
Rapport technique du suivi scientifique des relâchers d'anguilles argentées menés en Méditerranée en 2012

Elsa AMILHAT, Gaël SIMON, Elisabeth FALIEX 2013

Auteurs: Elsa AMILHAT, Gaël SIMON, Elisabeth FALIEX.

Contact:

UMR 5110 CNRS - UPVD

CEntre de Formation et de Recherche sur les Environnements Méditerranéens (CEFREM)

Bâtiment R

Université de Perpignan 58 Avenue Paul Alduy 66860 Perpignan Cedex, France

Tel: 04 68 66 21 86

Email: elsa.amilhat@univ-perp.fr

http://cefrem.univ-perp.fr/

Référence à citer :

Amilhat E., Simon G., Faliex B., 2013. Rapport technique du suivi scientifique des relâchers d'anguilles argentées menés en Méditerranée en 2012. CEFREM Université de Perpignan. 44p.

Organisme financeur:

Le Ministère de l'Ecologie, du Développement Durable et de l'Energie (MEDDE)

Partenaires:

Organismes et fonction	Participants et contacts	Adresse
CEFREM (UMR 5110	Dr. Elsa AMILHAT	UMR 5110 CNRS - UPVD
CNRS-UPVD)	elsa.amilhat@univ-perp.fr	CEntre de Formation et de Recherche sur
Suivi scientifique	Dr. Elisabeth FALIEX	les Environnements Méditerranéens
Survi scientifique	faliex@univ-perp.fr	(CEFREM)
	Gael SIMON	Bâtiment CBETM
	gsimon@univ-perp.fr	Université de Perpignan
	Tel: +33(0)4 68 66 21 86	58 Avenue Paul Alduy
	Fax: +33(0)4 68 66 22 81	66860 Perpignan Cedex, France
Seaneo	Thomas SCOURZIC:	Seaneo
(bureau d'étude)	Thomas.scourzic@seaneo.com	65 rue Lieutenant Lumo
Appuie pour le suivi	Eric FABRE	40000 Mont de Marsan
scientifique	eric.fabre@seaneo.com	40000 Mont de Marsan
scientifique	Tel: 0676090395	
	http://www.seaneo.com	
CRPMEM	Marc PLANAS	Le Comité Régional des Pêches Maritimes
Coordination	Cécile PAGES	et des Elevages Marins du Languedoc-
Coordination	Aurélie MAURETTE	Roussillon (CRPMEM)
	Philippe TIMOTHEE	Maison des métiers de la mer et des
	crpmem.lr@wanadoo.fr	lagunes, Rue des Cormorans - Pointe du
	Tel: 04 67 74 91 97	Barrou
	161.0407743137	34 200 SETE
I og professionnels de le	Lagune de Salses-Leucate	34 200 SETE
Les professionnels de la pêche à l'anguille,	Prud'homie de Saint Laurent – Le Barcarès :	
représentés par leurs	Marc Planas	
prudhommes	Prud'homie de Leucate : Alex Fabre	
prudnommes	Lagune de Bages-Sigean	
	Prud'homie de Bages-Port la Nouvelle	
	Zone de Peyriac : Jean-Pierre Dellong	
	Zone de Port la Nouvelle : Frédérick Reste	
	Complexe lagunaire de Gruissan	
	Prud'homie de Gruissan: Iro Gaumer	
	Lagune de Vendres	
	Prud'homie de Valras : Jimmy Rodriguez	
	Lagune de Thau	
	Prud'homie de Thau :	
	Zone Marseillan : Claudia Azais-Negri	
	Zone Pointe Courte : Jean Marie Ricard	
	Zone Bouzigues-Balaruc : Mikaël Herredia	
	Complexe lagunaire de Palavas	
	Prud'homie de Palavas : Franck Salvador	
	Lagune de Maugio	
	Prud'homie de Palavas : Franck Salvador et	
	Laurent Pezzoti	
	Complexe lagunaire de la petite Camargue	
	Prud'homie du Grau du Roi : Hervé Margollé	
Les mareyeurs	Jérôme Micheau	-E.U.R.L. MICHEAU Jérôme
Los marcycurs	micheau.jerome@wanadoo.fr	Canal de Carriere
	meneusjerome e wanadoom	11210 Port-la-Nouvelle
	Marc Tronel-Peyrol	-Eurogeal
	eurogeal@wanadoo.fr	Vauguières-le-haut
	Carogoure Wanadoom	34130 Mauguio
	Laurent Huet	-E.U.R.L. Aguirrebarrena
	06 11 07 79 86	2 route Balaruc
		34200 Sète
DDTM	Direction à la Mer et au Littoral DML 34/30	5 1250 Bete
Suivi administratif	et 66/11	
Sarvi administratii	Ct 00/11	

SOMMAIRE

I.	CONTEXTE	1
II.	SUIVI SCIENTIFIQUE DES RELÂCHERS 2012	2
	 II.1. Déroulement II.2. Stade d'argenture II.3. Caractéristiques biométriques des anguilles argentées relâchées II.4. Estimation du nombre d'anguilles argentées relâchées II.5. Comparaison 2011/2012 	2 3 5 15
III	ETUDE DU COMPORTEMENT DE L'ANGUILLE ARGENTEE RELACHEE PAR MARQUAGE ACOUSTIQUE	16
	III.1. Contexte III.2. Matériel et méthode III.3. Résultats III.4. Conclusions	17 17 21 25
	EFERENCES BIBLIOGRAPHIQUES NNEXES	25 27

I. CONTEXTE

Suite au déclin inquiétant du stock de l'anguille européenne Anguilla anguilla, le règlement européen (Règlement CE 1100/2007 du 18 Septembre 2007) demande aux états membres d'assurer « un taux d'échappement vers la mer d'au moins 40 % de la biomasse d'anguilles argentées correspondant à la meilleure estimation possible du taux d'échappement qui aurait été observé si le stock n'avait subi aucune influence anthropique » (article 2.4). Chaque état membre a dû soumettre un plan de gestion de sauvegarde de l'espèce. Le plan de gestion français a été mis en œuvre dès juillet 2009 et comprend notamment une réduction de la mortalité par pêche de 30% en 3 ans (2009-2012) sur chaque stade biologique. En 2012, la deuxième phase du plan de gestion prévoit encore une réduction de la mortalité par pêche de 10% par an d'ici 2015. C'est la raison pour laquelle, soucieux d'éviter des périodes supplémentaires de fermeture de pêche, les pêcheurs du Languedoc-Roussillon se sont mobilisés pour proposer des mesures alternatives qui pourrait être spécifique à la Méditerranée : (1) un Plan de Sortie de Flotte méditerranéen portant sur la pêche à l'anguille jaune et argentée et (2) un relâcher d'anguilles argentées pendant la période de dévalaison. En effet, la pêche à la civelle n'étant pas exercée sur la façade méditerranéenne française, il ne peut pas exister, comme sur la côte Atlantique, de plan de repeuplement des civelles en Méditerranée. Le relâcher d'anguilles argentées représente ainsi l'alternative méditerranéenne à cette mesure de gestion. Cette mesure s'inscrit dans un partenariat pêcheurs-scientifiques pour, d'une part, proposer une mesure permettant l'échappement d'une plus grande proportion d'anguilles argentées et d'autre part, améliorer les connaissances scientifiques sur les anguilles argentées.

Une étude pilote de relâchers d'anguilles argentées menée en automne-hiver 2011 en Languedoc-Roussillon (Amilhat et al. 2012a) a démontré la faisabilité de la procédure. C'est ainsi qu'une seconde année de relâchers d'anguilles argentées a été organisée en 2012. Les opérations de relâchers sont étroitement suivies par les scientifiques et les autorités administratives. Pour cela, un protocole scientifique de bonnes pratiques a été écrit par un consortium de scientifiques (Amilhat et al. 2012b).

Suite à l'étude pilote de 2011, nous avons recommandé pour l'année 2012 de poursuivre le suivi biométrique ainsi que le suivi de l'état de santé des anguilles relâchées. Par ailleurs, il semblait également essentiel d'étudier le comportement de l'anguille argentée relâchée afin de s'assurer de son départ en mer et d'améliorer nos connaissances, quasi nulles, sur sa migration (marquage acoustique et satellite). Etant donné les contraintes financières du MEDDE, nous avons seulement retenu pour 2012 la poursuite du suivi biométrique ainsi qu'une étude de marquage acoustique.

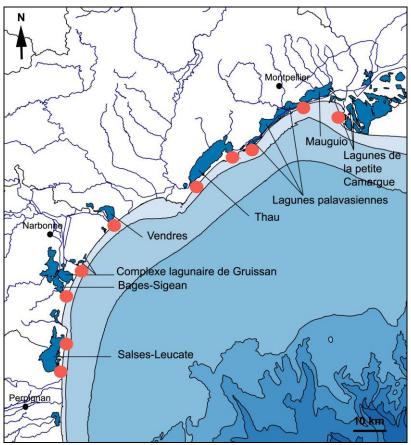
L'étude pilote réalisée en 2011 nous a permis d'améliorer et d'ajuster certains points du protocole afin de s'assurer des bonnes pratiques pour les relâchers. Les pêcheurs et les mareyeurs désirant participer à l'opération ainsi que le bureau d'étude en charge du suivi scientifique ont du préalablement accepter le cahier des charges rédigé par les scientifiques. Celui-ci leur a été proposé sous la forme de fiches de synthèse claires avec mention des principaux points clefs à respecter, et porte principalement sur l'état des anguilles, les conditions de stockage et de transport à respecter (voir annexes 1 à 3). Par ailleurs, nous avons modifié les fichiers de prise de données pour plus d'efficacité sur le terrain (annexe 4).

II. SUIVI SCIENTIQUE DES RELÂCHERS 2012

II.1. Déroulement

Au total treize relâchers ont été effectués sur 8 lagunes (ou complexes lagunaires) du Languedoc-Roussillon, entre le 8 novembre et le 14 Décembre 2012 (Tableau 1). Un total de 17 281 kg d'anguilles a été relâché.

Tableau 1. Description des déversements d'anguilles argentées effectués dans le Languedoc-Roussillon entre Novembre et Décembre 2012.


#	Lagunes ou complexes lagunaires	Code	Date	Nb de pêcheurs participants	Quantité relâchée (kg)
1	Bages-Sigean (secteur Sud, Port-la-Nouvelle)	BagesS	8-nov	11	1386
2	Bages-Sigean (secteur Nord, Peyriac de Mer)	BagesN	9-nov	10	1260
3	Salses-Leucate (secteur Sud, Barcarès)	LeucateS	10-nov	16	2016
4	Thau (secteur Marseillan)	Thau1_M	15-nov	12	1512
5	Salses-Leucate (secteur Nord, grau des ostreiculteurs)	LeucateN	16-nov	6	683
6	Complexe lagunaire de Gruissan (Ayrolle, Campignol, Gruissan)	Gruissan	19-nov	16	2006.5
7	Thau (secteur Sète)	Thau3_S	4-déc	16	1992
8	Thau (secteur Sète)	Thau3_S	5-déc	14	1764
9	Mauguio (ou Or)	Mauguio	6-déc	13	1638
10	Vendres	Vendres	6-déc	3	378
11	Thau (secteur Bouzigues)	Thau2_B	7-déc	6	756
12	Lagunes palavasiennes : Ingril, Vic,	Palavas	12-déc	9	1134
	Pierre Blanche, Arnel, Pérols, Moures				
13	Lagunes de la petite Camargue : Ponant, Médard, Marette	PonantC	14-déc	6	756
	Total			138	17 281.5

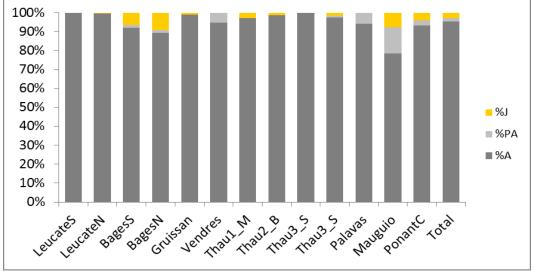
L'équipe scientifique (formée des scientifiques de l'université de Perpignan et de ceux du bureau d'étude Seaneo ont couvert toutes les opérations. Les autorités publiques (Affaires maritimes, gendarmerie..), ainsi qu'un représentant du comité régional des pêches étaient présents à tous les déversements (sauf pour Vendres).

Le suivi scientifique sur le terrain, conformément au protocole (Amilhat et al. 2012b) consistait à :

- Contrôler que le camion du mareyeur servant au transport des anguilles ait bien été nettoyé et le désinfecter à l'acide péracétique. Vérifier que l'équipement du camion est suffisamment fonctionnel pour assurer le maintien des anguilles dans des conditions optimales jusqu'à leur déversement
- 2. Contrôler l'argenture des anguilles au moment du chargement du camion
- 3. Prendre les mesures physico-chimiques sur les lieux de stockage et de déversement.
- 4. Vérifier les paramètres de l'eau dans le camion pour un transport optimal des anguilles.
- 5. Vérifier que les sites de stockage et de déversement correspondaient bien à ceux préalablement établis avec le CRPMEM.
- 6. Effectuer un relevé biométrique sur 60 anguilles par opération de relâcher.

La Figure 1 illustre les sites de pêche et de déversement. Les points GPS associés sont répertoriés à l'annexe 5, tandis que les paramètres physico-chimiques mesurés sont présentés à l'annexe 6. Sauf cas particuliers, le protocole a été respecté par l'ensemble des pêcheurs et par les 3 mareyeurs participant à l'opération.

Figure 1. Localisation des lagunes et/ou complexes lagunaires où ont été pêchées les anguilles relâchées. Les points rouges indiquent les sites de déversement (fond de carte S. Berné).


II.2. Stade d'argenture

Le stade anguille jaune (ou verte) correspond à la phase de croissance des anguilles, au cours de laquelle celles-ci montrent un comportement sédentaire (déplacements ponctuels pour l'alimentation seulement), et qui peut être de durée variable (de 2 à 20 ans). Au terme de cette phase sédentaire de croissance, les anguilles subissent une métamorphose (« l'argenture ») au cours de laquelle elles se transforment progressivement en anguilles argentées, stade qui correspond à des anguilles prêtent à effectuer leur migration trans-océanique (anguilles dites « migrantes »). Cette métamorphose se visualise par de nombreuses modifications morphologiques et physiologiques destinées à l'adaptation des anguilles migration (changement de couleur et différenciation de la ligne latérale, allongement des nageoires pectorales, augmentation du diamètre de l'œil, arrêt de l'alimentation...). Cependant, le processus d'argenture étant un phénomène progressif et continu, certaines anguilles (dites pré-argentées) peuvent déjà avoir commencé leur métamorphose (changement de couleur par exemple) et ne pas être encore prêtes à migrer. En effet, si les conditions ne sont pas propices (réserves lipidiques insuffisantes, entrave à leur migration...), elles peuvent se « désargenter » et revenir au stade jaune. Il n'est donc pas aisé de différencier à l'œil nu une anguille pré-argentée d'une anguille argentée migrante. C'est pourquoi il existe une méthode de calcul basée sur quatre critères externes (taille, poids, longueur de la nageoire et diamètres horizontal et vertical de l'œil) pour déterminer le stade d'argenture (Durif et al. 2009). Cette méthode a été utilisée ici pour estimer le pourcentage de pré-argentées dans le lot d'anguilles relâchées. Par ailleurs, l'indice oculaire (IO) de Pankhurst (Pankhurst, 1982) communément utilisé par les chercheurs a aussi été calculé. C'est un indice simple et assez fiable pour différencier les deux stades : jaune (IO < 6.5) et argenté (IO \geq 6.5). IO = (Dh + Dv / 4)² x π /Lt, avec Dh et Dv la longueur et la largeur de l'œil, Lt la longueur totale du corps.

Les consignes ont été prises en compte pour ce 2ème relâcher et un faible pourcentage d'anguilles jaunes (tableau 2) : (a) au chargement : entre 0 et 6% selon les sites(dans une serbe prise au hasard/pêcheur, observation d'environ 60 anguilles/pêcheur), soit 1,8% si l'on considère les anguilles observées sur l'ensemble des sites (7479 individus); (b) au déversement : entre 0 et 9,3% selon les sites (pourcentage calculé sur une soixantaine d'anguilles prélevées pour être mesurée au moment du déversement), ce qui correspond à 3% des anguilles tous sites confondus (1534 individus). La figure 2 représente graphiquement le pourcentage de chaque stade observé par déversement.

Tableau 2. Pourcentage d'anguilles jaunes (J), pré-argentées (PA) et argentées (A) selon les observations faites aux chargements (a) et aux déversements (b). N représente le nombre d'anguilles sur lequel les calculs ont été effectués.

a :					b	:				
Lagune	N	%J	%PA	%A	· 	Lagune	N	%J	%PA	%A
BagesS	715	2.1	5.9	92.0	· 	BagesS	186	6.5	1.6	91.9
BagesN	583	5.8	1.9	92.3		BagesN	140	9.3	1.4	89.3
LeucateS	959	2.1	3.6	94.3		LeucateS	168	0.0	0.0	100.0
Thau1_M	696	1.7	0.0	98.3		Thau1_M	141	2.8	0.0	97.2
LeucateN	397	8.0	0.3	99.0		LeucateN	186	0.5	0.0	99.5
Gruissan	1011	0.5	0.5	99.0		Gruissan	99	1.0	0.0	99.0
Thau3_S	773	0.3	0.0	99.7		Thau3_S	80	0.0	0.0	100.0
Thau3_S	587	0.2	0.0	99.8		Thau3_S	122	1.6	8.0	97.5
Mauguio	691	2.9	3.5	93.6		Mauguio	79	7.6	13.9	78.5
Vendres	81	0.0	0.0	100		Vendres	94	0.0	5.3	94.7
Thau2_B	248	0.0	0.0	100		Thau2_B	81	1.2	0.0	98.8
Palavas	545	2.4	0.0	97.6		Palavas	85	0.0	5.9	94.1
PonantC	193	5.7	1.6	92.7		PonantC	73	4.1	2.7	93.2
Total	7479	1.8	1.6	96.6	_	Total	1534	2.8	1.9	95.3

Figure 2. Estimation des pourcentages d'anguilles argentées (%A), pré-argentées (%PA) et jaunes (%J) sur un échantillon d'anguilles prélevé à chaque déversement.

II.3. Caractéristiques biométriques des anguilles argentées relâchées

1. Méthodes

a. Echantillonnage et mesures

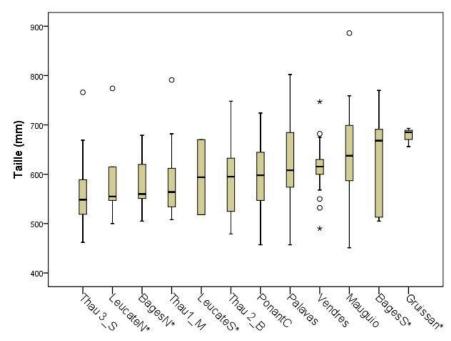
Les anguilles ont été collectées à l'aide d'une grande épuisette lors du relâcher, à la sortie de chaque cuve, de façon aléatoire. Selon le nombre de cuve contenant des anguilles dans le camion du mareyeur, un échantillon est réalisé à la sortie de chaque cuve pour qu'à la fin, une soixantaine d'anguilles argentées soient récupérées. Une fois sur le site de mesure, les anguilles argentées, maintenues dans un container rempli d'eau provenant du lieu du déversement, sont endormies par petit nombre avec de l'eugénol afin de déterminer leurs paramètres biométriques: longueur totale (Lt en cm), poids total (Wt en g), paramètre de l'argenture (diamètres des yeux et longueur des nageoires, côté droit et gauche), taux de lipide musculaire (mesuré à l'aide d'un fatmeter © Distell).

b. Coefficient de condition

Le facteur de condition K de Fulton est défini par la formule : $K = (Wt/Lt^3) \times 1000$ où Wt = poids total du poisson en g et Lt = longueur total du poisson en cm. K représente l'embonpoint du poisson et donc sa condition.

c. Analyses statistiques

Lorsque les variables analysées ne suivent pas une loi normale et l'égalité des variances n'est pas respectée, un test non paramétriques de Kruskal-Wallis (KW) a été utilisé pour comparer les mesures biométriques entre les sites. La probabilité critique a été fixée à 5% (p<0.05 = les groupes sont significativement différents). Afin de représenter au mieux les données, des « box-plot » (ou boîtes à moustaches) sont utilisées. La ligne sombre au milieu des boîtes est la médiane, le bas de la boîte indique le 25ème centile et le haut le 75ème centile. 50% des observations sont donc situées dans la boîte. Les barres en T qui partent des boîtes représentent les valeurs minimum ou maximum. Les points au-dessus ou en dessous des barres en T sont les valeurs éloignées extrêmes : les ronds sont 1.5 fois supérieurs à la hauteur des boîtes et les étoiles sont 3 fois supérieures à la hauteur des boîtes.


2. Résultats tailles/poids

Le tableau 3 et les figures 3, 4 et 5 illustrent les résultats obtenus par site de déversement. Il existe des différences significatives de tailles et de poids moyens entre les différents sites. De même qu'en 2011, les plus grandes **femelles** ont été capturées à Mauguio et Gruissan et les plus petites sur le site de Thau 3_secteur de Sète. Cependant, trop peu de femelles ont été échantillonnées sur les sites de Gruissan, Bages et Leucate pour conclure sur les résultats (N<10). Les femelles sont significativement plus petites à Thau3_S comparé à Mauguio, Palavas et Vendres (KW, p<0.05). Les femelles sont significativement plus grandes à Mauguio par rapport à Thau1_M (KW, p<0.05). Les plus petits **mâles** ont été capturés à Leucate (N et S) et Gruissan. Ils sont significativement plus petits que ceux capturés à Bages S, Mauguio, Thau2 et Vendre (KW, p<0.05). Les mâles de Thau3_S sont significativement plus grands que ceux de Gruissan. De plus, les mâles de BagesN sont significativement plus grands que ceux capturés à LeucateN et Gruissan (KW, p<0.05). Les différences de tailles pourraient cependant être dues aux différents types d'engins de pêche utilisés à chaque site (taille des mailles des filets). Une étude complémentaire est nécessaire pour élucider ce point.

Tableau 3. Caractéristiques biométriques des anguilles argentées migrantes (IO \geq 6.5) échantillonnées en 2012. Les mâles et les femelles sont différenciés à partir de leur taille, \leq 45 cm pour les mâles et > 45cm pour les femelles. La moyenne des longueurs (Lt) en mm et des poids (Wt) en g est indiquée \pm écart type (e.t).

	MALES FEMELLES				LES	N total	
	N	Lt ± e.t	Wt ± e.t	N	Lt ± e.t	$Wt \pm e.t$	
		(min-max)	(min-max)		(min-max)	(min-max)	
		en mm	en g		en mm	en g	
LeucateS	58	368±28	86±21	2	594±107	466±301	60
		(312-437)	(46-137)		(518-670)	(253-678)	
LeucateN	55	364 ± 32	83 ± 25	5	598±106	405±199	60
		(295-428)	(42-136)		(500-774)	(221-735)	
BagesN	51	386 ± 21	102 ± 17	9	578 ± 58	392 ± 189	60
		(343-423)	(68-134)		(505-679)	(198-775)	
BagesS	52/51	391 ± 22	101±17	5	629±116	462±229	57
		(342 - 444)	(60-143)		(505-770)	(227-755)	
Gruissan	55	364 ± 20	82±17	3	678±19	486±92	58
		(314-411)	(45-121)		(656-693)	(384-562)	
Vendres	22	403±24	121±22	38	615±42	480±132	60
		(354-447)	(94-174)		(490-747)	(224-1089)	
Thau 1_M	36	378±27	87±18	22	579±67	374±184	58
		(319-435)	(58-131)		(508-791)	(171-1027)	
Thau 2_B	39	390±26	97±19	20	590±78	395±167	59
		(345-445)	(59-135)		(479-748)	(198-812)	
Thau 3_S*	61	383±29	91±24	56	559±54	317±122	117
		(322-449)	(49-167)		(462-766)	(159-948)	
Palavas	20	387±32	98±28	40	621±76	457±180	60
		(328-444)	(56-169)		(457-802)	(150-845)	
Mauguio	12	400±27	107±31	48	643±87	531±217	60
C		(340-445)	(55-155)		(451-886)	(160-1084)	
PonantC	21	390±33	105±30	39	595±68	413±144	60
		(334-447)	(63-159)		(457-724)	(160-811)	
Total	482/481	380±29	93±24	287	602±74	426±179	769
		(295-449)	(42-174)	•	(451-886)	(150-1089)	ı

^{*}Données cumulées des deux relâchers réalisés sur le site de Thau secteur Sète (sur 2 jours).

Figure 3. Box-plot des tailles des femelles argentées échantillonnées lors des relâchers 2012. Les sites marqués d'une étoile sont les sites comportant un faible effectif (< 10).

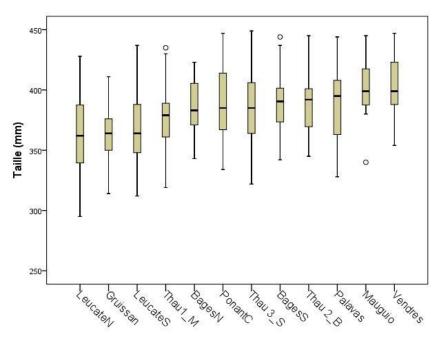


Figure 4. Box-plot des tailles des mâles argentés échantillonnés lors des relâchers 2012.

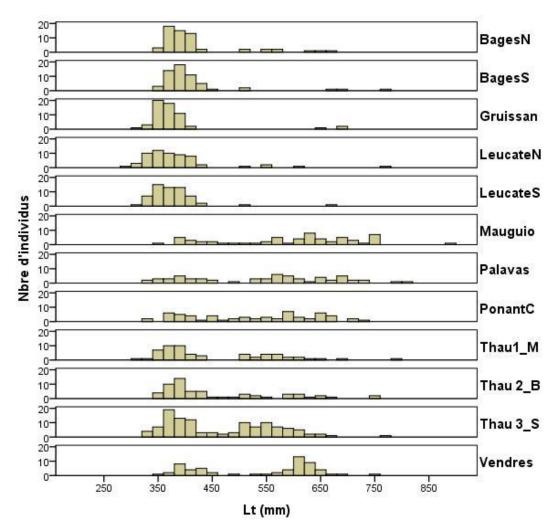
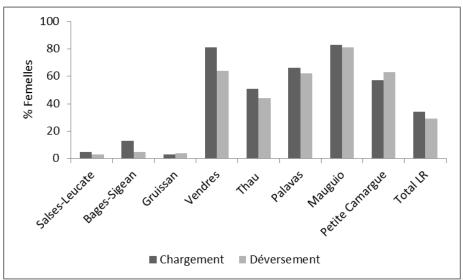


Figure 5. Histogramme des fréquences de tailles des anguilles échantillonnées aux sites de déversement.

3. Relation poids-longueur

Il existe une très bonne corrélation entre le poids et la taille des anguilles. L'équation de régression linéaire (de type Ln(Wt en g) = a Ln(Lt en cm) + b) tous sites confondus (N=772) est : Ln(Wt) = 3.22 Ln(Lt) - 7.18, avec un coefficient de régression r^2 significatif de 0.98. Le tableau 4 présente les coefficients pour chaque site, mâles et femelles réunis.

	Tableau 4. Relations taille-	poids ($LnPoids = a LnTa$	ille + b) observées	pour chaque déversement.
--	-------------------------------------	----------------------------	---------------------	--------------------------

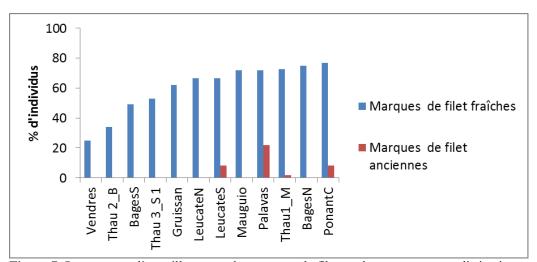

	N	Coef. b	Pente a	r^2
LeucateS	60	-7,63	3,34	0,94
LeucateN	60	-6,81	3,12	0,97
BagesN	60	-7,09	3,20	0,96
BagesS	57	-6,38	3,00	0,96
Gruissan	59	-6,23	2,96	0,96
Vendres	60	-7,10	3,22	0,98
Thau 1_M	59	-7,44	3,28	0,98
Thau 2_B	59	-7,32	3,25	0,98
Thau 3_S*	119	-7,42	3,27	0,98
Palavas	60	-7,16	3,20	0,98
Mauguio	60	-7,47	3,29	0,98
PonantC	60	-7,00	3,18	0,98
Total	773	-7,18	3,22	0,98

4. Sex-ratio

Pour cette étude, nous avons considéré que les anguilles supérieures à 45 cm étaient des femelles et celles inférieures ou égales à 45 cm étaient des mâles (Deelder, 1984). Le sex-ratio a été calculé de deux façons : lors des vérifications des serbes avant chargement du camion, et au cours de chaque déversement sur les lots d'anguilles (au moins 60 individus) ayant servi aux relevés biométriques. Ces deux méthodes ont donné des résultats similaires (Tableau 5 et Figure 6). Ces tendances ont été confirmées par les pêcheurs lors d'une réunion de rendu des résultats. Les sex-ratios sont fortement biaisés en faveur des mâles dans les lagunes occidentales (Salses-Leucate, Bages-Sigean et Gruissan) alors qu'ils sont plus équilibrés voire biaisés en faveur des femelles dans les lagunes orientales.

Tableau 5. Sex ratio selon 2 méthodes : au chargement (charg.) du camion lors de la vérification des serbes des pêcheurs et au déversement (dév.) sur les anguilles collectées aléatoirement pour les mesures biométriques. Les anguilles ≤45cm sont considérées comme des mâles, celles > 45cm comme des femelles (F).

Lagune(s)	N charg.	%F charg.	N dév.	%F dév.
LeucateS	922	2	168	2
LeucateN	394	13	185	4
Salses-Leucate total	1316	5	353	3
BagesN	546	16	123	7
BagesS	636	11	170	4
Bages-Sigean total	1182	13	293	5
Gruissan	1001	3	98	4
Vendres	81	81	94	64
Thau1_M	684	45	137	39
Thau2_B	241	66	79	35
Thau3_S	1357	52	200	51
Thau total	2282	51	416	44
Palavas	523	66	85	62
Mauguio	636	83	68	81
PonantC	180	57	70	63
Total	7201	34	1477	29


Figure 6. Pourcentages de femelles par lagune et/ou complexe lagunaire aux chargements et aux déversements. Les anguilles ≤45cm sont considérées comme des mâles, celles > 45cm comme des femelles.

5. Etat de santé

L'état de santé des anguilles a été appréhendé par un ensemble de paramètres collectés à partir des lots d'individus pris au hasard à chaque déversement (environ 60 individus par déversement). Les paramètres ont été déterminés sur les individus vivants (pas de mesure de polluants pour 2012) et concernent les **pathologies externes**, le **coefficient de condition K de Fulton** et le **taux de lipides musculaires** (mesuré au fatmeter).

a. Pathologies externes

Des marques de filet sur le corps dues à la méthode de pêche ont été très fréquemment observées (Figure 7). Nous ne savons pas à quel point celles-ci pourraient entraver la migration, par exemple en provoquant des surinfections et ainsi affaiblir les anguilles durant leur migration. Cependant, la migration dans l'eau de mer devrait diminuer le risque d'infections. Par contre, l'observation de marques de filet plus anciennes (à l'aspect nécrosé) pose plus de problème car souligne un mauvais stockage des anguilles.

Figure 7. Pourcentage d'anguilles ayant des marques de filet sur le corps avec une distinction entre les marques fraîches, et les marques nécrosées qui soulignent un mauvais stockage des individus.

Une grille de pathologies, inspiré de celle de Girard et Elie (2007), a été utilisée afin d'identifier les principales pathologies rencontrées sur chaque site. Ainsi, 11 pathologies principales ont été identifiées. Parmi celles-ci, les hémorragies et les nécroses sont les plus fréquemment rencontrées (figure 8). Cependant, leur origine exacte est difficile à identifier à posteriori.

Le nombre de pathologies observées par anguille peut donner une idée globale de la qualité des anguilles par site. A signaler que certaines anguilles peuvent montrer jusqu'à 7 pathologies différentes. Cependant, l'identification des pathologies est ici d'ordre qualitatif et ne rendre pas forcement compte de la gravité des pathologies. Il faudrait pour cela prendre en compte l'aspect quantitatif et l'étendue de la pathologie. La figue 9 suggère que les sites de Petite Camargue (PonantC) et de Salses-Leucate sont les moins impactés. Cependant, ce résultat ne prend pas en compte la gravité de chaque pathologie. Par ailleurs, pour une bonne fiabilité de cet indice « pathologies externes », une meilleure harmonisation entre les différents intervenants impliqués dans le relevé des pathologies doit être mise en place en vue de son amélioration.

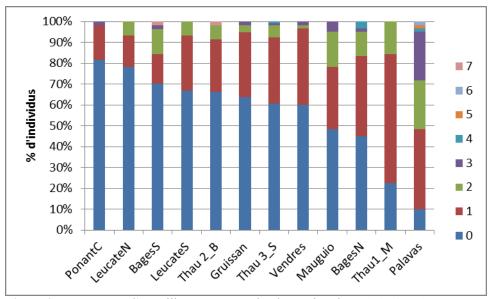


Figure 9. Pourcentage d'anguilles argentées selon le nombre de pathologies observées par site de déversement.

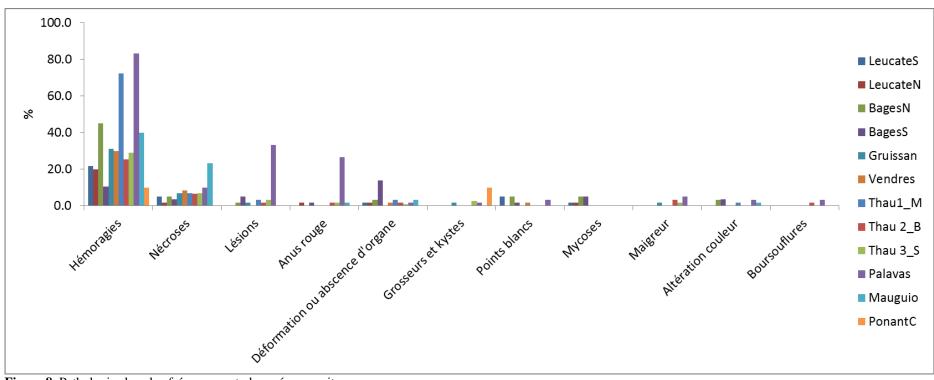


Figure 8. Pathologies les plus fréquemment observées par site.

b. Coefficient de condition

L'état de santé des anguilles peut également être appréhendé à travers leur condition. La condition peut être exprimée par le coefficient de condition de Fulton K qui correspond à une relation entre le poids et la taille du poisson. Le coefficient de condition K de Fulton est supposé représenter l'embonpoint de l'individu. Plus K est élevé, meilleure est la condition de l'anguille. Les femelles ont un coefficient de condition significativement plus élevé pour les sites de Vendres, Thau (les 3 sites), Palavas, Mauguio et la petite Camargue (MW, p<0,05; Figure 10). Pour les autres sites, il ne semble pas y avoir de différences entre les mâles et les femelles mais les effectifs étant très faibles sur les autres sites (moins de 10 femelles par site) il est difficile de conclure. Nous avons donc analysé les différences de K entre sites pour chaque sexe séparément. Dans un premier temps nous avons comparé les sites de pêche au sein de chaque lagune et/ou complexe lagunaire. Pour les deux sites de Salses-Leucate d'une part, ainsi que pour les trois sites de Thau (Thau1, 2, 3) d'autre part, nous n'avons trouvé aucune différence significative (MW, p>0,05) inter-sites, tant pour les mâles que pour les femelles. Les sites d'une même lagune ont donc été réunis pour les analyses ultérieures. Sur la lagune de Bages-Sigean, si les coefficients de condition ne sont pas significativement différents entre les sites Nord et Sud pour les femelles (MW, p>0,05) ils sont significativement différents pour les mâles (K plus élevés au Nord, MW, p<0,05).

Les **femelles** de Vendres ont un coefficient K significativement plus élevé que celles de Bages-Sigean, Gruissan, Thau, Palavas et Mauguio (KW et test de Dunn p<0,05). Les **mâles** de Vendres ont un coefficient K significativement plus élevé que ceux de Salses-Leucate, Bages Sud, Gruissan, Thau et Palavas (KW et test de Dunn p<0,05). Les mâles de Thau présentent les plus faibles embonpoints, coefficients K significativement moins élevés que ceux mesurés à Salses-Leucate, Bages-Sigean, Gruissan, Vendres et la petite Camargue (KW et test de Dunn p<0,05).

Cependant les anguilles mesurées à Vendres avaient des ventres particulièrement gonflés, ce qui pourrait expliquer les fortes valeurs du coefficient K obtenues sur Vendres. Pour des résultats plus rigoureux, il faudrait calculer les coefficients K à partir des poids éviscérés, ce qui est impossible car les anguilles sont gardées vivantes.

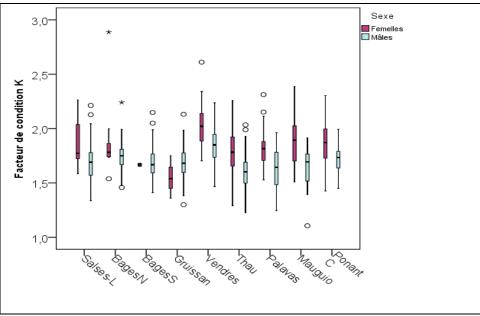
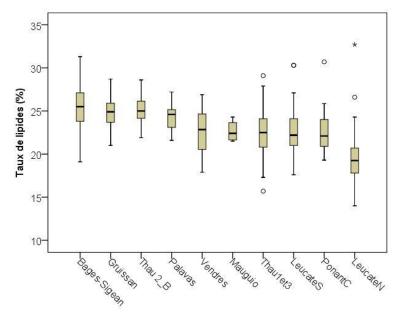
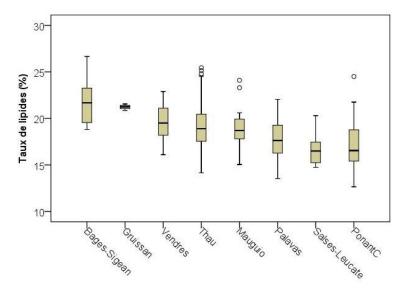


Figure 10. Coefficients de condition de Fulton par site et par sexe.


c. Taux de lipides musculaires

Une autre manière de rendre compte de la condition des anguilles est de mesurer le **taux de lipides musculaires.** L'utilisation d'un fatmeter nous permet sans tuer le poisson d'avoir une estimation de ses réserves lipidiques (Klefoth et al., 2013), paramètre critique pour la réussite de sa migration en Mer des Sargasses. Les mâles ont un taux de lipides musculaires supérieur à celui des femelles, que les sites soient étudiés séparément ou ensembles (MW, p<0,05; KW, p<0,05). Ceci confirme les observations des relâchers de 2011. Les taux de lipides musculaires mesurés au fatmeter (Distell©) sont compris entre 13 et 27% pour les femelles (19 % en moyenne) et entre 14 et 33% pour les mâles (23% en moyenne).


De la même manière que pour le coefficient de condition, nous avons testé dans un premier temps les différences entre sites de pêche d'une même lagune. Pour Bages-Sigean, il n'y pas de différence significative (MW, p>0,05) entre les sites Sud et Nord, tant pour les mâles que pour les femelles. Les deux sites ont donc été réunis. Pour la lagune de Salses-Leucate, il n'y a pas de différence significative observée pour les femelles entre les sites Nord et Sud, mais les effectifs sont très faibles. Par contre, les mâles capturés au Sud (Barcarès) ont des taux de lipide significativement plus élevés que ceux pêchés au Nord (MW, p<0,05). Sur la lagune de Thau, il n'y a pas de différence significative du taux de lipides musculaires entre les 3 sites pour les femelles. Par contre, les mâles capturés sur le secteur de Bouzigues (Thau2) sont plus gras que les mâles capturés sur le secteur de Marseillan (KW et test de Dunn, p<0,05).

Il existe des différences significatives entre les taux de lipides musculaires mesurés entre les différents sites de pêche et donc lagunes (Figures 11 et 12). Les **mâles** de la lagune de Bages-Sigean ont les taux de lipides les plus élevés, significativement différents de ceux mesurés pour les anguilles de Leucate Nord et Sud, petite Camargue, Thau (secteurs Marseillan et Sète). A l'opposé, les mâles provenant de la partie nord de la lagune de Leucate possèdent les taux de lipides musculaires les plus faibles, significativement moins élevés qu'à Bages Sigean, Gruissan, Leucate Sud, Palavas, Thau (les 3 sites) (KW et test de Dunn, p<0,01). Les **femelles** de Bages-Sigean ont des taux de lipides musculaires significativement plus élevés que ceux des femelles de Palavas, de petite Camargue et de Salses-Leucate. Les femelles les moins grasses ont été identifiées sur la lagune de Petite Camargue, leur taux de lipides musculaires étant significativement moins élevé qu'à Bages-Sigean, Thau et Vendres (KW et test de Dunn, p<0,01).

Le taux de lipides minimum nécessaire pour accomplir la migration océanique reste un sujet de discorde entre les scientifiques. La majorité des études relatives aux taux de lipides musculaires comme moyen d'estimer les capacités des anguilles à effectuer la migration transatlantique et la reproduction se focalise essentiellement sur les femelles, et très peu de données sont disponibles pour les mâles. Si l'on considère 13% comme le taux minimum de lipides musculaires requis pour assurer la migration (basé sur l'étude de femelles dans van den Thillart et al., 2004), toutes les anguilles capturées, mâles comme femelles, ont un taux suffisant sauf une femelle capturée en petite Camargue. Si l'on considère 20% comme le taux minimum de lipides musculaires requis pour assurer la migration, la plupart des mâles (entre 67 et 98%, sauf pour Leucate Nord : 60%) possède un taux de lipides supérieur à 20%, alors que seules 15% à 45% des femelles, selon les sites, ont un taux de lipides ≥ 20%.

Figure 11. Box plot des taux de lipides musculaires des mâles relâchés en 2012 par site, lagune et/ou complexe lagunaire.

Figure 12. Box plot des taux de lipides musculaires des femelles relâchées en 2012 par lagune et/ou complexe lagunaire.

d. Relation entre K et le taux de lipides

Le tableau 6 présente les coefficients de condition K moyens et les taux de lipides musculaires des anguilles échantillonnées sur chaque site. De manière surprenante, il existe une corrélation négative entre K et le taux de lipide (N=643, r_{spearman} = -0,287, p<0,05, annexe 7) lorsque l'on considère l'ensemble des individus. Cependant, cette corrélation disparait lorsque mâles et femelles sont considérés séparément (p>0.05). Les femelles étant systématiquement plus grandes que les mâles, ce résultat semble lié au fait que d'une part K est corrélé positivement à la taille des individus (N=768, r_{spearman} = 0,42, p<0,05) et que d'autre part, le taux de lipides est corrélé négativement à la taille des individus (N=644, r_{spearman} = -0,47, p<0,05). Par ailleurs, le facteur de condition K, basé sur une relation taille poids, peut être biaisé si les anguilles ne sont pas éviscérées comme c'est le cas dans ce suivi (par exemple, important volume abdominal constaté chez les anguilles de Vendres). Enfin, il a été montré

que le facteur de condition K de Fulton n'était pas forcement le meilleur indice pour refléter les taux de lipides musculaires (McPherson et al., 2011). Dans le cas de l'anguille, le potentiel reproducteur étant fortement lié aux réserves de graisses, les résultats obtenus avec le fatmeter sont considérés ici comme plus représentatifs de la condition des anguilles. Cette mesure devrait donc être réalisée systématiquement.

Tableau 6. Coefficient de condition K de Fulton et taux de lipides musculaires des anguilles argentées ($IO \ge 6,5$) échantillonnées en 2012. Les mâles (M) et les femelles (F) sont différenciés à partir de leur taille, ≤ 45 cm pour les mâles et > 45cm pour les femelles. Les moyennes (moy.) sont indiquées \pm écart type (e.t). N = taille de l'échantillon.

Code lagune	Coefficient de condition K			Ta	Taux de lipides musculaires (%)			
	$moy. \pm e.t (min-max)$			$moy. \pm e.t (min-max)$				
	N	F	N	M	N	F	N	M
LeucateS	2	2,04±0,31 (1,82-2,26)	58	1,68±0,17 (1,34-2,21)	2	17,2±1,0 (16,5-17,9)	58	22,5±2,7 (17,6-30,3)
LeucateN	5	1,81±0,26 (1,58-2,26)	55	1,68±0,16 (1,34-2,13)	5	16,5±2,3 (14,8-20,3)	54	19,5±2,9 (14,0-32,7)
BagesN	9	$1,91 \pm 0,39$ (1,54-2,89)	51	$1,75 \pm 0,15$ (1,46-2,24)	9	$21,7 \pm 2,0$ (19,1-24,7)	51	$25,9 \pm 2,7$ (19,1-31,3)
BagesS	5	$1,73 \pm 0,06$ $(1,65-1,82)$	51	1,68±0,15 (1,41-2,15)	5	22,0±3,1 (18,8-26,7)	52	24,9±2,3 (19,9-30,0)
Gruissan	3	1,55±0,20 (1,36-1,75)	55	1,68±0,15 (1,30-2,13)	3	21,2±0,4 (20,9-21,6)	54	$24,7\pm1,8$ (21,0-28,7)
Vendres	38	2,03±0,18 (1,70-2,61)	22	1,84±0,18 (1,47-2,24)	20	19,6±2,0 (16,1-22,9)	12	22,6±2,8 (17,9-26,9)
Thau1_M	22	1,82±0,24 (1,29-2,26)	36	1,6±0,14 (1,39-2,03)	22	18,9±2,9 (14,2-25,2)	36	23,0±2,3 (18,2-27,9)
Thau2_B	20	1,82±0,17 (1,32-2,04)	39	1,61±0,13 (1,36-1,99)	20	20,2±1,9 (18,3-25,5)	39	25,2±1,6 (21,9-28,6)
Thau3_S	56	1,75±0,18 (1,29-2,11)	61	1,58±0,13 (1,23-1,93)	29	18,8±2,4 (15,6-24,6)	30	21,7±2,9 (15,7-29,1)
Palavas	40	1,82±0,18 (1,53-2,31)	20	1,65±0,21 (1,25-1,96)	40	17,8±1,9 (13,6-22,1)	20	24,4±1,5 (21,6-27,2)
Mauguio	48	1,88±0,20 (1,51-2,39)	12	1,64±0,23 (1,11-1,91)	19	19,0±2,2 (15,1-24,1)	4	22,7±1,3 (21,5-24,3)
PonantC	39	1,89±0,21 (1,43-2,30)	21	1,72±0,12 (1,45-1,99)	39	17,2±2,6 (12,7-24,5)	21	22,6±2,7 (19,3-30,7)
Total	287	1,85±0,22 (1,29-2,89)	481	1,67±0,16 (1,11-2,24)	213	18,7±2,6 (12,7-26,7)	431	23,4±3,1 (14,0-32,7)

II.4. Estimation du nombre d'anguilles argentées relâchées

A partir des sex-ratios observés sur chaque site et des poids moyens des mâles et des femelles (Tableau 3), nous avons estimé à 111 409 le nombre d'anguilles relâchées en 2012, soit 13% de plus qu'en 2011 (97 913 en 2011). Plus de ¾ (79%) seraient des mâles (87 595 mâles pour 23 814 femelles, Figure 13 et annexe 8). Les résultats montrent également que les sex-ratios sont restés à peu près stables entre 2011 et 2012.

Si l'on considère une pêche annuelle dans le LR de 239 t (donnée 2010), le relâcher 2012 correspond à 7% des captures.

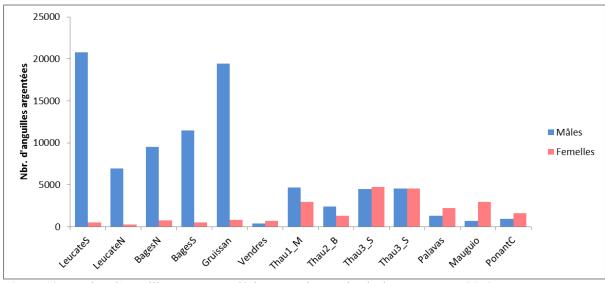


Figure 13. Nombre d'anguilles argentées relâchées sur chaque site de déversement en 2012.

II.5. Comparaisons 2011/2012

La période de dévalaison de l'année 2012 est survenue plus précocement (8 novembre- 14 décembre) que celle de 2011 (24 novembre - 29 décembre). Cependant, les dévalaisons ont suivi la même séquence spatio-temporelle en 2011 et 2012, les 1ères ayant eu lieu sur la lagune de Bages-Sigean et les dernières du côté de la petite Camargue. Par ailleurs, le nombre de pêcheurs participant aux opérations de relâchers a légèrement augmenté entre 2011 (125) et 2012 (138). Enfin, si on observe une nette amélioration du respect du protocole, certains points peuvent encore être améliorés concernant notamment le stockage des anguilles et la séléction des anguilles argentées.

III. ETUDE DU COMPORTEMENT DE L'ANGUILLE ARGENTEE RELACHEE PAR MARQUAGE ACOUSTIQUE

Pour ce projet, qui a demandé une logistique particulièrement lourde, nous avons fait appel aux plongeurs et chercheurs du laboratoire déjà spécialistes dans le domaine. Nous tenons à remercier particulièrement Anthony Caro, Jérémy Pastor, Reda Neveu, Romain Crec'hriou, Gilles Saragoni, Philippe Lenfant et Barbara Koeck (analyse des données) pour leur participation. Nous tenons aussi à remercier Frederick Reste à Port la Nouvelle et Mr Rozek du centre ostréicole de Gruissan pour nous avoir permis de stocker et de marquer les anguilles dans leurs locaux. Nous remercions également tous ceux qui, grâce à leur autorisation, leur aide logistique dans l'installation des récepteurs et/ou leurs conseils, ont rendu possible ce projet : Maires des sites concernés (Barcarès, Leucate, Gruissan, Narbonne plage), personnels impliqués des capitaineries (dont Christian Ribé à Port La Nouvelle, Mr Perea à Port Narbonne), professionnels de la pêche à l'anguille (dont Marc Planas au Barcarès et Iro Gaumer à Gruissan), Laurence Fonbonne de RIVAGE à Leucate, Eric Fabre et Thomas Scourzic de Seaneo, et Elise Bultel du Muséum National d'Histoire Naturelle. Nous remercions également le service des Phares et Balises Ouest Méditerranée (André Gremillet), ainsi que le service des Opérations Portuaires de Port-La-Nouvelle (André Mena et Jean-Pierre Pujol). Enfin, nous remercions le président de la Région Languedoc-Roussillon Christian Bourquin pour nous avoir autorisés à placer des récepteurs dans le chenal de Port la Nouvelle.

III.1. Contexte

Cette étude de marquage acoustique a été réalisée afin de suivre le comportement de l'anguille argentée pêchée en lagune, puis relâchée près de l'embouchure à la mer. Cette expérience avait pour but de vérifier que les anguilles déversées lors des relâchers prennent bien la direction de la mer et ne re-rentraient pas dans une lagune où elles pourraient être repêchées.

III.2. Matériel et méthode

1. <u>Le marquage acoustique</u>

Le marquage acoustique est largement utilisé dans l'étude des mouvements des animaux et de leurs comportements. Pour mener à bien cette étude, nous avons utilisé le matériel de la société VEMCO Ltd. (vemco.com), spécialisée dans le domaine du marquage acoustique des poissons. La méthode consiste à insérer dans la cavité abdominale du poisson une marque électronique capable d'émettre un signal codé détectable par des hydrophones (Figure 14). Le choix des émetteurs acoustiques s'est fait en optimisant le compromis entre poids et dimensions de la marque, autonomie de la batterie interne et puissance et intervalle du signal acoustique. Il est généralement admis que le poids de l'émetteur ne devrait pas dépasser 2% du poids du poisson afin de ne pas perturber son comportement et sa survie. Dans notre cas, deux types de marque ont été sélectionnés : les V8 (20,5x8 mm ; 2g ; durée de vie 84 jours ; fréquence acoustique 69 kHz ; intervalle 60-100 sec) pour les mâles qui sont plus petits (< 45 cm) que les femelles, et les V13 (3,6x1,3cm ; 6g; durée de vie 151 jours ; fréquence acoustique 69 kHz; intervalle 30-60 sec) mieux adaptées pour les femelles. Afin de respecter le ratio poids de l'émetteur/poids du poisson, des mâles de plus de 100g et des femelles de plus de 550g ont été sélectionnés pour le marquage.

Figure 14. Marques acoustiques V8 et V13 et récepteur (ou hydrophone) VR2W de VEMCO utilisés lors du projet.

2. Marquage des anguilles

Les anguilles marquées proviennent des relâchers de 2012. Les plus gros spécimens mâles et femelles capturés lors des pêches pour les relâchers sur les sites de Bages-Sigean (le 8-9 Novembre) et Gruissan (le 18 novembre) ont été préservés et stockés pour le marquage. Les anguilles ont été maintenues dans des bacs de 400L avec filtration mécanique, biologique et aération avant leur opération chirurgicale. Chaque anguille a été préalablement endormie à

l'aide d'une solution d'eugénol. Une petite entaille d'une largeur correspondant au diamètre de l'émetteur choisi est réalisée au niveau de l'abdomen à l'aide d'un scalpel. Une fois la marque placée dans la cavité abdominale et l'entaille recousue avec du fil de suture (Figure 15), l'anguille est placée dans un bac avec aération pour surveiller son réveil. Toutes les anguilles ont été relâchées le jour même de leur opération, à la tombée de la nuit.

Figure 15. Implantation chirurgicale intra- abdominale des marques acoustiques.

3. Choix des sites et déploiement des hydrophones

Dans la limite du temps imparti, tous les sites de déversements (10 au total) ne pouvaient être testés. C'est pourquoi nous avons sélectionnés des sites adaptés à ce genre d'étude et qui comportaient des conditions environnementales différentes. De plus, le choix a du se porter sur des sites qui permettaient la pêche d'anguilles de grandes tailles pour supporter le poids des marques internes.

Nous avons choisis deux sites:

- (1) <u>Chenal de Port la Nouvelle</u> (site de déversement de la lagune de Bages-Sigean) : site très anthropisé qui comporte un port de commerce avec de nombreux passages de navires de grandes tailles et un dragage permanant du port ;
- (2) <u>Canal de Grazel</u> (site de déversement des lagunes de Gruissan, Grazel, Campignol et Ayrolle), site plus naturel où ne transitent que des petits bateaux.

Pour suivre les déplacements des anguilles, 22 récepteurs ont été déployés sur environ 46km de côte entre le 29 octobre et le 21 Novembre 2012. La position des hydrophones a été déterminée par les contraintes suivantes : (1) toutes les ouvertures adjacentes aux sites de lâcher des anguilles marquées devaient être couvertes, (2) au site de lâcher des anguilles, un nombre plus important de récepteurs devaient être déployés afin d'identifier avec précision leurs mouvements de rentrée et/ou sortie de la lagune. Les conditions climatiques étant particulièrement mauvaises pendant la saison de dévalaison des anguilles, il a fallu choisir des moyens de fixation adaptés non seulement aux types de substrats rencontrés mais aussi assez résistant pour ne pas être arrachés pendant les tempêtes d'hiver. Des systèmes particulièrement résistants ont été développés pour l'occasion par Gaël Simon. Trois types de fixation ont été retenus : (1) dans la roche ou le béton : l'hydrophone est placé dans un tube en acier fixé par 4 goujons en inox vissés à l'aide d'un perforateur pneumatique, (2) sur une

bouée de navigation à l'aide d'une corde lestée et, (3) dans le sable à l'aide d'une vis à sable (Figure 16).

Figure 16. Systèmes de fixation des récepteurs par vis à sable (photo de gauche) et par fixation dans la roche (photo de droite).

Afin de suivre avec précision le comportement de chaque anguille, 7 récepteurs (VR2W) ont été déployés dans chacun des 2 chenaux (Port la Nouvelle et Grazel) à environ 200m de distance les uns des autres afin de permettre une bonne couverture de la zone (Figures 17 et 18). De plus, afin de contrôler si les anguilles relâchées ne re-rentraient pas dans d'autres lagunes adjacentes, 1 récepteur a été installé à chacune des entrées possibles des lagunes voisines (Figure 19). Les positions GPS de ces récepteurs sont répertoriées à l'annexe 9. En raison des mauvaises conditions climatiques et du nombre réduit de plongeurs disponibles à cette période, le dispositif a été finalisé le 21 Novembre 2012.

4. Analyse des données

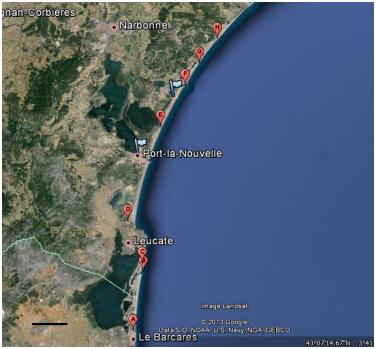

Les détections par les balises fixes ont permis de déterminer si les anguilles ont quitté leur lagune d'origine. L'enregistrement au niveau de l'hydrophone se fait en continu et consigne la date, l'heure et l'Id du poisson (numéro d'identification individuel correspondant au code de la marque VEMCO). Les données ont été traitées par le logiciel VUE de VEMCO.

Figure 17. Localisation des 7 hydrophones fixés dans le canal de Grazel (complexe lagunaire de Gruissan). Le drapeau indique le site où les 14 anguilles argentées marquées ont été relâchées. La barre noire représente une échelle de 200m.

Figure 18. Localisation des 7 hydrophones fixés dans le chenal de Port La Nouvelle (lagune de Bages-Sigean). Le drapeau indique le site où les 16 anguilles argentées marquées ont été relâchées. La barre noire représente une échelle de 200m.

Figure 19. Localisation des 8 hydrophones (A à H) déployés à l'entrée des lagunes adjacentes aux sites de relâchers (indiqués par des drapeaux). La barre noire représente une échelle de 5km.

III.3. Résultats

Trente anguilles argentées ont été marquées : 16 provenant de la lagune de Bages-Sigean et relâchées le 27 et le 28 Novembre à Port la Nouvelle (43°01'16.6"N; 3°02'55.7"E) et 14 pêchées dans le complexe lagunaire de Gruissan et relâchées le 5 décembre dans le canal de Grazel (43°05'43.71"N; 3°06'36.94"E). Les anguilles ont été relâchées à la tombée de la nuit dans les mêmes conditions que les relâchers réalisés par les professionnels. Les caractéristiques biologiques des 30 anguilles marquées sont résumées au tableau 7 et détaillées à l'annexe 10. Il n'existe pas de différences significatives de tailles, de poids, de K et de taux de lipides musculaires entre les mâles de Bages-Sigean et de Gruissan (test t, p>0,05). Pour les femelles, seul le coefficient K est significativement plus élevé pour les anguilles de Bages-Sigean que pour celles de Gruissan (t test, p<0,05), les autres paramètres sont similaires entre les anguilles de Bages-Sigean et Gruissan (t-tests, p>0,05). Toutes les anguilles marquées sont argentées : leur indice oculaire IO est supérieur à 6,5 et leur indice d'argenture indique que les anguilles sont migrantes, *i.e* en dévalaison (stades IV et V pour les femelles et II pour les mâles, selon Durif (2009)).

Tableau 7. Caractéristiques biométriques des anguilles marquées. La moyenne des longueurs (Lt) en cm, des poids (Wt) en g, le taux de lipides (en %) et le coefficient de condition de Fulton K sont indiqués \pm écart type (e.t).

	N	Lt ± e.t (min-max) en mm	Wt ± e.t (min-max)	K ± e.t (min-max)	Taux de lipides ± e.t (min-max) %
MALES		en min	en g		/0
Bages-Sigean	9	40,7±08	119±10	$1,8\pm0,1$	$22,9\pm2,3$
		(39,3-41,7)	(108-134)	(1,6-1,9)	(19,6-27,6)
Gruissan	6	40,0±2,3	114±8	1,8±0,2	24,3±1,2
		(36,5-43,4)	(101-126)	(1,5-2,1)	(22,4-25,5)
FEMELLES					
Bages-Sigean	7	$79,9\pm6,5$	1125±351	$2,1\pm0,2$	$15,3\pm1,2$
		(73,8-93,0)	(751-1840)	(1,9-2,3)	(14,0-17,7)
Gruissan	8	87,2±6,6	1272±348	1,9±0,2	16,0±1,4
		(80,6-100,5)	(975-2060)	(1,6-2,1)	(14,1-18,0)

Les 22 récepteurs ont été récupérés entre le 7 avril et le 11 juin 2013. Les systèmes de fixation des hydrophones ont tous bien résisté aux tempêtes. Le tableau 8 indique pour chaque anguille l'heure de sortie en mer (considérée comme l'heure de détection sur le récepteur le plus proche de la mer), le nombre de récepteurs ayant détecté l'anguille, le temps mis pour sortir en mer, la distance parcourue vers l'intérieur de la lagune ainsi que les autres détections observées.

Tableau 8. Heure de sortie en mer (considérée comme l'heure de détection sur le récepteur le plus proche de la mer), le nombre de récepteurs utilisés, le temps mis pour sortir en mer, la distance parcouru vers l'intérieur de la lagune ainsi que les autres détections observées. Récifs Z = récifs artificiels situés en face de la lagune de Salses-Leucate à 13 km de la sortie de Port la Nouvelle, Récifs CL = récifs naturels en face de Cap Leucate à 10,6 km de la sortie de Port la nouvelle.

#	Code Anguille	Heure de sortie	Nbr. de récepteurs utilisés sur 7	Temps pour sortir (heure)	Distance de retour vers la lagune	Autre détections
1	BAG-F1	00:56:55	6	30,4	210 m	Récifs Z
2	BAG-F2	12:10:35	6	41,6 (1,7 jours)	210 m	
3	BAG-F3	11:17:00	6 *	1264,8 (1,8 mois)	210 m	Récifs Z
4	BAG-F4	22:37:21	5	5,3	0 m	
5	BAG-F5	20:42:14	5 *	1,7	210 m	
6	BAG-F6	19:41:02	6	49,2 (2 jours)	210 m	Récifs CL et Port Leucate
7	BAG-F7	19:19:43	5 *	2,0	210 m	
8	BAG-M1	19:58:56	5 *	25,5	210 m	
9	BAG-M2	17:12:51	4	22,7	0 m	Récifs CL, Port Leucate
10	BAG-M3	20:48:24	5	2,3	0 m	
11	BAG-M4	17:09:18	5	22,6	0 m	
12	BAG-M5	18:34:26	6	864,0 (36 jours)	210 m	
13	BAG-M6	21:27:32	5	2,9	0 m	
14	BAG-M7	21:19:08	6	2,8	210 m	
15	BAG-M8	19:55:12	6	1,4	210 m	
16	BAG-M9	17:11:34	5	46,7 (1,9 jours)	0 m	
17	GRU-F1	18:04:23	3	0,7	110 m	
18	GRU-F2	20:13:55	4	2,8	340 m	
19	GRU-F3	19:50:59	5	2,4	580 m	
20	GRU-F4	18:08:29	3	0,7	110 m	
21	GRU-F5	17:58:27	3	0,4	110 m	
22	GRU-F6	19:16:23	4	1,7	340 m	
23	GRU-F7	18:34:58	5	1,2	580 m	
24	GRU-F8	19:39:47	5	2,3	580 m	
25	GRU-M1	18:51:08	4	0,7	340 m	
26	GRU-M2	21:58:47	6	4,2	790 m	
27	GRU-M3	20:07:38	5	1,1	580 m	
28	GRU-M4	19:53:59	3	0,7	110 m	
29	GRU-M5	18:27:50	3	1,0	110 m	
30	GRU-M6	19:36:38	4	1,5	340 m	

^{*}Indique que l'anguille n'a pas été détectée sur le dernier récepteur, celui le plus proche de la mer. Pour ces 4 anguilles, l'heure de sortie correspond à la détection sur l'avant dernier récepteur.

Faits marquants:

- -Toutes les anguilles marquées ont été détectées (Tableau 8) et aucune n'est re-rentrée dans sa lagune d'origine.
- -3 anguilles provenant de Bages-Sigean n'ont pas été détectées sur le récepteur le plus proche de la mer. Cependant, elles ne paraissent pas non plus avoir rebroussé chemin pour re-rentrer dans leur lagune d'origine (pas de détection par les autres récepteurs plus proches de la lagune proprement dite). On peut donc supposer que la détection sur le dernier récepteur n'a pas fonctionnée (comme pour l'anguille BAG-F3), il est aussi possible que ces anguilles aient été pêchées ou mangées par un prédateur.

- -Deux anguilles provenant de Bages-Sigean (F6 et M2) ont été détectées plus au sud par le récepteur fixé à l'entrée du port de Leucate (point B Figure 19). Ceci indique que ces anguilles sont passées dans un rayon de 200m autour du récepteur. Cependant cela ne dit pas si elles sont réellement entrées dans la lagune ou juste passées à côté du récepteur. Pour cela il aurait fallu fixer un autre récepteur plus à l'intérieur de la lagune (la limitation de budget ne permettant pas l'installation de récepteurs supplémentaires).
- Les anguilles de Gruissan sont sorties plus rapidement (moins de 6h après leur relâcher) que celles de Bages-Sigean (certaines ont mis plus d'un mois, Figure 20). Ceci est certainement lié à la configuration des sites et à la distance de l'embouche. Port la Nouvelle est un port de commerce avec un trafic de gros navires. Les anguilles ont été relâchées à 1,95 km de la sortie en mer alors qu'à Gruissan les anguilles ont été relâchées à 370m de la mer dans un chenal moins perturbé (moins de passage de navires, et moins de sources de pollutions).

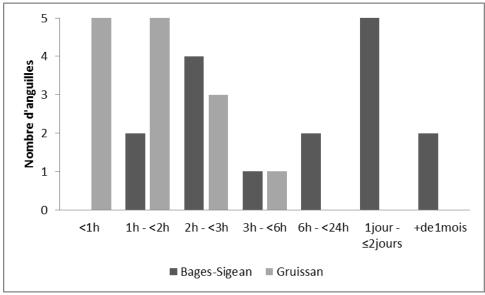


Figure 20. Comparaison des temps de sortie en mer entre les anguilles de Bages-Sigean et de Gruissan.

- L'heure de sortie en mer (qui correspond ici à la détection sur le récepteur le plus proche de la sortie en mer) est comprise entre 17h et 1h du matin (Figure 21), après le coucher du soleil (sauf pour l'anguille BAG-F2 qui est sortie à 12h10).
- On remarque une plage horaire de sorties plus étalées pour les anguilles de Bages-Sigean (Figure 21).

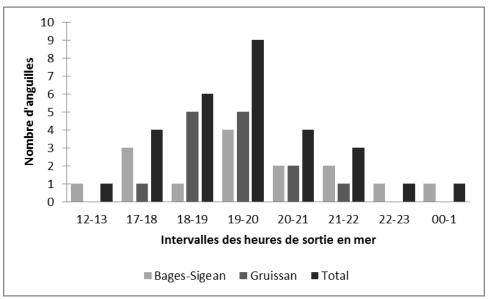


Figure 21. Distribution des plages horaires de sortie en mer des anguilles de Bages-Sigean et de Gruissan.

-Nos résultats ne montrent pas de relations entre le genre de l'anguille : mâle ou femelle et l'heure de sortie ou le temps mis pour sortir.

-Bien qu'aucune des anguilles ne soit retournée dans sa lagune d'origine, certaines en ont pris la direction avant de retrouver leur chemin vers la mer. La Figure 22 illustre ce phénomène. On observe que 38% des anguilles de Bages-Sigean ont pris directement la bonne direction, contrairement à Gruissan où 100% des anguilles sont retournées en amont du site de relâcher avant de repartir vers la mer (entre 110 à 790 m en amont). Ce résultat est surprenant mais pourrait être lié au sens du courant dans les chenaux. En effet, il est connu que les anguilles utilisent les courants pour se diriger et dans les chenaux, le courant varie selon la direction du vent.

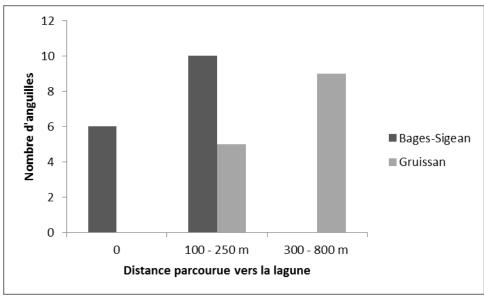


Figure 22. Distribution des distances parcourues par les anguilles vers la lagune avant de sortir en mer.

-Enfin, 4 anguilles provenant de Bages-Sigean (F1, F3, F6 et M2) ont été détectées sur des récepteurs placés en face de la lagune de Salses-Leucate. Ces récepteurs ont été placés dans le cadre d'une étude sur le comportement des sars, étude menée par l'équipe de P. Lenfant au sein de notre laboratoire. Ces résultats montrent que les 4 anguilles ont bien pris la direction du Sud vers Gibraltar.

III.4. Conclusions

Nous montrons par cette étude que la majorité des anguilles relâchées sortent des lagunes et rejoignent la mer. Par ailleurs la détection de 4 anguilles plus au sud de leur site de déversement, supporte l'hypothèse selon laquelle les anguilles se dirigent bien vers Gibraltar. Cependant l'étude n'a été réalisée que sur 2 lagunes, il faudrait pouvoir vérifier ces résultats sur les autres sites où ont été effectués les relâchers.

Par ailleurs, de nouvelles études sont nécessaires pour élucider le comportement de l'anguille argentée afin de mieux appréhender sa gestion en Méditerranée. Pour cela le marquage par balises satellites, bien que couteux, semble le mieux adapté pour fournir des informations précises quant au chemin emprunté par les anguilles dévalantes et ainsi apporter des réponses à la question de la contribution des anguilles argentées de Méditerranée au stock de géniteurs.

REFERENCES BIBLIOGRAPHIQUES

- Amilhat E. 2007. Etat sanitaire de l'anguille européenne *Anguilla anguilla* dans le bassin Rhône Méditerranée et Corse : synthèse bibliographique. Rapport Pôle lagunes et Cépralmar, CBETM, Université de Perpignan, 88pp.
- Amilhat E., Farrugio H., Lecomte-Finiger R., Simon G., Sasal P. 2008. Silver eel population size and escapement in a Mediterranean lagoon: Bages-Sigean, France, Knowledge and Management of Aquatic Ecosystems, 05, 390-391.
- Amilhat E., Fazio G., Simon G., Manetti M., Paris S., Delahaut L., Farrugio H., Lecomte-Finiger R., Sasal P., Faliex E. 2013. Silver European eels health in Mediterranean habitats. Ecology of Freshwater Fishes, doi: 10,1111/eff,12077
- Amilhat E., Feunteun E., Simon G., Faliex E., Crivelli A., Lecomte R., Chassanite A., Sasal P. and Farrugio H. 2012b. Protocole de relâcher d'anguilles argentées en Méditerranée française, 14pp.
- Amilhat E., Simon G., Chassanite A., and Faliex E., 2012a. Suivi scientifique de l'étude pilote de relâchers d'anguilles argentées en Méditerranée Nov-Déc 2011 Résultats préliminaires, 13pp.
- Deedler C.L., 1984 *Exposé synoptique des données biologiques sur l'anguille, Anguilla anguilla*. FAO, Fisheries Synopsis, n° 80, révision 1, 73 p.
- Durif, C. 2003. La migration d'avalaison de l'anguille europpéenne *Anguilla anguilla*: Caractérisation des fractions dévalantes, phénomène de migration et franchissement d'obstacles, Université Paul Sabatier, TOULOUSE III.
- Durif C., Guibert A., Elie P. 2009. Morphological Discrimination of the Silvering Stages of the European Eel. American Fisheries Society Symposium 58: 103-111.

- Faliex E., Amilhat E., Lecomte-Finiger R., Fazio G. 2009. Protocoles de suivi de l'échappement et de la qualité sanitaire des anguilles argentées (*Anguilla anguilla*) en Méditerranée Cas du bassin versant de la lagune de Bages-Sigean. Rapport Grisam, CBETM, Université de Perpignan, 65p.
- Girard P., et Elie P. 2007. Manuel d'identification des principales lésions anatomo-morphologiques et des principaux parasites externes des anguilles (81 pages) CEMAGREF / Association « Santé Poissons Sauvages ». Etude Cemagref n°110 Groupement de Bordeaux. http://www.ifremer,fr/indicang/documentation/pdf/guide-sanitaire,pdf
- Klefoth, T., Skov, C., Aarestrup, K. & Arlinghaus, R. 2013. Reliability of non-lethal assessment methods of body composition and energetic status exemplified by applications to eel (*Anguilla anguilla*) and carp (Cyprinus carpio). *Fisheries Research*, vol 146, pp, 18-26.
- McPherson, Lindsay R.; Slotte, Aril; Kvamme, Cecilie; Meier, Sonnich; Marshall, C. Tara, 2011: Inconsistencies in measurement of fish condition a comparison of four indices of fat reserves for Atlantic herring Clupea harengus. ICES Journal of Marine Science 68(1): 52-60
- van den Thillart, G., van Ginneken, V., Korner, F., Heijmans, R., Van der Linden, R. & Gluvers, A. 2004. Endurance swimming of European eel, Journal of Fish Biology 65: 312–318.

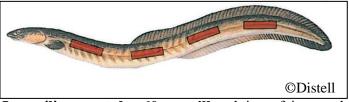
ANNEXE 1: FICHE BUREAU D'ETUDE

Fiche résumé

- Etre rigoureux et précis dans le protocole pour faciliter le suivi et la reproductibilité du projet d'un site à l'autre
- Faire respecter les consignes scientifiques
- Contrôle du camion : vide, propre, capacité adéquate (300kg/m³ max), fonctionnalité du système d'oxygénation
- Désinfecter le camion + rinçage à l'eau provenant de de lagune ou du site de déversement
- Remplissage du camion avec de l'eau provenant de de la lagune ou du site de déversement
- Activer l'oxygénation 10 minutes avant le chargement des anguilles
- Relever les paramètres physico-chimique de l'eau (T°, salinité, et % oxygène) au site de stockage (camion et site) et au site de déversement (camion et site)
- Vérification visuelle de toutes les serbes
- Vérification avancée d'une serbe par pêcheur : nombre de jaunes et sex-ratio
- Si + de 8 anguilles jaunes sur 60 observées = refus de la serbe
- Vérifier le choix et le respect des sites de stockage et de déversement
- Effectuer des relevés biométriques sur 60 anguilles prises au hasard dans le camion par déversement
- Congélation de 15 individus (moitié mâles, moitié femelles si possible) par site si une analyse de qualité des géniteurs est prévue
- Vérifier que toutes les anguilles sont bien relâchées
- Vérifier que toutes les fiches sont complètes avant de quitter le site

Détails fiche bureau d'étude

- L'opération doit être transparente, les pêcheurs, les mareyeurs, les services de l'Etat et les scientifiques doivent pouvoir se parler ouvertement et assister à toutes les opérations.
- La technique de pêche et de transport des anguilles pour un relâcher est différente des techniques habituelles de pêche et manipulation des anguilles pour la vente. Les anguilles ont besoin de partir dans le meilleur état de santé possible pour avoir le maximum de chance de réussir leur migration transatlantique et leur reproduction.
- 2 à 3 personnes doivent être présentes (y compris weekends et jours fériés). Une opération commence au site de stockage et finit après les mesures d'un lot d'anguilles pris au hasard.
- Vérifier que l'équipement du camion est suffisamment fonctionnel pour assurer le maintien des anguilles dans des conditions optimales jusqu'à leur déversement
- Contrôler que le camion du mareyeur servant au transport des anguilles est vide et propre avant le début de l'opération (notamment présence de salissures, mucus et matières organiques dans les cuves de transport).
- Désinfecter le camion : pulvérisation homogène d'acide peracétique (oxonia) (composé non polluant, non rémanent, et compatible avec l'agro-alimentaire). Comme les autres désinfectants, ce produit est toutefois dangereux et des recommandations de sécurité seront fournies (porter des lunettes, des gants et un masque de protection). La


- concentration doit être de 4% (soit dans un pulvérisateur : 8L d'eau du robinet + 0,32 L d'acide péracétique) et le temps de contact 20 minutes avant rinçage.
- Rinçage du camion à l'eau de la lagune ou à l'eau du site de déversement.
- Remplissage du camion avec de l'eau de la lagune ou à l'eau du site de déversement. Les eaux douces provenant de canaux ou de forages ne sont pas acceptables, car entrainent des changements de salinités et peuvent ainsi provoquer une source de stress pour l'anguille. L'eau doit provenir de la lagune où les anguilles ont été capturées ou du site de déversement (ceci afin d'éviter tout risque de transmission de pathogènes et de parasites). Les mareyeurs doivent disposer d'une pompe puissante afin de pouvoir rincer et remplir le camion en un temps restreint avant le chargement.
- Vérifier l'oxygénation de l'eau dans les cuves du camion. . Une bonne oxygénation de l'eau dans le camion est obligatoire : ≥ 80% dès le moment du chargement jusqu'à celui du déversement. Le mareyeur doit prévoir des bouteilles d'oxygène. Si à l'arrivée au site de déversement le taux d'oxygène est < 60% : relâcher non comptabilisé pour le mareyeur.
- Les mareyeurs doivent activer l'oxygène 10 minutes avant le chargement des anguilles afin de saturer l'eau recevant les anguilles.
- Les quantités d'anguilles transportées doivent être adaptées à la taille des cuves du camion (300kg/m³). Si les pêches sont importantes, il faudra s'adapter et prévoir plus de relâchers (plusieurs aller-retour du camion). 1 tonne max pour les camions de 3 cuves d'1 m³
- Prévoir d'arriver avant les pêcheurs pour préparer le camion : 13-14h. Ralentir l'étape de pesée pour s'assurer de la qualité des anguilles à relâcher. Uniquement les serbes d'anguilles argentées seront chargées dans le camion.
- Les chargements et déchargements doivent se faire le plus rapidement possible, dans la mesure du **bon déroulement du protocole**.
- Sur chaque site de stockage, de déversement, ainsi que dans le camion du mareyeur, les paramètres physico-chimique de l'eau (T°, salinité, et % oxygène) seront consignés (Annexe 4.1) afin de s'assurer du transport optimal des anguilles. La mesure du taux d'O₂ dans l'eau du camion au chargement se fera 20-25 minutes après activation de l'oxygénation juste avant d'y charger des anguilles. Avant tout mesure il est important de vérifier la sonde d'oxygène en mesurant le taux d'O₂ dans l'air (les sondes à membrane indiquent 100% dans l'air).
- Vérifier le stade des anguilles avant le chargement. Avant d'accepter son lot, demander au pêcheur d'ouvrir une serbe choisie au hasard (ou celles douteuses ou trop remplies) au-dessus d'un seau afin d'y faire tomber une soixantaine d'anguilles (garantissant ainsi un prélèvement aléatoire dans la serbe). En utilisant un deuxième seau, le comptage du nombre d'anguilles jaunes, pré-argentées et argentées est réalisé. Les catégories de tailles seront par la même occasion relevées : supérieure (femelles) et inférieure à 45cm (mâles), ce qui nous permettra d'avoir une idée du sex-ratio par la suite. Les résultats obtenus sont notés scrupuleusement sur une fiche. C'est le pourcentage d'anguilles jaunes (comparé au nombre total d'individus) qui est révélateur de la conformité du lot présenté. Si le pourcentage d'anguilles jaunes est supérieur à 8% la serbe est refusée. L'évaluation des tailles n'est pas utilisée pour l'évaluation de la qualité des anguilles mais comme information concernant la cohorte d'anguille ("sexratio") d'un site de pêche. Elle est uniquement basée sur une estimation visuelle rapide et donne donc une information grossière sur les proportions d'individus mâles et femelles (notamment à cause des individus mesurant près de 45cm). On peut néanmoins, avoir une idée de la présence et de la proportion approximative de

femelles sur chaque site. La manipulation des anguilles lors de cette étape supplémentaire permet d'observer l'état général des anguilles : rougeurs, blessures, présence d'individus morts, décomposés et leur vivacité. L'observation étant nécessairement rapide (compte tenu de la contrainte de charger le camion dans un temps restreint), cette observation permet d'identifier les cas flagrant d'anguilles en mauvais état et d'exclure uniquement ces individus.

- Refuser les serbes qui contiennent trop d'anguilles jaunes : plus de 5 sur 60 examinées (8%).
- Vérifier que les sites de stockage et de déversement correspondent bien à ceux préalablement établis avec le CRPMEM.
- Les anguilles relâchées feront l'objet d'un examen minutieux sur un sous-échantillon représentatif (60 anguilles). Ces anguilles seront préalablement endormies (avec de l'eugénol) pour effectuer les mesures : longueur, poids, diamètre des yeux et longueur des nageoires pectorales (Annexe 4.3). A signaler l'importance des mesures du taux de lipides musculaires avec le fatmeter, mesures qu'il faut réaliser systématiquement (données importantes pour estimer la qualité et l'aptitude des anguilles à effectuer la migration migration transatlantique et la reproduction).

Utilisation du Fatmeter:

Se mettre sur la calibration: EEL1 (i.e taux de lipides dans les muscles). Placer le capteur du fatmeter fermement aux positions indiquées sur le schéma ci-dessous (© Distell). Pour les anguilles <50 cm, prendre 4 mesures de chaque côté et pour les anguilles ≥50 cm, prendre 8 mesures de chaque côté. Important : pour chaque position, presser le bouton « read » jusqu'à ce que la lecture se stabilise. Une fois la lecture stabilisée, relâcher le bouton « read ». Il est important de relâcher le bouton « read » avant d'enlever le capteur du poisson. Une fois les mesures réalisées sur toutes les positions, le résultat final correspond à la moyenne des 8 ou 16 mesures (selon la calibration de l'appareil).

- Le prélèvement des 60 anguilles doit se faire pendant le relâcher (passer l'épuisette pendant la descente des anguilles) pour conserver le caractère aléatoire de l'échantillonnage. Prélever une plus grande quantité d'anguilles pour être sûr d'obtenir au moins 60 anguilles pour les mesures.
- Un sous-échantillon de 15 anguilles argentées par opération de déversement sera congelé pour des analyses ultérieures concernant leur charge en contaminants chimiques (PCBs, OCs, métaux lourds) et biologiques (parasites, virus). Les 15 anguilles doivent être ensachées, annotées et posées sur glace dans une glacière jusqu'à leur dépôt dans un congélateur. Le prud'homme sur place sera responsable du stockage de courte durée (congélateur personnel) des anguilles. Les anguilles devront ensuite être transportées (utilisation de glacières) au Comité Régional de Pêches pour une conservation de plus longue durée, jusqu'à redistribution des échantillons vers les différents laboratoires d'analyses. Le code d'étiquetage est précisé dans le tableau 2. Prévoir systématiquement une glacière et de la glace pour chaque relâcher,
- vérifier que toutes les fiches sont complètes avant de quitter le site
- En cas d'émergence de nouveaux problèmes sur le terrain, l'avis des scientifiques partenaires devra être pris en compte.

- Dans le cas où 2 camions sont a priori nécessaires sur un même site, prévoir plutôt 2 équipes complètes de 2 personnes pour traiter les deux camions comme deux relâchers différents
- Organiser une réunion entre scientifiques avant le début des sorties de terrain afin de s'harmoniser sur la façon de remplir les fiches et sur le vocabulaire à utiliser. Prévoir le premier relâcher avec l'ensemble des équipes, afin de standardiser les actions de terrain.
- **Rédaction de rapports succincts**: après chaque relâcher, il est nécessaire de rédiger un petit rapport indiquant toutes les informations intéressantes concernant le relâcher et qui n'apparaissent pas dans les fiches de terrain.

ANNEXE 2 : FICHE PÊCHEURS

Fiche Résumé:

- Concerne les anguilles argentées uniquement
- Techniques pour la vente \(\neq \) techniques permettant d'assurer le bon état sanitaire des anguilles en vue de leur migration transatlantique et de leur reproduction : prendre soin des anguilles
- Accepter que les serbes soient vérifiées (avant remplissage du camion)
- Si plus de 5 anguilles jaunes sur 60 prises au hasard dans une serbe= serbe refusée
- Utiliser des grandes serbes de stockage : 1,75 m * 1,60 m (maille de 5-8 mm pour éviter les blessures)
- Chaque serbe de stockage doit comporter un poids max d'anguilles ≤ 40 kg, ou mieux, 30kg.
- Afin d'éviter les marques de filet nécrosées indiquant un séjour prolongé dans les filets, les anguilles du relâcher doivent être pêchées de la nuit (relève quotidienne).
- Le stockage des anguilles doit être effectué dans un endroit où qualité de l'eau est bonne (bonne oxygénation)
- Ne pas transporter les anguilles à sec
- Respecter l'avis des scientifiques
- Communiquer les caractéristiques des capétchades utilisées (longueur paradière, maillage paradière, tour, poche début, poche fin) ainsi que la date et la lagune pêchée.
- Protocole pas respecté = arrêt des relâchers car pas de crédibilité

Détails fiche pêcheur :

- L'opération doit être transparente, les pêcheurs, les mareyeurs, les services de l'Etat et les scientifiques doivent pouvoir se parler ouvertement et assister à toutes les opérations.
- Présence à chaque relâcher : scientifiques, prud'homme, CRPMEM, Affaires maritime
- La technique de pêche, de stockage et de transport des anguilles pour un relâcher est différente des techniques habituelles utilisées pour la vente. Les anguilles ont besoin de partir dans le meilleur état de santé possible pour avoir le maximum de chance de réussir leur migration et leur reproduction.
- Seules les anguilles argentées sont éligibles pour le relâcher. Relâcher une anguille jaune n'a aucun intérêt car elle ne part pas se reproduire. Si certains sites posent problèmes, il faut alors sélectionner que les sites où 100% des anguilles capturées sont argentées.
- Toutes les serbes seront vérifiées par estimation visuelle rapide. Si une serbe parait contenir beaucoup de jaunes, elle sera vérifiée plus en détails
- Une étape de vérification du stade d'argenture et de l'état de santé des anguilles devra être réalisée avant le chargement du camion (pendant la pesée des serbes). Une serbe par pêcheur sera prise au hasard et le stade (jaune ou argenté) sera déterminé sur une soixantaine d'anguilles.
- Les anguilles devront être en bon état, vives (aucune anguille morte dans la serbe) et ne pas comporter de marques de filets avec rougeurs et inflammations qui indiqueraient un séjour prolongé dans les filets.

- La serbe sera refusée si elle contient plus de 5 anguilles jaunes sur les 60 observées soit 8% (on prend en compte le nombre d'anguilles jaunes par serbe, pas leur poids).
- Pour une anguille de qualité, les poches réceptacles doivent être de 2,00 m * 0,50 m à 2,50 m * 0,90 m. La maille devra être petite (entre 5 et 8 mm), afin d'éviter les blessures tout en permettant une oxygénation suffisante.
- Les anguilles seront stockées dans de grandes serbes (poches en filet), taille : 1,75 m * 1.60 m (maille de 5-8 mm)
- Les serbes de stockage ne devront pas excéder 40kg.
- Les anguilles devront rester le moins longtemps possible dans les filets. Cela implique que les poches soient relevées quotidiennement. Certains sites, inaccessibles pendant les périodes de forts vents qui caractérisent la période de dévalaison, ne pourront pas être sélectionnés.
- Les anguilles devront être stockées dans la lagune à un endroit où l'oxygénation et la qualité de l'eau sont bonnes et le camion des mareyeurs devra y avoir accès facilement.
- Les anguilles ne doivent pas rester plus d'une nuit dans les filets.
- Les anguilles doivent être conservées dans de l'eau. Si un transport à l'air libre ne peut être évité, il doit être le plus court possible. Afin d'éviter les longs transports il faudra multiplier les points de récolte.
- Une seule tonne d'anguille par camion sera acceptée. Les kilos supplémentaires seront refusés. Si trop de pêcheurs sur un site, possibilité de multiplier le nombre de relâchers mais dans tous les cas les anguilles relâchées devront être pêchées de la veille au soir ou du matin. Les pêcheurs devraient prévoir à l'avance 1 ou 2 relâchers selon leur pêche (ils peuvent néanmoins appeler le matin pour essayer de faire 2 relâchers si besoin).
- Pour effectuer une bonne interprétation des mesures réalisées sur les anguilles, le pêcheur devra indiquer aux scientifiques les caractéristiques des capéchades utilisées (longueur paradière, maillage paradière, tour, poche début, poche fin) ainsi que la date de pêche et le lieu : nom de la lagune.
- En cas d'émergence de nouveaux problèmes sur le terrain, l'avis des scientifiques partenaires devra être pris en compte.
- Les opérations de relâchers ne se justifient que si les consignes et le protocole sont parfaitement respectés. Au déversement, des mesures seront réalisées sur des anguilles prises au hasard et le rapport final dépendra de ces résultats. Il suffit que quelques pêcheurs ne respectent pas les consignes pour mettre en péril le travail de tous les autres pêcheurs et risquer la non reconduction des opérations de relâchers.

ANNEXE 3: FICHE MAREYEUR

Fiche résumé :

- Equipement du camion nécessairement fonctionnel pour le maintien des anguilles dans des conditions optimales
- Techniques pour la vente \neq techniques permettant d'assurer le bon état sanitaire des anguilles en vue de leur migration transatlantique et de leur reproduction
- Le camion doit arriver vide et propre sur le lieu de stockage.
- Désinfection réalisée par le bureau d'étude + rinçage à l'eau de la lagune ou l'eau du site de déversement
- Remplissage du camion avec de l'eau de la lagune ou l'eau du site de déversement
- Amener une pompe puissante afin d'optimiser le remplissage du camion
- Bonne oxygénation de l'eau dans le camion obligatoire : taux d'oxygénation ≥ 80%
- Si le taux d'oxygène est < 60% à l'arrivée au site de déversement : relâcher non comptabilisé pour le mareyeur.
- Activer l'oxygène 10 minutes avant le chargement des anguilles.
- Dans les cuves : **300kg d'anguilles /m**³ maximum
- Préparer le camion avant l'arrivée des pêcheurs (rendez-vous vers 13-14h)
- Les anguilles devront être relâchées dans un endroit assez profond pour éviter tout traumatisme.

Détails fiche mareyeur :

- L'opération doit être transparente, les pêcheurs, les mareyeurs, les services de l'Etat et les scientifiques doivent pouvoir se parler ouvertement et assister à toutes les opérations.
- La technique de pêche et de transport des anguilles pour un relâcher est différente des techniques habituelles de pêche et de manipulation des anguilles pour la vente. Les anguilles ont besoin de partir dans le meilleur état de santé possible pour avoir le maximum de chance de réussir leur migration transatlantique et leur reproduction.
- L'équipement du camion doit être suffisamment fonctionnel pour assurer le maintien des anguilles dans des conditions optimales jusqu'à leur déversement : vérification par les scientifiques.
- Le camion doit arriver **vide et propre** sur le lieu de stockage (nécessité pour une désinfection efficace).
- La désinfection du camion est réalisée par le bureau d'étude: pulvérisation homogène d'acide péracétique (oxonia) 4% (soit dans un pulvérisateur : 8L d'eau du robinet + 0,32 L d'acide péracétique), temps de contact 20 minutes avant rinçage.
- Rinçage à l'eau de la lagune ou à l'eau du site de déversement.
- Remplissage du camion avec de l'eau de la lagune ou à l'eau du site de déversement. Les eaux douces provenant de canaux ou de forages ne sont pas acceptables, car entrainent des changements de salinités et peuvent ainsi provoquer une source de stress pour l'anguille. L'eau doit provenir de la lagune où les anguilles ont été capturées ou du site de déversement (ceci afin d'éviter tout risque de transmission de pathogènes et de parasites). Les mareyeurs doivent disposer d'une pompe puissante afin de pouvoir rincer et remplir le camion en un temps restreint avant le chargement.

- Une bonne oxygénation de l'eau dans le camion est obligatoire : nécessité d'un taux d'oxygène ≥ 80% dès le moment du chargement jusqu'à celui du déversement. Prévoir des bouteilles d'oxygène. Si à l'arrivée au site de déversement le taux d'oxygène est < 60% : relâcher non comptabilisé pour le mareyeur.
- Activer l'oxygénation 10 minutes avant le chargement des anguilles pour optimiser le transport.
- Les quantités d'anguilles transportées doivent être adaptées à la taille des cuves du camion (300kg/m³). Si les pêches sont importantes, il faudra s'adapter et prévoir plus de relâchers (plusieurs aller-retour du camion). Quand cela est possible, prévoir une remorque pour les sites où la capture dépasse la tonne d'anguilles.
- Prévoir d'arriver avant les pêcheurs pour préparer le camion : 13-14h. Ralentir l'étape de pesée pour s'assurer de la qualité des anguilles à relâcher. Les serbes d'anguilles argentées seulement seront chargées dans le camion.
- Une étape de vérification du stade d'argenture et de l'état de santé des anguilles sera réalisée avant le chargement du camion (pendant la pesée des serbes). Cette vérification sera réalisée par les scientifiques (si le besoin s'en ressent, il faudra ralentir la cadence des pesées et du chargement des anguilles). Les pêcheurs ne doivent donc pas sortir de l'eau toutes leurs serbes de stockage d'anguilles en même temps.
- Le chargement et le déchargement doivent se faire le plus rapidement possible, dans la mesure du **bon déroulement du protocole**.
- L'affichage de la pesée doit être bien visible.
- Les anguilles seront relâchées en fin de journée au coucher du soleil ou après, dans un endroit assez profond pour éviter tout traumatisme dû à la chute.
- En cas d'émergence de nouveaux problèmes sur le terrain, l'avis des scientifiques devra être pris en compte.

ANNEXE 4 : FICHES DE TERRAIN

1. Paramètres physico-chimiques

Date:		Vent:			
Lagune:		T° air:			
Heure:		Méteo:			
		CAMION à l'ar	rivée		
Nom mareyeur :		Vide: O/N		Remarques:	
Nb de cuves & capacité:		Propre: O/N			
Système O2: O/N					
Désinfection (8L eau+0.32L	_d'oxonia + 20 min):				
Provenance de l'eau:					
Point GPS de prise de l'eau:					
T°eau:		O2%:			
Salinité:		pH:			
	CAMION J	uste avant chargen	nent des anguilles :		
Heure:		O2%:		Remarques:	
T°eau:		0276.			
Salinité:		pH:			
Salinité: Site STOCK	(AGE 1 :	-	ckage 2 :	Site stoo	ckage 3 :
	(AGE 1 :	-	ckage 2 :	Site stoo	ckage 3 :
Site STOCK	CAGE 1:	Site stoo	ckage 2 :		ckage 3 :
Site STOCK	AGE 1:	Site stoo	ckage 2 :	Nom:	ckage 3 :
Site STOCK Nom: Point GPS:	AGE 1:	Site stoo Nom: Point GPS:	ckage 2 :	Nom: Point GPS:	ckage 3 :
Site STOCK Nom: Point GPS: Heure:	(AGE 1 :	Site stoo Nom: Point GPS: Heure:	ckage 2 :	Nom: Point GPS: Heure:	ckage 3 :
Site STOCK Nom: Point GPS: Heure: T°eau:	AGE 1:	Site stoo Nom: Point GPS: Heure: T°eau:	ckage 2 :	Nom: Point GPS: Heure: T°eau:	ckage 3 :
Site STOCK Nom: Point GPS: Heure: T°eau: Salinité:	AGE 1:	Site stoo Nom: Point GPS: Heure: T°eau: Salinité:	ckage 2 :	Nom: Point GPS: Heure: T°eau: Salinité:	ckage 3 :
Site STOCK Nom: Point GPS: Heure: T°eau: Salinité: O2%:	(AGE 1 :	Site stoo Nom: Point GPS: Heure: T°eau: Salinité: O2%:	ckage 2 :	Nom: Point GPS: Heure: T°eau: Salinité: O2%:	ckage 3 :
Site STOCK Nom: Point GPS: Heure: T°eau: Salinité: O2%: pH:		Site stoo Nom: Point GPS: Heure: T°eau: Salinité: 02%: pH:		Nom: Point GPS: Heure: T°eau: Salinité: 02%: pH:	ckage 3 :
Site STOCK Nom: Point GPS: Heure: T°eau: Salinité: O2%: pH:		Site stoo Nom: Point GPS: Heure: T°eau: Salinité: 02%: pH: Tonnage: N Au déchargemen		Nom: Point GPS: Heure: T°eau: Salinité: 02%: pH:	ckage 3 :
Site STOCK Nom: Point GPS: Heure: T°eau: Salinité: O2%: pH: Tonnage:		Site stoo Nom: Point GPS: Heure: T°eau: Salinité: O2%: pH: Tonnage:		Nom: Point GPS: Heure: T°eau: Salinité: O2%: pH: Tonnage:	ckage 3 :
Site STOCK Nom: Point GPS: Heure: T°eau: Salinité: O2%: pH: Tonnage: Heure:		Site stoo Nom: Point GPS: Heure: T°eau: Salinité: 02%: pH: Tonnage: N Au déchargemen		Nom: Point GPS: Heure: T°eau: Salinité: O2%: pH: Tonnage:	ckage 3:
Site STOCK Nom: Point GPS: Heure: T°eau: Salinité: O2%: pH: Tonnage: Heure: T°eau:		Site stoo Nom: Point GPS: Heure: T°eau: Salinité: O2%: pH: Tonnage: J Au déchargement O2%: pH:	t des anguilles :	Nom: Point GPS: Heure: T°eau: Salinité: O2%: pH: Tonnage:	ckage 3:
Site STOCK Nom: Point GPS: Heure: T°eau: Salinité: O2%: pH: Tonnage: Heure: T°eau:		Site stoo Nom: Point GPS: Heure: T°eau: Salinité: O2%: pH: Tonnage: N Au déchargemen	t des anguilles :	Nom: Point GPS: Heure: T°eau: Salinité: O2%: pH: Tonnage:	ckage 3:
Site STOCK Nom: Point GPS: Heure: T°eau: Salinité: O2%: pH: Tonnage: Heure: T°eau: Salinité:		Site stoo Nom: Point GPS: Heure: T°eau: Salinité: O2%: pH: Tonnage: N Au déchargemen O2%: pH: Site de DEVERSE	t des anguilles :	Nom: Point GPS: Heure: T°eau: Salinité: O2%: pH: Tonnage: Remarques:	ckage 3:
Site STOCK Nom: Point GPS: Heure: T°eau: Salinité: O2%: pH: Tonnage: Heure: T°eau: Salinité:		Site stoo Nom: Point GPS: Heure: T°eau: Salinité: O2%: pH: Tonnage: VAu déchargement O2%: pH: Site de DEVERSE O2%:	t des anguilles :	Nom: Point GPS: Heure: T°eau: Salinité: O2%: pH: Tonnage: Remarques:	ckage 3:
Site STOCK Nom: Point GPS: Heure: T°eau: Salinité: O2%: pH: Tonnage: Heure: T°eau: Salinité: T°eau: Salinité:		Site stoo Nom: Point GPS: Heure: T°eau: Salinité: O2%: pH: Tonnage: VAu déchargement O2%: pH: Site de DEVERSE O2%:	t des anguilles :	Nom: Point GPS: Heure: T°eau: Salinité: O2%: pH: Tonnage: Remarques:	ckage 3:

2. <u>Vérification des serbes.</u> (M=mâle, F=femelle, ND=non déterminé, M/F= mâle ou femelle).

Date:			Site de st	tockage :						
Nb de pêcheurs										
Remarques										
	_									
		Argentées		Р	ré-argenté	e	Jaune			
Nom pêcheur:	M	F	ND	М	F	ND	M/F	F		
		Argentées		P	ré-argenté	е	Jai	ıne		
Nom pêcheur:	M	F	ND	М	F	ND	M/F	F		
		Argentées			ré-argenté		Jaune			
Nom pêcheur:	M	F	ND	М	F	ND	M/F	F		
		Argentées	1	Р	ré-argenté	e				
Nom pêcheur:	M	F	ND	М	F	ND	M/F	F		
		Argentées			ré-argenté			ıne		
Nom pêcheur:	М	F	ND	М	F	ND	M/F	F		
	1									
		Argentées		Р	ré-argenté	e		ıne		
Nom pêcheur:	М	F	ND	М	F	ND	M/F	F		
	<u> </u>						1			

3. <u>Mesures sur un échantillon aléatoire de 60 anguilles argentées</u>

DATE :			vivacité O/N:				Scientifiques présents			Autres personnes présentes				Remarques	
Lagune :			Nb de mortes:				Con° eugenol :								
Point GPS :			Heure début :				Heure fin:								
			1		1								ı	1	
Code échantillon	Marques de filet (T,C,Q) et Fraiches ou nécrosées	Code patho	Stade: Jaune/argenté e/pré-argentée PA	Couleur contrastée oui/non	corpuscules noirs sur ligne latérale oui/non	longueur totale (cm)	masse (g)	Diam œil gauche vert (mm)	Horiz	L nageoire pect gu (mm).	Diam œil droit vert (mm)	Diam œil droit Horiz (mm)	L nageoire pect droite (mm)	lipides fatmeter	remarques

4. Dénombrement et caractérisation du stade des anguilles restantes

	tes dans les bidon	s après les 60 mesurées	
Date:			
Site:			
Argentées	mâles		
Ü			
	Femelles		
	i ciriciics		
	Indéterminées		
	indeterminees		
Jaunes	Femelles		
	Indéterminées		
Pré-argentées	Mâles		
r ro argonicoo	Widioo		
	Femelles		
	i ciliciles		
	la ditta marini		
	Indéterminées		

ANNEXE 5: LOCALISATION DES SITES DE STOCKAGE ET DEVERSEMENTS

- #
- déversement (se référer au tableau 1) Premier (a) et deuxième (b) lieu de stockage sur un même site a,b

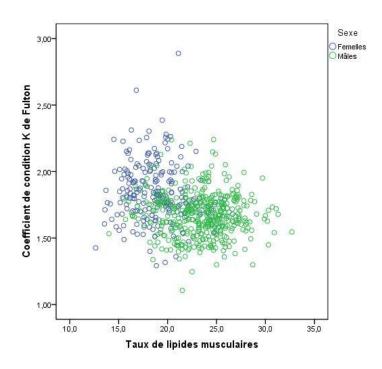
		Localisation remplissage eau camion			Localisation chargements d	les anguilles		Localisation des déversements		
#	site		Lat. Nord	Long. Est		Lat. Nord	Long. Est		Lat. Nord	Long. Est
1	BagesS	Interstection canal de la Robine et chenal de Port la Nouvelle	43°01'28.5"	3°02'29.3"	Juste à coté du remplissage	43°01'27.5"	3°02'28.7"	Chenal dePort la Nouvelle	43°01'15.2"	3°03'11.1"
2	BagesN	Interstection canal de la Robine et chenal de Port la Nouvelle	43°01'28.5"	3°02'29.3"	Port de Peyriac de Mer	43°04'58.7"	2°58'13.0"	Chenal dePort la Nouvelle	43°01'15.2"	3°03'11.1"
3	LeucateS	Port Barcarès Grau St Ange	42°48'03.0"	3°01'52.2"	Presqu'île	42°48'03.1"	3°01'52.2"	Port Barcarès	42°47'48.7"	3°02'20.6"
4	Thau1_M	Lagune de Thau chez Aguirrebarrena	43°24'50.9"	3°41'40.9"	Port Tabarka (a)	43°21'21.0"	3°32'06.6"	Port Marseillan	43°19'08.7"	3°33'29.6"
					Port Tabarka (b)	43°21'21.0"	3°32'06.6"	Port Marseillan	43°19'08.7"	3°33'29.6"
5	LeucateN	Centre conchylicole	42°53'08.3"	3°02'56.9"	Même site que remplissage	42°53'08.3"	3°02'56.9"	Port Leucate	42°52'13.3"	3°02'50.7"
6	Gruissan	Canal de Grazel, sous le pont	43°06'02.7"	3°05'52.4"	Village des pêcheurs	43°04'53.7"	3°04'06.9"	Canal de Grazel	43°05'41.8"	3°06'41.6"
7	Thau3_S	Lagune de Thau chez Aguirrebarrena	43°24'50.9"	3°41'40.9"	Pointe courte (a)	43°24'49.6"	3°41'32.2"	Capitainerie de Sète	43.23'57.9"	3°42'04.5"
			43°24'50.9"	3°41'40.9"	Pointe courte au bout (b)	43°24'51.1"	3°41'27.2"	Capitainerie de Sète	43.23'57.9"	3°42'04.5"
8	Thau3_S	Lagune de Thau chez Aguirrebarrena	43°24'50.9"	3°41'40.9"	Pointe courte (a)	43°24'49.25"	3°41'32.4"	Capitainerie de Sète	43.23'57.9"	3°42'04.5"
			43°24'50.9"	3°41'40.9"	Pointe courte au bout (b)	43°24'51.1"	3°41'27.2"	Capitainerie de Sète	43.23'57.9"	3°42'04.5"
9	Mauguio	Canal	43°36'28.63"	4°06'25.52"	Même site que remplissage(a)	43°36'28.63"	4°06'25.52"	Port de Carnon	43°32'29.4"	3°58'26.8"
					Pérols (b)	43°33'10.0"	3°58'12.4"	Port de Carnon	43°32'29.4"	3°58'26.8"
10	Vendres	Embouchure de l'Aude au port	43°13"07.1"	3°14'02.1"	Canal	43°13'30.5"	3°13'25.6"	Embouchure de l'Aude	43°12'59.3"	3°14'07.0"
11	Thau2_B	Lagune de Thau chez Aguirrebarrena	43°24'50.9"	3°41'40.9"	Port de plaisance Bouzigue	43°26'47.5"	3°39'32.0"	Capitainerie de Sète	43.23'57.9"	3°42'04.5"
12	Palavas	Cabanes de Villeneuve	43°31'02.2"	3°52'48.6"	Cabanes de Villeneuve (a)	43°31'02.2"	3°52'48.6"	Port Frontignan	43.25'55.17"	3°46'35.69"
					Quai Caramus, Frontignan (b)	43°26'41.2"	3°45'45.9"	Port Frontignan	43.25'55.17"	3°46'35.69"
13	PonantC	Canal Aigues- Mortes	43°34'37.2"	4°10'58.1"	Même site que remplissage	43°34'37.2"	4°10'58.1"	Port Camargue	43.31'16.0"	4°07'32.4"

ANNEXE 6: PARAMETRES PHYSICO-CHIMIQUES

déversement (se référer au tableau 1)

a,b Premier (a) et deuxième (b) lieu de stockage sur un même site

S eau sur le lieu de stockage des anguilles


EP eau pompée dans le camion

CC eau dans camion juste avant chargement
CD eau dans camion juste avant déversement

D eau site de déversement

								Oxygène													
		Tempé	rature (de l'eau	(°C)		Salini	té				(%)					pН				
#	site	S	EP	CC	CD	D	S	EP	CC	CD	D	S	EP	CC	CD	D	S	EP	CC	CD	D
1	BagesS	12,1	12,0	12,0	14,0	NA	31	31	31	33	NA	62	88	85	NA	NA	8,1	8,1		7,3	NA
2	BagesN	12,6	13,8	13,8	14,2	14,4	32	36	36	35	37	94	84	84	150	90	8,0	7,1	4,1	7,5	8,5
3	LeucateS	14,8	14,1	14,0	15,0	15,5	31	33	33	33	35	130	200	200	110	97	8,1	8,2	8,2	7,4	8,0
4	Thau1_M(a)	13,1	14,2	14,2	14,6	15,2	40	39	37	37	37	75	65	93	98	77	7,4	7,3	7,4	6,7	7,1
	Thau1_M(b)	13,1			13,5		39			39		87			95		7,4			6,8	
5	LeucateN	14,0	14,0	13,4	13,9	13,6	36	36	34	34	36	69	69	95	107	79	7,9	7,9	7,9	7,5	8,0
6	Gruissan	14,2	13,9		15,0	15,1	34	34		33	34	113	98	221	130	105	8,0	7,9		7,0	8,0
7	Thau3_S (a)	9,5	9,4	9,6	9,9	11,9	38	38	38	37	38	91	70	80	124	95	8,2	8,0	8,0	7,4	8,1
	Thau3_S (b)		9,4	9,6	9,8	11,9		38	37	37	38		70	84	133	95		8,0	8,1	7,0	8,1
8	Thau3_S (a)	8,8	8,8	9,0	9,4	11,3	38	38	38	38	38	85	74	100	115	95	7,6	8,0	7,9	7,3	7,8
	Thau3_S (b)		8,8	8,9	9,2	11,3		38	37	na	38		74	89	135	95		8,0	8,0	7,6	7,8
9	Mauguio (a)	6,8	6,8	6,2	7,5	7,6	4	4	14	13	27	68	68	87	113	100	7,8	7,8	7,9	7,4	7,9
	Mauguio (b)	6,4		6,6	7,8		25		13	15		91		84	131		7,9		7,8	7,6	
10	Vendres	7,7	8,3	7,7	7,7	7,8	3	8	8	8	6	103	105	230	198	103	8,7	8,1	8,4	7,9	8,5
11	Thau2_B	6,8	9,2	8,2	8,5	11,5	35	35	36	36	36	98	103	170	80	100	8,3	8,2	8,2	7,9	8,3
12	Palavas	4,0	6,1	8,0	7,5	7,8	33	30	30	30	35	123	106	215	216	113	8,2	8,3	8,0	7,8	8,3
13	PonantC	8,3	8,3	8,3	8,9	10,3	12	12	12	12	35	95	95	95	108	111	8,0	8,0	8,0	7,9	7,9

ANNEXE 7: RELATIONS ENTRE LE COEFFICIENT DE CONDITION DE FULTON K ET LE TAUX DE LIPIDES MUSCULAIRES (en %).

ANNEXE 8: ESTIMATION DU NOMBRE D'ANGUILLES ARGENTEES RELACHEES PAR SITE. Les anguilles \leq 45cm sont considérées comme des mâles (M) et celles > 45cm comme des femelles (F).

Lagune(s)	Poids moyen d'un M (g)	Poids moyen d'une F (g)	Nombre de M	Nombre de F
LeucateS	86	466	20756	506
LeucateN	83	405	6913	272
BagesN	102	392	9501	750
BagesS	101	462	11488	493
Gruissan	82	486	19459	828
Vendres	121	480	390	689
Thau1	87	374	4677	2951
Thau2	97	395	2412	1324
Thau3a	92	334	4493	4724
Thau3b	90	298	4543	4543
Mauguio	107	531	696	2945
Palavas	98	457	1328	2199
PonantC	105	413	940	1590
TOTAL	96	423	87595	23814

ANNEXE 9: POSITIONS DES RECEPTEURS UTILISES LORS DU MARQUAGE ACOUSTIQUE. (PLN: Port la Nouvelle; les numéros et lettres correspondent aux figures 17, 18 et 19)

#	Longitude	Latitude	site
1	3° 04' 02,97" E	43° 00′ 51,36″ N	PLN N°7 (le plus proche de la mer)
2	3° 03' 48,44" E	43° 00′ 55,22″ N	PLN N°6
3	3° 03' 31,38" E	43° 01' 07,02" N	PLN N°5
4	3° 03' 16,68" E	43° 01' 11,48" N	PLN N°4
5	3° 02' 59,83" E	43° 01' 17,68" N	PLN N°3
6	3° 02' 46,85" E	43° 01' 19,66" N	PLN N°2
7	3° 02' 33,59" E	43° 01' 25,74" N	PLN N°1
8	3° 06' 48,82" E	43° 05' 40,54" N	Grazel N°1 (le plus proche de la mer)
9	3° 06' 38,59" E	43° 05' 42,94" N	Grazel N°2
10	3° 06' 32,39" E	43° 05' 45,25" N	Grazel N°3
11	3° 06' 23,25" E	43° 05' 48,72" N	Grazel N°4
12	3° 06' 13,91" E	43° 05′ 52,14″ N	Grazel N°5
13	3° 06' 05,70" E	43° 05′ 55,19″ N	Grazel N°6
14	3° 05' 23,11" E	43° 06' 10,78" N	Grazel N°7
15	3° 02' 10,03" E	42° 47' 55,22" N	Port Barcarès (A)
16	3° 03' 13,04" E	42° 52' 24,47" N	Port Leucate (B)
17	3° 03' 06,63" E	42° 53′ 04,47″ N	Grau des ostréiculteurs à Leucate (C)
18	3° 01' 36,08" E	42° 56′ 18,82″ N	Grau de La palme (D)
19	3° 05' 01,70" E	43° 03' 30,99" N	Grau de l'Ayrolle (E)
20	3° 07' 35,68" E	43° 06' 38,27" N	Port Gruissan (F)
21	3° 09' 03,75" E	43° 08' 19,74" N	Grau de Mateille (G)
22	3° 10' 57,34" E	43° 10′ 11,31″ N	Port Narbonne (H)

ANNEXE 10 : CARACTERISTIQUES BIOLOGIQUES DES 30 ANGUILLES MARQUEES

		Date de	Date de marquage	fin d'émission de la		N° marque		Poids		Lipides
	Sites de capture	capture	et de lâché	marque	Code	VEMCO	Lt (cm)	(g)	sexe	(%)
1	Bages-Sigean	8-9/11/2012	27/11/2012	19/02/2013	BAG-M1	7345	41,7	125	Mâle	27,6
2	Bages-Sigean	8-9/11/2012	27/11/2012	19/02/2013	BAG-M2	7344	41,2	133,55	Mâle	20,6
3	Bages-Sigean	8-9/11/2012	27/11/2012	19/02/2013	BAG-M3	7350	41	114,5	Mâle	22,6
4	Bages-Sigean	8-9/11/2012	27/11/2012	19/02/2013	BAG-M4	7355	39,7	112,65	Mâle	24
5	Bages-Sigean	8-9/11/2012	27/11/2012	19/02/2013	BAG-M5	7349	40,8	112,7	Mâle	24,7
6	Bages-Sigean	8-9/11/2012	27/11/2012	19/02/2013	BAG-M6	7354	41,4	132,7	Mâle	22,8
7	Bages-Sigean	8-9/11/2012	27/11/2012	19/02/2013	BAG-M7	7353	39,3	110,6	Mâle	22,2
8	Bages-Sigean	8-9/11/2012	27/11/2012	19/02/2013	BAG-M8	7348	40,5	108,4	Mâle	19,6
9	Bages-Sigean	8-9/11/2012	27/11/2012	19/02/2013	BAG-M9	7343	40,5	117,4	Mâle	22,1
10	Bages-Sigean	8-9/11/2012	27/11/2012	27/04/2013	BAG-F1	7360	93	1840	Femelle	14,75
11	Bages-Sigean	8-9/11/2012	27/11/2012	27/04/2013	BAG-F2	7365	82,2	1260	Femelle	13,95
12	Bages-Sigean	8-9/11/2012	27/11/2012	27/04/2013	BAG-F3	7370	73,8	927	Femelle	14,5
13	Bages-Sigean	8-9/11/2012	28/11/2012	28/04/2013	BAG-F4	7369	78,8	992,8	Femelle	15,2
14	Bages-Sigean	8-9/11/2012	28/11/2012	28/04/2013	BAG-F5	7364	77,8	1058	Femelle	17,7
15	Bages-Sigean	8-9/11/2012	28/11/2012	28/04/2013	BAG-F6	7368	80	1044,2	Femelle	15,8
16	Bages-Sigean	8-9/11/2012	28/11/2012	28/04/2013	BAG-F7	7363	74	750,9	Femelle	15,2
17	Gruissan	18/11/2012	05/12/2012	05/05/2013	GRU-F1	7359	100,5	2060	Femelle	14,1
18	Gruissan	18/11/2012	05/12/2012	05/05/2013	GRU-F2	7358	92,9	1405	Femelle	15,3
19	Gruissan	18/11/2012	05/12/2012	05/05/2013	GRU-F3	7362	88,5	1248	Femelle	17
20	Gruissan	18/11/2012	05/12/2012	05/05/2013	GRU-F4	7357	84,4	975	Femelle	16,6
21	Gruissan	18/11/2012	05/12/2012	05/05/2013	GRU-F5	7367	83,4	1025	Femelle	14,1
22	Gruissan	18/11/2012	05/12/2012	05/05/2013	GRU-F6	7356	80,6	1055	Femelle	18
23	Gruissan	18/11/2012	05/12/2012	05/05/2013	GRU-F7	7361	82,1	1170	Femelle	16,6
24	Gruissan	18/11/2012	05/12/2012	05/05/2013	GRU-F8	7366	84,9	1241	Femelle	16,3
25	Gruissan	18/11/2012	05/12/2012	27/02/2013	GRU-M1	7342	41,3	117,7	Mâle	22,4
26	Gruissan	18/11/2012	05/12/2012	27/02/2013	GRU-M2	7347	39	113	Mâle	25
27	Gruissan	18/11/2012	05/12/2012	27/02/2013	GRU-M3	7352	40	115,65	Mâle	25,5
28	Gruissan	18/11/2012	05/12/2012	27/02/2013	GRU-M4	7351	40	111,9	Mâle	23,1
29	Gruissan	18/11/2012	05/12/2012	27/02/2013	GRU-M5	7346	43,4	126,3	Mâle	25,1
30	Gruissan	18/11/2012	05/12/2012	27/02/2013	GRU-M6	7341	36,5	101,2	Mâle	24,5