes de réduction de vulnérabilité, les questions posées étaient :

Plan de Gestion des Risques d'Inondation 2022-2027 | Bassin Rhône-Méditerranée

• Comment inciter les collectivités territoriales à porter des démarches volontaires en matière de réduction de la vulnérabilité ?
• Comment favoriser la prise de conscience par les acteurs individuels de leur intérêt à mener des actions de prévention ?

Sur ces points, les contributeurs ont souligné l'importance de développer les diagnostics de vulnérabilité. De plus, il apparaît nécessaire de montrer l'intérêt des mesures prises en termes de rapport coût-bénéfice. Enfin, il faut acquérir et accroître des savoirs-faîres techniques tout en mobilisant d'autres acteurs compétents (assureurs, entreprises du BTP, chambres consulaires).

Q2 - Sur la préservation des champs d'expansion des crues et la recherche de la mobilisation de nouvelles capacités d'expansion, les questions posées étaient :

• Comment renforcer la mobilisation des acteurs pour la préservation des champs d'expansion des crues ? Quelles difficultés sont rencontrées ? Quels leviers mobilisés ?
• Comment faciliter la restauration et le développement de nouvelles capacités d'expansion des crues ?
• Comment assurer une préservation pérenne des champs d'expansion des crues existants ?

Les contributeurs ont souligné la nécessité de contractualiser et d'indemniser les agriculteurs présents dans les champs d'expansion des crues. Parallèlement, l'intégration de ces espaces dans les PPRi et les documents d'urbanisme en renforçant les contrôles est demandée, tout en n'aboutissant pas à une sanctuarisation de ces zones. Les espaces de bon fonctionnement constituent également des zones qu'il faut prendre en compte dans les documents de planification. Pour cela, le renforcement du lien entre syndicats gémapiens et structures en charge de l'aménagement du territoire est un levier à activer.

Q3 - Concernant l'intégration des enjeux de qualité des milieux aquatiques dans les projets de gestion des risques d'inondation, les questions suivantes ont été posées :

• Comment démultiplier des projets de prévention des inondations intégrant les objectifs de mobilité des cours d'eau, de préservation des zones humides et de connectivité entre les milieux ?
• Quels critères techniques prendre en compte pour assurer des projets fonctionnels et de qualité ?
• Quelle gouvernance mettre en place pour favoriser ces projets intégrés ?

Afin de rapprocher la gestion de ces derniers enjeux fortement imbriqués, les contributeurs estiment qu'il est nécessaire de décloisonner les politiques publiques et d'assouplir les critères de financement entre gestion des milieux aquatiques (GEMA) et prévention des inondations (PI), par la création d'un guichet unique. De plus, il est possible de développer un raisonnement en termes d'opportunité sur les projets mixtes (GEMA et PI), en favorisant les projets à faibles impacts sur les milieux. Un portage intégré à l'échelle du bassin versant doit être proposé (intégralité de la compétence GEMAPI sur un bassin versant portée par un EPAGE), tout en créant des comités multi-acteurs GEMAPI et en définissant des commissions dédiées aux risques dans les SAGE. Enfin, la délimitation des espaces de bon fonctionnement doit se poursuivre, dans une démarche de co-construction.

Q4 - En termes de maîtrise de l'urbanisation en zones inondables, les questions étaient :

• Comment mieux accompagner les territoires dans la maîtrise de l'urbanisation en zone inondable ? Quelles difficultés sont rencontrées ? Quels leviers mobiliser ?
• Comment favoriser l'émergence d'aménagements résilients en zones inondables constructibles ? Quelles innovations ?
• Comment renforcer la prise en compte du risque d'inondation dans les documents d'urbanisme locaux ?

Il est ressorti de la consultation sur cet question importante la nécessité de généraliser les PPRi et les PLUi, tout en harmonisant les règles entre les PPRi. L'aléa ruissellement est souligné comme étant trop peu connu à ce jour : nécessité de progresser vers une meilleure prise en compte de cet aléa (urbain et agricole) et de l'aléa...
submersion marine dans les projets et documents d'urbanisme. La création d'un langage commun entre acteurs de l'eau et de l'urbanisme permettrait également d'améliorer la prise en compte de cet objectif. Enfin, il faut noter que des divergences sont apparues dans les réponses apportées entre sanctuarisation et occupation résiliente en zone inondable.

Q5 - Sur la mise en œuvre des stratégies locales de gestion des risques d'inondation, les questions suivantes ont été posées :

- Qu'est-ce que la ou les stratégies locales ont apporté sur votre territoire ? Quelles difficultés sont rencontrées ?
- Comment amplifier la mise en œuvre opérationnelle des SLGRI, notamment au travers des PAPI ?
- Comment favoriser le portage local des SLGRI par les collectivités, en cohérence avec la compétence GEMAPI ?

Les contributeurs ont souligné la nécessité de favoriser un portage des SLGRI cohérent avec les compétences GEMAPI sur les territoires, tout en renforçant le portage politique des stratégies locales (peu connues des élus) et en identifiant une collectivité locale porteuse pour chaque SLGRI. De plus, la difficulté liée à l'absence de financement État pour l'animation des SLGRI doit être levée. En termes d'efficacité des SLGRI, certains contributeurs évoquent la redondance avec les outils pré-existants et d'autres l'opportunité que ces stratégies créent pour la prise en compte des risques sur le territoire.

Q6 - Concernant la prise en compte des impacts du changement climatique et l'amplification des phénomènes intenses en zone de montagne et sur l'arc méditerranéen, les questions suivantes ont été soumises à consultation :

- Quels sont les besoins d'accompagnement des territoires face à cette recrudescence d'événements extrêmes, en termes de connaissance, d'alerte, et de gestion de crise ?
- Comment assurer une prise de conscience suffisante du risque par les populations et l'acquisition de comportements réflexes, notamment sur ces territoires soumis à des événements extrêmes ?

La poursuite des études des effets du changement climatique sur les aléas (notamment en montagne et sur le littoral) ainsi que la prise en compte des spécificités des territoires de montagne (phénomène de lave torrentielle notamment) ressortent des contributions. Parallèlement, l'information, la formation et le développement de la culture du risque auprès des populations est un axe à favoriser. La réalisation d'exercices peut être un des moyens en ce sens (plans communaux de sauvegarde, plans particuliers de mise en sûreté, etc.). Enfin, les contributeurs soulignent l'importance de l'amélioration des outils et de l'organisation de la surveillance et de l'alerte en prenant en compte le changement climatique.

4.2.2 - Ateliers et réunions de concertation

Principales sources utilisées : Comptes-rendus des groupes de contribution SDAGE-PGRI ; Synthèse des commissions géographiques de l'automne 2019

Lors du Comité de Bassin du 28 juin 2019, il a été décidé de réunir trois groupes de contribution à l'actualisation des orientations fondamentales du SDAGE. Parmi ces groupes, l'un a été tenu en associant l'élaboration du PGRI (pour rappel, plusieurs dispositions sont communes entre PGRI et SDAGE) : la restauration physique des cours d'eau et la réduction de l'aléa inondation, qui s'est tenue le 18 octobre 2019.
Concernant la dynamique de mobilisation, le groupe de contribution a souligné l'opportunité à agir post-événement, lorsque le territoire a été confronté aux enjeux de protection des inondations. Toutefois, sans attendre la prise de conscience associée à la survenue d'un événement, l'action peut être portée à l'échelle des sous-bassins (pas possible d'agir sur l'ensemble du territoire), en ciblant les mesures les plus efficaces, tant sur la gestion des milieux que sur la prévention des inondations (intérêt des analyses coûts-bénéfices des PAPI). Pour cela, la gestion des inondations et celle des milieux aquatiques doivent être conjointes. Les retours d'expériences et les outils de communication sont intéressants à mobiliser dans cet objectif. La structuration de la compétence GEMAPI à l'échelle des bassins versants est également un levier important.

Il est nécessaire de renforcer le poids politique des « enjeux eau » face à l'urbanisme. En effet, l'objectif est de réduire le risque sur l'existant et en aucun cas d'augmenter le nombre d'habitants dans les zones à risque grâce aux travaux ou aux compensations financières instaurées. La profession agricole doit également être associée : mise en place de conventions concertées, association lors de la délimitation des EBF, etc. Pour l'ensemble des acteurs, la culture du risque doit être renforcée et les actions pédagogiques peuvent être développées (fonctionnement des cours d'eau, rôle de la ripisylve, etc.).

Concernant l'articulation entre PGRI et EBF, le groupe de contribution a identifié la question du transport solide comme essentielle, notamment au regard de la diminution importante des apports sédimentaires parvenant à la mer. Les études de transport solide doivent donc permettre de comprendre les flux, transports et dépôts, notamment en cas de crue, et de définir les actions pertinentes. Par ailleurs, la délimitation des EBF en amont des PAPI est proposée. Une fois délimitées, il est nécessaire d'engager des réflexions sur le foncier. Celles-ci peuvent être menées dans le cadre des SAGE.

Enfin, concernant l'élaboration de scénarios de gestion durable prenant en compte les bénéfices socio-économiques et environnementaux, les acteurs ont souligné la nécessité d'étudier plusieurs scénarios, intégrant notamment les solutions fondées sur la nature, pour aider à la définition du programme de travaux le plus efficient a priori. De plus, le développement des analyses coûts-bénéfices et analyses multicritères dans les PAPI permettrait de favoriser les actions intégrant une dimension morphologique intéressante.

En outre, un webinaire à destination des acteurs de la gestion des risques (porteurs de SLGRI, porteurs de PAPI, services de l'Etat, etc.) sur le changement climatique et ses impacts sur les risques naturels s'est tenu en juin 2021.

Il a également été décidé d'organiser cinq commissions géographiques, permettant aux acteurs locaux de s'exprimer, particulièrement sur les trois thématiques abordées lors des groupes de contribution, dont celle commune SDAGE-PGRI.

De nombreux avis ont été recueillis sur la restauration physique des cours d'eau et la réduction de l'aléa inondation (218 sur les 617 avis totaux).
Ainsi, les principaux sujets abordés étaient les suivants :

- Sensibiliser et concerter (17 % des avis) : sensibiliser les élus et citoyens sur les bénéfices du bon fonctionnement des milieux aquatiques, des solutions fondées sur la nature et de la préservation des espaces de bon fonctionnement ; renforcer la culture de la GEMAPI et du risque ; développer la concertation ;
- Développer la gestion foncière (16 %) : développer la gestion et la maîtrise foncière, au service des espaces de bon fonctionnement et de la réduction de l'aléa inondation ;
- Définir, préserver et restaurer les EBF en lien avec la prévention des inondations (11 %) : développer la concertation et l'association des acteurs le plus en amont ; inclure la définition des EBF dans les PAPI ou mener les études en parallèle ;
- Développer des projets intégrés, coupler la GEMA et la PI (11 %) : renforcer l'intégration de ces deux objectifs dans les projets ; promouvoir un exercice conjoint des compétences GEMA et PI par les collectivités ;
- Lien avec urbanisme et aménagement du territoire (11 %) : intégrer les enjeux de préservation des milieux aquatiques, de leurs EBF et des zones d'expansion des crues dans les documents d'urbanisme et politiques d'aménagement ;
- Financer les projets (10 %).

Les autres thèmes ont recueilli moins de 10 % des avis : mobiliser les leviers réglementaires (8 %), structurer la maîtrise d'ouvrage (6 %), gérer le transport solide, et suivre et évaluer les actions (2 % chacun), et autres sujets (7 %).

4.2.3 - Retours d'expérience sur la mise en œuvre du PGRI 2016-2021

En plus de ce travail itératif, l'élaboration du PGRI 2022-2027 s'appuie sur un retour d'expérience de la mise en œuvre de chaque grand objectif du PGRI des services de l’État réalisé de mai à octobre 2019.

Il s'agissait de réaliser une première évaluation de la mise en œuvre du PGRI (toujours en cours en 2019) et notamment d'évaluer le niveau d'atteinte des objectifs fixés, de disposer d'éléments sur la mise en œuvre concrète des dispositions du PGRI et d'alimenter le bilan exigé par les textes.
Puis, dans un second temps, il s'agissait de questionner les services sur les dispositions du PGRI en cours :

- sont-elles suffisantes pour atteindre l'objectif ?
- y a-t-il des sujets non traités à ajouter ?
- quelles sont les dispositions à maintenir absolument ?
- comment les rendre plus efficaces ?

Ce travail a permis de recueillir les retours de 17 DDT(M) et de 4 DREAL.

Concernant le Grand Objectif 1 (GO 1), visant une meilleure prise en compte du risque dans l'aménagement et la maîtrise du coût des dommages, sur la réduction de la vulnérabilité, il est souligné que la mise en œuvre des travaux après diagnostic reste difficile. Un accompagnement est indispensable et le caractère temporel est très important (plus le temps avance suite à la crue, moins la mobilisation existe).

Par ailleurs, encore peu de PPRi intègrent les campagnes de diagnostic. Sur la prise en compte du risque dans les documents de planification, la nécessité de disposer d'éléments de cadrage sur les PPRi et PPRl (littoral) apparaît (détermination de l'aléa, régime d'exception visé par le décret PPR, prise en compte des systèmes d'endiguement).

Parmi les principes du PGRI, l'interdiction de construire en zone inondable non urbanisée, la limitation des équipements et établissements sensibles dans les zones inondables ou encore la préservation des champs d'expansion des crues apparaissent comme posant des difficultés importantes en termes d'intégration dans les documents de planification.

Globalement, les dispositions sont jugées utiles à maintenir (avec mise à jour) et, pour la majorité, suffisantes. Des pistes d'ajouts sont définies : mieux définir les modalités de prise en compte des atlas des zones inondables, préciser le rôle des DDT et du préfet dans le cadre du contrôle de légalité, mieux intégrer les zonages pluviaux, identifier les compléments et précisions nécessaires au décret PPR.

Pour le Grand Objectif 2 (GO 2), visant à augmenter la sécurité des populations exposées aux inondations en tenant compte du fonctionnement naturel des milieux aquatiques, les champs d'expansion des crues apparaissent comme préservés sur environ la moitié des territoires. La méconnaissance des secteurs potentiels, la gestion du foncier, le financement et l'absence de volonté politique sont autant de freins identifiés.

Malgré plusieurs difficultés identifiées, l'évitement des remblais en zone inondable apparaît comme plutôt appliqué, tout comme la vérification, lors de l'instruction des dossiers ICPE/IOTA, des impacts cumulés et des modalités de compensation.

Au contraire, la limitation du ruissellement à la source semble difficile à atteindre. La prise en compte du ruissellement dans les documents d'urbanisme et/ou les schémas directeurs, et zones assainissement et eaux pluviales n'est pas complète, voire inexistante. Il est également noté que peu de PAPI intègrent des actions sur le ruissellement, ou de façon partielle. De plus, la prise en compte de l'érosion côtière du littoral reste insuffisante (territoires à risque important non identifiés, absence d'intégration dans les documents d'urbanisme, absence de traitement de la submersion dans les PCS, etc.).

Finalement, les dispositions du GO 2 sont suffisantes mais souffrent de plusieurs difficultés de mise en œuvre opérationnelle. Il est proposé de renforcer les éléments traitant du ruissellement et de la mise en place des actions conjointes de lutte contre les inondations et de restauration, et de traiter du sujet de recul stratégique/recomposition spatiale sur le littoral.

Au niveau du Grand Objectif 3 (GO 3), visant à améliorer la résilience des territoires exposés, il est
proposé quelques apports en termes de surveillance et de prévision : mise en place des cartes de zones inondables potentielles, amélioration de la connaissance du réseau non surveillé. Le nombre de retours d'expérience doit être augmenté, tout comme le nombre d'exercices de crise.

L'application de certaines dispositions n'a pas été complète, telles que la réalisation des démarches de sensibilisation des réseaux. Toutefois, les dispositions relatives à la gestion de crise apparaissent comme suffisantes, et quelques modifications et ajouts sont proposés (ajustements de rédaction, modifications sur l'accompagnement des gestionnaires de réseau, déploiement des outils d'alerte, etc.). Il s'agit également d'intégrer les objectifs et dispositions des missions RDI (Référent Départemental pour l'appui technique à la gestion des crises d'Inondation).

Enfin, concernant la culture du risque, une grande majorité des retours font état de projets de sensibilisation menés sur leur territoire. Les dispositions sont suffisantes.

Vis-à-vis du Grand Objectif 4 (GO 4), visant à organiser les acteurs et les compétences, une bonne synergie eau/inondations est observée, mais des progrès restent à faire sur la coopération des acteurs de l'urbanisme. Les dispositions sont globalement à maintenir, sauf la D4-6 relative à la mise en place de la compétence GEMAPI. Le renforcement de la synergie avec les acteurs de l'urbanisme est proposé. Quelques dispositions peuvent être renforcées : porter la GEMAPI à l'échelle de bassin versant, renforcer les recommandations de concertation et de coordination sur le bassin versant.

Concernant le Grand Objectif 5 (GO 5), visant à développer la connaissance sur les phénomènes et les risques d'inondation, une progression importante est observée : connaissance des aléas (bien qu'il subsiste des secteurs où la connaissance reste insuffisante), scénarios de crues, partage de la connaissance. Les dispositions apparaissent suffisantes, tout en améliorant possiblement l'articulation entre l’État et gémapiens/porteurs de PAPI.

4.3 - Les choix réalisés pour le PGRI 2022-2027

Le cadre national de révision des PGRI décrit des principes communs pour la révision de ces documents, notamment :

- ne pas modifier en totalité les PGRI ;
- ne faire évoluer les PGRI que s'il en est attendu des progrès substantiels en matière de prévention des risques ;
- prendre en compte les impacts du changement climatique sur le risque d'inondation ;
- faire converger les PGRI en termes d'aménagement des zones à risque d'inondation sur des principes fondamentaux communs (décret PPRi du 5 juillet 2019).

4.3.1 - Une structure maintenue

Le PGRI actuel, approuvé en décembre 2015, reste un document relativement récent, et les enjeux de gestion du risque d'inondation sur le bassin Rhône-Méditerranée n'ont pas évolué significativement depuis. Ainsi, en accord avec le cadre national et les avis recueillis, le PGRI 2022-2027 conserve la structure du plan précédent, à savoir :

- GO1 : Mieux prendre en compte le risque dans l'aménagement et maîtriser le coût des dommages liés à l'inondation ;
Plan de Gestion des Risques d'Inondation 2022-2027 | Bassin Rhône-Méditerranée

- **GO2**: Augmenter la sécurité des populations exposées aux inondations en tenant compte du fonctionnement naturel des milieux aquatiques ;
- **GO3**: Améliorer la résilience des territoires exposés ;
- **GO4**: Organiser les acteurs et les compétences ;
- **GO5**: Développer la connaissance sur les phénomènes et les risques d'inondation.

4.3.2 - **Des orientations d'évolution ciblées**

- **GO1**: Mieux prendre en compte le risque dans l'aménagement et maîtriser le coût des dommages liés à l'inondation

Les évolutions ont visé à renforcer la D.1-3 sur l'évitement de l'aggravation de la vulnérabilité en orientant le développement urbain en dehors des zones à risque, en tenant compte du décret PPRi du 5 juillet 2019. Il s'agit principalement d'affirmer des principes fondamentaux de la prévention des inondations sur tous les territoires, même en l'absence de PPRi, en cohérence avec les avis recueillis sur les questions importantes.

Il est également apparu nécessaire d'insister sur l'importance de l'adaptation du bâti existant pour maîtriser le coût des dommages, en améliorant la connaissance de leur vulnérabilité et, plus particulièrement, en accompagnant la mise en œuvre des mesures.

- **GO2**: Augmenter la sécurité des populations exposées aux inondations en tenant compte du fonctionnement naturel des milieux aquatiques

Les évolutions visent à développer les solutions alternatives aux ouvrages de protection pour lutter contre les inondations. Il s'agit notamment de mettre en avant l'espace de bon fonctionnement des cours d'eau comme un outil pertinent pour la prévention des inondations et de renforcer son articulation avec les PAPI. Il s'agit également de favoriser la mobilisation de nouvelles capacités d'expansion des crues en incitant les collectivités compétentes en matière de GEMAPI à définir des stratégies foncières.

Par ailleurs, il est ressorti du travail de préparation que les enjeux liés au ruissellement restaient insuffisamment pris en compte. Ainsi, le projet souhaite encourager les porteurs de PAPI à porter des études globales à l'échelle du bassin versant sur le ruissellement et à définir des actions spécifiques visant à réduire et à gérer les inondations par ruissellement.

Aussi, une évolution vise à insister sur le fait que la gestion des ouvrages de protection contre les inondations doit se faire dans un cadre équilibré avec les autres enjeux, de biodiversité notamment. Ainsi, certaines formes de végétation peuvent être maintenues sur ces ouvrages, en s'inscrivant dans une gestion qui doit permettre d'éviter leur détérioration et de garantir des conditions de surveillance adaptées.

Enfin, la mise en avant des solutions fondées sur la nature face aux impacts du changement climatique, plus souples et plus résilientes, est renforcée. Il est également demandé d'intégrer les conséquences du changement climatique dans la définition des mesures de gestion des risques torrentiels et d'insister sur l'importance de prendre en compte le risque de submersion marine et l'érosion littorale dans les SLGRI.

- **GO3**: Améliorer la résilience des territoires exposés

Sur les deux objectifs « organiser la surveillance, la prévision et la transmission de l'information sur les crues et les submersions marines », et « passer de la prévision des crues à la prévision des inondations », le projet présente principalement des actualisations des dispositions du PGRI 2016-2021 pour tenir compte des évolutions, notamment sur les atlas de cartes de zones inondées potentielles.

De plus, le PGRI 2022-2027 vise une sensibilisation, une diffusion des connaissances du risque ainsi qu'une
Plan de Gestion des Risques d'Inondation 2022-2027 | Bassin Rhône-Méditerranée

vulgarisation des données techniques à destination du grand public plus importante, afin de développer la culture du risque.

- **GO4 : Organiser les acteurs et les compétences**

Au-delà des évolutions sur les dispositions communes avec le SDAGE 2022-2027, un ajout visant à intégrer les objectifs de la politique de gestion des risques d'inondation aux projets d'aménagement du territoire et à associer les acteurs concernés le plus en amont possible est défini, en cohérence avec le SDAGE.

En outre, il est décidé d'insister sur l'enjeu de co-animation État/collectivité locale des SLGRI pour amplifier leur mise en œuvre opérationnelle.

- **GO5 : Développer la connaissance sur les phénomènes et les risques d'inondation**

Le projet intègre désormais le développement de la connaissance des phénomènes d'inondation et l'étude des effets du changement climatique sur les aléas, particulièrement en zone de montagne et sur le littoral. Le partage des enseignements des catastrophes, au travers des retours d'expérience notamment, est aussi recherché.

4.3.3 - La mise en place d’un suivi du PGRI

Le PGRI 2016-2021 souffrait d'une absence de définition d'indicateurs de suivi. Cela a rendu l'évaluation des progrès accomplis lors de ce cycle (demandée par la directive inondation) par le PGRI 2022-2027 difficile.

C'est pourquoi des indicateurs de suivi sont définis pour le PGRI 2022-2027, couvrant l'ensemble des grands objectifs du plan. Le choix se porte essentiellement sur des indicateurs de réponse qui permettront de mesurer l'efficacité de la politique de gestion des risques d'inondation conduite à l'échelle du bassin.

4.4 - Prise en compte des enjeux environnementaux dans le projet

En parallèle de la démarche de rédaction du PGRI, le rapport environnemental s’est bâti en s'appuyant sur la participation des évaluateurs à plusieurs réunions de concertation : Commissions géographiques, groupes de contribution, Bureau du Comité de bassin, Comité de bassin, groupes de travail du Comité de bassin. La mission du bureau d’étude a démarré à l’automne 2019.

Dans ce cadre, la démarche itérative mise en place entre le rédacteur du PGRI et l'évaluateur a permis d'intégrer, dans le projet final évalué (juillet 2020), plusieurs mesures correctrices permettant d'éviter ou de réduire les effets probables négatifs du projet de PGRI et d'améliorer ou d'intégrer la prise en compte de l'ensemble des enjeux environnementaux.

Ainsi, plusieurs dispositions ont été ajustées :

- des conditions environnementales supplémentaires pour la valorisation des zones inondables par les collectivités (D.1-4) ;
- une attention portée aux impacts sur les milieux naturels présents dans le cadre de la mobilisation fonctionnelle de nouvelles capacités d'expansion des crues (D.2-2) ;
- une sensibilisation du public sur les solutions fondées sur la nature (D.3-14).

L'ensemble de ces éléments ont été discutés et intégrés lors de l'élaboration même du PGRI, et n'ont donc pas vocation à figurer au sein de la partie de ce rapport relative aux mesures d’Évitement-Réduction-Compensation.
5 - Analyse des effets probables de la mise en œuvre du PGRI sur l'environnement et la santé humaine

L'analyse qui suit est une synthèse du travail de croisement entre les grands objectifs et leurs dispositions respectives avec les différents enjeux mis en évidence dans l’état initial de l’environnement. La partie 8.3 de ce rapport expose le détail de la méthode. La matrice d'analyse des effets disposition par disposition est présentée en annexe 2 de ce rapport.

Cette analyse s’appuie sur les Grands Objectifs arrêtées à la date de juillet 2020.

5.1 - Analyse des effets probables de la mise en œuvre du PGRI par enjeu environnemental

5.1.1 - Ressources en eau

Pour rappel, les enjeux environnementaux issus de l'analyse de l'état initial de l'environnement, thématique « Ressources en eau », concernent le bon état des masses d'eau superficielle et souterraine, et sont :

- l'équilibre quantitatif des masses d'eau ;
- la qualité des eaux souterraines et superficielles ;
- la morphologie des cours d'eau et des autres milieux aquatiques.

5.1.1.a - L'équilibre quantitatif des masses d'eau

Enjeu « fort »

L'amélioration de l'équilibre quantitatif de la ressource en eau n'est pas une thématique directement traitée par le PGRI. Néanmoins, 13 dispositions auront un impact positif, voire très positif, sur l’équilibre quantitatif des eaux et aucun effet négatif probable n'a été identifié dans ses dispositions.

Ces effets seront principalement dus à quatre facteurs :

- La préservation d'espaces d'échanges avec les eaux souterraines

Certaines dispositions permettront la protection et la restauration d’espaces, tels que les champs d’expansion de crues, les ripisylves et les zones humides. Ils sont des zones privilégiées d’échanges avec les nappes phréatiques et les protéger permet l’infiltration des eaux et la recharge des nappes souterraines (ex : D.2-1).

Une meilleure gestion du ruissellement, notamment à sa source, valorisera là aussi la recharge des nappes phréatiques (D.2.4). De plus certaines disposions (D.2-2), visent à mobiliser de nouvelles zones d’expansion des crues. Ces dernières, temporairement inondées, participent également à la recharge des nappes phréatiques.

- L’augmentation de la capacité d’infiltration dans certaines zones

La disposition 3-11 incite les stratégies locales à engager des études de définition de projets d’amélioration du ressuage dans des zones de ruissellement ou de rétention temporaire des crues. Ce type d'action pourra notamment passer par l'amélioration de l'infiltration, ce qui contribuera à la réalimentation des nappes.
La progression vers une gestion équilibrée de la ressource en eau

D’autres dispositions du PRGI auront des effets positifs sur l’équilibre quantitatif des eaux. Il s’agit de mesures soutenant une gestion équilibrée des ressources en eau (D.4-4) et sensibilisant les gestionnaires d’ouvrages et de réseaux sur l’importance de subvenir aux besoins essentiels en eau en situation de crise (D.3-9). Il est à noter que les travaux réalisés sur les réseaux d’eau pour mieux réagir en cas d’inondation auront certainement des effets positifs sur la gestion de l’eau hors état de crise.

Zoom sur la révision du PGRI

Le PGRI 2022-2027 renforce l’efficacité de mobilisation de nouvelles zones d'expansion des crues (D.2-2) par la définition de stratégies foncières sur les territoires des collectivités compétentes en termes de prévention des inondations. Il s’agira également d’encourager les porteurs de PAPI à porter des études globales sur le ruissellement, à promouvoir des actions visant à limiter ce phénomène et à limiter l'artificialisation des sols (D.2-4).

5.1.1.b - La qualité des eaux souterraines et superficielles

Enjeu « fort »

L'amélioration de la qualité des eaux n'est pas une thématique directement traitée par le PGRI. Néanmoins 16 dispositions auront des effet positifs ou incertains sur la qualité des eaux.

Notons que l’enjeu de qualité des eaux possède des similarités avec l’enjeu sur la pollution des sols (traité par ailleurs, dans la partie 5.1.4.a - de ce document).

La préservation de milieux naturels possédant des capacités d'autoépuration ou de filtration des eaux

De nombreuses dispositions du PGRI participeront à la préservation de certains espaces naturels ayant des propriétés autoépuratrices ou de filtration, comme les zones humides ou les ripisylves. Les dispositions D.2-4 (limiter le ruissellement à la source) et D.2-5 (favoriser la rétention dynamique des écoulements) visent directement cet objectif.

Il en est de même avec la D.2-8, qui engagera l’ensemble des travaux de gestion de la ripisylve sur le district à tenir compte de la qualité de ces milieux. En effet, ces espaces humides permettent la percolation des eaux dans le sol, favorisant ainsi leur filtration. Plusieurs des espèces végétales inféodées à ces zones possèdent elles aussi de telles propriétés.

La limitation des contaminations des eaux par ruissellement

D’autres dispositions favoriseront une meilleure gestion des eaux de ruissellement, en particulier en milieu urbain, mais aussi en milieu rural (D.2-4). Or, ces eaux peuvent entrainer avec elles certaines molécules polluantes présentes sur les sols qu'elles traversent, et ainsi provoquer la pollution de milieux aquatiques. Leur meilleure rétention et l’augmentation de la perméabilité des sols en zone urbaine diminueront les risques de propagation des pollutions. Dans cette disposition, la meilleure gestion du risque de ruissellement s’accompagne de mesures de limitation de la pollution des eaux : recyclage des eaux de toiture, meilleure infiltration et évapotranspiration des eaux en milieu urbain.

De plus, une part importante des réseaux d'eaux usées ne font pas la séparation entre eau de pluie et eaux usées domestiques (réseaux unitaires). En cas d’épisode pluvieux, ces réseaux peuvent saturer et rejeter directement
les eaux usées dans le milieu naturel. Ce transfert d’eau usée non traitée constitue une cause importante de pollution des eaux en France.

La progression vers une gestion équilibrée de la ressource en eau

Les dispositions du PGRI soutenant une gestion équilibrée des ressources en eau, par l’intermédiaire de plans et de modes d’organisation adaptés (D.4-3 à D.4-5), concourront indirectement à la meilleure qualité des eaux sur l’ensemble du district hydrographique Rhône Méditerranée.

La diminution de la vulnérabilité des implantations humaines

La lutte contre les pollutions pourra aussi se faire à travers la limitation de la vulnérabilité des infrastructures et réseaux. En effet, en cas d’inondation, des pollutions accidentelles pourraient se produire (saturation des réseaux, inondation de sites de manipulation de produits polluants, destruction de bâtis et ressuyage de matériaux, etc.). Certaines dispositions, notamment prises dans le cadre des grands objectifs n°1 et n°2, visent à limiter ces phénomènes et donc la pollution qu’ils pourraient entraîner. C’est le cas par exemple de la D.1-2 qui cible l'évitement du sur-endommagement en cas d’inondation par la dissémination de produits polluants ou d’objets flottants.

En outre, réduire la vulnérabilité des espaces d’activité économique qui, en cas d’inondation, seraient à l’origine de rejets polluants, aura un effet positif sur le maintien de la bonne qualité des eaux. De plus, le PGRI incite à maîtriser ce type d’impact durant la réalisation de travaux sur des ouvrages hydrauliques (D.2-12).

Le maintien de la gestion des déchets en cas d’inondation

La lutte contre la pollution des eaux en cas de sinistre devra se poursuivre durant, mais aussi après celui-ci. C’est l’objet de dispositions telles que la D.3-9, qui vise le maintien des besoins prioritaires et la continuité de la gestion des déchets durant et après une inondation.

Effets incertains ou risques

L'effacement ou le recul de digues envisagé par la D.2-6 dans l'objectif de diminution des risques et de restauration de l'espace de bon fonctionnement et de champs d'expansion des crues pourrait provoquer des inondations de nouveaux espaces à risques, avec remobilisation de polluants potentiels.

Zoom sur la révision du PGRI

De façon similaire à l’enjeu de quantité des eaux, les évolutions de la disposition D.2-4 accentueront également ses effets probables sur cet enjeu de qualité des eaux. De plus, le renforcement du GO1 en termes d'adaptation du bâti existant aux inondations et de maîtrise de l'urbanisation en zone inondable participera davantage à limiter les pollutions que de tels événements peuvent provoquer.

5.1.1.c - La morphologie des cours d'eau et des autres milieux aquatiques

Enjeu « fort »

Le grand objectif 2 du PGRI, sans être dédié uniquement à la restauration de la morphologie des milieux aquatiques, a pour but de rétablir une organisation de ces milieux plus proche de leur fonctionnement naturel.
Plusieurs points de similitude existent entre les effets impactant la morphologie des cours d’eau et plans d’eau et ceux pouvant impacter leur continuité écologique (*partie 5.1.7 - de ce rapport*).

La restauration et la préservation des espaces de bon fonctionnement des cours d'eau et des zones littorales

La majorité des dispositions du Grand Objectif 2 privilégieront la protection et la restauration des espaces de bon fonctionnement des cours d’eau : bras morts, ripisylves, champs d’expansion des crues, dunes littorales, etc.

Dans la mesure où il ne provoque pas une augmentation de la vulnérabilité des implantations humaines, le recul des ouvrages de protection sera également une solution privilégiée par le PGRI. Ce type d’opération sera favorable à la restauration de l'espace de bon fonctionnement du cours d'eau (ex : D.2-12) ou du littoral (ex : D.2-11).

La bonne gestion de l’équilibre sédimentaire

A travers la disposition D.2-7, le PGRI participera aussi à la bonne gestion des flux sédimentaires et donc au bon équilibre dynamique des cours d'eau. En effet, les phénomènes de dépôts, de transport et d'érosion sont des facteurs conditionnant l'évolution morphologique des cours d'eau. La disposition vise notamment à privilégier des solutions les moins impactantes. En promouvant une réflexion à l'aide d'études globales menées à des échelles cohérentes, cette disposition sera favorable au maintien et à la restauration de cet équilibre.

La progression vers une gestion de la ressource intégrée et propre à chaque bassin versant

Les dispositions du PGRI soutenant une gestion équilibrée des ressources en eau, par l’intermédiaire de plans et de modes d’organisation adaptés (D.4-3, D.4-5), concourront indirectement à la préservation et à la restauration de la morphologie des milieux naturels aquatiques sur l’ensemble du district hydrographique Rhône-Méditerranée.

Effets incertains ou risques

En zone soumise aux phénomènes d'inondations torrentielles, l'importance des risques implique une gestion spécifique (D.2-9). Dans le cas de la réalisation d'ouvrages, la morphologie des cours d’eau pourra être perturbée dans certaines conditions. Les effets sur l’environnement de ce type d’ouvrage sont complexes et dépendront de l’ouvrage et de sa localisation. Les effets environnementaux liés à ces travaux devront être étudiés au cas par cas, aucune analyse précise ne pouvant être formulée à ce stade.

Enfin, la recherche de mobilisation de nouveaux champs d'expansion des crues aura de nombreux effets sur l’environnement, dont une majorité seront positifs (D.2-12). Toutefois, la création de nouveaux ouvrages contribuant à la préservation ou l’optimisation de champs d’expansion de crues pourra modifier l'espace de fonctionnement naturels du cours d’eau. Ce pourrait par exemple être le cas d’une nouvelle digue permettant d’augmenter le stock d’eau pouvant être retenu sur une parcelle. Ceci dépendra également des conditions de mise en œuvre spécifiques à chaque projet.

69 Guillaume Piton, et Al, « Fonctions des barrages de correction torrentielle », *Cybergeo : European Journal of Geography* [En ligne], mis en ligne le 15 mai 2019. URL : http://journals.openedition.org/cybergeo/32190 ; DOI : https://doi.org/10.4000/cybergeo.32190 (Fig 1)
Zoom sur la révision du PGRI

Le PGRI 2022-2027 appuie sur plusieurs leviers pour la mise en œuvre de son GO2 qui vise à augmenter la sécurité des populations exposées en tenant compte du fonctionnement naturel des milieux aquatiques. Les effets probables sur cet enjeu relatif à la morphologie des cours d'eau et des autres milieux aquatiques seront ainsi renforcés.

Il s'agira en particulier de mieux valoriser les solutions fondées sur la nature, plus favorables au fonctionnement naturel des milieux aquatiques, et de renforcer la préservation et la reconquête des champs d'expansion des crues (en lien avec l'espace de bon fonctionnement).

Notons toutefois que l'encouragement à la création de nouveaux ouvrages contribuant à la préservation ou l'optimisation de champs d'expansion des crues (D.2-12) est introduit par le nouveau PGRI.

Synthèse générale « Ressource en eau »

La mise en œuvre du PGRI devrait provoquer des effets positifs au regard des trois enjeux de cette thématique.

Concernant l'enjeu d'équilibre quantitatif de la ressource, les effets devraient apparaître par la préservation d'espaces d'échanges avec les eaux souterraines (milieux alluviaux notamment), l'augmentation de la capacité d'infiltration dans certaines zones (recherche de solutions de ressuyage après la crise par exemple) et la progression vers une gestion équilibrée et durable de la ressource en eau.

Les effets probables du PGRI sur la qualité des eaux s'exprimeront notamment à travers la limitation des ruissellements, la diminution des vulnérabilités en zones inondables, la maîtrise des pollutions et la progression vers une gestion durable et équilibrée de la ressource en eau. A noter l'existence de quelques effets qualifiés d'incertains, en lien avec l'inondation de nouveaux espaces.

Enfin, l'enjeu de morphologie des milieux aquatiques est particulièrement traité au sein du PGRI. En effet, un des objectifs forts du PGRI est de réduire le risque inondation en privilégiant prioritairement le fonctionnement naturel des milieux aquatiques. Ainsi, la préservation et la restauration de l'espace de bon fonctionnement et du transport sédimentaire recherché par le PGRI seront autant d'actions qui présenteront des effets positifs à très positifs sur cet enjeu. Lorsque l'importance des risques et l'absence d'efficacité des mesures basées sur le fonctionnement naturel justifient la réalisation d'ouvrages de protection plus lourds, des effets négatifs sur la morphologie des milieux aquatiques pourraient apparaître. Ces derniers devraient toutefois être bien maîtrisés par l'ensemble des conditions posées par le PGRI.

5.1.2 - Climat et changement climatique

Pour rappel, les enjeux environnementaux issus de l'analyse de l'état initial de l'environnement, thématique « Climat et changement climatique », sont au nombre de deux :

- la lutte contre le changement climatique ;
- l'adaptation au changement climatique.
5.1.2.a - La lutte contre le changement climatique

Enjeu « modéré »

Préservation de milieux « puits de carbone »

La lutte contre le changement climatique n'est pas une thématique directement traitée par le PGRI. Néanmoins, certaines dispositions du PGRI protègent des milieux considérés comme de véritables puits de carbone (ripisylves, zones humides ; en particulier les tourbières).

En effet, la quantité de carbone stockée dans les sols est très importante, à l’échelle planétaire elle représente cinq fois celle stockée dans les végétaux (GIEC, 2013). De plus certains sols comme ceux soutenant les ripisylves stockent en moyenne 80 tonnes équivalent carbone par hectares. Cette capacité de stockage est deux fois supérieure à celle des sols agricoles en moyenne (GisSol, ADEME)70. En protégeant ces espaces (ex : D.1-3 et D.2-1), le PGRI contribuera donc à lutter contre l’augmentation des concentrations de gaz à effet de serre dans l’atmosphère.

Zoom sur la révision du PGRI

La valorisation plus importante des solutions fondées sur la nature et la plus grande maîtrise de l’urbanisation en zone inondable développées dans le nouveau PGRI pourra renforcer ces effets positifs sur cet enjeu.

5.1.2.b - L'adaptation au changement climatique

Enjeu « structurant »

L’adaptation des territoires au changement climatique est un enjeu auquel doit répondre le PGRI. Ainsi, il présente 15 dispositions qui participeront à l’adaptation au changement climatique de la gestion d’un risque inondation lui-même amené à évoluer du fait de l’évolution du climat.

Les effets associés sont de trois types.

L’augmentation de la résilience au changement climatique des dispositifs de lutte contre les inondations

Dans le cadre de la disposition D.2-6, la réflexion portera sur la résilience d’aménagements naturels permettant de limiter les crues ou les submersions marines. D’autres mesures, comme la D.2-13, interrogeront la résilience des ouvrages de protection dans le temps face aux modifications prévisibles de l’aléa inondation.

La résilience aux aléas climatiques dans les zones à forts enjeux pourra aussi provenir d’une diminution des ruissellements. Cette diminution peut être due à des procédés de lutte contre l’imperméabilisation des sols comme ceux exposés dans la disposition D.2-4 (toitures végétalisées, parking en nids d’abeilles, chaussées drainantes, etc.).

Le développement des connaissances territorialisées des effets du changement climatique sur l’aléa inondation

A l’heure actuelle, la majorité des dispositions du PGRI traitant de l’adaptation au changement climatique ont pour objectif d’augmenter, dans un premier temps, la connaissance sur l’évolution temporelle des différents

70 Carbone organique des sols : L’énergie de l’agro-écologie, une solution pour le climat, ADEME 2014
Plan de Gestion des Risques d'Inondation 2022-2027 | Bassin Rhône-Méditerranée

types d’aléa inondation. Ces dispositions, regroupées autour du Grand Objectif 5 « Développement de la connaissance sur les phénomènes et les risques d'inondation », appuient la nécessité de réaliser des études ciblées :

- de suivi de l’aléa inondation (D.5-1) pour palier à l’utilisation d’une information devenue obsolète du fait d’une modification de l’aléa dû au changement climatique ;
- d’intégration des conséquences du changement climatique avant la planification, puis la réalisation de projets d’envergure. La mise en œuvre de plusieurs dispositions de ce type, avec pour objet des types de territoire différents, poussera à ce que chaque étude réalisée soit territorialisée (contexte torrentiel D.2-9 et D.5-3 ; contexte littoral D.2-11 et D.5-2). Cette territorialisation permettra une meilleure prise en compte des évolution de l’aléa. De plus, elle rendra son importance plus facilement appréciable par les gestionnaires de bassin.

Plusieurs dispositions portées par le PGRI concernant l’adaptation au changement climatique sont des dispositions visant à obtenir une donnée prospective. L’obtention de cette information doit être une condition sine qua non à la poursuite de tout projet concernant la gestion de l’eau. En effet, une étude récente ne prenant pas en compte l’évolution du climat pourrait avoir l’effet d’appuyer la réalisation de projets sous-dimensionnés ou sur-dimensionnés par rapport à l’aléa inondation futur, et irait donc à contre sens des principes qui ont guidés l’élaboration du PRGI.

La diminution de la vulnérabilité des biens et des personnes

Même si des tendances émergent, l'évolution du risque inondation en lien avec le changement climatique restent soumise à de fortes incertitudes. Il est toutefois probable d'observer une augmentation des risques liés à l'évolution du climat, notamment de la pluviométrie.

C'est pourquoi plusieurs dispositions visant la diminution de la vulnérabilité des territoires face aux risques d'inondation présenteront également des effets positifs en termes d'adaptation au changement climatique, dans la mesure où la vulnérabilité de certains enjeux humains pourrait augmenter avec l'évolution du climat.

Zoom sur la révision du PGRI

La disposition D.2-4 révisée accentue les effets positifs en termes d'adaptation au changement climatique en favorisant dorénavant les actions de désimperméabilisation ainsi que la limitation de l'artificialisation des sols. En outre, la nouvelle disposition D.2-6 appuie sur l'étude le plus en amont possible des solutions fondées sur la nature, plus résilientes face aux impacts du changement climatique. De plus, les dispositions D.2-9, D.2-13 et D.2-14 prennent désormais en compte la modification de l'aléa inondation dans le temps.

Par ailleurs, le PGRI 2022-2027, dans son GO5, appuie sur la nécessité de développer la connaissance des phénomènes d’inondation, notamment en étudiant les effets du changement climatique sur la fréquence et l’ampleur des inondations (D.5-2 et D.5-3).

Les évolutions du PGRI en termes de diminution de la vulnérabilité des territoires face aux risques d’inondation (cf. partie 5.1.9.b) seront favorables à cet enjeu.

Synthèse générale « Climat et changement climatique »

Les effets de la mise en œuvre du PGRI sur le climat et le changement climatique devraient être positifs, principalement en termes d'adaptation.

La préservation de milieux pouvant jouer le rôle de puits de carbone, telles que les zones humides ou les
milieux présents dans les champs d'expansion des crues (face à l'artificialisation des sols) participera à l'atténuation du changement climatique.

D'autre part, la mise en œuvre du PGRI présentera des effets positifs à très positifs en termes d'adaptation au changement climatique. Ils s'exprimeront à travers les mesures portées par le PGRI visant la diminution de la vulnérabilité des biens et des personnes face aux risques d'inondation, l'augmentation de la résilience des territoires suite à un épisode de crise et le développement des connaissances sur les évolutions attendues.

5.1.3 - Énergie

Pour rappel, un enjeu environnemental est issu de l'analyse de l'état initial de l'environnement, thématique « Énergie » : la conciliation des objectifs de production d'énergie renouvelable et du bon état des eaux.

Enjeu « modéré »

La conciliation des objectifs de production d'énergie renouvelable et du bon état des eaux n'est pas une thématique traitée par le PGRI. Aucune mesure n’a été évaluée comme ayant un effet probable sur cet enjeu au sein du district hydrographique Rhône-Méditerranée.

5.1.4 - Sols et sous-sols

Pour rappel, les enjeux environnementaux issus de l'analyse de l'état initial de l'environnement, thématique « Sols et sous-sols », sont au nombre de deux :

- la lutte contre les pollutions ;
- la maîtrise de l'artificialisation des sols.

5.1.4.a - La lutte contre les pollutions des sols

Enjeu « modéré »

L’enjeu de lutte contre les pollutions des sols traitées dans les paragraphes ci-dessous possède des similarités avec l’enjeu traité partie 5.1.1.b - de ce document (qualité des eaux). Ces deux enjeux sont proches car l’eau et les sols sont en échange permanent. En entrant en contact avec des sols pollués, l’eau devient un vecteur de pollution d’un sol à l’autre.

Onze dispositions du PGRI auront des effets probables sur la lutte contre les pollutions des sols. Ces dispositions peuvent être regroupées en plusieurs grands types.

La préservation de milieux naturels possédant des capacités d’autoépuration ou de filtration des eaux

De nombreuses dispositions du PGRI visent la préservation de certains espaces naturels ayant des propriétés filtrantes ou de dégradation de certaines molécules polluantes, comme les zones humides ou les ripisylves. C’est le cas par exemple de la disposition D.2-8 qui souhaite que l’ensemble des travaux de gestion de la ripisylve sur le district tienne compte de la qualité de ces milieux. En effet, certaines espèces végétales inféodées à ces zones possèdent des fonctions d’Épuration (filtration et dégradation de molécules polluantes).

La limitation des contaminations des eaux par ruissellement

D’autres dispositions favoriseront une meilleure gestion des eaux de ruissellement, en particulier en milieu
urbain, mais aussi en milieu rural (D.2-4). Or, ces eaux peuvent entraîner avec elles certaines molécules polluantes présentes sur les sols artificialisés qu'elles traversent, et ainsi provoquer la pollution de sols non imperméabilisés situés en aval par infiltration. Leur meilleure rétention à la source et l’augmentation de la perméabilité des sols en zone urbaine diminueront ces risques. Dans cette disposition, la meilleure gestion du ruissellement s’accompagne de mesures de limitation de la pollution des eaux : recyclage des eaux de toiture, meilleure infiltration et évapotranspiration des eaux en milieu urbain, etc.

De plus, une part importante des réseaux d'eaux usées ne font pas la séparation entre eau de pluie et eaux usées domestiques (réseaux unitaires). En cas d’épisode pluvieux, ces réseaux peuvent saturer et rejeter directement les eaux usées dans le milieu naturel. Ce transfert d’eau usée non traitée constitue une cause importante de pollution des eaux en France.

La diminution de la vulnérabilité des implantations humaines

La lutte contre les pollutions peut aussi se faire à travers la limitation de la vulnérabilité des infrastructures et réseaux. En effet, en cas d’inondation, des pollutions accidentelles majeures pourraient avoir lieu (saturation des réseaux, inondation de sites de manipulation de produits polluants, destruction de bâtis et ressuyage de matériaux, etc.). Certaines dispositions, notamment prises dans le cadre des Grands Objectifs 1 et 2, visent à limiter ces phénomènes et donc la pollution des sols qu’ils pourraient entraîner. C’est le cas par exemple de la disposition D.1-2 qui entend éviter le sur-endommagement en cas d’inondation par la dissémination de produits polluants ou d’objets flottants.

Le maintien de la gestion des déchets en cas d'inondation

La lutte contre la pollution en cas de sinistre devra se poursuivre durant mais aussi après celui-ci. C’est l’objet de dispositions comme la D 3-9 qui cible le maintien des services prioritaires et à la gestion des déchets durant et après une inondation. Cela participera à limiter la pollution des sols, notamment hors des milieux aquatiques.

Effets incertains ou risques

Par exemple, la recherche de nouveaux espaces de mobilisation des crues (D.2-2) pourrait entraîner des effets sur les sols dans les secteurs concernés. Des sédiments seront à nouveau mobilisés. Localement cela pourra provoquer une pollution ou un enrichissement des sols, aggraver les phénomènes d’érosion en milieu agricole ou au contraire favoriser le dépôt de limons améliorant la qualité agronomique du sol⁷¹.

Zoom sur la révision du PGRI

Le PGRI 2022-2027 insiste sur l'étude en amont des solutions fondées sur la nature, comme la restauration des espaces de bon fonctionnement, qui sont fréquemment couverts par des milieux naturels rendant des services écosystémiques important, notamment en termes de lutte contre les pollutions (D.2-6).

Le renforcement de la disposition D.2-4 concernant la limitation des ruissellements et du GO1 sur la diminution de la vulnérabilité des enjeux, comme évoqué précédemment *(cf. partie 5.1.1.b)*, pourra favoriser la maîtrise des pollutions des sols.

La maîtrise de l’artificialisation des sols est un enjeu fort dans l’élaboration et la mise en œuvre du PGRI. En effet, 15 dispositions auront un effet probable sur cet enjeu. Le lien entre risques d'inondation et imperméabilisation des sols est très important.

Celle-ci se fait via plusieurs leviers :

La préservation et la restauration des espaces de bon fonctionnement des cours d'eau

Ces espaces étant généralement de type agricole ou naturel, œuvrer à leur préservation y diminuera la pression d'urbanisation. C’est par exemple un objectif poursuivi par les dispositions D.2-1 et D.2-6.

De plus, le PGRI, à travers certaines de ces dispositions, priorise le recours à des solutions nécessitant une moindre artificialisation des espaces (solutions fondées sur la nature). C’est le cas de la disposition D.2-9, qui privilégie le recours à des zones de régulation plutôt qu'à des plages de dépôts artificielles.

La limitation des ruissellements

Au-delà de l'espace de bon fonctionnement des cours d'eau (bassin versant), la limitation du ruissellement à la source (D.2-4) pourra entraîner une maîtrise de l'imperméabilisation des sols, principal facteur d'augmentation de ce phénomène.

La maîtrise ou la diminution de la vulnérabilité des territoires face aux risques d'inondation

Des effets très positifs en termes de lutte contre l’artificialisation des sols s'exprimeront à travers de nombreuses mesures qui visent à limiter l'urbanisation des zones à risque inondation, actuelles et futures du fait de l’évolution de l’aléa avec le changement climatique. La disposition D.1-3 vise spécifiquement cet objectif dans les secteurs inondables, particulièrement en interdisant les constructions nouvelles en zones inondables non urbanisées. Par ailleurs, la D.1-4 qui souhaite une valorisation des zones inondables et des espaces littoraux naturels dans le respect des services écosystémiques rendus permettra la limitation de l'artificialisation de ces secteurs.

Enfin, la disposition D.2-12 constitue également un exemple de cette stratégie, en limitant la création et la rehausse d'ouvrages de protection, de même que l’artificialisation derrière ces ouvrages dans ces cas.

Effets incertains ou risques

Dans certains cas, la protection contre le risque inondation ou de submersion marine pourra nécessiter la construction de nouveaux aménagements (D.2-9) ou le redéploiement de certains espaces de vie et d’activité sur des zones actuellement peu ou pas artificialisées, augmentant par conséquent l’artificialisation des sols localement (D.2-10 et D.2-11). Cependant plusieurs dispositions minimiseront ce besoin. Dans le cas du PGRI, les enjeux de protection de la santé humaine pourront, dans certains cas, être prépondérants en cas de conflit avec les enjeux de lutte contre l’artificialisation (cas de risques très forts, par exemple torrentiels).
Zoom sur la révision du PGRI

La plus grande préservation des champs d'expansion des crues et le renforcement des solutions fondées sur la nature et la reconquête des espaces de bon fonctionnement participeront de manière plus intense à la maîtrise de l'artificialisation des sols autour de ces cours d'eau (GO2).

De plus, la disposition D.2-4 incite désormais à favoriser les actions de désimperméabilisation et de limitation de l'artificialisation des sols. La plus grande importance donnée aux études globales sur le ruissellement promouvront également la mise en place d'actions favorables à cet enjeu.

Bien que déjà présent dans le PGRI précédent, le renforcement des principes de maîtrise de l'urbanisation en zone inondable en orientant le développement urbain en dehors des zones à risque accentuera la maîtrise de l'artificialisation des sols dans ces zones, en lien avec les évolutions réglementaires (D.1-3 et D.2-12). De plus, le nouveau PGRI élargit désormais également les limitations de la dispositions D.2-12 à la rehausse des ouvrages de protection (ne doit pas entraîner une extension de l'urbanisation dans les zones non urbanisées).

Synthèse générale « Sols et sous-sols »

Les effets probables du PGRI sur l'enjeu relatif à la qualité des sols seront globalement positifs. Ils s'exprimèrent notamment à travers la limitation des ruissellements, la diminution des vulnérabilités en zones inondables et la maîtrise des pollutions pouvant survenir lors des épisodes de crue. A noter l'existence de quelques effets qualifiés d'incertains, en lien avec l'inondation de nouveaux espaces.

Quant à l'enjeu de maîtrise de l'artificialisation des sols, il bénéficiera d'effets positifs à très positifs issus de la mise en œuvre du PGRI. Ils devraient s'exprimer par la préservation des espaces de bon fonctionnement des milieux aquatiques, ainsi que de la restauration de champs d'expansion des crues, de la non augmentation de la vulnérabilité des territoires face au risque, ainsi que de la réduction des ruissellements, majoritairement issus de l'artificialisation des sols. Quelques effets négatifs ou incertains sont analysés (implantation d'ouvrages de protection, protection de zones particulières à risques forts sur le littoral), mais resteront limités : conditions du PGRI pour la réalisation d'ouvrage, lutte contre les ruissellements, bénéfices attendus, etc.

5.1.5 - Qualité de l'air

Pour rappel, un enjeu environnemental est issu de l'analyse de l'état initial de l'environnement, thématique « Qualité de l'air » : la protection de la santé humaine.

Enjeu « modéré »

L'amélioration de la qualité de l’air n'est pas une thématique traitée par le PGRI, aucune mesure n’a été évaluée comme ayant un effet probable significatif permanent sur l’amélioration de la qualité de l’air et justifier d’un effet sur la santé humaine par ce biais.

5.1.6 - Milieux naturels et biodiversité

Pour rappel, les enjeux environnementaux issus de l'analyse de l'état initial de l'environnement, thématique « Milieux naturels et biodiversité », sont au nombre de trois :

- la conciliation des usages de la ressource avec la restauration et la préservation des milieux ;
- la diminution des pressions (artificialisation, pollutions, espèces exotiques envahissantes, etc.) ;
- la préservation de la biodiversité ordinaire.
5.1.6.a - La conciliation des usages de la ressource avec la restauration et la préservation des milieux et la préservation de la biodiversité ordinaire

Enjeux « forts »

La conciliation des usages de la ressource avec la restauration et la préservation des milieux participe à la préservation de la biodiversité ordinaire, les effets du PGRI sur ces deux enjeux sont par conséquent très proches. Ils sont donc traités de manière simultanée.

Soutenir une gestion concertée et cohérente de la ressource en eau

Cet enjeu environnemental fort est traité de manière indirecte par la plupart des dispositions du Grand Objectif 4 « Organiser les acteurs et les compétences ». En effet, l’organisation des acteurs défendue dans le PGRI est une organisation par bassin versant permettant une gestion systémique et concertée de la ressource en eau.

A titre d’exemple, la disposition D.4-6 favorisera une gestion des inondations prenant en compte l’intérêt de chaque élément, artificiel ou non, et visera à créer un système de lutte contre les inondations adapté au territoire. D'autre part, la disposition D.4-7 identifie un mode d’organisation garant de la bonne gestion de l’ensemble des éléments de lutte. Des terrains d’entente devront donc être trouvés entre l’ensemble des maîtres d’ouvrages et les collectivités impliquées dans la gestion du risque inondation sur un même territoire. La préservation des milieux naturels étant un enjeu de l’aménagement du territoire en France, ce type de gestion concertée favorisera l’intégration dans les projets de lutte contre les inondations des questions de préservation des milieux.

Enfin, il est rappelé la nécessité d’intégrer les objectifs environnementaux fixés dans le SDAGE (D.4-3). Une des orientations fondamentales du SDAGE étant la non dégradation des milieux aquatiques (OF2), le PGRI contribue indirectement à cet objectif.

La préservation et la restauration des espaces naturels d’intérêt pour lutter contre les inondations

Dans le cadre du PGRI, des zones permettant la réduction de l’aléa inondation seront préservées de toute action pouvant nuire à leur intérêt dans la lutte contre les inondations. Ces zones sont souvent des zones naturelles, aquatiques ou non, proposant des conditions favorables à l’accueil d’une grande diversité d’espèces animales et végétales (zones humides, bras morts, lagunes, milieux humides littoraux, ripisylves, implantation de haies, etc.). Ces milieux non urbanisés seront préservés, voire restaurés, par de nombreuses dispositions du PGRI. Par exemple, la disposition D.2-4 vise, à travers les documents d’urbanisme, la préservation ou la restauration des fonctions hydrauliques des zones humides.

D’autres mesures concourront, de manière localisée, à la conciliation des usages de la ressource avec la restauration et la préservation des milieux. C’est le cas par exemple de la disposition D.2-11 qui identifie, dans les zones exposées à un risque fort d’érosion littorale, les activités dont la proximité avec l’eau est indispensable. L’implantation de ces activités est autorisée sous condition de s’articuler avec la restauration du fonctionnement hydromorphologique de l’espace littoral, tandis que l’implantation de toute autre activité est interdite.

Enfin, la sauvegarde et la réhabilitation des espaces de biodiversité ordinaire participe à améliorer la continuité

72 Panorama des services écologiques fournis par les milieux naturels en France, volume 2.2 - Les écosystèmes marins et côtiers, UICN
73 Conservatoire du littoral sur les services écosystémiques rendus par les zones humides littorales (https://www.dailymotion.com/video/x1a2mhn)
écologique des cours d'eau (cf. partie 5.1.7 -).

Effets incertains ou risques

La disposition D.2-2 invite les collectivités compétentes en matière de gestion des inondations à rechercher de nouvelles capacités d'expansion des crues. Elle pourra donc favoriser la restauration d'espaces parfois favorables à l'expression de la biodiversité (« nouveaux » champs d'expansion des crues). Cependant, elle pourra également changer les conditions écologiques de ces zones, par leur inondation désormais régulière (lien avec l'évaluation des incidences Natura 2000, partie 5.2 -).

Dans certains cas, la construction (D.2-9), l'entretien d'ouvrages de protection (D.2-15) ou les aménagements visant à améliorer le ressuyage de zones pourra entraîner des risques pour la biodiversité.

Pour lutter contre la pollution liée à l’aléa inondation, il est essentiel de réfléchir à la vulnérabilité des espaces d’activité installés en zone inondable ou potentiellement inondable à moyen ou long terme. La pollution des sols et des eaux qu’engendreraient la survenue d’une inondation sur ces espaces doit être questionnée, dès la phase de conception d’un projet quel qu’il soit. Par exemple, la mobilisation de nouveaux espaces d’expansion des crues, favorisée par la disposition D.2-2, doit être appréciée au regard de ces effets positifs sur l’environnement mais aussi au regard de ses quelques effets potentiellement négatifs. Une éventuelle pollution du milieu pouvant impacter la santé des écosystèmes en est un74.

Zoom sur la révision du PGRI

En développant de façon plus poussée la synergie entre les différentes politiques publiques, le nouveau PGRI devrait renforcer la prise en compte de l'ensemble des enjeux, dont la préservation des milieux naturels fonctionnels dans la lutte contre les inondations et l'aménagement du territoire (GO4).

Plusieurs évolutions du PGRI évoquées précédemment concernant la maîtrise de l'artificialisation des sols (cf. partie 5.1.4.b), le bon état des eaux (cf. partie 5.1.1) ou encore l'adaptation au changement climatique (cf. partie 5.1.2.b) renforceront les effets probables positifs du PGRI sur l'enjeu de conciliation des usages de la ressource avec la restauration et la préservation des milieux et la préservation de la biodiversité ordinaire.

Enfin, le PGRI 2022-2027 intègre désormais les enjeux de biodiversité dans l'entretien des ouvrages de protection (D.2-15).

5.1.6.b - La diminution des pressions (artificialisation, pollutions, espèces exotiques envahissantes, etc.)

Enjeu « fort »

La diminution des pressions sur les milieux naturels et la biodiversité liée à la pollution des eaux et l’artificialisation des sols est évaluée respectivement aux parties 5.1.4.a - et 5.1.4.b - de ce document. Aucune mesure du PGRI ne fait directement référence à la lutte contre les espèces exotiques envahissantes.

Synthèse générale « Milieux naturels et biodiversité »

L'objectif du PGRI visant notamment la synergie entre le fonctionnement naturel des milieux aquatiques et la

74 Prise en compte de l’activité agricole et des espaces naturels dans le cadre de la gestion des risques d’inondation, Guide destiné aux acteurs locaux Volet activité agricole - version 2, Édition avril 2016 - Mise à jour juillet 2018 (travaux issus du GT Activité agricole et espaces naturels Co-piloté par la MAAF, l’APCA et la DGPR)
lutte contre le risque inondation amènera des effets positifs, voire très positifs sur cette thématique. De plus, ces effets seront amplifiés par l'ensemble des dispositions qui promeuvent une maîtrise de l'imperméabilisation des sols (via la limitation des ruissellements ou la préservation des champs d'expansion des crues par exemple) et qui agissent, indirectement, sur la qualité des eaux, dont profite la biodiversité. L'analyse met en lumière quelques effets incertains, liés à la modification des conditions écologiques de certaines surfaces, ou à la réalisation d'aménagements. Cependant, plusieurs dispositions encadrent fortement ces réalisations d'ouvrages et autres aménagements impactant.

5.1.7 - Continuités écologiques

Pour rappel, les enjeux environnementaux issus de l'analyse de l'état initial de l'environnement, thématique « Continuités écologiques », sont au nombre de deux :

- la diminution de la fragmentation des milieux ;
- la préservation des continuités écologiques, y compris latérales.

La continuité peut être déclinée selon deux dimensions, longitudinale (au fil de l'eau) et latérale (connexion avec les milieux alluviaux). Elles sont favorisées et améliorées par le décloisonnement des milieux aquatiques ainsi que leur maintien en eau (lorsque les assecs ne sont pas intrinsèques). Elle est une composante essentielle de la trame bleue. Par nature, le PGRI s'attache moins à la trame verte, mais présentera tout de même des effets positifs sur cette composante.

Notons que l'ensemble des dispositions permettant la diminution de la fragmentation des milieux participent dans le même temps à la préservation des continuités écologiques et vice versa. Ils sont donc traités simultanément dans l'analyse suivante.

De même, les effets impactant la morphologie des cours d’eau et plans d’eau (5.1.1.c -) sont proches de ceux pouvant impacter la continuité écologique des cours d’eau.

5.1.7.a - La diminution de la fragmentation des milieux et la préservation des continuités écologiques, y compris latérales

Enjeux « structurants »

La recherche de cohérence entre les différents documents stratégiques de gestion des eaux

Les dispositions issues du Grand Objectif 4 du PGRI soutenant une gestion équilibrée des ressources en eau par l’intermédiaire de plans et de modes d’organisation adaptés (D.4-3 et D.4-5), concourront indirectement à la diminution de la fragmentation des milieux sur l’ensemble du district hydrographique Rhône-Méditerranée. En effet, elles soutiennent un type d’organisation et de planification qui, dans le cadre des orientations prévues par le SDAGE, auront des effets positifs sur ces enjeux.

La prise en compte du fonctionnement naturel des cours d'eau dans les choix d'aménagement liés à la réduction des aléas ou de la vulnérabilité au risque inondation

La prise en compte des continuités écologiques est inscrite dans le Grand Objectif 2 du PGRI. La stratégie de
cet objectif consiste à favoriser les débordements de cours d'eau dans des zones non ou peu vulnérables au regard des enjeux humains. Ces zones, qui sont en premier lieu des secteurs à proximité immédiate des cours d'eau, seront donc préservées, au même titre que leur connexion avec le cours d'eau (continuités latérales).

Ainsi, les dispositions D.2-1 et D.2-2 visent à préserver et même à remobiliser les champs d’expansion des crues. Les dispositions D.2-5 et D.2-6 favoriseront quant à elles les actions de restauration des espaces de bon fonctionnement de cours d’eau. La préservation de ces espaces contribue majoritairement à la préservation des continuités écologiques associées (avec le cours d'eau et au sein de ces zones).

La protection et le recours à des éléments de gestion du risque inondation ayant un impact positif sur la continuité écologique des territoires

Les effets positifs du PGRI sur la préservation des continuités écologiques ne sont pas seulement localisés aux abords des cours d'eau et la disposition D.2-4 préservera également la continuité écologique en milieu rural et urbain, en favorisant la protection des haies (corridors écologiques de première importance en milieu rural) et les sols non imperméabilisés, écosystèmes actifs dont les fonctionnalités naturels peuvent être dégradées en cas de fragmentations (dépollution, alimentation des nappes phréatiques, végétalisation, etc.).

Enfin, la disposition D.2-7 vise à favoriser la gestion de l'équilibre sédimentaire en assurant systématiquement la connexion entre le lit mineur et le lit majeur lors des interventions. Le respect de l'équilibre sédimentaire et la dynamique des transports solides doivent être respectés dans le cadre de la gestion des atterrissements.

Effets incertains ou risques

La réalisation d’ouvrages hydrauliques de protection pourrait participer à la fragmentation des milieux aquatiques (transport sédimentaire et circulations biologiques). Dans certaines situations, comme en contexte torrentiel (D.2-9), le PGRI donne la possibilité de construire de nouveaux ouvrages selon des conditions précises définies à la disposition D.2-12. Ces ouvrages (barrages, plages de dépôt) pourront avoir des effet positifs ou négatifs sur la fragmentation sédimentaire des cours d’eau. Ces effets complexes devront être déterminés au cas par cas.

Zoom sur la révision du PGRI

Le PGRI 2022-2027 devrait rendre plus efficace la préservation et la remobilisation de champs d'expansion des crues (D.2-1 et D.2-2) avec la possible définition de stratégies foncières par les collectivités compétentes, participant ainsi à préserver, voire à rétablir les continuités écologiques associées. Il en est de même par la plus grande mobilisation des solutions fondées sur la nature dans la lutte contre le risque d'inondation (D.2-6).

En outre, le nouveau PGRI promeut désormais les études et actions visant les versants dans l'objectif de maîtriser les ruissellements dont plusieurs, telles que le maintien des haies, sont également favorable à la préservation de la trame verte (D.2-4).

Enfin, la gestion de l'équilibre sédimentaire est développée, en mobilisant notamment une approche globale par bassin versant au moyen de plans de gestion des sédiments (D.2-7).

75 Guillaume Piton, et Al, « Fonctions des barrages de correction torrentielle », Cybergeo : European Journal of Geography [En ligne], mis en ligne le 15 mai 2019. URL : http://journals.openedition.org/cybergeo/32190 ; DOI : https://doi.org/10.4000/cybergeo.32190 (Fig 1)
Synthèse générale « Continuités écologiques »

Les effets probables du PGRI sur ces enjeux seront largement positifs. La continuité latérale des cours d'eau (lit mineur - lit majeur) est indirectement recherchée, par la préservation ou la restauration de l'espace de bon fonctionnement (comprenant les champs d'expansion des crues). De plus, le respect de la dynamique de transport solide est également un objectif. Enfin, le PGRI dispose également de mesure qui auront des effets positifs hors des milieux aquatiques (haies par exemple). Des risques existent en termes de coupure de continuités suite à la réalisation d'ouvrages dans des cas particuliers. Ces risques sont toutefois globalement encadrés par l'ensemble des dispositions du PGRI.

5.1.8 - Paysage et patrimoine

Pour rappel, les enjeux environnementaux issus de l'analyse de l'état initial de l'environnement, thématique « Paysage et patrimoine », sont au nombre de deux :
• la préservation de la qualité et de la diversité des paysages ;
• la conciliation des enjeux entre préservation du patrimoine lié à l'eau et restauration des continuités écologiques.

Notion largement subjective (davantage liée à la sensibilité de chaque individu), elle repose néanmoins sur des structures, des valeurs et des motifs reconnus collectivement. L'évaluation des effets probables sur les paysages reste de ce fait parfois incertaine.

Certains paysages pourraient être modifiés par la mise en œuvre de 17 dispositions du PGRI.

5.1.8.a - La préservation de la qualité et de la diversité des paysages

Enjeu « modéré »

La préservation des espaces naturels paysagers de qualité liés à la gestion du risque inondation

Plusieurs dispositions du PGRI favoriseront la préservation des paysages en limitant leur artificialisation et en tendant à conserver leur caractère naturel et/ou agricole, dans le but de limiter les vitesses d'écoulement (D.2-5). Notons que ces espaces seront non seulement préservés, mais aussi restaurés pour certains (zones humides : D.2-4 ; champs d’expansion des crues : D.2-2).

Enfin, les dispositions limitant l’urbanisation sur des zones inondables préserveront la qualité naturelle des paysages de ces zones (D.1-3 et D.2-1). Cependant, ces projets ne seront pas écartés pour autant et d'autres secteurs se verront alors potentiellement urbanisés.

Zoom sur la révision du PGRI

Comme évoqué lors de l'analyse des effets du PGRI 2022-2027 sur l'enjeu de continuité écologique (cf. partie 5.1.7.a), le renforcement de la préservation et de la restauration des champs d'expansion des crues pourra également favoriser les effets positifs sur leur paysage.

De plus, le nouveau PGRI intègre désormais les enjeux de biodiversité dans la gestion des ouvrages de protection, avec la possibilité de maintenir certaines formes de végétation sous réserve de non dégradation de la fonction de protection de l'ouvrage, et donc participer davantage au maintien d'un paysage « naturel » (D.2-
5.1.8.b - La conciliation des enjeux entre préservation du patrimoine lié à l'eau et restauration des continuités écologiques

Enjeu « modéré »

Il est ici question de conciliation. Les dispositions retenues comme positives ne préservent donc pas nécessairement le patrimoine lié à l'eau dans l'absolu. Elles permettent néanmoins d'envisager une réflexion sur leur vulnérabilité, voire une diminution.

La connaissance de la vulnérabilité du patrimoine aux aléas inondation

Le PRGI intègre la réflexion sur la vulnérabilité des territoires dans la disposition D.1-1 (dont le patrimoine). L'analyse des enjeux exposés, dont le patrimoine, a vocation à être intégrée dans les réflexions accompagnant l'élaboration ou la révision des documents d'urbanisme.

L'entretien du patrimoine lié à l'eau

La protection du patrimoine lié à l'eau passe aussi par son entretien. Pour certains aménagements liés à la diminution de l’aléa inondation ou de ses nuisances, certaines dispositions du PGRI permettront leur meilleur entretien (canaux de drainage : D.3-11 et ouvrages de protection : D.2-15, notamment).

La limitation des dommages liés aux crues sur les ouvrages

Certaines dispositions du PGRI luttent contre les dégâts pouvant être produits par les débits solides en cas de crue, en particulier torrentielle, notamment sur le patrimoine lié à l’eau, très concerné dans ce genre d'épisode (D.2-7, D.2-9). Notons également que l'amélioration de l'équilibre sédimentaire recherchée par la disposition D.2-7 pourra participer à limiter les phénomènes d'érosion pouvant provoquer la fragilisation de certains ouvrages d'art.

Effets incertains ou risques

Les dispositions D.2-2 et D.2-6 donnent la possibilité à l'effacement ou au recul de digues. Les effets ne peuvent cependant pas être précisément qualifiés (positif ou négatif) de manière globale. En effet, si une part des ouvrages de protection du bassin ont une valeur patrimoniale limitée, certains peuvent présenter des aménités patrimoniales, paysagères ou socio-économiques non négligeables (ex : cheminements piétons, présence de bâti historique de type pont, seuil ou moulin).

Aussi, l'impact des mesures de recul et d'effacement d'ouvrages de protection pourra être, selon l'ouvrage concerné, positif, neutre ou négatif sur le patrimoine bâti. Toutefois, la disposition D.2-6 indique que les bénéfices socio-économiques de telles opérations (notamment sur le cadre de vie) sont à évaluer en amont.

Zoom sur la révision du PGRI

En anticipant désormais les effets du changement climatique sur les risques torrentiels (D.2-9), les éventuels dégâts provoqués par ce type d'événement sur le patrimoine lié à l'eau seront diminués.
Si quelques effets incertains ressortent de l'analyse, notamment en lien avec la réalisation d'opérations sur certaines digues ou avec la valorisation des zones inondables, les effets sur le paysage et le patrimoine du PGRI devraient être globalement positifs. Il participera à maintenir le caractère naturel ou agricole de certaines zones d'intérêt pour la gestion du risque inondation et participera à la réduction des dommages subis lors des épisodes de crues, notamment sur le patrimoine.

5.1.9 - Risques naturels et technologiques

Pour rappel, les enjeux environnementaux issus de l'analyse de l'état initial de l'environnement, thématique « Risques naturels et technologiques », concernent la protection des personnes et des biens vis-à-vis des risques, et sont :

- la diminution de l'aléa (préservation/restauration des champs d'expansion des crues et des zones humides connectées aux cours d'eau, préservation des EBF, diminution de l'imperméabilisation des sols, etc.) ;
- la diminution de la vulnérabilité (maîtrise de l'urbanisation et du coût des dommages, mise en place des PPR, etc.) ;
- la préparation et la gestion de crise, le développement de la conscience du risque et des connaissances.

5.1.9.a - La diminution de l'aléa

Enjeu « structurant »

La diminution de l'aléa inondation et submersion marine

La diminution de l'aléa inondation constitue un enjeu structurant pour le PGRI, avec 23 dispositions qui auront des effets positifs probables sur cet enjeu tandis qu’aucune n’aura d’effet négatif ou incertain.

Pour maîtriser l'aléa d'inondation, le PGRI mobilise en premier lieu les actions basées sur le fonctionnement naturel des milieux, prenant notamment en compte la complexité hydrologique et hydraulique des milieux :

- la préservation, la restauration et la recherche des zones d'expansion de crues (ex : D.2-1 et D.2-2) ;
- la préservation et la bonne gestion des berges, ripisylves, sédiments et espaces de mobilité des cours d'eau dans le but de réduire la vitesse des écoulements, de créer des pièges à embâcle naturels, des zones de régulation (ex : D.2-7, D.2-8) ;
- l'effacement ou le recul de digues (D.2-6) pour favoriser le transit et la gestion des crues ;
- la limitation du ruissellement notamment par des actions à la source, en milieu urbain comme en milieu rural (D.2-4) ;
- la restauration du fonctionnement hydromorphologique de l'espace littoral (végétalisation des arrières-plages et des plages, lutte contre le piétinement, préservation des herbiers et des algues, reculs des activités humaines, etc.). Ces mesures, soutenues par la disposition D.2-11, permettront entre autres de lutter efficacement et à moindre coût contre les phénomènes d’érosion côtière, d’ensablement ou encore les dégâts en période de tempête (diminution de la force des vagues) ;
- la préservation, la restauration et la recherche de nouvelles zones de gestion de débris, spécialement en contexte torrentiel.
Pour les cas de maîtrise de l'aléa via des ouvrages de protection contre les inondations et les submersions marines, le PGRI favorise la **gestion pérenne de ces ouvrages** : recensements, gestion systématique à l'échelle du bassin, mise à jour des capacités de protection des ouvrages vis à vis de l'aléa, programmes de mise en sécurité et de gestion (dispositions D.2-14, D.2-15, D.4-6 et D.4-7). De plus, l'**évitement de remblais** et la limitation d'ouvrages de protection en zones inondables (dispositions D.2-3 et D.2-12) sont recherchés.

L'ensemble des **connaissances acquises** dans le cadre du Grand Objectif 5 permettront de développer la connaissance sur les phénomènes et les aléas d'inondation, et donc de mieux les maîtriser.

La diminution des aléas d'autres risques

Enfin, certaines des mesures prises pour limiter les aléas inondation sur le district hydrographique Rhône-Méditerranée réduisent la survenue d'autres types de risques.

L'aléa d'érosion littorale est un enjeu directement traité par la disposition D.2-11. D'autre part, la disposition D.2-7 participera à garantir le bon fonctionnement de certaines installations à forts enjeux, notamment celles du secteur nucléaire, en assurant l’apport en eau.

Zoom sur la révision du PGRI

Plusieurs évolutions du PGRI mentionnées précédemment pour les enjeux relatifs à la ressource en eau, au changement climatique et aux sols servent directement cet enjeu de réduction de l'aléa. Le PGRI 2022-2027 vise principalement le renforcement de leviers présents dans l'ancien PGRI :

- la préservation et la remobilisation de champs d'expansion des crues (D.2-1 et D.2-2), en introduisant notamment les stratégies foncières ;
- la valorisation des solutions fondées sur la nature comme la plus grande préservation des espaces de bon fonctionnement des cours d'eau (D.2-6) ;
- l'amélioration de la connaissance et de la maîtrise des ruissellements (D.2-4), notamment à travers les PAPI ;
- la possible mise en œuvre de stratégies locales de gestion intégrée du trait de côte (D.2-11) ;
- la prise en compte ciblée de l'aléa relatif aux matériaux solides par les systèmes d'endiguement situés en cours d'eau torrentiels (D.2-14).

5.1.9.b - La diminution de la vulnérabilité

Enjeu « structurant »

La diminution de la vulnérabilité du territoire face à l'aléa inondation est un enjeu structurant pour le PGRI. Ainsi, 25 dispositions du PGRI auront des effets positifs probables sur la diminution de la vulnérabilité tandis qu'aucune n’aura d’effet négatif probable ou incertains.

La diminution de la vulnérabilité des territoires face aux risques d'inondation et de submersion marine

Cet enjeu est particulièrement porté par le Grand Objectif 1 (« Mieux prendre en compte le risque dans l'aménagement et maîtriser le coût des dommages liés à l'inondation »). Il vise à inciter et à accompagner la prise en compte du risque d'inondation dans les projets d'aménagement ainsi que dans les documents et décisions d'urbanisme, et à réduire la vulnérabilité des territoires face aux risques d'inondation. Plusieurs
dispositions de cet objectif participeront donc à réduire les enjeux en zones inondables et leur vulnérabilité :

• par la prise en compte, dans les documents d’urbanisme et les PPRi prescrits, des études existantes relatives à l’analyse des enjeux exposés et à leur vulnérabilité aux risques d’inondation (D.1-1) ;
• par l'intégration d'un volet « réduction de la vulnérabilité » dans les stratégies locales (D.1-2) ;
• par l'orientation du développement urbain en dehors des zones inondables (D.1-3) ;
• en renforçant la prise en compte et la sensibilisation sur le risque inondation lors de la réalisation de grands projets urbains (D.1-5 et D.1-6).

En complément, la disposition D.3-9 permettra d'assurer la continuité des services publics en cas d’inondation. Un retour à la normale rapide participe à ne pas aggraver la vulnérabilité des ouvrages et des personnes soumises à l’aléa. Assurer un minimum de service et faire en sorte que le ressuyage d’une crue soit rapide participent à la réduction de la vulnérabilité d’un territoire.

Les dispositions issues du Grand Objectif 4 du PGRI, soutenant une gestion équilibrée des ressources en eau par l’intermédiaire de plans et de modes d’organisation adaptés (D.4-4 et D.4-5), concourront indirectement à la diminution de la vulnérabilité des territoires sur l’ensemble du district hydrographique Rhône-Méditerranée.

De même, l’ensemble des connaissances acquises par l'intermédiaire de la mise en œuvre des dispositions du Grand Objectif 5 permettra de développer la connaissance sur les phénomènes et les risques d'inondation, et donc de mieux s’y adapter.

La diminution de la vulnérabilité des territoires face à d’autres risques

Enfin, quelques mesures prises pour réduire la vulnérabilité face aux risques d'inondation sur le district hydrographique Rhône-Méditerranée participeront à réduire la vulnérabilité des territoires face à d’autres aléas (notamment technologiques).

L'acquisition de connaissances sur les enjeux d'un territoire (D.1-1) pourra également concerner d'autres risques naturels ou technologiques.

De plus, la disposition D.3-5 aura pour vocation de mettre à jour des documents de gestion de crise, tous risques confondus. Même si les dispositions portent sur l’intégration du risque inondation dans ces stratégies, elles alimenteront la réflexion sur la vulnérabilité des territoires à l’ensemble des risques auxquels ils sont confrontés et l’évolution de ces derniers.

Zoom sur la révision du PGRI

Le PGRI 2022-2027 fait évoluer le GO1 (mieux prendre en compte le risque dans l'aménagement et maîtriser le coût des dommages liés à l'inondation). Par rapport au premier PGRI, il vise :

• une plus grande adaptation du bâti existant aux inondations, en améliorant la connaissance de la vulnérabilité et en accompagnant la réalisation des travaux ;
• un élargissement des grands principes de prévention du décret PPRi de 2019 aux secteurs non couverts par ce type de démarche.

En lien avec le SDAGE 2022-2027, le nouveau PGRI renforce également la nécessité de développer la synergie entre les différentes politiques publiques (notamment gestion du risque et aménagement du territoire) et de mettre en place une gouvernance à l'échelle des bassins versants (GO4).
5.1.9.c - La préparation et la gestion de crise, le développement de la conscience du risque et des connaissances

Enjeu « structurant »

Le PGRI présente 39 dispositions qui auront des effets positifs à très positifs probables sur la gestion de ce type de crise, ainsi que sur le développement de la conscience du risque et de la connaissance concernant le risque inondation.

La préparation et la gestion de crise

Le Grand Objectif 3 (« Améliorer la résilience des territoires exposés ») vise directement l'amélioration de la préparation et de la gestion de crise. Ceci se concrétise particulièrement par la disposition D.3-4 « Améliorer la gestion de crise ».

Cependant, les autres dispositions participeront également à cet objectif, et présenteront donc des effets très positifs sur cet enjeu :

- amélioration de la surveillance et de la transmission des informations (D.3-1, D.3-2 et D.3-3) ;
- progression dans la gestion locale de crise (D.3-5, D.3-6 et D.3-7) ;
- augmentation de la résilience des territoires en cas de crise (D.3-8, D.3-9, D.3-10 et D.3-11).

Le développement de la conscience du risque

Une disposition du PGRI est particulièrement concernée par ce levier : D.3-14 « Développer la culture du risque ». Les dispositions D.3-12 (« Rappeler les obligations d'informations préventives »), D.3-13 (« Développer les opérations d'affichage du danger »), D.5-5 (« Mettre en place des lieux et des outils pour favoriser le partage de la connaissance et la communication ») et D.5-6 (« Inciter le partage des enseignements des catastrophes ») participeront également fortement aux effets positifs du PGRI sur cet enjeu.

Enfin, l'interdiction de constructions nouvelles ou d'extension de l'urbanisation en zone inondable non urbanisée derrière les digues (D.1-3 et D.2-12) participera au maintien de la culture du risque, même lorsqu'un ouvrage de protection est installé.

Le développement des connaissances

L'acquisition de connaissances constitue un préalable essentiel à la gestion du risque inondation, particulièrement dans une situation d'incertitudes fortes quant à l'évolution du risque avec le changement climatique.

D'autres dispositions comprises dans les autres Grands Objectifs du PGRI participeront également à l'augmentation des connaissances, notamment :

- connaissance des enjeux d'un territoire (D.1-1) ;
• identification des territoires présentant un risque important d'érosion (D.2-10).

La progression vers une gouvernance adaptée

De manière transversale, les dispositions du Grand Objectif 4 visent la mise en place d'une gouvernance adéquate, non seulement en matière de milieux aquatiques, comme mentionné précédemment, mais également en matière de gestion du risque d'inondation. Elles participeront donc, avec certaines autres dispositions, à la création et au maintien de structures compétentes en capacité de déployer des actions efficaces et cohérentes en matière de gestion de crise, de sensibilisation et d'acquisition de connaissances.

Zoom sur la révision du PGRI

Les évolutions du GO3 du PGRI pour le cycle 2022-2027 devraient renforcer les effets probables positifs en termes de préparation et de gestion de crise, de développement de la conscience du risque et des connaissances. En effet, elles ont pour objectifs de :

• parvenir à une plus grande culture du risque (sensibilisation du grand public, diffusion d'informations, etc.) ;
• actualiser la surveillance, la prévision et la transmission d'informations sur les crues et les submersions marines (progrès techniques, nouveaux outils, etc.) ;
• passer de la prévision des crues à la prévision des inondations (atlas de cartes de zones inondées potentielles).

En complément, le GO5 vise désormais un développement plus important de la connaissance des phénomènes et, en particulier, l'étude plus précise des effets du changement climatique. Un plus grand partage des enseignements des catastrophes est également recherché.

Synthèse « Risques naturels et technologiques »

Le PGRI aura des effets très positifs en termes de réduction de l'aléa inondation et submersion marine. Ces derniers sont prioritairement recherchés via le rétablissement d'un fonctionnement naturel des milieux aquatiques et une restauration de l'espace de bon fonctionnement, avec des effets positifs multiples sur d'autres enjeux. La bonne gestion des ouvrages de protection ainsi que le développement des connaissances participeront également à diminuer l'aléa. De plus, le PGRI traite également de l'aléa érosion sur le littoral.

Le Grand Objectif 1, traitant particulièrement de la réduction de la vulnérabilité des territoires face aux risques d'inondation, présentera des effets très positifs. La prévention y tient une place importante, notamment par l'évitement de l'augmentation des enjeux dans les territoires soumis aux risques d'inondation. Cependant, pour les enjeux présents, des analyses et des stratégies de réduction seront mises en place. De plus, d'autres dispositions du PGRI présenteront des effets positifs sur cet enjeu, par l'augmentation de la résilience des territoires et l'acquisition de connaissances notamment. Enfin, le PGRI aura quelques effets positifs sur la vulnérabilité vis-à-vis d'autres risques, par la connaissance enjeux d'un territoire et le maintien à jour des documents de gestion de crise.

Enfin, un grand nombre de dispositions du PGRI auront des effets positifs à très positifs sur l'enjeu de gestion de crise, de conscience du risque et de connaissances. Cela concerne l'ensemble des Grands Objectifs du document, en particulier le 3 (gestion de crise et conscience du risque) et le 5 (acquisition de connaissances). De plus, le Grand Objectif 4, par la mise en place d'une gouvernance adaptée, devrait avoir des effets positifs transversaux sur cet enjeu.
5.1.10 - Santé humaine et nuisances

Pour rappel, les enjeux environnementaux issus de l'analyse de l'état initial de l'environnement, thématique « Santé humaine et nuisances », concernent la bonne santé des personnes, et sont :

- la bonne qualité de l'eau distribuée pour l'AEP et sa disponibilité ;
- la qualité des eaux à usage récréatif ou de production ;
- la maîtrise des nuisances.

5.1.10.a - La bonne qualité de l'eau distribuée pour l'AEP et sa disponibilité

Enjeu « modéré »

La préservation d'une bonne qualité et de la disponibilité de l'eau potable n'est pas une thématique directement traitée par le PGRI. Néanmoins, sept dispositions pourront présenter des effets positifs sur la qualité des eaux.

Notons que les dispositions du PGRI qui présenteront des effets sur l'enjeu de qualité des eaux (5.1.1.b -) pourront également provoquer des effets sur cet enjeu, de manière indirecte.

La protection des captages d'eau potable

La disposition D.2-7 assure la disponibilité des prises d'eau permanentes à fort enjeux (utiles au fonctionnement des établissements nucléaires et industriels ou à l'alimentation eau potable).

La remise en bon état des réseaux de distribution d'eau potable suite à une crise

Cette remise en bon état sera précédée d'une étude permettant de mettre en évidence les parties du réseau à remettre en état en priorité du fait de leur vulnérabilité et des conséquences de leur détérioration en cas d'inondation (D.3-10).

Le fait d'assurer le service d'adduction d'eau potable pendant et après la crise (D.3-9) sera également favorable à cet enjeu. L'amélioration de la connaissance sur la vulnérabilité de ces réseaux (D.5-4) facilitera la continuité des services.

5.1.10.b - La qualité des eaux à usage récréatif ou de production

Enjeu « modéré »

Préserver la bonne qualité et la disponibilité des eaux à usage récréatif ou de production n’est pas une thématique directement traitée par le PGRI. Aucune disposition du PGRI ne présentera d'effet spécifique sur cet enjeu.

Néanmoins, il faut noter que les dispositions du PGRI qui présenteront des effets sur l'enjeu de qualité des eaux (5.1.1.b -) pourront également provoquer des effets sur cet enjeu, de manière indirecte.
5.1.10.c - La maîtrise des nuisances

La maîtrise d’éventuelles nuisances n’est pas une thématique directement traitée par le PGRI. Néanmoins huit dispositions pourront présenter des effets positifs sur cet enjeu modéré.

Amélioration de la gestion de l’eau pluviale

Hors cas d’inondation, les nuisances liées à l’eau pourront être atténuées par certaines dispositions du PGRI. Par exemple, la disposition D.2-4 vise l’intégration de la question de la gestion du ruissellement dans les documents d’urbanisme et d’aménagement. Une meilleure gestion du ruissellement des eaux participe à la raréfaction des situations de saturation des réseaux, d’eau stagnantes, de routes bloquées par la pluie, etc.

Amélioration de la gestion des réseaux d’eau

Il est aussi à noter que l’entretien des réseaux préconisé dans la disposition D.3-10 pour diminuer le risque de coupure durant une inondation participera au bon fonctionnement du réseau en situation normale (pouvant ainsi limiter certaines situations de nuisances comme les odeurs).

Prévention de la survenue de nuisances en cas d’inondation

Plusieurs dispositions ont pour objet la maîtrise des nuisances qui pourraient intervenir en cas d’inondation. Ces dispositions pourront être préventives :

- évaluer les conséquences en cas d’inondation sur des activités voulant s’implanter dans des zones où il existe ou existera un aléa inondation (D.1-4) ;
- réduire le potentiel de nuisance d’objet flottants déposés à la suite d’une crue en mobilisant en amont des zones à fort enjeux des pièges à embâcles ou des aires de régulation (D.2-9).

La gestion des nuisances en cas d’inondation

Le PGRI ouvre la réflexion pour une meilleure gestion des services durant les inondations par les gestionnaires d’activités essentielles. Par exemple, la disposition D.3-9 vise à assurer la continuité des services publiques durant et après la crise.

Zoom sur la révision du PGRI

Hormis le renforcement de la disposition D.2-4 concernant le ruissellement, peu d'évolutions du PGRI devraient montrer des effets probables sur cet enjeu.

Synthèse générale « Santé humaine et nuisances »

Les effets du PGRI sur la bonne qualité de l’eau à destination de la consommation humaine et sa disponibilité, et des eaux à usages récréatifs ou de production seront positifs, bien que relativement limités. Ils s'exprimeront particulièrement par la bonne gestion et connaissance des réseaux d’eau, facilitant leur fonctionnement et leur résilience pendant et après la crise.

Notons que les effets du PGRI sur les enjeux de qualité de l’eau et de quantité pourront également, dans des cas
particuliers, concerner ces enjeux.

Concernant la maîtrise des nuisances, la mise en œuvre du PGRI pourra présenter des effets positifs, notamment pendant les épisodes de crise. Ils s'exprimeront à travers l'amélioration de la gestion des eaux pluviales et des réseaux d'eau (notamment usées), ainsi que par l'anticipation de survenue de nuisances lors des inondations.

5.1.11 - Déchets

Pour rappel, un enjeu environnemental est issu de l'analyse de l'état initial de l'environnement, thématique « Déchets » : la lutte contre les déchets flottants.

5.1.11.a - La lutte contre les déchets flottants

Enjeu « modéré »

La lutte contre les déchets flottants n’est pas une thématique directement traitée par le PGRI. Toutefois, treize dispositions pourraient avoir des effets positifs sur cet enjeu.

La limitation du potentiel de déchets flottants à la source

Ne pas construire en zone inondable (y compris dans les champs d'expansion des crues) limitera la possibilité de détérioration du bâti et le rejet de déchets flottants. L'ensemble des dispositions ayant pour effet de limiter les constructions en zones inondables (notamment au sein des Grands Objectifs 1 et 2) auront donc un effet probable de réduction des déchets flottants potentiels, de même que la disposition D.1-2 qui vise la diminution de la vulnérabilité des biens en zone inondable.

La maîtrise de la circulation des déchets flottants

Les dispositions D.2-8 et D.2-9 participeront à lutte contre les déchets flottants en captant une part des macro-déchets avant qu'ils ne parviennent aux milieux aquatiques ou à la mer (pièges à embâcles, ripisylves, champs d’expansion des crues). De plus, la limitation des ruissellements à la source (D.2-4) ainsi que la rétention dynamique des écoulements (D.2-5) pourront participer à cet effet. Cependant, leur efficacité dépendra d'un entretien adapté. L'identification et la bonne gestion de ces espaces/ouvrages sont des enjeux ciblés par la disposition D.4-7, par le prisme de la gouvernance (compétences).

Zoom sur la révision du PGRI

Comme évoqué précédemment (*cf. partie 5.1.4.b notamment*), les évolutions des GO1 et GO2 du PGRI 2022-2027 pourront accentuer la limitation des possibilités de construction en zone inondable.

Par ailleurs, le nouveau PGRI intègre désormais la restauration d'espace de bon fonctionnement (mise en place de zone de régulation naturelle du transport solide) dans les zones exposées à des risques torrentiels (D.2-9). Le renforcement de l'efficacité de la limitation des ruissellements (D.2-4) sera favorable à cet enjeu.
Bien que n'étant pas un objectif direct du PGRI, plusieurs dispositions du document auront des effets positifs à très positifs sur cet enjeu. Ils pourront apparaître par la limitation du potentiel de déchets flottants à la source (en limitant les zones artificialisées potentiellement inondables par exemple) et par la maîtrise de la circulation des déchets flottants, avant de parvenir aux milieux aquatiques ou à la mer.

5.1.12 - Synthèse des effets du PGRI sur l’environnement

La grande majorité des dispositions du PGRI auront des effets positifs sur l’environnement. Cette positivité s’explique par la nature du document et sa construction : expériences du PGRI 2016-2021 et de son évaluation environnementale, forte concertation, grande implication des instances, etc.

Le tableau suivant présente les effets cumulés de chaque Grand Objectif sur chacun des enjeux environnementaux. Les effets dispositions par dispositions sont exposés en annexe de ce rapport.

Sont représentés dans ce tableau les effets cumulés des dispositions de chaque GO sur chaque enjeu environnemental, c'est-à-dire que lorsque plusieurs dispositions d'un GO présentent un effet probable sur un même enjeu, l'effet probable associé à l'ensemble du GO (exposé dans ce tableau) à correspond au cumul de l'ensemble des effets probables de ces dispositions.
Illustration 50 : Bilan des effets cumulés probables de chaque GO sur les enjeux environnementaux
5.2 - Évaluation des incidences Natura 2000

5.2.1 - Bases légales et réglementaires

Natura 2000 est un réseau de sites écologiques européens. Le réseau Natura 2000, constitué d'un ensemble de sites naturels, terrestres et marins, vise à assurer la survie à long terme des espèces et des habitats particulièrement menacés, à forts enjeux de conservation en Europe. L'objectif de la démarche européenne, fondée sur les directives « Oiseaux » et « Habitats, faune, flore » est double : la préservation de la diversité biologique et du patrimoine naturel, et la prise en compte des exigences économiques, sociales et culturelles ainsi que des particularités régionales.

Le réseau est constitué de deux types de sites désignés par chacun des pays membres de l’Union européenne en application de deux directives européennes :

- des Zones Spéciales de Conservation (ZSC), au titre de la directive 92/43/CEE du 21 mai 1992 concernant la conservation des Habitats naturels ainsi que de la faune et de la flore sauvages dite directive « Habitats ».

Le réseau Natura 2000 se compose de 5 572 zones de protections spéciales (ZPS) et 23 726 zones spéciales de conservation (ZSC). Celles-ci recouvrent plus de 18 % de la surface terrestre du territoire européen et 6% de la surface marine (OFB, 2016).

Ces sites sont identifiés pour la rareté ou la fragilité de leur patrimoine naturel : faune, flore, habitats naturels. L’objectif principal de ce réseau est de favoriser un développement durable des habitats naturels, de la faune et de la flore, par le maintien de la biodiversité dans le respect du contexte local socio-économique et culturel.

En France, le Code de l'Environnement consacre une section particulière aux sites Natura 2000 dans laquelle il fixe le cadre général de leur désignation et de leur gestion (article L.414-1 à L.414-7 et R.414-1 et suivants). Chaque site Natura 2000 est doté d'un document d'objectifs (DOCOB) qui, dans la concertation, fixe pour six ans les actions à conduire dans le cadre d'une gestion contractuelle volontaire (charte Natura 2000, contrats Natura 2000, etc.).

Le contenu de l’évaluation est avancé dans la circulaire DNP/SDEN n°2004-1 du 5 octobre 2004 qui précise que le « dossier d’évaluation d’incidences est uniquement ciblé sur les habitats naturels et les espèces ayant justifié la désignation du site et s’établit au regard de leur conservation ». Il est également indiqué que « le caractère d’effet notable dommageable doit être déterminé à la lumière des caractéristiques et des conditions environnementales spécifiques du site concerné par le programme ou projet, compte tenu particulièrement des objectifs de conservation et de restauration définis dans le Document d'Objectifs ».

5.2.2 - Approche méthodologique générale

La présente analyse des incidences Natura 2000 s’intéresse aux impacts de la mise en œuvre du plan sur

5.2.2.a - Objectif de l’étude

L’objectif de l’analyse des incidences Natura 2000 est de s’assurer de la compatibilité du PGRI avec les objectifs de conservation des sites Natura 2000 du bassin Rhône-Méditerranée. Ainsi, il convient de déterminer si le projet peut avoir un effet significatif sur les habitats et les espèces végétales et animales ayant justifié la désignation du site Natura 2000. Elle doit montrer que le projet ne porte pas atteinte à ces sites, ou sinon qu’il a cherché à supprimer, réduire, et le cas échéant compenser ces incidences négatives probables.

5.2.2.b - Méthode employée pour l’analyse

Conformément à la réglementation relative à l'étude des incidences Natura 2000 (art. R.414-23 du Code de l'Environnement), l'analyse se déroule en plusieurs phases successives qui proposent une suite logique en quatre étapes.

Étape 1 - Évaluation préliminaire des incidences

Cette première étape vise à déterminer si le PGRI est susceptible d'avoir des incidences positives ou négatives sur un ou plusieurs sites. Pour cela il est rappelé le contenu et les objectifs du PGRI puis, il est étudié de manière détaillée quels sont les sites Natura 2000 susceptibles d'être concernés par sa mise en œuvre.

Aussi, l’analyse s'est orientée vers une étude cartographique qui a permis de mettre en évidence les sites Natura 2000 en lien avec les masses d'eau. Ces sites sont ensuite décrits de manière succintre.

Sur base de cette pré-analyse, il est exposé comment le PGRI est susceptible d’avoir des incidences significatives sur ces sites. Étant donné que la conclusion a mis en évidence des incidences potentielles, les autres étapes ont ensuite été déroulée conformément aux exigences législatives.

Étape 2 - Évaluation approfondie des incidences

Compte tenu du très grand territoire d'application du PGRI, l'analyse site par site n'est pas pertinente et intelligible.

Le raisonnement s'est donc attaché à étudier les incidences positives comme négatives du PGRI à partir des catégories de pressions qui s'exercent sur les sites retenus. Cela permet de conclure si les dispositions du PGRI sont de nature à renforcer les menaces sur le réseau Natura 2000 ou si elles permettent de les réduire ou de les maîtriser.

Étape 3 - Mesures de suppression ou de réduction (sous conditions)

Dans la continuité de l'analyse des incidences, cette étape s'attache à définir des mesures pour supprimer ou réduire les incidences négatives mises en évidence à l'étape précédente. Suite à la démarche itérative, l'analyse des incidences du PGRI sur le réseau Natura 2000 ne révèle pas d'effet significatif résiduel négatif. Ainsi, cette partie est sans objet, conformément à la réglementation.
Étape 4 - Conclusion sur le caractère des incidences résiduelles

La dernière étape met en évidence que le PGRI n'est pas de nature à générer des incidences négatives significatives sur les sites Natura 2000, au regard notamment des incidences résiduelles probables après la mise en œuvre des mesures.

L’analyse s’est basée sur les éléments contenus dans la base de données de l’INPN et le référentiel des masses d'eau. Ceux-ci ont été étudiés en détails en s'appuyant notamment sur plusieurs analyses cartographiques.

5.2.3 - Résultat de l'évaluation des incidences Natura 2000

5.2.3.a - Étape 1 - Évaluation préliminaire des incidences

Description du PGRI et situation relative du réseau Natura 2000

Pour rappel, le PGRI a pour vocation d'orienter et de planifier la gestion des risques liés aux inondations du bassin Rhône-Méditerranée. Il définit les orientations stratégiques pour la gestion du risque inondation pour le cycle de gestion des six ans à venir.

Le réseau des masses d'eau concernées par ce document couvre une large partie du territoire terrestre ainsi que la bande côtière et est par conséquent susceptible d'intercepter des sites Natura 2000. Ces derniers sont au nombre de 531 sites. Sont distingués :

- les sites désignés au titre de la directive Oiseaux, avec 151 Zones de Protection Spéciale (ZPS) ;
- les sites désignés au titre de la directive Habitats, avec 380 Zones Spéciales de Conservation (ZSC).

Pour chaque site Natura 2000, une concertation est mise en place entre les acteurs pour définir les objectifs qui concourront au maintien ou à l’amélioration des habitats et des espèces d'intérêt communautaire qui ont justifié la désignation du site.

Le document d’objectifs (DOCOB) qui découle de cette concertation a pour objectif de prendre en compte l’ensemble des aspirations des parties prenantes, qu’elles soient écologiques, économiques, culturelles ou sociales. Le DOCOB est à la fois un document de diagnostic et un document d’orientation pour la gestion des sites Natura 2000. Il contient notamment les objectifs de développement durable du site et les mesures permettant d’atteindre ces objectifs. Il s’agit d’un document de référence pour les acteurs concernés par la vie du site. La gestion à proprement parler des sites peut être formalisée sous la forme de Charte ou de Contrat Natura 2000.

Afin d'analyser les incidences potentielles du PGRI sur ce réseau important, une analyse plus fine a été réalisée de manière à identifier les liens potentiels entre le PGRI et les masses d'eau. Il ressort de cette analyse que tous les sites Natura 2000 ne concernent pas les ressources en eau. Si la totalité des sites intersecte une masse d'eau souterraine, 80 % des sites intersectent un cours d'eau et plus de 10 %, soit 57 sites, qui intersectent une masse d’eau côtière. De plus, 56 lacs sont intersectés par des sites Natura 2000 comme 30 masses d’eau de transition.
Plan de Gestion des Risques d'Inondation 2022-2027 | Bassin Rhône-Méditerranée

Tableau 19 : Masses d'eau intersectées par les sites Natura 2000 (source : BRLi, 2020 d'après référentiel masses d'eau 2022 et données INPN)

<table>
<thead>
<tr>
<th>Typologie de ME</th>
<th>Quantité de sites concernés (nb)</th>
<th>Part du nb total de sites (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masses d'eau superficielle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cours d'eau</td>
<td>424</td>
<td>80 %</td>
</tr>
<tr>
<td>Côtières</td>
<td>57</td>
<td>11 %</td>
</tr>
<tr>
<td>Lac</td>
<td>56</td>
<td>11 %</td>
</tr>
<tr>
<td>Transition</td>
<td>30</td>
<td>6 %</td>
</tr>
<tr>
<td>Masses d'eau souterraine</td>
<td>531</td>
<td>100 %</td>
</tr>
</tbody>
</table>

Exposé des raisons pour lesquelles le PGRI est susceptible d'avoir des incidences sur les sites

Le PGRI vise à formaliser la politique de gestion des inondations afin de réduire les conséquences dommageables des inondations. Ses dispositions sont par conséquent de nature à impacter les habitats humides et les espèces inféodées sur les zones d'application des mesures qui seront prises dans le cadre de son application.

L'étude de l'intersection des masses d'eau concernées par le PGRI et du réseau Natura 2000 confirme que le lien est important sur le territoire. La totalité des sites Natura 2000 interceptent des masses d'eau souterraine concernées par le PGRI et 80 % par des masses d'eau superficielles.

Lorsque ce lien existe, les dispositions du PGRI pourront avoir directement ou indirectement des incidences sur la qualité des milieux au sein des sites et sur les espèces également. L'incidence peut être sur les habitats aquatiques superficiels bien entendu mais également sur d'autres habitats.

Cela met clairement en évidence que le PGRI est donc de nature à avoir des incidences directes ou indirectes sur les habitats et espèces des sites Natura 2000. Ce constat conduit à présenter, dans la suite du document, une analyse approfondie de ces incidences.

5.2.3.b - Étape 2 - Évaluation approfondie des incidences

L'évaluation approfondie des incidences se fait par l'étude des effets potentiels du PGRI sur les pressions qui s'exercent sur les sites retenus pour l'analyse, en lien direct ou indirect avec les masses d'eau. La suite de l'analyse présente dans un premier temps les typologies de pression recensées puis étudie dans un second temps de quelle manière le PGRI a une incidence sur celles-ci.

Analyse des pressions qui s'exercent sur les sites étudiés

Parmi les 531 sites Natura 2000 inféodés à l'eau, tous ne sont pas soumis aux mêmes types de pressions. L'analyse des fiches standardisées77 a permis de regrouper les pressions en cinq grandes classes qui permettent...

77 Document réalisé par le Museum National d'Histoire Naturelle (MNHN) pour chaque site Natura 2000 comprenant les mêmes rubriques et niveau de précision (description, vulnérabilité, pressions, etc.).
d'identifier les catégories de menaces qui pèsent actuellement sur les sites retenus pour l'analyse. Il ressort de cette étude que :

- près de trois quarts des pressions sont issues des activités humaines. Ces menaces proviennent de diverses activités telles que l'agriculture (23 % des pressions recensées), les transports (9 %) ou encore l'urbanisation (8 %). Les autres pressions sont associées à la surfréquentation ou à l’utilisation déséquilibrée des ressources ;
- la seconde catégorie de pression correspond à la modification de la végétation qui représente 16 % des menaces recensées sur les sites Natura 2000 étudiés : cette menace est associée aux espèces exotiques envahissantes, aux activités forestières et modifications naturelles qui peuvent générer des fermetures de milieu par exemple ;
- puis, 7 % des pressions correspondent à des modifications morphologiques (cloisonnements, remblais, érosion, etc.) et des pollutions (rejets, eutrophisation, etc.) ;
- enfin, les modifications du régime hydraulique correspondent à 2 % des pressions. Celles-ci peuvent être associées aux comblements ou drainages des zones humides ou des menaces sur l'état quantitatif.

Pour chaque typologie de pression, la suite de l'analyse s'attache à identifier les incidences positives et négatives du PGRI.
Plan de Gestion des Risques d'Inondation 2022-2027 | Bassin Rhône-Méditerranée

Tableau 20 : Pressions sur les sites Natura 2000 par typologie (source : BRLi, 2020 d’après INPN)

<table>
<thead>
<tr>
<th>Catégories de menaces/pressions</th>
<th>Nombre d’apparitions</th>
<th>Part (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pollutions</td>
<td>222</td>
<td>4 %</td>
</tr>
<tr>
<td>Activités anthropiques</td>
<td>3 732</td>
<td>71 %</td>
</tr>
<tr>
<td>Agriculture</td>
<td>1 192</td>
<td>23 %</td>
</tr>
<tr>
<td>Mining, extraction of materials and energy production</td>
<td>126</td>
<td>2 %</td>
</tr>
<tr>
<td>Transportation and service corridors</td>
<td>458</td>
<td>9 %</td>
</tr>
<tr>
<td>Urbanisation, residential and commercial development</td>
<td>423</td>
<td>8 %</td>
</tr>
<tr>
<td>Biological resource use other than agriculture & forestry</td>
<td>503</td>
<td>10 %</td>
</tr>
<tr>
<td>Human intrusions and disturbances</td>
<td>1 030</td>
<td>20 %</td>
</tr>
<tr>
<td>Modifications de la végétation</td>
<td>840</td>
<td>16 %</td>
</tr>
<tr>
<td>Invasive, other problematic species and genes</td>
<td>104</td>
<td>2 %</td>
</tr>
<tr>
<td>Natural biotic and abiotic processes (without catastrophes)</td>
<td>210</td>
<td>4 %</td>
</tr>
<tr>
<td>Sylviculture, forestry</td>
<td>526</td>
<td>10 %</td>
</tr>
<tr>
<td>Modifications morphologiques</td>
<td>368</td>
<td>7 %</td>
</tr>
<tr>
<td>Modifications hydrologiques et hydrauliques</td>
<td>83</td>
<td>2 %</td>
</tr>
<tr>
<td>Climate change</td>
<td>11</td>
<td>0 %</td>
</tr>
<tr>
<td>Geological events, natural catastrophes</td>
<td>72</td>
<td>1 %</td>
</tr>
<tr>
<td>TOTAL</td>
<td>5 245</td>
<td>100 %</td>
</tr>
</tbody>
</table>

Analyse des incidences du PGRI sur les pressions et les sites

Incidence du PGRI sur les pollutions

Le PGRI n’aura pas d’incidence directe sur les éventuelles pollutions qui pourraient impacter les sites Natura 2000. Une disposition pourrait présenter des incidences positives indirectes : « Limiter le ruissellement à la source » (D.2-2). En effet, les ruissellements transportent généralement des pollutions vers les milieux aquatiques à partir de zones artificialisées ou agricoles, d’autant plus s’ils sont importants.

Incidence du PGRI sur les activités anthropiques

Cette pression est déclinée en plusieurs catégories pouvant avoir un impact négatif sur les sites Natura 2000. Les activités anthropiques étudiées sont les activités agricoles, l’extraction de matériaux et la production d’énergie, le transport, l’urbanisation, l’utilisation des ressources biologiques et, enfin, les perturbations.
Plusieurs sites Natura 2000 sont très sensibles aux pressions anthropiques, et particulièrement aux pressions liées à l’urbanisation qui peuvent engendrer une artificialisation des sols et une modification de la morphologie des milieux.

Parmi ces différentes pressions, seule l’urbanisation, avec l’artificialisation de zone inondables, pourra être impactée par le PGRI. En effet l’urbanisation est restreinte en zones inondables en zone d'aléa fort et très fort. Les sites qui se trouvent dans ces zones seront donc préservés (disposition D.1-3). Des constructions sont toutefois envisageables dans les zones d’aléa modéré ou faible, au sein des zones urbanisées (ce qui limitera fortement les potentielles incidences négatives sur les sites Natura 2000, peu présents dans ces secteurs).

Le PGRI aura plutôt des incidences positives en ce qui concerne la limitation de l'artificialisation des sols (préservation des champs d'expansion des crues, des éléments participant à la réduction des ruissellements, des zones humides, etc.).

Cependant, dans l’éventualité d’un futur projet, celui-ci sera soumis à des procédures réglementaires procédures réglementaires (autorisation au titre de la loi sur l'eau, réglementation ICPE, sites protégés…), l’atteinte à un site Natura 200 devrait être fortement limitée.

Incidence du PGRI sur la modification de la végétation

De manière générale, les objectifs du PGRI ne sont pas directement liés à la végétation. Ainsi, une seule disposition est concernée par la modification des milieux végétaux. Il s'agit de la disposition D.2-8 qui, en préconisant un bon entretien des ripisylves, pourra avoir une incidence positive sur les modifications de végétation des sites Natura 2000.

Une mesure pourrait avoir des incidences sur la biodiversité en place, potentiellement en site Natura 2000 : la disposition D.2-2, qui pourra amener à inonder des espaces non ou moins soumis aux inondations actuellement. Cependant, la disposition intègre bien ce risque et recommande que la mobilisation de nouvelles capacités d'expansion des crues prenne en compte les impacts sur les milieux naturels présents.

Incidence du PGRI sur les modifications morphologiques

La mise en place de remblais, les opérations d'extraction et de cloisonnement longitudinal et latéral engendrent des pressions morphologiques sur les habitats aquatiques. De plus, toutes les contraintes sur la morphologie naturelle des cours d'eau sont des facteurs d'aggravation de l'aléa inondation. Elles sont donc dans l'ensemble limitées par le PGRI, via la préservation des espaces de bon fonctionnement des cours d'eau en général et la prise en compte des champs d'expansion des crues dans les opérations d'aménagement en particulier.

Quelques contraintes persistent pour des raisons de sécurité des personnes et des ouvrages (possibilité limitée dans la disposition D.2-9). Toutefois, la recherche de solutions basées sur des ouvrages restent strictement limitées aux situations montrant une régulation naturelle du transport solide dans l'espace de bon fonctionnement insuffisante pour réduire les risques torrentiels. De plus, dans le cas de nouveaux ouvrages indispensables à la sécurité des personnes, la disposition D.2-12 encadre cette possibilité (implantation devant s'accompagner de mesures de compensation et rester exceptionnelle, intégration des impacts en amont et en aval, mise en place dans le cadre d'une stratégie globale intégrant des solutions fondées sur la nature, etc.). Enfin, en cas d'incidences potentielles sur un ou des sites Natura 2000, l'étude d'impact des projets précis devra démontrer l'absence d'effets négatifs. Il n'est donc pas envisagé de mesures particulières à ce stade.
Incidence du PGRI sur les modifications du régime hydraulique

Les eaux douces intérieures des sites Natura 2000 sont particulièrement vulnérables aux pressions de prélèvements liées aux différents usages humains (eau potable, irrigation, industrie) qui engendrent des modifications du régime hydraulique.

Une seule disposition du PGRI a un impact sur la modification du régime hydraulique, cet impact est positif (D.2-1). La disposition concernée vise à prendre en compte des espaces de bon fonctionnement des milieux aquatiques. Il s’agit d’un impact positif car la préservation de ces espaces pour l'expansion des crues permet de maintenir leur fonctionnement hydraulique naturel.

5.2.3.c - Étape 4 - Conclusion sur le caractère des incidences résiduelles

Le PGRI devrait présenter peu d'incidences sur les sites Natura 2000. Il n'est que marginalement responsable de modifications sur les pressions qui s'y exercent et vient en général appuyer le maintien du caractère naturel des zones inondables et submersibles pour y limiter les enjeux humains et matériel. Les quelques dispositions qui pourraient conduire à une artificialisation des sols par l'autorisation de projets d'aménagement n'ont qu'une incidence potentiellement négative. En effet, un ensemble de principes et de conditions sont développés dans le PGRI afin de privilégier des solutions moins impactantes ou, le cas échéant, de mesurer les impacts de ces projets et de les réduire. Enfin, les projets d'aménagement devront faire l'objet d'évaluation environnementales plus précises qui mettront en avant la présence de sites Natura 2000, le cas échéant.

Enfin, dans l’éventualité d’un futur projet, celui-ci se verra appliquer les procédures réglementaires (autorisation environnementale au titre de la loi sur l’eau, évaluation environnementale, réglementation ICPE, etc.). L’atteinte potentielle à un site Natura 2000 sera alors analysée finement et les règles de gestion des sites décrits dans les chartes et contrats seront également susceptibles, en amont, de limiter les projets dans leur nature ou leur emprise. La maîtrise des impacts éventuels liés à des actions qui sont en lien avec les dispositions du PGRI relèvera alors de la vigilance des services de l’Etat.
+ : incidences positives
+- : incidences potentiellement négatives selon leur mise en œuvre

<table>
<thead>
<tr>
<th>GO1 - Mieux prendre en compte le risque dans l’aménagement et maîtriser le coût des dommages liés à l’inondation</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.1-1 Mieux connaître les enjeux d’un territoire pour pouvoir agir sur l’ensemble des composantes de la vulnérabilité</td>
</tr>
<tr>
<td>D.1-2 Maîtriser le coût des dommages en cas d’inondation en agissant sur la vulnérabilité des biens, au travers des stratégies locales, des programmes d’action ou réglementaires</td>
</tr>
<tr>
<td>D.1-3 Ne pas aggraver la vulnérabilité en orientant le développement urbain en dehors des zones à risque + + +</td>
</tr>
<tr>
<td>D.1-4 Valoriser les zones inondables et les espaces littoraux naturels +</td>
</tr>
<tr>
<td>D.1-5 Renforcer la prise en compte du risque dans les projets d’aménagement</td>
</tr>
<tr>
<td>D.1-6 Sensibiliser les opérateurs de l’aménagement du territoire aux risques d’inondation au travers des stratégies locales</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GO2 - Augmenter la sécurité des populations exposées aux inondations en tenant compte du fonctionnement naturel des milieux aquatiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.2-1 Préserver les champs d’expansion des crues + + +</td>
</tr>
<tr>
<td>D.2-2 Rechercher la mobilisation de nouvelles capacités d’expansion des crues +</td>
</tr>
<tr>
<td>D.2-3 Éviter les remblais en zones inondables +</td>
</tr>
<tr>
<td>D.2-4 Limiter le ruissellement à la source + + +</td>
</tr>
<tr>
<td>D.2-5 Favoriser la rétention dynamique des écoulements + +</td>
</tr>
<tr>
<td>D.2-6 Restaurer les fonctionnalités naturelles des milieux qui permettent de réduire les crues et les submersions marines +</td>
</tr>
<tr>
<td>D.2-7 Préserver et améliorer la gestion de l’équilibre sédimentaire +</td>
</tr>
</tbody>
</table>

Tableau 21 : Synthèse des incidences sur les pressions qui s'exercent sur les sites Natura 2000
D.2-8	Gérer la ripisylve en tenant compte des incidences sur l'écoulement des crues et la qualité des milieux	+
D.2-9	Développer des stratégies de gestion des débits solides dans les zones exposées à des risques torrentiels	+
D.2-10	Identifier les territoires présentant un risque important d'érosion	+
D.2-11	Traiter de l'érosion litorale dans les stratégies locales des territoires exposés à un risque important d'érosion	+
D.2-12	Limiter la création et la rehausse des ouvrages de protection aux secteurs à risque fort et présentant des enjeux importants	+
D.2-13	Limiter l'exposition des enjeux protégés par des ouvrages de protection	+
D.2-14	Assurer la performance des systèmes de protection	+
D.2-15	Garantir la pérennité des systèmes de protection	+

GO3 - Améliorer la résilience des territoires exposés

D.3-1	Organiser la surveillance, la prévision et la transmission de l’information sur les crues et les submersions marines	
D.3-2	Passer de la prévision des crues à la prévision des inondations	
D.3-3	Pour les phénomènes plus localisés et soudains : améliorer les outils d’alerte et inciter à la mise en place d’outils locaux de résilience	
D.3-4	Améliorer la gestion de crise	
D.3-5	Conforter les Plans Communaux de Sauvegarde (PCS)	
D.3-6	Intégrer un volet relatif à la gestion de crise dans les stratégies locales	
D.3-7	Développer des volets inondation au sein des dispositifs ORSEC départementaux	

+ : incidences positives
+- : incidences potentiellement négatives selon leur mise en œuvre
<table>
<thead>
<tr>
<th></th>
<th>Sensibiliser les gestionnaires de réseaux au niveau du bassin</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D.3-8</td>
<td>Assurer la continuité des services publics pendant et après la crise</td>
<td></td>
</tr>
<tr>
<td>D.3-9</td>
<td>Accompagner les diagnostics et plans de continuité d’activité au niveau des stratégies locales</td>
<td></td>
</tr>
<tr>
<td>D.3-10</td>
<td>Evaluer les enjeux liés au ressuyage au niveau des stratégies locales</td>
<td></td>
</tr>
<tr>
<td>D.3-11</td>
<td>Rappeler les obligations d’information préventive</td>
<td></td>
</tr>
<tr>
<td>D.3-12</td>
<td>Développer les opérations d’affichage du danger (repères de crues ou de laisses de mer)</td>
<td></td>
</tr>
<tr>
<td>D.3-13</td>
<td>Développer la culture du risque</td>
<td></td>
</tr>
</tbody>
</table>

GO4 - Organiser les acteurs et les compétences

D.4-1	Fédérer les acteurs autour de stratégies locales pour les TRI	
D.4-2	Assurer la cohérence des projets d’aménagement du territoire et de développement économique avec les objectifs de la politique de gestion des risques d’inondation	+
D.4-3	Intégrer les priorités du SDAGE dans les PAPI et SLGRI et améliorer leur cohérence avec les SAGE et les contrats de milieux et de bassin versant	+
D.4-4	Assurer la gestion équilibrée des ressources en eau et la prévention des inondations par une maîtrise d’ouvrage structurée à l’échelle des bassins versants	+
D.4-5	Encourager la reconnaissance des syndicats de bassin versant comme EPAGE ou EPTB	
D.4-6	Considérer les ouvrages de protection dans leur ensemble	
D.4-7	Favoriser la constitution de gestionnaires au territoire d’intervention adapté	

+ : incidences positives
+- : incidences potentiellement négatives selon leur mise en œuvre
+ : incidences positives
+- : incidences potentiellement négatives selon leur mise en œuvre

| GO5 - Développer la connaissance sur les phénomènes et les risques d’inondation |
|-------------------------------|-----------------|-----------------|
| D.5-1 Favoriser le développement de la connaissance des aléas |
| D.5-2 Renforcer la connaissance des aléas littoraux dans le contexte du changement climatique |
| D.5-3 Renforcer la connaissance des aléas torrentiels dans le contexte du changement climatique |
| D.5-4 Approfondir la connaissance sur la vulnérabilité des réseaux |
| D.5-5 Mettre en place des lieux et des outils pour favoriser le partage de la connaissance et la communication |
| D.5-6 Inciter le partage des enseignements des catastrophes |
6 - Présentation des mesures pour éviter, réduire ou compenser les effets négatifs

6.1 - Bilan des incidences négatives sur l'environnement

Les dispositions du PGRI sont dédiées à la gestion du risque d'inondation, en favorisant largement le fonctionnement naturel des écosystèmes aquatiques, en lien étroit avec le SDAGE.

Les effets probables de sa mise en œuvre seront donc globalement positifs, notamment sur la santé humaine et la réduction du risque d'inondation, mais pourra présenter, de façon limitée, des effets probables négatifs ou des risques. L’analyse met en évidence près de 310 effets, dont 15 incertains et 6 potentiellement négatifs (soit 93 % d'effets probables positifs à très positifs). Ainsi, sur les 48 dispositions qui composent le PGRI, 40 d'entre elles présenteront des effets probables uniquement positifs.

L'analyse met en évidence deux dispositions avec des effets potentiellement négatifs et 6 avec des effets incertains.

GO2 - Augmenter la sécurité des populations exposées aux inondations en tenant compte du fonctionnement naturel des milieux aquatiques

<table>
<thead>
<tr>
<th>Risques identifiés</th>
<th>Thématiques</th>
<th>Réponse du PGRI (juillet 2020)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.2-2 : la remobilisation de champs d’expansion des crues en secteur agricole pourrait augmenter les risques de pollution des eaux.</td>
<td>Qualité des eaux (+/-)</td>
<td>Concernant les pollutions apportées par les crues, sur des sols agricoles, elles devraient être maitrisées (dans le cadre des conventions de gestion par exemple) afin de retrouver une activité agricole satisfaisante au plus vite. Le travail réalisé en matière de réduction de la vulnérabilité agricole (mise hors d'eau des stocks de produits phytosanitaires et intrants ...) permet de limiter cet impact. Lorsque la mobilisation a lieu sur des milieux naturels, les événuels impacts devront être étudiés et pris en compte.</td>
</tr>
<tr>
<td>D.2-6 : il existe des risques liés à l’effacement ou au recul des digues qui ne sont actuellement pas mentionnés dans le cadre de la réalisation de l’étude globale précédant ce genre de travaux (par exemple le risque de pollution des eaux par l’inondation de nouveaux espaces à risque).</td>
<td>Qualité des eaux (+/-)</td>
<td>Le risque identifié se justifie par l’importance des bénéfices environnementaux associés à la restauration de champs d’expansion, qui sont souvent des espaces de bon fonctionnement des cours d’eau ou des zones humides : capacités autoépuratoires, équilibre sédimentaire, réalimentation aquifères alluviaux, continuités écologiques, etc. De plus, une étude globale doit être menée, afin de limiter les impacts sur le bon fonctionnement des milieux aquatiques.</td>
</tr>
<tr>
<td>D.2-9 : la création de dispositifs de protection pourrait modifier la morphologie des cours d’eau, dégrader leur continuité ou encore la biodiversité associée. Cela dépendra du type d’ouvrage réalisé et de sa situation géographique.</td>
<td>Morphologie des cours d’eau et plans d’eau (+/-) Pressions sur la biodiversité (+/-) Continuité</td>
<td>La disposition D.2-9 préconise la conciliation des objectifs de protection torrentielle avec la préservation de l'équilibre sédimentaire des systèmes et privilégie les zones de régulation naturelles. De plus, la disposition D.2-12 cadre la réalisation d'ouvrages de protection, en incitant à développer une réflexion sur la pertinence hydraulique, économique et...</td>
</tr>
</tbody>
</table>
D.2-12 : la création de nouveaux ouvrages contribuant à la préservation ou l’optimisation de champs d’expansion de crues pourrait amener à des coupures de la continuité latérale et une contrainte sur l'espace de bon fonctionnement du cours d'eau. Cela dépendra du type d'ouvrage réalisé et de sa situation géographique.

D.2-10 et D.2-11 : la recomposition spatiale du littoral (D 2-10) et les opérations de relocalisation (D 2-11) pourraient avoir pour effet de déplacer les dynamiques d’urbanisation vers les espaces moins vulnérables et donc accentuer les pressions sur les milieux naturels dans ces zones.

D.2-15 : dans le cadre de l'exploitation des ouvrages, les éléments environnementaux remarquables seront préservés grâce à cette disposition. Cependant la biodiversité ordinaire pourrait être dégradée.

GO3 - Améliorer la résilience des territoires exposés

<table>
<thead>
<tr>
<th>Risques identifiés</th>
<th>Thématiques</th>
<th>Réponse du PGRI (juin 2020)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.3-11 : les mesures, travaux ou infrastructures à mettre en place pour améliorer le ressuyage ne sont pas citées. Leurs effets environnementaux probables ne peuvent donc pas être précisés, d’autant que les réflexions seront portées au cas par cas au sein des SLGRI.</td>
<td>Préservation des milieux naturels et de la biodiversité (+/-)</td>
<td>Le caractère stratégique du PGRI rend difficile la prévision de l'ensemble des situations qui peuvent se présenter dans un bassin comme celui de Rhône-Méditerranée. Il conviendra donc d'être vigilant sur les effets des projets locaux visant l'amélioration du ressuyage, notamment sur les milieux naturels et la biodiversité.</td>
</tr>
</tbody>
</table>

GO4 - Organiser les acteurs et les compétences

Aucun effet probable négatif ou incertain n'a été analysé concernant le Grand Objectif 4.
GO5 - Développer la connaissance sur les phénomènes et les risques d'inondation

Aucun effet probable négatif ou incertain n'a été analysé concernant le Grand Objectif 5.

6.2 - Mesures visant à limiter les conséquences dommageables sur l'environnement

L'évaluation environnementale du PGRI est une démarche continue et itérative qui permet d'analyser les effets du projet sur l'environnement.

Suite à cette démarche, plusieurs mesures correctrices ont directement été intégrées dans le projet. Ainsi, le PGRI ne nécessite la mise en œuvre d'aucune mesure ERC supplémentaire au regard de ses effets finaux sur l'environnement et la santé humaine. Finalement, deux points de vigilance sont retenus.

GO1 - Mieux prendre en compte le risque dans l'aménagement et maîtriser le coût des dommages liés à l'inondation

Suite à la démarche itérative, aucune mesure nécessaire concernant les dispositions du Grand Objectif 1

GO2 - Augmenter la sécurité des populations exposées aux inondations en tenant compte du fonctionnement naturel des milieux aquatiques

<table>
<thead>
<tr>
<th>Dispositions</th>
<th>Propositions</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.2-2</td>
<td>Dans le cadre des conventions de gestion, une gestion des stocks de produits potentiellement polluants adaptée au risque d'inondation pourra être définie afin d'éviter ces risques de pollutions accidentelles.</td>
</tr>
</tbody>
</table>

GO3 - Améliorer la résilience des territoires exposés

<table>
<thead>
<tr>
<th>Dispositions</th>
<th>Propositions</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.3-11</td>
<td>Maintien d'un point de vigilance sur les effets des projets locaux visant l'amélioration du ressuyage</td>
</tr>
</tbody>
</table>

GO4 - Organiser les acteurs et les compétences

Suite à la démarche itérative, aucune mesure nécessaire concernant les dispositions du Grand Objectif 4

GO5 - Développer la connaissance sur les phénomènes et les risques d'inondation

Suite à la démarche itérative, aucune mesure nécessaire concernant les dispositions du Grand Objectif 5
7 - Présentation du dispositif de suivi de la mise en œuvre du PGRI

7.1 - Les objectifs du suivi

L’évaluation environnementale doit contenir des indicateurs pertinents qui permettent d’analyser si les effets escomptés se sont produits et si d'autres, non prévus, apparaissent. Ces indicateurs ont donc pour objectif de vérifier, après l'adoption du plan, schéma, programme ou document de planification, l’appréciation des effets défavorables identifiés au chapitre 5 (Analyse des effets de la mise en œuvre du PGRI sur l'environnement) et les mesures pour éviter ou réduire ou compenser les effets négatifs présentées au chapitre 6. Ce suivi a également pour objectif d’identifier les impacts négatifs imprévus et permettre, si nécessaire, l'intervention de mesures appropriées.

Toutefois, ces indicateurs sont à relativiser et ne peuvent pas suffire à remettre en cause le PGRI car l’évolution de la situation environnementale est liée à divers facteurs qui ne sont pas tous associés au PGRI.

7.2 - Dispositif de suivi de l'incidence du PGRI sur l'environnement

La démarche d’évaluation environnementale nécessite de s’appuyer sur des indicateurs pertinents qui permettent de suivre dans le temps l’évolution des enjeux environnementaux sur le territoire et d’apprécier l’application du PGRI.

Plusieurs types d’indicateurs sont distingués, dans un système « pression - état - réponse » :

- les **indicateurs de pression** engendrés par les activités humaines décrivent les forces ayant un impact sur l’état du territoire (pressions directes/pressions indirectes) ;
- les **indicateurs d’état** dans lequel se trouve l’environnement décrivent la situation quantitative et qualitative du territoire, son environnement, ses activités humaines, etc. ;
- les **indicateurs de réponse** (mesures) mises en place par la collectivité qualifient les réponses politiques et les stratégies territoriales mises en œuvre en réaction aux dysfonctionnements et au déséquilibre du système ;

Ces différents indicateurs s’articulent en matière de suivi et d’évaluation :

- le **suivi** mesure les moyens par lesquels les objectifs sont atteints et examine l’impact des activités du projet sur les objectifs ; il effectue en outre une comparaison avec les performances attendues. Le suivi utilise essentiellement des indicateurs de pression et d’état ;
- l’**évaluation** mesure les effets/résultats d’un projet en vue de déterminer sa pertinence, sa cohérence et son efficience de mise en œuvre ainsi que l’efficacité, les impacts et la pérennité des effets obtenus. L’évaluation s’appuie surtout sur des indicateurs de pression ou de réponse.

L’indicateur répond à plusieurs objectifs :

- mesurer le niveau de la performance environnementale du PGRI ;
- établir des valeurs « seuil » ou « guide » ;
La précision et la pertinence des données utilisées sont fondamentales puisqu'elles déterminent le degré de sensibilité des indicateurs retenus pour apporter une analyse des changements sur l'environnement. Ces données doivent être fiables, disponibles facilement et avoir une périodicité de mise à jour suffisante.

7.3 - Indicateurs proposés pour le suivi de l'incidence du PGRI sur l'environnement

7.3.1 - Indicateurs existants

Afin de suivre la mise en œuvre du PGRI 2022-2027, plusieurs indicateurs sont fixés. Ce dispositif constitue une évolution par rapport au PGRI précédent. Ainsi, les indicateurs suivants sont ainsi définis:

- Nombre de communes disposant d'un PPRi ;
- Taux de couverture par un PPRi des communes en TRI ayant plus de 100 personnes dans l'enveloppe du scénario moyen ;
- Montant des travaux de réduction de vulnérabilité sur le bâti existant des particuliers ;
- Nombre et montants des actions GEMA dans les PAPI ;
- Nombre de PAPI sur le bassin qui ont contribué à la restauration des espaces de bon fonctionnement des cours d'eau ;
- Taux d'artificialisation des sols en abord de cours d'eau ;
- Linéaire et nombre de systèmes d'endiguement autorisés ;
- Nombre et montant des actions culture du risque PAPI / Plan Rhône ;
- Taux de communes couvertes par un PCS ;
- Nombre et carte des EPAGE et des EPTB ;
- Taux de sous-bassins pour lesquels l'exercice de la compétence GEMAPI est complété ;
- Nombre de SLGRI mises en œuvre à travers un PAPI ;
- Nombre de cours d'eau et submersions marines cartographiées en TRI.

Par ailleurs, une réflexion est en cours à l'échelle nationale afin de s'appuyer sur l'outil GeoMCE (Géolocalisation des mesures compensatoires) pour suivre l'application du principe d'évitement, réduction, compensation concernant les aménagements, ouvrages et autres travaux réalisés dans le lit majeur des cours d'eau. Cet outil, permettant actuellement de suivre les mesures compensatoires des atteintes à la biodiversité, est en effet appelé à être développé.

En lien étroit avec la mise en œuvre du PGRI, le tableau de bord du SDAGE propose de nombreux indicateurs existants qui permettent de suivre l'état des milieux, les pressions qui s'y exercent et les réponses apportées.

Parmi ces indicateurs, plusieurs pourront être mis en commun et nourrir le suivi environnemental du PGRI :

- Évolution de l'état des masses d'eau et de l'artificialisation du bassin ;
- Projet 1 (P1) - Suivi de la mise en œuvre de la GEMAPI - (%) - indicateur de réponse visant à suivre l'évolution de l'exercice des compétences de gestion des milieux aquatiques et de prévention des inondations dans les sous-bassins versants du SDAGE ;
- Projet 2 (P2) - Dispositifs de concertation en place - (carte présentant les dispositifs de concertation en place) - indicateur de réponse permettant de suivre la mise en place d’instances de concertation pluri-
acteurs sur les sous-bassins versants du SDAGE ;

- **2.4.1 - Gestion des rejets par temps de pluie** - (nombre de réseaux et nombre d'équivalent-habitant (EH) en autosurveillance) - indicateur de réponse permettant de suivre l'avancement de la mise en œuvre de l'auto-surveillance sur les systèmes d'assainissement collectant une pollution supérieure à 2 000 EH ;

- **2.4.2 - Gestion des rejets par temps de pluie** - (nombre de systèmes d'assainissement prioritaires ayant fait l'objet de travaux) - indicateur de réponse permettant de suivre l'avancement des travaux sur les systèmes d'assainissement prioritaires aboutissant à la réduction des déversements d'eaux usées non traitées par temps de pluie ;

- **7.3 - Linéaire cumulé de cours d'eau restaurés morphologiquement** (longueur en km) - indicateur de réponse ;

- **Projet 4 (P4) - Nombre de sous-bassins du SDAGE faisant l'objet d'une définition de l'EBF** - indicateur de réponse ;

- **Projet 5 (P5) - Pression d'artificialisation sur les zones humides** - (évolution en %) - indicateur de pression ayant pour objectif de suivre l'évolution de la pression d'artificialisation des sols sur les zones humides, qui cause leur disparition, donc la perte de toutes leurs fonctions ;

- **8.1 - Surfaces cumulées de zones humides restaurées et/ou préservées dont les surfaces acquises** - (en ha) - indicateur de réponse permettant de suivre les projets aidés par l'agence de l'eau en matière d'acquisition mais également de restauration et de gestion des zones humides, l'acquisition n'étant pas une fin en soi ;

- **10.1 - Nombre d'événements déclarés catastrophe naturelle par commune** - (en nombre de communes concernées par ces événements et en % par rapport au nombre total de communes) - indicateur de pression permettant de donner une indication de la vulnérabilité des biens et des personnes des communes du bassin pour des inondations identifiées comme « Catastrophe Naturelle », celles-ci pouvant correspondre à des événements fréquents ;

- **11.2 - Gestion durable des services publics d'eau et d'assainissement** - (en % et via l'indice de connaissance et de gestion patrimoniale, dont le rendement des réseaux) - indicateur de réponse permettant de suivre l'évolution de l'état d'avancement des services dans leur connaissance patrimoniale et dans les dispositions prises en matière de gestion du patrimoine, la performance des réseaux, et le taux de couverture de l'échantillon pris en termes de services et de population ;

- **12.4 - Taux d'artificialisation du trait de côte** (linéaire d'ouvrages sur la côte en km et en %) - indicateur de pression permettant de suivre l'artificialisation des masses d'eau côtières.

Par ailleurs, afin de réaliser l'Évaluation Préliminaire des Risques d'Inondation (EPRI) en 2011, et de la mettre à jour en 2018, plusieurs indicateurs sont suivis :

- pour la traduction des effets sur la santé humaine :
 - Population habitant dans l'Enveloppe Approchée d'Inondations Potentielles (EAIP) ;
 - Densité de population dans l'EAIP ou en bordure ;
 - Proportion de la population de la commune habitant dans l'EAIP ;
 - Emprise des habitations de plain-pied dans l'EAIP ;
 - Nombre d'établissements de santé dans l'EAIP ;
 - Captages d'eau potable situés en EAIP ;

- pour la traduction des effets potentiels sur l'environnement :
 - Installations nucléaires de base dans l'EAIP ;
 - Établissements Seveso « seuil haut » dans l'EAIP ;
◦ Établissements soumis à la directive « Integrated Pollution Prevention and Control » ou IPPC dans l'EAIP ;
◦ Stations d'épuration dans l'EAIP ;
◦ Zones Natura 2000 dans l'EAIP ;
◦ ZNIEFF dans l'EAIP ;
• pour la traduction des effets potentiels sur le patrimoine :
◦ Superficie du bâti remarquable dans l'EAIP ;
◦ Musées dans l'EAIP.

7.3.2 - *Proposition d'indicateurs complémentaires*

Le PGRI 2022-2027 intègre désormais un dispositif de suivi qui lui est propre et qui, combiné aux indicateurs du SDAGE et de l'EPRI, couvre l'ensemble des enjeux environnementaux sur lesquels la mise en œuvre du PGRI aura des effets probables.

Ainsi, suite à la démarche itérative, il n'est pas proposé d'indicateur de suivi et d'évaluation des effets environnementaux supplémentaires à ceux existants dans le cadre de l'évaluation environnementale du PGRI 2022-2027.
8 - Méthode d'évaluation environnementale appliquée au PGRI 2022-2027

8.1 - Principes généraux et organisation de l'étude

8.1.1 - Processus progressif et itératif

La méthode d’évaluation environnementale spécifiquement adaptée au PGRI a été élaborée par le groupement MTDA-BRLi, en dialogue constant avec les équipes de la DREAL et de l’agence de l’eau. Des réunions de travail et des échanges réguliers ont permis de valider toutes les étapes du processus et de disposer des informations nécessaires à la bonne compréhension du contenu, des termes et du vocabulaire du PGRI.

L'évaluation a suivi ainsi un processus continu et progressif d’analyse, articulé autour de trois phases principales d'évaluation qui suivent une démarche logique : la caractérisation de l’état actuel de l’environnement et de son évolution, l’analyse des incidences notables sur cet environnement, l’élaboration des mesures et du dispositif de suivi.

8.1.2 - Délimitation de l'aire d'étude et échelle d'analyse

Le PGRI est un document de planification à l'échelle d'un bassin hydrographique. Il fixe les grands objectifs en matière de gestion des risques d’inondation et les objectifs propres à certains territoires à risque d’inondation important (TRI) à l'échelle du bassin. Ainsi l'aire d'étude retenue est de fait le bassin pris dans sa totalité incluant les eaux territoriales françaises.

Au sein de cette aire d'étude, l'ensemble du PGRI est évalué, permettant de porter un regard juste et complet sur les effets probables de sa mise en œuvre. Toutefois, la taille du territoire d’étude est à prendre en considération. Il est exclu et inutile de traiter dans le détail toutes les composantes environnementales du bassin. L’objectif est de rester à la même échelle stratégique que celle du plan évalué, tout en se donnant un référentiel solide et pertinent. L’analyse et la restitution se font donc à l’échelle du bassin en précisant les effets sur des secteurs clés lorsque cela est possible.

8.2 - Élaboration de l'état initial de l'environnement

8.2.1 - Approche générale et principe de base

L’état initial de l’environnement pose les bases de l’analyse en dressant un état des lieux tendanciel des principales thématiques environnementales du territoire. Il permet d’en comprendre le fonctionnement global, d’en relever les atouts et richesses environnementales, mais aussi les faiblesses, éléments dégradés, pressions anthropiques (c’est-à-dire dues à l’activité de l’homme) et toutes autres menaces existantes et potentielles. Ce faisant, l’état initial de l’environnement met en évidence les enjeux, c’est-à-dire toutes les questions qui se posent sur le territoire par rapport aux valeurs ou éléments qui peuvent être perdus ou gagnés.

L’état initial de l’environnement doit donc fournir des informations suffisantes, objectives et de qualité pour permettre puis, d’identifier, d’évaluer et de prioriser les effets probables de la mise en œuvre du plan.
8.2.2 - Analyse par thématique environnementale

L'état initial de l'environnement est structuré autour de thématiques environnementales qui doivent rendre compte de tous les aspects et particularités du territoire d’application du document évalué. L’article R.122-20 du Code de l’Environnement stipule que l’analyse de l’état initial du rapport environnemental doit porter sur « les principaux enjeux environnementaux de la zone [...] et les caractéristiques environnementales des zones qui sont susceptibles d’être touchées par la mise en œuvre ». Cet article évoque en outre que les effets notables devront être exposés « notamment, s’il y a lieu, sur la santé humaine, la population, la diversité biologique, la faune, la flore, les sols, les eaux, l'air, le bruit, le climat, le patrimoine culturel architectural et archéologique et les paysages ».

Cet article propose ainsi certaines dimensions à traiter, tout en laissant l’évaluateur libre de fixer les champs précis de l’analyse. Cette marge de manœuvre est nécessaire pour adapter au mieux le référentiel de l’évaluation selon les particularités du document étudié. Une sélection des thématiques environnementales à analyser a ainsi été réalisée sur la base :

• des dimensions proposées aux articles L.110-1 et R.122-20 du Code de l’Environnement ;
• de la note du CGDD émise en 2015 qui émet des « Préconisations relatives à l’évaluation environnementale stratégique » ;
• du PGRI lui-même pour s’assurer de couvrir tous les champs qui y sont abordés ;
• enfin, d’autres documents disponibles (avis de l'Ae sur précédente évaluation, etc.) et de l’expérience d’autres évaluations sur divers sujets.

Onze thématiques environnementales ont ainsi été sélectionnées pour éclairer la lecture de l'état initial de l'environnement et guider la rédaction de l'évaluation environnementale. Il s'agit des dimensions environnementales qui ont un lien direct ou indirect avec le PGRI :

• Ressources en eau (incluant quantité, qualité, morphologie...) ;
• Climat et changement climatique ;
• Énergie ;
• Sols et sous-sols ;
• Qualité de l'air ;
• Milieux naturels et biodiversité ;
• Continuités écologiques ;
• Paysage et patrimoine ;
• Risques naturels et technologiques ;
• Santé humaine et nuisances ;
• Déchets.

Un état initial est rédigé pour chacune de ces thématiques. L'approche se décompose en plusieurs étapes successives :

• Étape 1 : État. Ce chapitre décrit les principales caractéristiques de la composante au niveau du territoire, ainsi que des domaines et sous-domaines identifiés ;
• Étape 2 : Pressions. Décrit les principales causes d'altérations qui s'appliquent sur la composante (pressions anthropiques, pressions liées au changement climatique, etc.) ;
• Étape 3 : Réponses. Cette étape illustre les principaux mécanismes et mesures mis en place en
rénovation aux pressions identifiées, ou qui visent à améliorer la valeur de la composante étudiée (actions réglementaires, actions d'amélioration de la connaissance, mesures de gestion) ;

- **Étape 4 : Les tendances évolutives** probables de la composante en l'absence de document. L'évolution et son pas de temps sont fonction des données dont on dispose au moment de la rédaction (données statistiques, données sur les pressions...) ;

- **Étape 5 : Conclusion sous la forme de grilles Atouts-Faiblesses, Opportunités-Menaces (AFOM).** Elles permettent de mettre en vis-à-vis les principaux points faibles et points forts du territoire par rapport à la thématique concernée et d'engager le travail de réflexion sur les tendances d’évolution ;

- **Étape 6 : Enjeux.** Cette partie définit les enjeux associés à chaque thématique environnementale.

A chaque chapitre l'analyse est proportionnée à la sensibilité environnementale de la zone susceptible d’être affectée par le projet, à l’importance et la nature des dispositions projetées et à leurs incidences prévisibles sur l'environnement. Aussi, pour chaque thématique ou chapitre, l’importance des analyses varie en fonction des caractéristiques du territoire, auxquelles s’applique le principe de proportionnalité, de la nature du projet ou encore des besoins réels pour l'évaluation. Cette méthode garantit une analyse suffisamment fine pour évaluer les enjeux, puis les effets du PGRI sur l’environnement.

8.2.3 - Caractérisation des enjeux

Afin de préparer l’évaluation des effets probables de la mise en œuvre du PGRI sur l’environnement, les enjeux préalablement identifiés selon différents critères ont été hiérarchisés. Cette priorisation permet de mettre en avant les éléments les plus concernés par les applications du PGRI et donc les plus sensibles.

La hiérarchisation des enjeux se base conformément au guide du CGDD de 2015 sur :

- l'importance actuelle de l'enjeu évaluée au regard de ses caractéristiques et de préoccupations environnementales, économiques ou encore sociales ;

- le lien entre ces enjeux hiérarchisés et le PGRI. Ce travail permet d’identifier quels enjeux seront principalement, secondairement ou non concernés par la mise en œuvre du PGRI, sur la base de l’influence a priori du plan.

Trois niveaux d’enjeux sont proposés, basés sur la nomenclature suivante :

- **Structurant** : les intérêts sont jugés majeurs (par ex. forte valeur environnementale) et/ou urgents, et les éléments qui y sont associés sont susceptibles de très fortement évoluer : caractéristiques du territoire fortement dégradées ; pressions importantes à l’évolution très rapide. Et les liens avec le document sont importants ;

- **Fort** : enjeu considéré important et dont les valeurs sont susceptibles de fortement évoluer. Il s’agit de la même situation que précédemment à ceci près que les constats sont moins accentués et moins probables ou que le lien avec le document évalué est plus faible ;

- **Modéré** : valeur de l’enjeu jugée plus faible et stable. Pressions faibles sur une caractéristique du territoire à évolution lente ; évolution de l’enjeu à plus de dix ans ou leviers d’action du PGRI estimés faibles de par sa nature.

Certains enjeux sont jugés non concernés car sans lien évident avec le document évalué. Ces enjeux ne sont pas conservés pour l’évaluation des effets probables. Ils sont présentés dans l'état initial de l'environnement par cohérence entre l'évaluation environnementale du SDAGE et celle du PGRI, avec un état initial du bassin Rhône-Méditerranée quasi-commun.
8.3 - Évaluation des effets sur l'environnement

8.3.1 - Approche générale et principes de base

Il ne s’agit en aucun cas d’une étude environnementale précise, mais d’une démarche d’aide à la décision qui porte un regard objectif sur les effets probables, qu’ils soient positifs ou négatifs. Le but n’est pas seulement d’identifier les éléments potentiellement dommageables, mais également tous les apports et bénéfices du PGRI au territoire.

L’approche méthodologique retenue vise à faire ressortir les influences de la mise en œuvre du PGRI sur chaque enjeu environnemental issu de l’état initial de l’environnement. La méthode consiste à analyser l’effet probable de chaque disposition du schéma sur chaque enjeu environnemental. Pour retranscrire ces incidences probables, des grilles d’analyse multicritères ont été utilisées.

Le rapport présente, enjeu par enjeu, le bilan des effets probables identifiés du PGRI, permettant d’intégrer la notion d’effets cumulés dans l’analyse (la finalité de l’étude étant bien l’analyse des effets probables du PGRI dans sa globalité et non de chaque disposition indépendamment des autres).

8.3.2 - Caractérisation des effets

Les effets probables notables du document évalué seront appréciés selon cinq critères d’analyse :

- **la nature** : évalue la valeur de l’incidence attendue (de très positif à très négatif, en passant par incertain) :
 - un effet probable très positif ou très négatif pourra être pressenti lorsque la thématique croisée est directement visée par la disposition ou mesure évaluée ;
 - un effet incertain pourra être pressenti lorsque les conditions d’application de la mesure/disposition ne sont pas suffisamment précises pour conclure sur la nature de l’effet ou lorsque l’application de la mesure/disposition comporte un risque. Dans ce dernier cas, un point de vigilance sera soulevé ;

- **l'intensité (directe ou indirecte)** : permet de cibler le niveau d’incidence de la mesure. Un niveau indirect implique qu’un intermédiaire est présent entre l’application de la mesure et l’effet probable ;

- **l'étendue géographique** : localise dans l’espace les effets de la mesure/sous-mesure analysée ;

- **la durée** : indique sur quelle échelle de temps l’incidence va se faire sentir (temporaire ou permanent) ;

Nous présentons en fin de chaque composante une conclusion relative aux effets probables du document évalué sous format matriciel qui affiche un croisement synthétique avec les enjeux environnementaux de l’état initial et les orientations du PGRI. Une matrice globale de synthèse est également disponible.

Une échelle composée de plusieurs niveaux est proposée pour l’évaluation des effets, afin de conserver le même vocabulaire et les mêmes références dans l’analyse de chaque thématique.
effet probable très positif : pour la thématique concernée - les principaux effets sont très positifs pour la dimension concernée ;

effet probable positif : pour la thématique concernée - les principaux effets sont moyennement positifs pour la dimension concernée ;

neutre : Sans effet direct notable sur la thématique concernée - les effets sont neutres sur la dimension concernée ;

effet probable négatif : effets sont moyennement négatifs et non maîtrisés pour la dimension concernée ;

effet probable très négatif : les principaux effets sont fortement négatifs et non maîtrisés pour la dimension concernée ;

effet probable incertain.

8.4 - Mesures d’évitement-réduction-compensation

Les éventuels ajustements ne sont donc pas l’objet de la partie du rapport environnemental relative à la description des mesures d’Évitement-Réduction-Compensation (ERC), car elles sont directement intégrées dans le projet de PGRI dans sa version finalement évaluée. De telles mesures sont en effet à proposer lorsqu’il ressort de l’analyse du dernier projet évalué des incidences probables négatives qui n’auraient pas été prises en compte dans la rédaction du schéma jusque-là.

Les mesures correctrices proposées dans le cadre de la démarche itérative sont décrites dans la partie sur la justification des choix ainsi que dans la déclaration environnementale.

8.5 - Limites méthodologiques

L’évaluation environnementale est un processus encadré par la loi, qui en définit clairement les objectifs et les points à aborder. Il a toutefois été nécessaire de définir une méthode particulière pour évaluer le PGRI, qui est un document cadre qui s'applique sur un bassin très important.

Toute la difficulté a été de tenir compte de l’ensemble des grands objectifs du PGRI, sans tomber dans l’analyse projet par projet, qui relèvera, le cas échéant, d’études environnementales spécifiques.

Le PGRI étant un document stratégique de large échelle, sa mise en œuvre s’appuie sur une multitude d’acteurs (Agence de l’eau, État, Régions, collectivités, EPTB, EPAGE, syndicats mixtes, porteurs de projet, etc.) et de stratégies davantage localisées (SLGRI, PAPI, SRADDET, documents d’urbanisme, plans stratégiques sectoriels, etc.). Ainsi, le PGRI établit un cadre afin de réussir les objectifs fixés.

Cependant, les dispositions et actions précises qui découleront à la fois de la poursuite de ces objectifs, des objectifs propres aux acteurs locaux et de la concertation locale ne peuvent être évaluées dans ce rapport, de même que les projets précis qui prendront en compte ou seront compatibles aux objectifs et dispositions du PGRI.
Cela ajoute de l’incertitude quant aux effets probables du PGRI, dont une proportion non négligeable apparaîtra du fait de la réalisation effective des documents et projets locaux qui auront pris en compte le PGRI dans leur élaboration, mais qui conservent une liberté quant aux choix qu’ils adopteront pour répondre à leurs propres enjeux (et donc sur leurs effets).

A noter que la majorité de ces documents et de ces projets feront eux-mêmes l’objet de leur propre évaluation environnementale.

Ensuite, même si les échanges avec les élaborateurs du schéma ont été particulièrement riches et l’évaluation parfaitement intégrée à l’élaboration du PGRI, les deux exercices ont été finalisés dans le même calendrier, complexifiant la finalisation de l’évaluation environnementale.

L’ensemble de la démarche a pu être respecté grâce à la très large implication, dans l’évaluation environnementale, des services de l’agence de l’eau et de la DREAL. Réel gage de succès, cette mobilisation a permis une parfaite intégration du processus d’évaluation, mais également d’établir un langage et un cadre commun de présentation des projets entre les différentes régions. Le pendant de cette situation a été une inertie importante qui a parfois fait prendre du retard sur certaines parties de l’évaluation.
9 - Avis des États membres de l'Union Européenne consultés

En raison des liens hydrographiques partagés avec certains États voisins, le projet de PGRI Rhône-Méditerranée a fait l'objet d'une consultation des autorités suisses, italiennes, espagnoles et monégasques.

Comme pour la consultation des partenaires institutionnels, une réponse était attendue pour juin 2021. Finalement, aucun de ces États n'a donné de suite à cette consultation.
Liste des Annexes

- Annexe I : Bibliographie
- Annexe II : Effets du PGRI par disposition

Annexe I : Bibliographie

- Analyse des résultats de la consultation du public et des parties prenantes sur les documents préparatoires au prochain PGRI du bassin Rhône-Méditerranée
- Base carbone ADEME
- Biodiversité et Territoires 2030 : Cinq scénarios d'évolution, Études & documents n°86, CGDD, juin 2013
- Changement climatique, vers une aggravation du risque inondation en France et en Europe ?, Centre Européen de Prévention du Risque Inondation (CEPRI)
- Comptes-rendus des groupes de contribution SDAGE et synthèses des commissions géographiques de l'automne 2019
- Connaissance du potentiel hydroélectrique français, MEDE, novembre 2013
- Consommation énergétique du traitement intensif des eaux usées en France : état des lieux et facteurs de variation, IRSTEA et Agence de l'eau RMC, décembre 2017
- Doctrine du bassin Rhône-Méditerranée pour la reconnaissance en EPTB ou en EPAGE, 2016
- Enquête Terruti-Lucas du service statistique du ministère de l'Agriculture
- Établissement d'un réseau de référence piézométrique pour le suivi de l'impact du changement climatique sur les eaux souterraines - Année 2, BRGM et ONEMA, avr. 2012
- État des lieux du bassin Rhône-Méditerranée, Agence de l'eau RMC, 2019
- Étude thermique du Rhône, EDF, avec la participation d'équipes scientifiques (ARALEP, INRA, CARRTEL, IRSTEA, CNRS, LEHNA), mai 2016
- Évaluation Préliminaire des Risques d'Inondations, 2011
- Fiches standardisées Natura 2000, réalisées par le Museum National d'Histoire Naturelle (MNHN) pour chaque site Natura 2000
- Géoportail de l'urbanisme - https://www.geoportail-urbanisme.gouv.fr/
- Gest'eau (https://www.gesteau.fr/)
• Guillaume Piton, et Al., « Fonctions des barrage de correction torrentielle », Cybergeo : European Journal of Geography [En ligne], mis en ligne le 15 mai 2019. URL : http://journals.openedition.org/cybergeo/32190 ; DOI : https://doi.org/10.4000/cybergeo.32190 (Fig 1)
• Identification des impacts hydrologiques du changement climatique : constitution d'un réseau de référence pour la surveillance des étiages, ONEMA et CEMAGREF, déc. 2010
• Impacts de l'exposition chronique aux particules fines sur la mortalité en France continentale et analyse des gains en santé de plusieurs scénarios de réduction de la pollution atmosphérique, Santé Publique France, 2016
• Impacts du changement climatique dans le domaine de l'eau sur les bassins Rhône-Méditerranée et Corse, Bilan actualisé des connaissances, Agence de l'eau RMC, septembre 2016
• Impacts du changement climatique sur le massif alpin : stratégies d'adaptation et de gestion intégrée des risques naturels. Pôle Alpin Risques Naturels, juin 2021
• Indicateur de l'Observatoire National de la Biodiversité, janvier 2020
• L'état des sols de France, Groupement d'intérêt scientifique Sol (GisSol), 2011
• La qualité des eaux conditionnées en France, Ministère des Solidarités et de la Santé, données 2017
• La séquestration de carbone par les écosystèmes en France, Évaluation française des écosystèmes et des services écosystémiques, mars 2019
• Les événements météorologiques extrêmes dans un contexte de changement climatique, Rapport au 1er ministre et au Parlement, ONERC, 2018
• Living with coastal erosion in Europe : Sediment and Space for Sustainability, EUROSION project, 2004
• Mise à jour du potentiel hydroélectrique en région PACA, CEREMA, octobre 2015
• Note d'analyse de la cohérence des classements de cours d'eau avec les enjeux de développement de l'hydroélectricité dans le bassin Rhône-Méditerranée, présentée au Comité de Bassin le 17 mai 2013
• Panorama des services écologiques fournis par les milieux naturels en France, volume 2.2 - Les écosystèmes marins et côtiers, UICN
• Portail d'information sur l'assainissement communal (http://assainissement.developpement-durable.gouv.fr/index.php), Ministère de la transition écologique et solidaire (MTES)
• Prise en compte de l’activité agricole et des espaces naturels dans le cadre de la gestion des risques d’inondation, Guide destiné aux acteurs locaux Volet activité agricole - version 2, Édition avril 2016 - Mise à jour juillet 2018
• Rapport environnemental du PGRI Rhône-Méditerranée 2016-2021, DREAL, 2016
• Rapport explicatif de la sélection des TRI, 2012
• Rapport spécial du GIEC sur les conséquences d'un réchauffement planétaire de 1,5°C par rapport aux niveaux prÉindustriels, GIEC, 2019
• Recensement agricole 2010, Agreste
• Statistiques MTES
• Synthèse des questions importantes inondation sur le bassin RhÔne-Méditerranée 2018-2019
• Vidéo du conservatoire du littoral sur les services Écosystémiques rendus par les zones humides littorales (https://www.dailymotion.com/video/x1a2mhn)
Annexe II : Effets du PGRI par disposition
Plan de Gestion des Risques d'Inondation 2022-2027 | Bassin Rhône-Méditerranée

Rapport environnemental | Version modifiée suite à l’avis de l’Ae et les consultations, février 2022

<table>
<thead>
<tr>
<th>Statut</th>
<th>Le bon état des masses d'eau</th>
<th>Changement climatique</th>
<th>Energie</th>
<th>Sols et sous-sols</th>
<th>Qualité de l'eau</th>
<th>Milieux naturels et biodiversité</th>
<th>Continuité écologique</th>
<th>Paysage et patrimoine</th>
<th>Risques naturels et technologiques</th>
<th>Santé humaine et nuisances</th>
<th>Déchets</th>
</tr>
</thead>
</table>
| GV2 | Bavaro | Dir. Per. | CT | Dir. Per. | CT | Dir. Per. | CT | Dir. Per. | Dir. Per. | Dir. Per. | Dir. Per. |}

Tableau:

<table>
<thead>
<tr>
<th>1.2.1</th>
<th>Préserver les chemins d'expansion des crues</th>
<th>BV</th>
<th>Dir. Per.</th>
<th>CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2.2</td>
<td>Rechercher la motivation de nouvelles capacités d'expansion des crues</td>
<td>BV</td>
<td>Dir. Per.</td>
<td>MT</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Entrer les remblais en zones inondables</td>
<td>ZI</td>
<td>Dir. Per.</td>
<td>MT</td>
<td>Dir. Per.</td>
<td>MT</td>
<td>Dir. Per.</td>
<td>CT</td>
<td>Dir. Per.</td>
<td>CT</td>
<td>Dir. Per.</td>
<td>CT</td>
</tr>
<tr>
<td>1.2.4</td>
<td>Limiter le rassemblement à la source</td>
<td>BV</td>
<td>Dir. Per.</td>
<td>MT</td>
</tr>
<tr>
<td>1.2.5</td>
<td>Favoriser la rétention dynamique des écoulements</td>
<td>BV</td>
<td>Ind. Per.</td>
<td>MT</td>
</tr>
<tr>
<td>1.2.6</td>
<td>Assurer la fonctionnalité naturelle des milieux qui permettent de réduire les crues et les inondations marines</td>
<td>BV</td>
<td>Dir. Per.</td>
<td>MT</td>
<td>Dir. Per.</td>
<td>MT</td>
<td>Dir. Per.</td>
<td>CT</td>
<td>Dir. Per.</td>
<td>CT</td>
<td>Dir. Per.</td>
<td>MT</td>
</tr>
<tr>
<td>1.2.7</td>
<td>Préserver et améliorer la gestion de l'équilibre hydrologique</td>
<td>BV</td>
<td>Dir. Per.</td>
<td>MT</td>
<td>Dir. Per.</td>
<td>MT</td>
<td>Dir. Per.</td>
<td>MT</td>
<td>Ind. Per.</td>
<td>MT</td>
<td>Ind. Per.</td>
<td>MT</td>
</tr>
<tr>
<td>1.2.8</td>
<td>Gérer la régénérer en tenant compte des incidences sur l'écoulement des crues et la qualité des milieux</td>
<td>BV</td>
<td>Dir. Per.</td>
<td>CT</td>
</tr>
<tr>
<td>1.2.9</td>
<td>Développer des stratégies de gestion des débris solides dans les zones exposées à des risques torrentiels</td>
<td>Zones exposées</td>
<td>Dir. Per.</td>
<td>MT</td>
</tr>
<tr>
<td>1.2.10</td>
<td>Identifier des territoires présentant un risque important d'inondation</td>
<td>Littoral</td>
<td>Ind. Per.</td>
<td>CT</td>
<td>Ind. Per.</td>
<td>LT</td>
<td>Ind. Per.</td>
<td>LT</td>
<td>Ind. Per.</td>
<td>LT</td>
<td>Ind. Per.</td>
<td>LT</td>
</tr>
<tr>
<td></td>
<td>Autres secteurs</td>
<td>Ind. Per.</td>
<td>LT</td>
<td>Ind. Per.</td>
<td>MT</td>
<td>Ind. Per.</td>
<td>LT</td>
<td>Ind. Per.</td>
<td>LT</td>
<td>Ind. Per.</td>
<td>MT</td>
<td></td>
</tr>
<tr>
<td>Exposés</td>
<td>Qualité de l'eau</td>
<td>Changement climatique</td>
<td>Énergie</td>
<td>Sois et sous-sols</td>
<td>Milieux naturels et biodiversité</td>
<td>Continuité écologique</td>
<td>Paysage et patrimoine</td>
<td>Risques naturels et technologiques</td>
<td>Santé humaine et nuisances</td>
<td>Décérets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-----------------</td>
<td>-----------------------</td>
<td>---------</td>
<td>------------------</td>
<td>-------------------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>-------------------------------</td>
<td>-------------------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Littoral</td>
<td>Dir. Per. MT</td>
<td>Dir. Per. CT</td>
<td>Dir. Per. LT</td>
<td>Dir. Per. CT</td>
<td>Dir. Per. LT</td>
<td>Dir. Per. CT</td>
<td>Dir. Per. CT</td>
<td>Dir. Per. CT</td>
<td>Dir. Per. CT</td>
<td>Dir. Per. LT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autres secteurs</td>
<td></td>
</tr>
<tr>
<td>D.2-11</td>
<td>Travailler l'érosion littorale dans les stratégies locales des territoires exposés à un risque important d'érosion</td>
<td>Littoral</td>
<td>Dir. Per. MT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D.2-12</td>
<td>Limiter la création et la réhabilitation des ouvrages de protection des secteurs à risque fort et présenter des enjeux importants</td>
<td>BV</td>
<td>Dir. Per. MT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D.2-13</td>
<td>Limiter l’exposition des enjeux protégés par des ouvrages de protection</td>
<td>ZI</td>
<td>Dir. Per. MT</td>
<td>Ind. Per. MT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D.2-14</td>
<td>Assurer la performance des systèmes de protection</td>
<td>BV</td>
<td></td>
</tr>
<tr>
<td>D.2-15</td>
<td>Garantir la pérennité des systèmes de protection</td>
<td>BV</td>
<td>Dir. Per. MT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GO3 - Améliorer la résilience des territoires exposés

| BV | Dir. Per. CT |

Rapport environnemental | Version modifiée suite à l'avis de l'Ae et les consultations, février 2022
Plan de Gestion des Risques d'Inondation 2022-2027 | Bassin Rhône-Méditerranée

Titre de la page

Plan de Gestion des Risques d'Inondation 2022-2027 | Bassin Rhône-Méditerranée

Tableau:

<table>
<thead>
<tr>
<th>Localisation</th>
<th>Le bon état des masses d'eau</th>
<th>Changement climatique</th>
<th>Energie</th>
<th>Soils et sous-sols</th>
<th>Qualité de l'air</th>
<th>Mieux natures et biodiversité</th>
<th>Continuités écologiques</th>
<th>Paysage et patrimoine</th>
<th>Risques naturels et technologiques</th>
<th>Santé humaine et nuisances</th>
<th>Déchets</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.3-6</td>
<td>Intégrer un volet relatif à la gestion de crise dans les stratégies locales</td>
<td>BV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D.3-7</td>
<td>Développer des volets fondamentaux au sein des dispositifs CRESQ départementaux</td>
<td>BV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D.3-8</td>
<td>Sensibiliser les gestionnaires de réseau au niveau du bassin</td>
<td>BV</td>
<td>Dir.</td>
<td>Tem.</td>
<td>MT</td>
<td>MT</td>
<td>MT</td>
<td>MT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D.3-9</td>
<td>Assurer la continuité des services publics pendant et après la crise</td>
<td>BV</td>
<td>Dir.</td>
<td>Tem.</td>
<td>MT</td>
<td>MT</td>
<td>MT</td>
<td>MT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D.3-10</td>
<td>Accompagner les diagnostics et plans de continuité d'activité au niveau des stratégies locales</td>
<td>SLQRI</td>
<td>Ind.</td>
<td>Per.</td>
<td>LT</td>
<td>LT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D.3-11</td>
<td>Évaluer les enjeux liés au ressuyage au niveau des stratégies locales</td>
<td>BV</td>
<td>Dir.</td>
<td>Per.</td>
<td>MT</td>
<td>MT</td>
<td>MT</td>
<td>MT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D.3-12</td>
<td>Rappeler les obligations d’information préventive</td>
<td>BV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D.3-13</td>
<td>Développer les opérations d'affichage du danger (repères de crues ou de laisses de mer)</td>
<td>TR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D.3-14</td>
<td>Développer la culture du risque</td>
<td>BV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rapport environnemental | Version modifiée suite à l’avis de l’Ae et les consultations, février 2022

297/300
Plan de Gestion des Risques d'Inondation 2022-2027 | Bassin Rhône-Méditerranée

Rapport environnemental | Version modifiée suite à l’avis de l’Ae et les consultations, février 2022

| Code | Action | Définition | Directeur流失 MT | Directeur流失 CT |
|------|--------|------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| D.4-1 | Fédérer les acteurs autour de stratégies locales sur les TRI | Diffusion de la stratégie | Ind.流失 MT |
| D.4-2 | Assurer la cohérence des projets d’aménagement du territoire et de développement économique avec les objectifs de la politique de gestion des risques d’inondation | Territorial (concerné) des PAP et des SLAGRI | Ind.流失 MT |
| D.4-3 | Intégrer les priorités du SDAGE dans les PAP et SLGRI et améliorer leur cohérence avec les SAGE et les contrats de plan | MV | Ind.流失 MT |
| D.4-4 | Assurer la gestion équilibrée des ressources en eau et la prévention des inondations par une maîtrise d’ouvrage structurée à l’échelle des bassins versants | MV | Ind.流失 MT |
| D.4-5 | Encourager la reconnaissance des syndicats de bassin versant comme EPAGE ou EPTB | MV | Ind.流失 MT |
| D.4-6 | Considérer les ouvrages de protection dans leur ensemble | MV | Ind.流失 MT |
| D.4-7 | Favoriser la constitution de gestionnaires au territoire d'intervention adapté | MV | Ind.流失 MT |

GG4 - Organiser les acteurs et les compétences
Plan de Gestion des Risques d’Inondation 2022-2027 | Bassin Rhône-Méditerranée

GOS : Développer la connaissance sur les phénomènes et les risques d’inondation

<table>
<thead>
<tr>
<th>GOS</th>
<th>Développer la connaissance sur les phénomènes et les risques d’inondation</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.5.1</td>
<td>Favoriser le développement de la connaissance des aléas</td>
</tr>
<tr>
<td>D.5.2</td>
<td>Renforcer la connaissance des aléas littoraux dans le contexte du changement climatique</td>
</tr>
<tr>
<td>D.5.3</td>
<td>Renforcer la connaissance des aléas torrentiels dans le contexte du changement climatique</td>
</tr>
<tr>
<td>D.5.4</td>
<td>Approfondir la connaissance sur la vulnérabilité des réseaux</td>
</tr>
<tr>
<td>D.5.5</td>
<td>Mettre en place des outils et des cadres pour favoriser le partage de la connaissance et de la communication</td>
</tr>
<tr>
<td>D.5.6</td>
<td>Mettre en place des mesures des catastrophes</td>
</tr>
</tbody>
</table>