

Agence de l'Eau Rhône-Méditerranée et Corse

ETUDE DES PLANS D'EAU DU PROGRAMME DE SURVEILLANCE DES BASSINS RHONE-MEDITERRANEE ET CORSE - RAPPORT DE DONNEES BRUTES ET INTERPRETATION - LAC DE SAINT-POINT SUIVI ANNUEL 2012

crédit photo : Sciences et Techniques de l'Environnement

Rapport n° 08-283/2013-PE2012-21 – Septembre 2013

co-traitants

sous-traitants

Maître d'Ouvrage :	Agence de l'Eau Rhône Méditerranée et Corse (AERMC) Direction des Données et Redevances 2-4, allée de Lodz 69363 Lyon cedex 09					
	Interlocuteur: Mr Imbert Loïc					
	Coordonnées: loic.imbert@eaurmc.fr					

Titre du Rapport	ETUDE DES PLANS D'EAU DU PROGRAMME DE SURVEILLANCE DES BASSINS RHONE-MEDITERRANEE ET CORSE					
Résumé	Le rapport rend compte de l'ensemble des données collectées sur le lac de Saint-Point lors des campagnes de suivi 2012. Une présentation du plan d'eau et du cadre d'intervention est menée puis les résultats des investigations sont développés dans la suite du document.					
Mots-clés	Géographiques : Bassins Rhône-Méditerranée et Corse - Doubs (25) - Lac de Saint-Point Thématiques : Réseaux de surveillance - Etat trophique - Plan d'eau					
Date	Septembre 2013	Statut du rapport	Définitif			
Présent tirage en	1	Diffusion informatique au	oui			
exemplaire (s)		Maître d'Ouvrage				

Auteur	Sciences et Techniques de l'Environnement – B.P. 374 17, Allée du Lac d'Aiguebelette - Savoie Technolac 73372 Le Bourget du Lac cedex tél.: 04 79 25 08 06; tcp: 04 79 62 13 22
Rédacteur(s)	Hervé Coppin
Chef de projet – contrôle qualité	Eric Bertrand / Audrey Péricat

SOMMAIRE

PR	EAMBULE	1
1	CADRE DU PROGRAMME DE SUIVI	3
	INVESTIGATIONS PHYSICOCHIMIQUES	
	INVESTIGATIONS HYDROMORPHOLOGIQUES ET HYDROBIOLOGIQUES	
	PRESENTATION DU PLAN D'EAU ET LOCALISATION	
	CONTENU DU SUIVI 2012	
RE	SULTATS DES INVESTIGATIONS	9
1	INVESTIGATIONS PHYSICOCHIMIQUES	
1.1	· · · · · · · · · · · · · · · · · · ·	
1.2	ANALYSES DE SEDIMENTS	
	PHYTOPLANCTON	
	Prelevements integres	
	LISTE FLORISTIQUE (NOMBRE DE CELLULES/ML)	
2.3		
3	OLIGOCHETES	
3.1	CONDITIONS DE PRELEVEMENTS	
3.2		
3.3	LISTE FAUNISTIQUE ET CALCUL DE L'INDICE IOBL	
3.4		
4	MOLLUSQUES	31
4.1	LOCALISATION DES PRELEVEMENTS	31
4.2	CONDITIONS DE PRELEVEMENTS	
4.3	ANALYSE FAUNISTIQUE	
5	MACROPHYTES	33
5.1	CHOIX DES UNITES D'OBSERVATIONS	
5.2	CARTE DE LOCALISATION DES UNITES D'OBSERVATION	
5.3	VEGETATION AQUATIQUE IDENTIFIEE PAR UNITE D'OBSERVATION	
5.4	LISTE DES ESPECES PROTEGEES ET ESPECES INVASIVES	
5.5	APPROCHE DU NIVEAU TROPHIQUE DU PLAN D'EAU	
5.6	COMPARAISONS AVEC LE SUIVI DE POPULATION DE MACROPHYTES 2009	43
5.7	RELEVES DES UNITES D'OBSERVATION	
INT	TERPRETATION GLOBALE DES RESULTATS	Δ 5
1141	EM NETATION GEODALE DES RESCUTATS	
AN	NEXES	47

Agence	de l'Eau Rhône - Méditerranée & Corse Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Lac de Saint-Point (25)
	<u>PREAMBULE</u>

CADRE DU PROGRAMME DE SUIVI

Dans le cadre de la mise en œuvre de la Directive Cadre européenne sur l'Eau (DCE), un programme de surveillance doit être établi pour suivre l'état écologique (ou le potentiel écologique) et l'état chimique des eaux douces de surface.

Différents réseaux constituent le programme de surveillance. Parmi ceux-ci, deux réseaux sont actuellement mis en œuvre sur les plans d'eau :

- Le réseau de contrôle de surveillance (RCS) vise à donner une image globale de la qualité des eaux. Tous les plans d'eau naturels supérieurs à 50 ha ont été pris en compte sur les bassins Rhône-Méditerranée et Corse. Pour les plans d'eau d'origine anthropique, une sélection a été opérée parmi les plans d'eau supérieurs à 50 ha, afin de couvrir au mieux les différents types présents (grandes retenues, plans d'eau de digue, plans d'eau de creusement).
- Le contrôle opérationnel (CO) vise à suivre spécifiquement les masses d'eau (naturelles ou anthropiques) supérieures à 50 ha, à risque de non atteinte du bon état (ou du bon potentiel) des eaux en 2015.

Au total, 80 plans d'eau sont suivis sur les bassins Rhône-Méditerranée et Corse dans le cadre de des deux réseaux RCS et CO.

Le contenu du programme de suivi sur les plans d'eau est identique pour le RCS et le CO. Un plan d'eau concerné par le CO sera cependant suivi à une fréquence plus soutenue (tous les 3 ans) comparativement à un plan d'eau strictement visé par le RCS (tous les 6 ans).

Le tableau 1 résume les différents éléments suivis sur une année et les fréquences d'intervention associées. Il s'agit du suivi qualitatif type mis en place sur les plans d'eau concernés par le RCS et le CO. Pour chaque plan d'eau, selon leur typologie et l'historique de leur suivi, ce programme peut faire l'objet d'ajustements concernant l'hydrobiologie et l'hydromorphologie.

Un suivi « allégé » a été mené sur quatorze plans d'eau identifiés en tant que masses d'eaux DCE mais non intégrés aux réseaux RCS et CO. Ce suivi s'inscrit dans le cadre de la préparation du nouvel état des lieux du bassin Rhône-Méditerranée afin de préciser l'état de ces plans d'eau en l'absence de données milieux disponibles. Neuf plans d'eau ont ainsi été suivis en 2011 et cinq en 2012.

Le contenu du programme de suivi de ces plans d'eau est dit « allégé » puisqu'ils ne font pas l'objet de prélèvements d'eau de fond et seule l'étude du peuplement phytoplanctonique est réalisée concernant l'hydrobiologie et l'hydromorphologie. Le contenu du suivi est ainsi restreint aux seuls éléments permettant à ce jour de définir l'état écologique et chimique des plans d'eau selon l'arrêté "Surveillance" du 25 janvier 2010.

Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Lac de Saint-Point (25)

Tableau 1 : synoptique générique des investigations menées sur une année de suivi d'un plan d'eau

			Paramètres	Type de prélèvements/ Mesures	HIVER	PRINTEMPS	ЕТЕ	AUTOMNE
		Mesures in situ	O2 dis. (mg/l, %sat.), pH, COND (25°C), T°C, transparence secchi	Profils verticaux	Х	Х	Х	Х
	2	Physico-chimie classique	DBO5, PO4, Ptot, NH4, NKJ, NO3, NO2, COT, COD, MEST, Turbidité, Si dissoute	Prélèvement intégré et prélèvement ponctuel de fond	Х	Х	Х	х
	Sur EAU	Substances prioritaires, autres substances et pesticides	Micropolluants*	Prélèvement intégré et prélèvement ponctuel de fond	Х	Х	Х	Х
		Pigments chlorophylliens	Chlorophylle a + phéopigments	Prélèvement intégré		Х	Х	Х
	Minéralisation		Ca ²⁺ , Na ⁺ , Mg ²⁺ , K ⁺ , dureté, TA, TAC, SO ₄ ²⁻ , Cl ⁻ , HCO ₃ ⁻	Prélèvement intégré				
(Eau interstitielle : Physico-chimie Physico-chimie Physico-chimie Substances prioritaires, autres substances et pesticides		PO4, Ptot, NH4					
r SEDIMENT			Corg., Ptot, NKJ, Granulomètrie, perte au feu	Prélèvement ponctuel au point de plus grande profondeur				Х
Su			Micropolluants*					
			Phytoplancton	Prélèvement intégré (Cemagref/Utermöhl)	Х	Х	Х	Х
			Oligochètes	IOBL				Х
HADDOBIOI OCIE et		HYDROBIOLOGIE et	Mollusques	IMOL				Х
	HYDROBIOLOGIE et HYDROMORPHOLOGIE		Macrophytes	Protocole Cemagref (nov.2007)			Χ	
			Hydromorphologie	A partir du Lake Habitat Survey (LHS)			Х	
			Suivi piscicole	Protocole CEN (en charge de l'ONEMA)			Х	

^{* :} se référer à l'annexe 5 de la circulaire DCE 2006/16, analyses à réaliser sur les paramètres pertinents à suivre sur le support concerné

1.1 INVESTIGATIONS PHYSICOCHIMIQUES

Les différents paramètres physico-chimiques analysés sur l'eau sont suivis lors de quatre campagnes calées aux différentes phases du cycle annuel de fonctionnement du plan d'eau, soit entre le mois de février et le mois d'octobre. Les dates d'intervention sont mentionnées dans le tableau 2, au paragraphe 3.

A chaque campagne, sont réalisées au point de plus grande profondeur, toutes ou partie des investigations suivantes (en fonction du type de réseau) :

- 1. un profil vertical des paramètres physico-chimiques de terrain : température, conductivité, oxygène dissous (en mg/l et % saturation) et pH;
- 2. des échantillons d'eau pour analyses (physico-chimie, micropolluants, pigments chlorophylliens), il s'agit :
 - ✓ d'un prélèvement intégré sur la colonne d'eau (constitué à partir du mélange de prélèvements ponctuels réalisés tous les mètres entre la surface et 2,5 fois la transparence mesurée avec le disque de Secchi);
 - ✓ d'un prélèvement de fond (réalisé généralement à un mètre du fond).

Les sédiments sont prélevés une fois par an lors de la 4^{ème} et dernière campagne au point de plus grande profondeur.

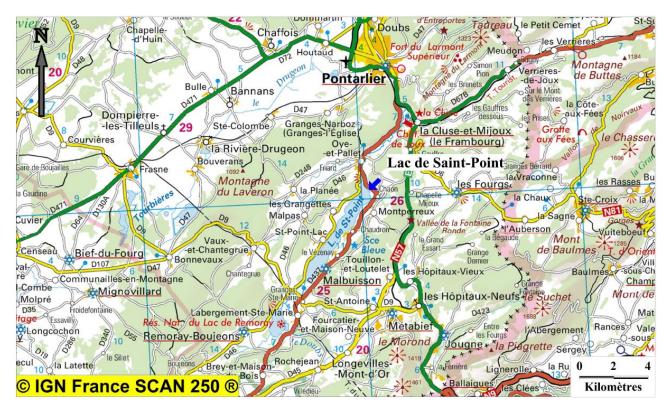
Les échantillons d'eau et de sédiments ont été transmis au Laboratoire Départemental d'Analyses de la Drôme (LDA 26) en charge des analyses.

1.2 Investigations hydromorphologiques et hydrobiologiques

Les investigations hydromorphologiques et hydrobiologiques ont été réalisées à des périodes adaptées aux objectifs des méthodes utilisées.

L'évaluation morphologique du lac est établie en suivant le protocole du Lake Habitat Survey (LHS) dans sa version 3.1 (mai 2006).

Les investigations hydrobiologiques comprennent plusieurs volets :


- 1 l'étude des peuplements phytoplanctoniques à partir du protocole standardisé d'échantillonnage, de conservation, d'observation et de dénombrement du phytoplancton en plan d'eau pour la mise en œuvre de la DCE (CEMAGREF INRA; version 3.3 de mars 2009);
- 2 l'étude des peuplements d'oligochètes à travers la détermination de l'Indice Oligochètes de Bio-indication Lacustre : IOBL (Norme AFNOR NF T90-391, mars 2005), les prélèvements suivent ce protocole.
- 3 l'étude des peuplements de mollusques avec la détermination de l'Indice Mollusques : IMOL (Mouthon, J. (1993) Un indice biologique lacustre basé sur l'examen des peuplements de mollusques. Bull. Franç. Pêche Pisc., 331 : 397-406);
- 4 l'étude des peuplements de macrophytes sur le lac s'appuie sur la méthode mise au point par le CEMAGREF et décrite au sein de la norme AFNOR XP T90-328 : « Echantillonnage des communautés de macrophytes en plans d'eau », décembre 2010.

2 Presentation du plan d'eau et localisation

Le lac de Saint-Point est un lac naturel d'origine tectonique et glaciaire. C'est le plus vaste des lacs naturels du Jura français, distant d'une dizaine de kilomètres de la ville de Pontarlier, dans le département du Doubs (25).

Il est situé dans la partie occidentale de la chaîne du Jura interne, à 850 m d'altitude. Ce secteur jurassien est caractérisé par son climat rude en hiver, arrosé et enneigé et des étés humides, avec de fréquents orages. Le lac est de type dimictique : la surface du plan d'eau est gelée en période hivernale (de décembre jusqu'à mars en moyenne). Au droit de l'exutoire, un barrage, construit en 1919, puis rehaussé en 1992, a été exploité par EDF jusqu'en 1970. Il sert aujourd'hui au soutien d'étiage et à l'écrêtage des crues.

Le plan d'eau est de dimension assez importante avec 407 ha pour un volume de 95,6 millions de m³. La profondeur maximale mesurée en 2012 est de 41 m. Orienté Nord-Est/Sud-Ouest, le lac s'étend sur 6 km environ. Il reçoit les eaux du Doubs, qui prend sa source à une vingtaine de kilomètres en amont. Il reçoit également les eaux de la Taverne, émissaire du lac de Rémoray. D'autres petits affluents, au nombre de 16, de débits relativement modestes, existent en rive gauche et en rive droite du lac. Le Doubs constitue l'émissaire unique du lac de Saint-Point. Le temps de séjour du lac est assez long : 200 jours en moyenne.

Carte 1 : localisation du lac de Saint-Point (Doubs)

Agence de l'Eau Rhône - Méditerranée & Corse

Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Lac de Saint-Point (25)

Le lac est géré par le SIVOM du Mont d'Or et du Lac de Saint-Point. Il est utilisé pour l'alimentation en eau potable du secteur de Pontarlier. Il est également très apprécié pour la pêche et les activités nautiques (voile, canoë) ainsi que pour la baignade. Plusieurs bases nautiques sont installées sur son pourtour.

3 CONTENU DU SUIVI 2012

Le lac de Saint-Point est suivi au titre des Réseaux de Contrôle de Surveillance (RCS) et du Contrôle Opérationnel (CO). En 2012, tous les compartiments précités sont étudiés excepté l'hydromorphologie. Le tableau ci-dessous indique la répartition des missions au sein du groupement aussi bien en phase terrain qu'en phase laboratoire/détermination. S.T.E. a en outre eu en charge de coordonner la mission et de collecter l'ensemble des données pour établir les rapports et mener l'exploitation des données.

Tableau 2 : synoptique des interventions de terrain et de laboratoire sur le plan d'eau, par campagn
--

Lac de Saint-Point (25)		Phase terrain						
Campagne	C1	C2	Macrophytes	С3	IOBL / IMOL	C4		
Date	26/03/2012	13/06/2012	18-19- 20/07/2012	25/07/2012	05/09/2012	12/09/2012	automne/hiver 2012-2013	
Physicochimie des eaux	S.T.E.	S.T.E.		S.T.E.		S.T.E.	LDA26	
Physicochimie des sédiments						S.T.E.	LDA26	
Phytoplancton	S.T.E.	S.T.E.		S.T.E.		S.T.E.	BECQ'Eau	
Macrophytes			Mosaïque environnement et S.T.E.				Mosaïque environnement	
Oligochètes					IRIS Consultants		IRIS consultants	
Mollusques					IRIS Consultants		ARALEP	

L'hiver 2011/2012¹ dans le Doubs a été froid avec un cumul de précipitations légèrement supérieur aux normales saisonnières. Le dégel du lac de Saint-Point a eu lieu dans le courant du mois de mars.

La durée d'ensoleillement ainsi que le cumul de précipitations restent conformes aux valeurs saisonnières au printemps 2012, le mois d'avril se révélant, au contraire du mois de mars, humide et frais.

Le bilan climatique de l'été 2012 témoigne de valeurs de températures et d'ensoleillement conformes aux moyennes de saison. Le cumul de précipitations a été largement excédentaire. Le mois de juin a été humide, le mois de juillet particulièrement frais et le mois d'août finalement chaud, sec et ensoleillé surtout dans sa seconde quinzaine.

¹ Comparaison des valeurs moyennes des saisons de l'année 2012 aux valeurs moyennes saisonnières sur la période 1980-2010 (source : http://climat.meteofrance.com)

<u>RESULTATS</u> INVESTIGAT	

1 INVESTIGATIONS PHYSICOCHIMIQUES

Les comptes rendus des campagnes de prélèvements physicochimiques et phytoplanctoniques sont présentés en annexe 3.

1.1 ANALYSES DES EAUX DU LAC

1.1.1 Profils verticaux et evolutions saisonnières

Le suivi prévoit la réalisation de profils verticaux sur la colonne d'eau à chaque campagne. Quatre paramètres sont mesurés : la température, la conductivité, l'oxygène (en concentration et en % saturation) et le pH. Les graphiques regroupant ces résultats pour chaque paramètre lors des 4 campagnes sont affichés dans ce chapitre.

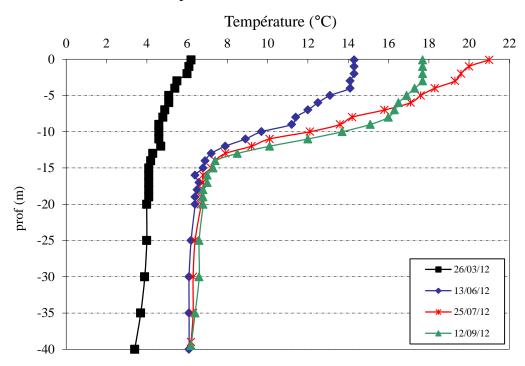


Figure 1: profils verticaux de température au point de plus grande profondeur

Lors de la 1^{ère} campagne, la température n'est pas homogène sur la colonne d'eau, on observe un réchauffement de la couche de surface (6°C contre 4°C en profondeur) après le dégel survenu mimars.

La stratification thermique se met en place lors de la seconde campagne : la thermocline est établie entre 4 et 13 m de profondeur. Les eaux épilimniques sont homogènes à 14,3°C et les eaux hypolimniques sont comprises entre 6 et 7°C.

Le réchauffement se poursuit durant l'été. Le 25/07/2012, la limite supérieure de la thermocline n'est pas identifiable : on observe un gradient thermique surface/hypolimnion compris entre 21,0°C et 6,8°C à -16 m.

Agence de l'Eau Rhône - Méditerranée & Corse

Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Lac de Saint-Point (25) Lors de la dernière campagne, le lac de Saint-Point est toujours stratifié thermiquement : la thermocline s'est enfoncée et se situe désormais entre 8 et 14 m de profondeur. La couche de surface s'est logiquement refroidie (17,7°C) alors que la température de l'hypolimnion demeure proche de 7°C.

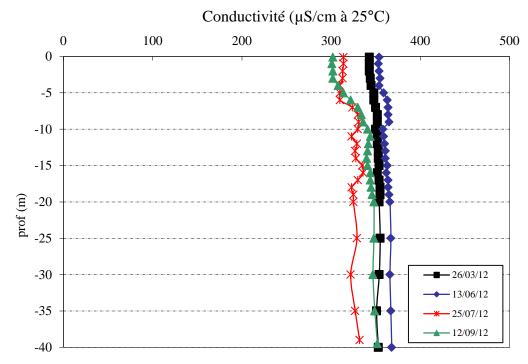


Figure 2 : profils verticaux de conductivité au point de plus grande profondeur

La conductivité, comprise entre 300 et 370 μ S/cm, indique une eau fortement minéralisée, en lien avec la nature calcaire des substrats. Elle est homogène sur la colonne d'eau lors des campagnes 1 et 2, à environ 350 μ S/cm. Lors des campagnes 3 et 4, en lien avec l'activité biologique plus importante, la conductivité est moins élevée sur les 6 premiers mètres (différentiel surface/fond de 20 μ S/cm en C3 et de 50 μ S/cm en C4) : les minéraux sont consommés par le phytoplancton. Entre les campagnes 3 et 4, il est possible que l'augmentation de la conductivité constatée dans la couche profonde soit à mettre à l'actif des processus de minéralisation de la matière organique.

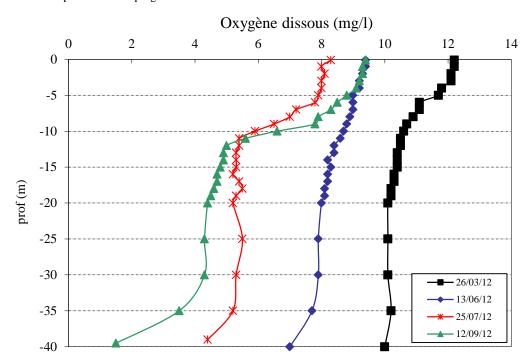


Figure 3 : profils verticaux d'oxygène (mg/l) au point de plus grande profondeur

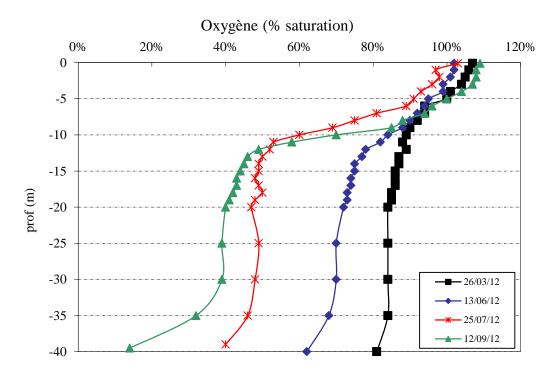


Figure 4 : profils verticaux d'oxygène (% sat.) au point de plus grande profondeur

Lors de la 1^{ère} campagne, l'oxygène dissous n'est pas homogène sur toute la colonne d'eau : on observe une oxycline entre 3 et 6 m de profondeur. La couche de surface est bien oxygénée (105% de saturation) alors que la désoxygénation de la couche profonde n'est déjà pas négligeable (80 à 90% de saturation). On peut fortement présumer que le brassage des eaux après dégel n'a pas été complet.

Agence de l'Eau Rhône - Méditerranée & Corse

Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Lac de Saint-Point (25) Durant toute la période estivale, l'épilimnion reste bien oxygénée (environ 100% de saturation). Une sursaturation est même observée en campagne 4 (105 à 110% de saturation jusqu'à -4 m) en lien avec l'activité photosynthétique plus importante. La désoxygénation de l'hypolimnion s'intensifie au cours de la saison en lien avec la dégradation de la matière organique :

- ✓ 62% de saturation au fond le 13/06/2012 ;
- ✓ 40% de saturation au fond le 25/07/2012;
- ✓ 14% de saturation au fond le 12/09/2012.

L'oxycline est stable lors des différentes campagnes, elle se situe entre 3-4 m et 11-12 m.

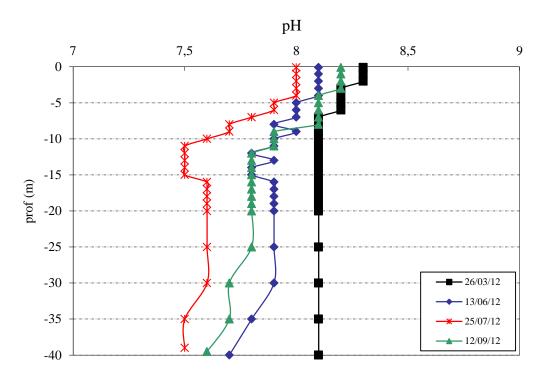


Figure 5: profils verticaux de pH au point de plus grande profondeur

En campagne 1, le pH est relativement homogène à 8,1. Une légère augmentation est constatée sur les 6 premiers mètres en lien avec l'activité photosynthétique (8,2 à 8,3). Lors des 3 campagnes suivantes, on distingue nettement 2 couches distinctes avec une amplitude de pH d'environ 0,4 upH:

- ✓ l'épilimnion qui présente un pH alcalin (8,0 à 8,2 selon les campagnes) en lien avec l'activité photosynthétique ;
- ✓ l'hypolimnion qui présente un pH plus faible (7,5 à 7,9 selon les campagnes) en lien avec les processus de respiration et de décomposition de la matière organique.

1.1.2 PARAMETRES DE CONSTITUTION ET TYPOLOGIE DU LAC

N.B. pour tous les tableaux suivants :

LD = limite de détection, généralement =SQ/3, sauf pour DBO5 et turbidité pour lesquels LD=SQ, avec SQ = seuil de quantification; Prés. = valeur comprise entre LD et SQ, composé présent mais non précisément quantifiable.

Les paramètres de minéralisation sont étudiés lors de la 1^{ère} campagne uniquement. Les résultats sont présentés dans le tableau 3.

Tableau 3 : résultats des paramètres de minéralisation lors de la 1ère campagne

Lac de	Saint-Point	seuil	26/03	/2012
code plan d'eau :	U2015043	quantification	Intégré	Fond
Dureté calculée	°F	0,1	21,6	
T.A.C.	°F	0,5	18,7	
T.A.	°F	0,5	<ld< td=""><td></td></ld<>	
CO ₃	mg(CO3)/l	6	<ld< td=""><td></td></ld<>	
HCO ₃	mg(HCO3)/l	6,1	228,1	
Calcium total	mg(Ca)/l	1	81,0	
Magnésium	mg(Mg)/l	1	3,3	
Sodium	mg(Na)/l	1	4,2	
Potassium	mg(K)/l	1	<ld< td=""><td></td></ld<>	
Chlorures	mg(Cl)/l	1	6,3	
Sulfates	mg(SO4)/l	1	5,2	

Les résultats indiquent une eau fortement carbonatée, de dureté élevée. Le lac de Saint-Point et son bassin versant se situent sur des terrains calcaires (Jurassique et Crétacé) ainsi que sur des limons déposés par le Doubs. Cette géologie permet d'expliquer les concentrations en anions et cations, et notamment les valeurs élevées pour les hydrogénocarbonates et le calcium.

1.1.3 RESULTATS DES ANALYSES PHYSICOCHIMIQUES DES EAUX (HORS MICROPOLLUANTS)

Tableau 4 : résultats des paramètres de physico-chimie classique sur eau.

Physico-chimie sur eau										
Lac de	Saint-Point	seuil quantification	26/03/2012		13/06/2012		25/07	/2012	12/09/2012	
code plan d'eau :	U2015043	seun quantification	Intégré	Fond	Intégré	Fond	Intégré	Fond	Intégré	Fond
Turbidité	NTU	0,1	0,5	0,7	0,6	0,6	1,5	1,9	2,6	3,5
M.E.S.T.	mg/l	1	2	2	1	1	4	4	2	4
C.O.D.	mg(C)/l	0,1	2,5	2,8	2,7	2,6	2,7	2,6	2,9	2,7
C.O.T.	mg(C)/l	0,1	2,6	2,8	2,7	2,6	2,9	2,6	2,9	2,7
D.B.O.5	mg(O2)/l	0,5	1,2	0,8	1,1	1,0	0,8	<ld< td=""><td>0,5</td><td>1,7</td></ld<>	0,5	1,7
Azote Kjeldahl	mg(N)/l	1	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
NH ₄ ⁺	mg(NH4)/l	0,05	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,13</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,13</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,13</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,13</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,13</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,13</td></ld<></td></ld<>	<ld< td=""><td>0,13</td></ld<>	0,13
NO_3^-	mg(NO3)/l	1	3,3	3,3	3,1	3,6	1,8	2,9	1,3	2,2
NO_2^-	mg(NO2)/l	0,02	<ld< td=""><td>0,02</td><td>0,03</td><td><ld< td=""><td>0,03</td><td>0,02</td><td>0,03</td><td>0,03</td></ld<></td></ld<>	0,02	0,03	<ld< td=""><td>0,03</td><td>0,02</td><td>0,03</td><td>0,03</td></ld<>	0,03	0,02	0,03	0,03
PO ₄	mg(PO4)/l	0,015	<ld< td=""><td>0,018</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,015</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,018	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,015</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,015</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,015</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	0,015	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Phosphore Total	mg(P)/l	0,005	0,022	0,009	0,024	0,010	0,019	0,037	0,020	0,025
Silice dissoute	mg(SiO2)/l	0,2	1,7	2,1	0,9	2,4	0,9	3,0	0,2	5,4
Chl. A	μg/l	1	<ld< td=""><td></td><td><ld< td=""><td></td><td>1,1</td><td></td><td>2,2</td><td></td></ld<></td></ld<>		<ld< td=""><td></td><td>1,1</td><td></td><td>2,2</td><td></td></ld<>		1,1		2,2	
Chl. B	μg/l	1	1,1		<ld< td=""><td></td><td><ld< td=""><td></td><td><ld< td=""><td></td></ld<></td></ld<></td></ld<>		<ld< td=""><td></td><td><ld< td=""><td></td></ld<></td></ld<>		<ld< td=""><td></td></ld<>	
Chl. C	μg/l	1	4,0		<ld< td=""><td></td><td><ld< td=""><td></td><td>2,6</td><td></td></ld<></td></ld<>		<ld< td=""><td></td><td>2,6</td><td></td></ld<>		2,6	
Indice phéopigments	μg/l	1	<ld< td=""><td></td><td><ld< td=""><td></td><td><ld< td=""><td></td><td><ld< td=""><td></td></ld<></td></ld<></td></ld<></td></ld<>		<ld< td=""><td></td><td><ld< td=""><td></td><td><ld< td=""><td></td></ld<></td></ld<></td></ld<>		<ld< td=""><td></td><td><ld< td=""><td></td></ld<></td></ld<>		<ld< td=""><td></td></ld<>	

Les analyses des fractions dissoutes ont été réalisées sur eau filtrée (COD, NH4, NO3, NO2, PO4, Si).

La charge organique est moyenne dans les eaux du lac de Saint-Point. La concentration en carbone organique dissous est comprise entre 2,5 et 2,9 mg/l. Les matières en suspension sont peu abondantes (≤ 4 mg/l) et la turbidité est faible ($\leq 3,5$), ces 2 paramètres augmentent très légèrement lors des campagnes 3 et 4.

Les concentrations en nitrates sont élevées tout au long de l'année malgré une consommation dans la zone euphotique durant la période estivale. En parallèle, les orthophosphates sont peu disponibles pour la production biologique car non quantifiés dans les échantillons intégrés. Ainsi, en fin d'hiver, le rapport N/P² est très important (> 150), le phosphore est donc limitant par rapport à l'azote. L'ammonium est uniquement quantifié dans l'échantillon de fond de campagne 4 (0,13 mg/l). Le phosphore total et dans une moindre mesure les orthophosphates semblent plus abondants dans les échantillons de fond que dans les échantillons de zone euphotique lors des campagnes 3 et 4. Un relargage très limité de ces éléments depuis les sédiments n'est donc pas à exclure.

La teneur en silice dissoute est globalement faible dans les échantillons de zone euphotique en lien avec l'utilisation de la silice par les diatomées. Ces faibles concentrations peuvent constituer un facteur limitant pour le développement des diatomées, au profit d'autres groupes algaux.. Elle augmente progressivement au fond en rapport avec la dégradation des frustules de diatomées qui décantent dans le fond du lac.

La production chlorophyllienne est modérée. Elle est plus importante en campagne 4.

 $^{^{2}}$ le rapport N/P est calculé à partir de [Nminéral]/ [P-PO $_{4}^{3-}$] avec N minéral = [N-NO $_{3}^{-}$]+[N-NO $_{2}^{-}$]+[N-NH $_{4}^{+}$] sur la campagne de fin d'hiver.

1.1.4 MICROPOLLUANTS MINERAUX

Tableau 5 : résultats d'analyses de métaux sur eau

Micropolluants minéraux sur eau										
Lac de	Saint-Point	seuil	26/03/	/2012	13/06	/2012	25/07/	/2012	12/09	/2012
code plan d'eau :	U2015043	quantification	Intégré	Fond	Intégré	Fond	Intégré	Fond	Intégré	Fond
Aluminium	μg(Al)/l	5	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Antimoine	μg(Sb)/l	0,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Argent	μg(Ag)/l	0,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Arsenic	μg(As)/l	0,2	<ld< td=""><td>0,2</td><td>0,4</td><td>0,2</td><td>0,3</td><td>0,3</td><td>0,3</td><td>0,3</td></ld<>	0,2	0,4	0,2	0,3	0,3	0,3	0,3
Baryum	μg(Ba)/l	5	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Beryllium	μg(Be)/l	0,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Bore	μg(B)/l	5	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Cadmium	μg(Cd)/l	0,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Chrome Total	μg(Cr)/l	0,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Cobalt	μg(Co)/l	0,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Cuivre	μg(Cu)/l	0,2	0,6	0,5	0,5	0,7	0,5	0,5	0,4	0,3
Etain	μg(Sn)/l	0,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Fer total	μg(Fe)/l	5	<ld< td=""><td><ld< td=""><td>11</td><td>10</td><td>6</td><td>21</td><td><ld< td=""><td>14</td></ld<></td></ld<></td></ld<>	<ld< td=""><td>11</td><td>10</td><td>6</td><td>21</td><td><ld< td=""><td>14</td></ld<></td></ld<>	11	10	6	21	<ld< td=""><td>14</td></ld<>	14
Manganèse	μg(Mn)/l	5	<ld< td=""><td>8</td><td><ld< td=""><td>25</td><td><ld< td=""><td>21</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	8	<ld< td=""><td>25</td><td><ld< td=""><td>21</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	25	<ld< td=""><td>21</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	21	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Mercure	μg(Hg)/l	0,1	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Molybdène	μg(Mo)/l	0,2	<ld< td=""><td><ld< td=""><td>0,3</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,3</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,3	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Nickel	μg(Ni)/l	0,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,2</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,2</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,2</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,2</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,2</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	0,2	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Plomb	μg(Pb)/l	0,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Sélénium	μg(Se)/l	0,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Thallium	μg(Tl)/l	0,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Titane	μg(Ti)/l	5	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Uranium	μg(U)/l	0,2	0,3	0,3	0,4	0,4	0,4	0,3	0,4	0,3
Vanadium	μg(V)/l	0,2	0,3	0,3	0,4	0,2	0,3	<ld< td=""><td>0,4</td><td><ld< td=""></ld<></td></ld<>	0,4	<ld< td=""></ld<>
Zinc	μg(Zn)/l	2	2	<ld< td=""><td><ld< td=""><td>3</td><td><ld< td=""><td>2</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>3</td><td><ld< td=""><td>2</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	3	<ld< td=""><td>2</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	2	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>

Les analyses sur les métaux ont été effectuées sur eau filtrée.

Plusieurs micropolluants minéraux sont présents dans l'eau à des concentrations faibles : l'arsenic, le cuivre, l'uranium et le vanadium.

Les teneurs en fer et en manganèse tendent à augmenter dans les échantillons de fond au cours de la période estivale. Ce phénomène peu significatif confirme l'existence d'un potentiel relargage de ces éléments depuis les sédiments en conditions anoxiques.

1.1.5 MICROPOLLUANTS ORGANIQUES

Le tableau 6 indique les micropolluants organiques qui ont été détectés (présent à l'état de traces ou quantifiés) lors des campagnes de prélèvements. La liste de l'ensemble des substances analysées est fournie en annexe 1.

Tableau 6: résultats d'analyses de micropolluants organiques présents sur eau

Micropolluants organiques mis en évidence sur eau											
Lac de	Lac de Saint-Point		26/03/	26/03/2012 13/06/2012		/2012	25/07/2012		12/09/2012		
code plan d'eau :	U2015043	seuil quantification	Intégré	Fond	Intégré	Fond	Intégré	Fond	Intégré	Fond	
Benzène	μg/l	0,2	0,6	1,4	0,3	0,5	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,5</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,5</td></ld<></td></ld<>	<ld< td=""><td>0,5</td></ld<>	0,5	
Dichlorophénol 2,4	μg/l	0,05	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,18</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,18</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,18</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,18</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,18</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,18</td></ld<></td></ld<>	<ld< td=""><td>0,18</td></ld<>	0,18	
Dioctylétain	μg/l	0,002	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,004</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,004</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,004</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,004	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>	
Ethylbenzène	μg/l	0,2	0,5	1,0	<ld< td=""><td>0,2</td><td>0,2</td><td>0,4</td><td>0,2</td><td>0,5</td></ld<>	0,2	0,2	0,4	0,2	0,5	
Formaldéhyde	μg/l	1	1,2	1,4	<ld< td=""><td><ld< td=""><td>1,3</td><td>1,3</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>1,3</td><td>1,3</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	1,3	1,3	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>	
Monobutylétain	μg/l	0,003			0,006	0,003	0,018	0,017	0,006	0,070	
Monooctylétain	μg/l	0,005	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,006</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,006</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,006</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,006	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>	
Naphtalène	μg/l	0,02	<ld< td=""><td>0,02</td><td><ld< td=""><td>0,02</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,02	<ld< td=""><td>0,02</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,02	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>	
Phénanthrène	μg/l	0,01	<ld< td=""><td><ld< td=""><td>0,01</td><td>0,01</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,01</td><td>0,01</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,01	0,01	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>	
Toluène	μg/l	0,2	4,0	10,0	0,9	1,8	0,6	1,2	1,2	3,7	
Xylène méta	μg/l	0,2	1,1	3,0	0,2	0,4	0,4	0,8	0,7	1,2	
Xylène ortho	μg/l	0,2	0,8	1,8	0,2	0,3	0,3	0,5	0,4	0,8	
Xylène para	μg/l	0,2	0,6	1,1	<ld< td=""><td>0,2</td><td>0,2</td><td>0,4</td><td>0,7</td><td>0,6</td></ld<>	0,2	0,2	0,4	0,7	0,6	

Il s'agit d'une présentation des résultats bruts, certaines valeurs pouvant être qualifiées d'incertaines suite à la validation finale des résultats (cas par exemple des valeurs mesurées en BTEX, HAP, DEHP, Formaldéhyde, dont une contamination via la chaîne de prélèvement et/ou d'analyse de laboratoire est parfois privilégiée).

Des composés de type BTEX (le benzène, l'éthylbenzène, le toluène et le xylène) ont été quantifiés lors des différentes campagnes, plus particulièrement lors de la campagne 1. Deux hydrocarbures aromatiques polycycliques (HAP), le naphtalène et le phénanthrène, ont également été détectés en campagnes 1 et 2.

Le formaldéhyde a été repéré sur les échantillons des campagnes 1 et 3.

Trois composés de la famille des organo-stanneux, le monobutylétain, le monooctylétain et le dioctylétain, ont également été mesurés de manière ponctuelle.

Enfin, les analyses ont révélé la présence de dichlorophénol 2,4, qui intervient dans la fabrication de certains herbicides mais également d'antiseptiques, dans l'échantillon de fond de campagne 4.

1.2 ANALYSES DE SEDIMENTS

1.2.1 Physicochimie des sediments

Le tableau 7 fournit la synthèse de l'analyse granulométrique menée sur les sédiments prélevés.

Tableau 7 : synthèse granulométrique sur le sédiment du point de plus grande profondeur

Sédiment : composition granulométrique (%)							
	Lac de	Saint-Point	12/09/2012				
code	plan d'eau :	U2015043	12/09/2012				
classe gran	nulométrique	(µm)	%				
0	à	2	3,0				
2	à	20	35,6				
20	à	50	33,4				
50	à	63	6,1				
63	à	200	18,4				
200	à	1000	3,6				
1000	à	2000	0,0				
> 2000			0,0				

Il s'agit de sédiments fins, de nature sablo-limoneuse. Les limons (2 à 20 μ m) et les sables fins (20 à 200 μ m) représentent respectivement 35,6% et 57,9% du sédiment.

Les analyses de physico-chimie classique menées sur la fraction solide et sur l'eau interstitielle du sédiment sont rapportées au tableau 8.

Tableau 8 : analyse de sédiments

Eau interstitielle du sédiment : Physico-chimie								
Lac de								
code plan d'eau :	U2015043	seuil quantification	12/09/2012					
NH ₄ ⁺	mg(NH4)/l	0,5	<ld< td=""></ld<>					
PO ₄	mg(PO4)/l	1,5	<ld< td=""></ld<>					
Phosphore Total	mg(P)/l	0,1	0,10					

Sédiment : Physico-chimie								
Lac de	Saint-Point	souil quantification						
code plan d'eau :	U2015043	seuil quantification	12/09/2012					
Matières sèches minérales	% MS	0	89,4					
Perte au feu	% MS	0	10,6					
Matières sèches totales	%	0	36,3					
C.O.T.	mg(C)/kg MS	1	41700,0					
Azote Kjeldahl	mg(N)/kg MS	1	5400,0					
Phosphore Total	mg(P)/kg MS	0,5	2900,0					

Dans les sédiments, la teneur en matière organique est très élevée avec 10,6 % de perte au feu. La concentration en azote organique est assez élevée (5,4 g/kg MS). Le rapport C/N est de 7,7, il indique une prédominance de matière algale récemment déposée dont une fraction sera recyclée en azote minéral. La concentration en phosphore est très élevée, proche de 2,9 g/kg MS, ce qui correspond à un stockage important de phosphore dans les sédiments, certainement lié à des apports

Agence de l'Eau Rhône - Méditerranée & Corse

Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Lac de Saint-Point (25) lors des saisons précédentes. Ce stock constitue une importante réserve potentielle de nutriments pour l'hydroécosystème.

L'eau interstitielle contient les minéraux facilement mobilisables dans les sédiments. Seul le phosphore a été quantifié (0,10 mg/l). La non-quantification de l'ammonium n'exclut pas pour autant l'existence d'un relargage de ces éléments depuis les sédiments. Le phénomène semble cependant très limité compte tenu des conditions d'oxygénation de la couche profonde (teneur > 2 mg/l) sans anoxie même en fin d'été. Les analyses physico-chimiques sur eau ne suggèrent pas non plus de relargage.

1.2.2 MICROPOLLUANTS MINERAUX

Ils ont été dosés sur la fraction solide du sédiment.

Tableau 9: Micropolluants minéraux sur sédiment

Sédiment : Micropolluan	Saint-Point		
code plan d'eau :		 seuil quantification 	12/09/2012
Aluminium	mg(Al)/kg MS	10	12925
Bore	mg(B)/kg MS	0,2	24
Fer total	mg(Fe)/kg MS	10	27580
Mercure	mg(Hg)/kg MS	0,007	<ld< td=""></ld<>
Zinc	mg(Zn)/kg MS	0,2	93,7
Antimoine	mg(Sb)/kg MS	0,2	0,6
Argent	mg(Ag)/kg MS	0,2	<ld< td=""></ld<>
Arsenic	mg(As)/kg MS	0,2	13,7
Baryum	mg(Ba)/kg MS	0,2	64,6
Beryllium	mg(Be)/kg MS	0,2	0,6
Cadmium	mg(Cd)/kg MS	0,2	0,6
Chrome Total	mg(Cr)/kg MS	0,2	38,5
Cobalt	mg(Co)/kg MS	0,2	5,6
Cuivre	mg(Cu)/kg MS	0,2	15,7
Etain	mg(Sn)/kg MS	0,2	2,5
Manganèse	mg(Mn)/kg MS	0,2	1010,0
Molybdène	mg(Mo)/kg MS	0,2	1,0
Nickel	mg(Ni)/kg MS	0,2	18,7
Plomb	mg(Pb)/kg MS	0,2	21,8
Sélénium	mg(Se)/kg MS	0,2	1,3
Tellurium	mg(Te)/kg MS	0,2	<ld< td=""></ld<>
Thallium	mg(Th)/kg MS	0,2	0,2
Titane	mg(Ti)/kg MS	0,2	848,0
Uranium	mg(U)/kg MS	0,2	1,2
Vanadium	mg(V)/kg MS	0,2	64,2

Les concentrations en métaux lourds ne suggèrent pas de pollution particulière des sédiments du lac de Saint-Point. Ils sont par ailleurs relativement riches en manganèse.

1.2.3 MICROPOLLUANTS ORGANIQUES

Le tableau 10 indique les micropolluants organiques qui ont été quantifiés dans les sédiments lors de la campagne de prélèvements. La liste de l'ensemble des substances analysées est fournie en annexe 2.

Tableau 10 : résultats d'analyses de micropolluants organiques présents sur sédiment

Sédiment : Micropolluants organiques mis en évidence							
Lac de	Saint-Point	aquil quantification					
code plan d'eau :	U2015043	seuil quantification	12/09/2012				
Acénaphtylène	μg/kg MS	20	113				
Anthracène	μg/kg MS	20	53				
Benzo (a) anthracène	μg/kg MS	10	430				
Benzo (a) pyrène	μg/kg MS	10	386				
Benzo (b) fluoranthène	μg/kg MS	10	842				
Benzo (ghi) pérylène	μg/kg MS	10	449				
Benzo (k) fluoranthène	μg/kg MS	10	415				
Chrysène	μg/kg MS	50	533				
DEHP	μg/kg MS	100	295				
Dibenzo (a,h) anthracène	μg/kg MS	20	131				
Fluoranthène	μg/kg MS	40	1309				
Indéno (1,2,3-cd) pyrène	μg/kg MS	10	445				
Méthyl 2 fluoranthène	μg/kg MS	50	115				
PCB101	μg/kg MS	1	1				
PCB118	μg/kg MS	1	1				
PCB138	μg/kg MS	1	2				
PCB149	μg/kg MS	1	1				
PCB153	μg/kg MS	1	2				
PCB170	μg/kg MS	1	1				
PCB180	μg/kg MS	1	2				
Phénanthrène	μg/kg MS	50	380				
Pyrène	μg/kg MS	40	606				

Diverses substances ont été quantifiées dans les sédiments du lac de Saint-Point :

- ✓ 14 hydrocarbures aromatiques polycycliques (HAP) pour une concentration totale très élevée de **6207 μg/kg**;
- √ 7 composés de la famille des PCB (polychlorobiphényles) pour une concentration totale faible de 10 μg/kg;
- ✓ un indicateur plastifiant, le DEHP, à la concentration de 295 μg/kg.

La concentration en HAP suggère une toxicité potentielle des sédiments pour les organismes vivants. On constate une dominance des composés fluoranthène et pyrène (2 mg/kg) ainsi que des HAP à masse moléculaire élevée (composés benzo(a)) : il s'agit de composés peu solubles dans l'eau, peu volatils, qui ont tendance à s'adsorber sur les matrices solides et notamment les matières organiques. Une étude concernant la contamination des sédiments du Doubs³ montre de fortes concentrations dans les sédiments du cours d'eau à l'amont et à l'aval de Pontarlier. Les résultats des analyses de sédiments (2000-2005) de la station de la Cluse et Mijoux située à l'aval immédiat

³ Université de Franche-Comté/Conseil Général du Doubs - Accumulation des Hydrocarbures Aromatiques Polycycliques (HAP) dans les sédiments de la rivière Doubs - Rapport Final - Rapport rédigé par Laurence BOURCEREAU

Agence de l'Eau Rhône - Méditerranée & Corse

Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Lac de Saint-Point (25) du lac de Saint-Point ont fait l'objet d'une étude approfondie. Il en ressort que les sources de contamination sont d'origine anthropique, en provenance majoritairement des phénomènes de combustion incomplète : incinérateur, émanations du chauffage urbain (bois en particulier) et combustion automobile.

Les teneurs en HAP des sédiments de la station de la Cluse et Mijoux sont comprises entre 2,5 et 11,0 mg/kg (somme des 14 HAP généralement pris en référence). Les sédiments du lac de Saint-Point semblent donc contaminés en HAP d'origine anthropique.

2 PHYTOPLANCTON

2.1 Prelevements integres

Les prélèvements intégrés destinés à l'analyse du phytoplancton ont été réalisés en même temps que les prélèvements pour analyses physicochimiques. Sur le lac de Saint-Point, la zone euphotique et la transparence mesurées sont représentées par le graphique de la figure 6. La zone euphotique varie entre 6 et 15 m sur les quatre campagnes réalisées. La transparence est maximale en campagne 2 durant la phase d'eaux claires (6,0 m).

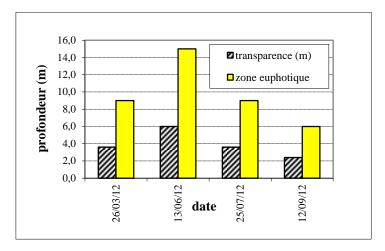


Figure 6 : évolution de la transparence et de la zone euphotique aux 4 campagnes

La liste des espèces de phytoplancton par plan d'eau a été établie selon la méthodologie développée par le CEMAGREF: Protocole standardisé d'échantillonnage, de conservation, d'observation et de dénombrement du phytoplancton en plan d'eau pour la mise en œuvre de la DCE, Mars 2009.

La diversité taxonomique N espèces correspond au nombre de taxons identifiés à l'espèce, à l'exclusion des groupes et familles, ainsi que des taxons identifiés au genre quand une espèce du même genre est présente et déterminée à l'espèce. Le nombre N' correspond à la diversité taxonomique totale incluant tous les taxons aux différents niveaux d'identification (nombre le plus probable).

2.2 LISTE FLORISTIQUE (NOMBRE DE CELLULES/ML)

Tableau 11: Liste taxonomique du phytoplancton

Lac de Saint-Point			Date prél	èvement	
Classe	Nom Taxon	26/03/2012	13/06/2012	25/07/2012	12/09/2012
Chlorophycées	Ankyra judayi		4		
l i i j	Chlorella vulgaris	49		531	689
	Chlorophycées flagellées indéterminées diam	-			
	2-5 μm	91		60	21
	Chlorophycées flagellées indéterminées diam	, -			
	5-10 μm	28	6	18	77
	Chlorophycées indéterminées	118	3	48	21
	Choricystis minor	110	4	30	21
	Desmodesmus communis		•	12	21
	Monoraphidium komarkovae			12	14
	Oocystis lacustris				111
	Oocystis solitaria			6	111
	Phacotus lendneri			95	56
	Sphaerocystis schroeteri			36	7
	Tetraedron minimum	7		30	,
Chrysophycées	Bitrichia chodatii	/		24	
Chrysophycees		467		24	
	Chrysococcus sp.	407			14
	Chrysolykos planctonicus				
	Dinobryon bavaricum			000	56 255
	Dinobryon divergens			889	355
	Dinobryon elegantissimum				7
	Dinobryon sertularia			6	40
	Dinobryon sociale var. stipitatum			36	49
	Epipyxis sp.	271	0	70	21
	Erkenia subaequiciliata	251	8	72	425
	Kephyrion ovale	_		24	
	Kephyrion ovum	7			
	Kephyrion spirale				14
	Mallomonas sp.				35
	Pseudopedinella sp.				7
	Salpingoeca frequentissima			66	14
	Salpingoeca sp.		1	6	14
Cryptophycées	Cryptomonas sp.	237	8	54	77
	Plagioselmis nannoplanctica	1011	268	227	460
Cyanobactéries	Aphanocapsa delicatissima			239	
	Aphanocapsa parasitica			143	
	Aphanothece minutissima			1671	
	Pseudanabaena limnetica			90	
Diatomées	Asterionella formosa	237		6	
	Cyclotella costei				863
	Diatomées centriques indéterminées	7		6	
	Diatomées centriques indéterminées <10 µm	578		30	
	Fragilaria crotonensis			90	7
	Fragilaria sp.	56			
	Nitzschia sp.		1		
	Ulnaria ulna var. acus			66	
Dinoflagellés	Gymnodinium helveticum	7			
	Gymnodinium lantzschii			6	
Euglènes	Trachelomonas volvocina	7			
	ance cellulaire totale (nb cellules/ml)	3157	302	4584	3433
-200214	Diversité taxonomique N	11	7	23	21
	Diversité N'	16	9	29	25
	DITCIDITO II			-/	

2.3 ÉVOLUTIONS SAISONNIERES DES GROUPEMENTS PHYTOPLANCTONIQUES

Les échantillons destinés à la détermination du phytoplancton sont constitués d'un prélèvement intégré sur la zone euphotique (équivalant à 2,5 fois la transparence lors de la campagne). Les graphiques suivants présentent la répartition du phytoplancton par groupe algal à partir des résultats exprimés en cellules/ml d'une part et à partir des biovolumes (mm³/l) d'autre part.

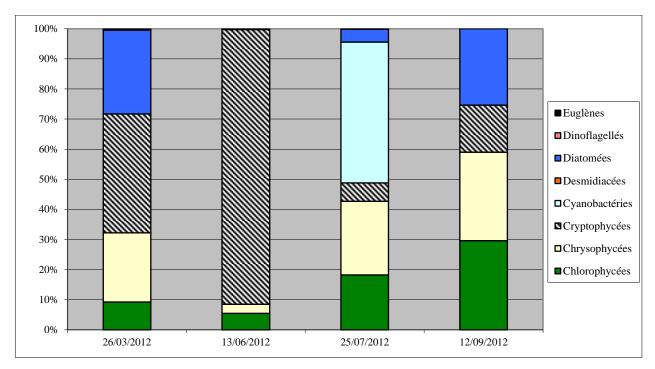


Figure 7: Répartition du phytoplancton sur le lac de Saint-Point à partir des abondances (cellules/ml)

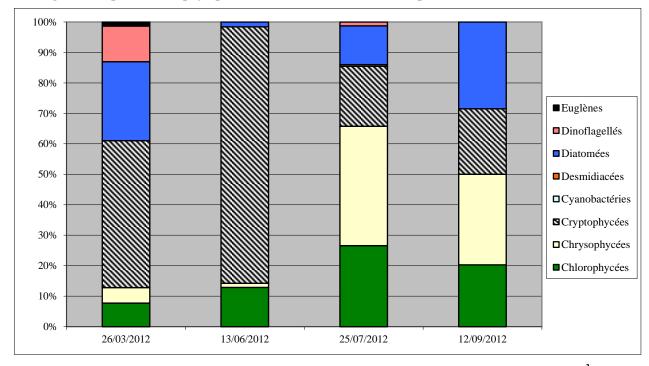


Figure 8: Répartition du phytoplancton sur le lac de Saint-Point à partir des biovolumes (mm³/l)

Le peuplement phytoplanctonique sur le lac de Saint-Point présente une abondance faible. La biomasse est comprise entre 0,04 et 1,02 mm³/l. Lors de la 2^{ème} campagne, la très faible abondance de phytoplancton (302 cellules/ml) associée à une forte transparence suggère une phase d'eaux claires avec broutage par le zooplancton. La diversité taxonomique est faible à moyenne, comprise entre 7 et 23 taxons.

En fin d'hiver, le peuplement phytoplanctonique est dominé par les cryptophycées, en particulier l'espèce ubiquiste *Plagioselmis nannoplanctica*, et les diatomées tant en termes d'abondance (respectivement 40% et 28%) que de biovolume (respectivement 48% et 26%).

La seconde campagne est donc marquée par une diminution du peuplement phytoplanctonique : seule l'espèce *Plagioselmis nannoplanctica* se maintient, constituant ainsi environ 90% du peuplement.

En période estivale, on note la colonisation de groupes à niveau de trophie plus élevé :

- ✓ des cyanobactéries apparaissent, dominés par l'espèce *Aphanothece minutissima* ;
- ✓ les chlorophycées et les chrysophycées colonisent également le milieu, représentant respectivement 18 et 24% de l'abondance cellulaire et 27 et 39% du biovolume.

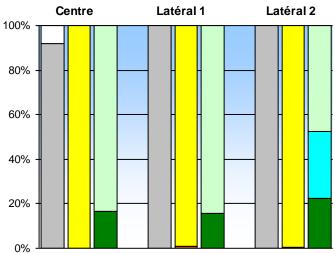
Le peuplement de microalgues est plus équilibré lors de la campagne de fin d'été avec la disparition des cyanobactéries et le retour de la diatomée *Cyclotella costei*, indicatrice d'oligotrophie.

Les groupes algaux présents (diatomées, cryptophycées, chrysophycées et chlorophycées) sont caractéristiques d'un degré de trophie faible à modéré. L'indice phytoplanctonique (IPL) est de 37,0, qualifiant le milieu d'oligo-mésotrophe. Pour information, l'indice calculé à partir de l'abondance cellulaire est légèrement moins favorable (41,0 - mésotrophe).

3 OLIGOCHETES

3.1 CONDITIONS DE PRELEVEMENTS

Carte 2 : Localisation des prélèvements de sédiments sur le lac de Saint-Point


Photo 1 : Vue sur la partie Nord du plan d'eau depuis la rive à l'Est du point L1

Echantillon		
Date et heure		
Code point		
Profondeur (m)		
Type de benne		
Nombre de bennes		
Surface prospectée (m²)		
Localisation		
Coordonnées X (LII étendu)		
Coordonnées Y (LII étendu)		

Central (C)	Latéral 1 (L1)	Latéral 2 (L2)
05/09/2012 09:00	05/09/2012 13:00	05/09/2012 15:30
o1	о3	о2
40,8	20,0	20,0
Ekman	Ekman	Ekman
5	5	5
0,105	0,105	0,105
Z max	Sud-Ouest	Nord-Est
903044	901687	904864
2208840	2206932	2211621

3.2 CARACTERISTIQUES DES SEDIMENTS RECOLTES

Echantillon	Central (C)	Latéral (L1)	Latéral (L2)
Couleur	gris-vert	gris-vert	gris-beige
Odeur	moyen	moyen	faible
Cohésion	moyen	moyen	moyen
Taux de remplissage (1 ^{ère} barre)			
Volume (ml) sans sédiments	1412	0	0
Volume (ml) avec sédiments	16460	17871	17871
Présence de débris (2 ^{ème} barre)			
Volume (ml) $< 0.5 \text{ mm (fines)}$	16442	17681	17795
Volume (ml) > 0,5 mm (débris)	18	190	76
Granulométrie (3 ^{ème} barre)			
Volume (ml) 0,5 à 5 mm, organique	15	160	36
Volume (ml) 0,5 à 5 mm, minéral	0	0	23
Volume (ml) > 5 mm, organique	3	30	17
Volume (ml) > 5 mm, minéral	0	0	0

Les trois points sont caractérisés par un taux de remplissage élevé des bennes (> 75%), par la quasi absence de débris par rapport aux fines et par la nette dominance de la partie organique par rapport à la fraction minérale parmi les débris.

Les deux points latéraux diffèrent par la présence de débris minéraux fins dans la partie Nord-Est (point latéral 2).

3.3 LISTE FAUNISTIQUE ET CALCUL DE L'INDICE IOBL

3.3.1 DEFINITIONS

(1) L'identification possible des taxons se fait soit à tous les stades (a) soit seulement à l'état mature (m).

(2) Pour aider à l'interprétation, une analyse des espèces indicatrices est menée en utilisant les éléments de diagnoctic de Lafont (2007)⁴. Les espèces sont réparties en 6 classes indicatrices de la dynamique du fonctionnement des sédiments lacustres :

S = espèces sensibles à la pollution organique et toxique,

I = espèces caractérisant un état intermédiaire,

D = espèces indicatrices d'une impasse trophique naturelle (dystrophie) quand elles sont dominantes,

P = espèces indicatrices d'un état de forte pollution quand elles sont dominantes,

H = espèces indicatrices d'échanges hydriques entre les eaux superficielles et souterraines,

R = espèces probablement liées à un réchauffement climatique

⁴ Lafont, M. 2007. Interprétation de l'indice lacustre oligochètes IOBL et son intégration dans un système d'évaluation de l'état écologique. Cemagref/MEDAD : 18pp.

Agence de l'Eau Rhône - Méditerranée & Corse

- Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse Lac de Saint-Point (25) (3) Le nombre de taxons = R est le nombre minimal possible de taxons parmi les 100 oligochètes comptés. Par exemple, le taxon Naididae ASC immat. (identification limitée par le caractère immature de l'individu) sera comptabilisé comme un taxon uniquement en cas d'absence d'autres Naididae ASC identifiables seulement au stade mature. Les valeurs d'abondance mises en caractère gras correspondent aux taxons pris en compte pour le calcul de la richesse.
- (4) Le calcul de l'Indice IOBL est le suivant : IOBL = R + 3log10 (D+1) où R^5 = nombre de taxons parmi les oligochètes comptés et D = densité en oligochètes pour 0,1 m².
- (5) La valeur globale = ½(valeur centre) + ¼(valeur lat1) + ¼(valeur lat2). Il s'agit donc de la moyenne entre la valeur de la zone centrale profonde et celle des zones latérales, cette dernière étant égale à la moyenne des valeurs des deux zones latérales (lat 1 et lat 2). Pour le pourcentage des espèces sensibles sur la globalité du plan d'eau, on applique la moyenne : moyenne (%cen;%lat1;%lat2).

3.3.2 Liste faunistique pour l'IOBL

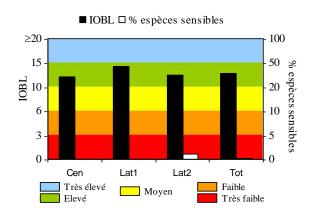
Tableau 12 : Liste faunistique pour le calcul de l'IOBL

Groupe	Taxon	Code Sandre	Stades identifiables	Espèces indicatrices	Centre	Lat 1	Lat 2
Naididae ASC	Dero sp.	3009	a			2	
	Ilyodrilus templetoni	2995	m		1		
	Naididae ASC immat.	5231	a		58	72	77
	Potamothrix hammoniensis	9795	m	P	7	17	5
	Potamothrix heuscheri	9837	m	P		1	
	Tubifex tubifex	946	m	D	5	1	4
Naididae SSC	Chaetogaster diaphanus gr.	2997	a	S			1
	Limnodrilus hoffmeisteri	2991	m	P	4		3
	Naididae SSC immat.	29901	a		25	7	10

Indicateurs	Densité en oligochètes (pour 0,1 m²) = D Indice IOBL ⁽⁴⁾
Eléments utilisés pour le calcul de l'IOBL	Nombre d'oligochètes récoltés Surface échantillonnée (m²)
	Fraction observée de l'échantillon (%)
	Nombre d'oligochètes comptés
	Nombre de taxons = $R^{(3)}$

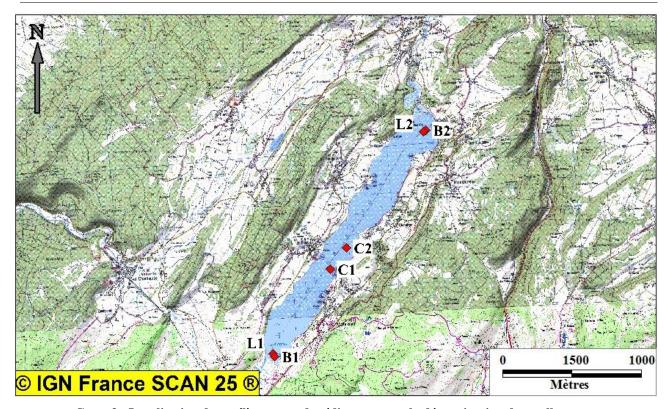
Centre	Lat 1	Lat 2	Tot (5)
4	5	4	
100	100	100	
18,5	7,7	13,6	
541	1299	735	
0,105	0,105	0,105	
515	1237	700	
12,1	14,3	12,5	12,8
0	0	1	0,3

S.T.E. - Sciences et Techniques de l'Environnement - Rapport 08-283/2013-PE2012-21 - octobre 2013 - Page 29


⁵ Pour le calcul de l'IOBL selon la norme, R désigne le nombre de taxons comptés. Parmi les espèces indicatrices, Lafont a dénommé R les espèces indicatrices d'un réchauffement climatique. Attention au risque de confusion.

3.4 Interpretation des resultats

De manière globale, le potentiel métabolique est élevé alors que le pourcentage d'abondance des espèces sensibles est très faible, ce qui traduit une mauvaise qualité des sédiments mais pas d'impasse trophique.


Le potentiel métabolique et le pourcentage d'espèces sensibles varient peu d'un point à l'autre.

En 2009, l'espèce sensible *Chaetogaster diaphanus* n'avait pas été recensée. Par ailleurs, le potentiel métabolique était déjà qualifié d'élevé (IOBL global = 12,7). Aucune évolution significative n'est donc à souligner entre 2009 et 2012.

4 MOLLUSQUES

4.1 LOCALISATION DES PRELEVEMENTS

Carte 3 : Localisation des prélèvements de sédiments pour la détermination des mollusques

4.2 CONDITIONS DE PRELEVEMENTS

Type de prélèvements	Central 1	Littoral 1	Bordure 1	Central 2	Littoral 2	Bordure 2
Numéro du prélèvement	1	2	3	4	5	6
Code du prélèvement	C1	L1	B1	C2	L2	B2
Date	05/09/12	05/09/12	05/09/12	05/09/12	05/09/12	05/09/12
Heure	10:00	13:20	13:50	09:30	16:00	16:30
Profondeur (m)	36,6	10,0	3,0	36,8	10,0	3,0
Nombre et type de benne utilisée	5 Ekman	5 Ekman	5 Ekman	5 Ekman	5 Ekman	5 Ekman
Surface (m ²)	0,105	0,105	0,105	0,105	0,105	0,105
	point	point	point	point	point	point
Localisation du prélèvement	central 1 de	latéral 1 de	littoral 1 de	central 2 de	latéral 2 de	littoral 2 de
Localisation du preievement	prof. 9/10e	prof. 10 à	prof. 3 à 5	prof. 9/10e	prof. 10 à	prof. 3 à 5
	de Zmax	20 m	m	de Zmax	20 m	m
Coordonnées X (LII Etendu)	902897	901660	901684	903249	904913	904956
Coordonnées Y (LII Etendu)	2208663	2206838	2206781	2209129	2211627	2211661

4.3 Analyse faunistique

Tableau 13: Liste faunistique mollusques et IMOL

Profondeur théorique des prélèveme	nts:		SAINT-POINT					
C (Centre) = 90% profondeur max		code lac			U201	5043		
L (Littoral) = 10 à 20 m		date d'échantillonnage			05/09	/2012		
B (Bordure) = $3 \text{ à } 5 \text{ m}$		points de prélèvement	C1	L1	B1	C2	L2	B2
		profondeur (m)	36,6	10,0	3,0	36,8	10,0	3,0
BIVALVES								
SPHAERIDAE	Pisidium spp.		2	102	40	2	286	21
GASTEROPODES								
BITHYNIIDAE	Bithynia tentaculate	a						
PLANORBIDAE	Menetus dilatatus							
VALVATIDAE	Valvata piscinalis							
Nombre d'individus (surface par poi	$nt = 0.1 \text{ m}^{2}$	_	2	102	40	2	286	21
Richesse taxonomique			1	1	1	1	1	1

IMOL SAINT-POINT 7

Un seul taxon appartenant aux bivalves, *Pisidium spp.*, a été recensé dans les 6 prélèvements de sédiments du lac de Saint-Point. *Dreissena polymorpha*, espèce invasive identifiée en 2009, n'a pas été observée en 2012. L'indice est identique à celui de 2009, indiquant un niveau d'oxygénation correcte de l'hypolimnion (l'absence de gastéropodes semble cependant indiquer un déficit chronique d'oxygène dans la colonne d'eau).

5 MACROPHYTES

5.1 CHOIX DES UNITES D'OBSERVATIONS

Le lac de Saint-Point a déjà fait l'objet d'un suivi des populations de macrophytes en 2009 par S.T.E. pour l'agence de l'eau Rhône-Méditerranée et Corse. Le protocole suivi était la version 3 (novembre 2007) de la « Méthodologie d'étude des communautés de macrophytes en plans d'eau » établie par le Cemagref. En 2012, le protocole suivi par S.T.E. respecte la norme AFNOR XP T90-328 (Décembre 2010) normalisant le protocole du Cemagref.

Le positionnement des unités d'observation est déterminé avec la méthode de Jensen. Pour le lac de Saint-Point, 11 profils perpendiculaires à la plus grande longueur du plan d'eau ont été représentés, soit 22 points contacts potentiels auxquels s'ajoutent les 2 points correspondant aux points de départ et d'arrivée de cette ligne de base.

Le protocole d'échantillonnage s'appuie sur :

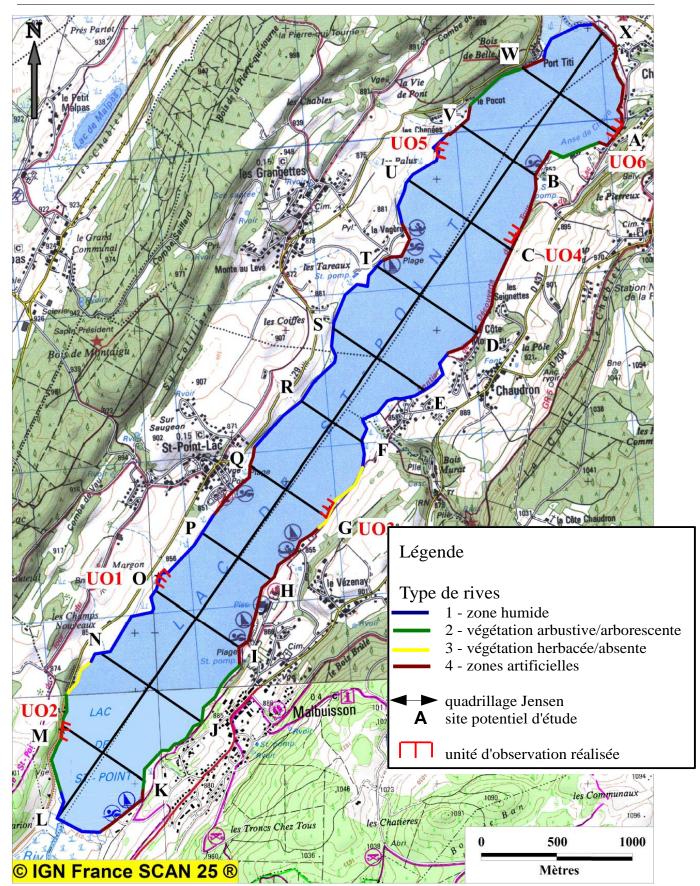
- ✓ les différents types de rives recensés sur le plan d'eau pour la sélection des unités d'observation (UO) à prospecter;
- ✓ la pente des fonds et la transparence des eaux pour définir la limite de profondeur des profils perpendiculaires à explorer sur chaque UO (définition de la zone potentiellement colonisée par les végétaux).

Sur le lac de Saint-Point, 4 types de rives ont été observés. Une appréciation du recouvrement est donnée en % du périmètre total (approximation à 10% près) :

- ✓ Type 1 ; zones humides caractéristiques : 40% ;
- ✓ Type 2 ; zones rivulaires colonisées par une végétation arbustive ou arborescente non humide : 20% :
- ✓ Type 3 ; zones rivulaires colonisées par une végétation herbacée non humide ou absente : 10 % ;
- ✓ Type 4 ; zones artificialisées ou subissant des pressions anthropiques visibles : 30 %.

La transparence est moyenne avec des valeurs comprises entre 2,5 et 3,0 m mesurées au disque de Secchi en fonction des UO prospectées. La limite de profondeur de la zone à explorer (Ze), selon la définition de la Norme AFNOR XP T90-328, atteint une profondeur comprise entre 7,5 et 9,0 m. La longueur des profils perpendiculaires est variable sur l'ensemble des UO prospectées (45 à 100 m). La superficie du plan d'eau étant de 407 ha, 6 unités d'observation ont été sélectionnées selon leur représentativité d'un type de rive soit : deux unités de type 1, une unité de type 2, une unité de type 3 et deux unités de type 4.

Les unités d'observation ainsi sélectionnées sont :


- ✓ UO 1 : 1 unité de type 1 ;
- ✓ UO 2 : 1 unité de type 2 ;
- ✓ UO 3 : 1 unité de type 3 ;
- ✓ UO 4 : 1 unité de type 4 ;
- ✓ UO 5 : 1 unité de type 1 ;
- ✓ UO 6 : 1 unité de type 4.

Agence de l'Eau Rhône - Méditerranée & Corse

Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Lac de Saint-Point (25) Pour chaque unité d'observation, le choix a porté sur un secteur exclusivement constitué d'un type de rive (sur 100 m minimum), accessible, à l'exclusion des arrivées de tributaires, et des singularités. Il a été effectué en respectant les critères de la norme XP T90-328 tout en s'appuyant sur la localisation des UO ayant déjà fait l'objet d'inventaires lors du précédent suivi (2009) afin de pouvoir suivre l'évolution temporelle des peuplements de macrophytes. Certaines UO peuvent donc être un peu décalées par rapport aux UO potentielles définies par le protocole Jensen.

Les relevés de végétation aquatique se sont déroulés les 18,19 et 20 juillet 2012.

5.2 CARTE DE LOCALISATION DES UNITES D'OBSERVATION

Carte 4 : Localisation des unités d'observation pour l'étude des macrophytes sur le lac de Saint-Point

5.3 VEGETATION AQUATIQUE IDENTIFIEE PAR UNITE D'OBSERVATION

Le lac est bordé de milieux naturels (tourbières, forêts), de milieux agricoles (cultures, prairies) ainsi que de milieux artificialisés (zones résidentielles, ports, plages).

Le recouvrement global de macrophytes sur le lac est estimé à environ 20-30%. Le lac de Saint-Point abrite une grande diversité d'espèces. On y observe, de manière inégalement répartie sur le périmètre du lac, de belles ceintures de végétation : roselières (scirpaie à *Scirpus lacustris*, phragmitaie à *Phragmites autralis*), cariçaies à *Carex rostrata*, nupharaies à *Nymphea alba* et *Nuphar lutea*, et de beaux herbiers aquatiques à *Potamogeton pectinatus*, *Potamogeton lucens* ou à *Chara contraria*.

5.3.1 Unite d'observation n°1

Photo 2: Vue sur l'UO1 du lac de Saint-Point

L'unité d'observation 1 est située sur la rive Ouest.

La zone riveraine présente une zone humide très diversifiée, caractérisée par de nombreuses espèces d'hélophytes (*Lysimachia vulgaris*, *Peucedanum palustre*, *Senecio paludosus*, *Phalaris arundinacea*, etc.). Une espèce protégée au niveau national est présente au sein de cette zone humide : *Polemonium caeruleum*.

La zone littorale immergée est marquée :

- ✓ par la présence d'une magnocariçaie à *Carex elata* parfois en mélange avec *Carex rostrata* jusqu'à 20-40 cm de profondeur ;
- ✓ puis par la présence d'une scirpo-phragmitaie à *Scirpus lacustris, Phragmites autralis* et *Carex rostrata* jusqu'à 70 cm de profondeur.

Des herbiers de nénuphars (*Nuphar lutea, Nymphea alba*) apparaissent ensuite sur substrat vaseux, le long des profils perpendiculaires de rive (jusqu'à 2 m de profondeur). Ils sont accompagnés d'hydrophytes: herbiers de Potamot pectiné, de *Zannichellia palustris*, d'*Elodea nuttallii*, d'*Hippuris vulgaris* ou de characées (*Chara contraria*). Quelques algues vertes comme *Chaetophora sp.* ou *Oedogonium sp.* sont présentes en position d'épiphyte sur les tiges des hydrophytes.

Photo 3: Fruits en forme de croissant de Zannichellia palustris

5.3.2 Unite d'observation n°2

Photo 4: Vue sur l'UO2 du lac de Saint-Point

L'unité d'observation 2 est réalisée à l'extrémité Sud de la rive Ouest du lac. La zone riveraine est marquée par une forêt mixte. La zone littorale potentielle de rive est très réduite en raison de la forte pente (éboulis).

Malgré la faible largeur de la berge, de nombreuses espèces hygroclines⁶ à hygrophiles sont recensées : *Polygonum amphibium, Valeriana officinalis, Scophularia nodosa, Solanum dulcamara*, etc. Certaines espèces de bryophytes comme *Calliergonella cuspidata* ou *Cinclidotus fontinaloides* sont également présentes.

Une scirpaie de faible superficie est présente en zone littorale immergée. Quelques amas de *Fontinalis antipyretica* sont également recensés jusqu'à 1,5 m de profondeur, en mélange avec *Cladophora sp.* Le long des profils perpendiculaires de rive, les herbiers aquatiques sont bien développés avec la présence de plusieurs hydrophytes tels que *Zannichellia palustris*, *Elodea*

⁶Hygrocline : Qui préfère légèrement l'humidité du milieu ; hygrophile : se dit d'une espèce ayant besoin de fortes quantités d'eau tout au long de son développement.

Agence de l'Eau Rhône - Méditerranée & Corse

Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Lac de Saint-Point (25) *nuttallii, Potamogeton pectinatus* et *Chara contraria* jusqu'à 3 m de profondeur. *Elodea nuttallii,* espèce invasive, domine ces peuplements.

Photo 5 : Bourrelet marginal composé de 5 couches cellulaires de Cinclidotus fontinaloides

5.3.3 Unite d'observation n°3

Photo 6: Vues sur l'UO3 du lac de Saint-Point

L'unité d'observation 3 est localisée dans la partie médiane de la rive Est du Lac. La zone riveraine est composée d'une alternance forêt/prairie. La zone littorale immergée est marquée par une ceinture de *Carex acuta* et quelques bryophytes (*Fontinalis antipyretica, Fissidens adanthioides*). Le long des profils perpendiculaires de rive, la scirpaie (*Scirpus lacustris*) s'étend jusqu'à 4,1 m de profondeur. Elle est associée à divers hydrophytes (*Elodea nuttallii, Hippuris vulgaris, Potamogeton pectinatus*).

Photo 7: Peuplement de Fontinalis antipyretica

5.3.4 Unite d'observation n°4

Photo 8: Vue sur l'UO4 du lac de Saint-Point

L'unité d'observation 4, située dans la partie Nord de la rive Est du lac, est réalisée en bordure d'une forêt de feuillus. La berge est essentiellement composée de blocs rocheux soutenant un chemin en bordure de forêt.

La zone littorale immergée est marquée jusqu'à 1 m de profondeur par une forte abondance d'algues :

- ✓ des algues filamenteuses vertes (*Cladophora sp.*, *Ulothrix sp.*);
- ✓ des algues gélatineuses vertes (*Chaetophora sp.*);
- ✓ des cyanophycées benthiques (*Oedogonium sp.*).

La scirpaie s'étend ensuite jusqu'à 3,8 m de profondeur pour les formes submergées de *Scirpus lacustris*. Quelques herbiers aquatiques à hydrophytes (*Elodea nuttallii, Hippuris vulgaris, Potamogeton pectinatus*) sont recensés entre 1,0 et 2,6 m de profondeur.

5.3.5 Unite d'observation n°5

Photo 9: Vue sur l'UO5 du lac de Saint-Point

L'unité d'observation 5 est située dans la partie Nord de la rive Ouest du lac, au sein d'une zone humide.

La zone riveraine est composée successivement d'une saulaie marécageuse et d'une forêt non hygrophile.

La zone littorale immergée est marquée :

- ✓ par la présence d'une magnocariçaie à *Carex elata* jusqu'à 20-40 cm de profondeur ;
- ✓ puis par la présence d'une scirpo-phragmitaie à *Scirpus lacustris*, *Phragmites australis* jusqu'à plus d'1 m de profondeur.

Une nupharaie à *Nuphar lutea* et *Nymphea alba* est également recensée à des profondeurs comprises entre 0,4 et 1,4 m de profondeur. La scirpo-phragmataie ainsi que la nupharaie abritent également des espèces d'hydrophytes dont *Potamogeton pectinatus*, *Potamogeton berchtoldii*, *Zannichellia palustris* et *Chara contraria*. De nombreuses algues sont en position d'épiphyte sur ces herbiers (*Diatoma sp.*, *Oedogonium sp.*, *Chaetophora sp.*...).

Photo 10: Algues en position d'épiphyte (Chaetophora, Oedogonium et Diatoma)

5.3.6 Unite d'observation n°6

Photo 11: Vue sur l'UO6 du lac de Saint-Point

L'unité d'observation 6 est située à l'extrémité Nord de la rive Est du lac, au sein d'une zone davantage artificialisée (route, parking et rampe de mise à l'eau).

La zone littorale potentielle de rive présente une faible superficie et est caractérisée par la présence d'une scirpaie et d'une cariçaie à *Carex elata*.

La zone littorale immergée est colonisée par de nombreuses algues telles que *Spirogyra sp.* ou *Cladophora sp.* jusqu'à 1 m de profondeur.

Les profils perpendiculaires de rive présentent des herbiers aquatiques bien développés avec la présence de plusieurs hydrophytes jusqu'à 2,2 m de profondeur (*Zannichellia palustris, Hippuris vulgaris, Elodea nuttallii, Potamogeton pectinatus, Potamogeton berchtoldii* et *Chara* contraria). Il faut également noter la présence de *Chara major* sur le profil droit à 1,7 m de profondeur.

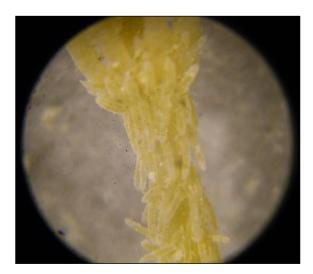


Photo 12: Chara major à cortication diplostique aulacanthée et acicules groupées par 2-3

5.4 LISTE DES ESPECES PROTEGEES ET ESPECES INVASIVES

Photo 13: Elodea nuttallii

L'espèce invasive *Elodea nuttallii* a été observée plus ou moins densément sur l'ensemble des transects. *Elodea canadensis*, anciennement considérée comme invasive mais aujourd'hui intégrée dans les écosystèmes, n'a pas été identifiée en 2012, au contraire de 2009.

Photo 14: Polemonium caruleum

Polemonium caruleum, protégée au niveau national, a été observée en zone riveraine de l'UO 1. Potamogeton gramineus, espèce protégée au niveau régional recensée en 2009, n'a pas été observée en 2012.

5.5 APPROCHE DU NIVEAU TROPHIQUE DU PLAN D'EAU

Parmi les macrophytes observés, les formations à *Chara contraria* sont des communautés pionnières mésotrophes plus ou moins sensibles aux concentrations en nutriments (orthophosphates). Elles sont ici bien représentées et traduisent le caractère mésotrophe carbonaté du lac.

Concernant les herbiers aquatiques, notons le développement de tapis de nénuphars blanc et jaune, sensibles à l'eutrophisation et aux variations de niveau d'eau.

Agence de l'Eau Rhône - Méditerranée & Corse

Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Lac de Saint-Point (25) Quelques algues vertes filamenteuses (*Spirogyra sp., Cladophora sp.*) et quelques cyanobactéries benthiques (*Lyngbya sp., Oscillatoria sp.*) sont également recensés, en bordure de secteurs résidentiels notamment. Elles témoignent d'apports en nutriments très localisés.

Les herbiers de potamots à *Potamogeton friesii*, *Potamogeton gramineus* et *Potamogeton x zizi* observés en 2009 et traduisant un caractère mésotrophe semblent avoir évolués vers des herbiers à *Potamogeton pectinatus* et *Elodea nuttallii*, plus polluo-tolérants. D'autre part, des herbiers à *Potamogeton berchtoldii*, caractéristiques de milieux eutrophes, ont été inventoriés en 2012.

En conclusion, le lac de Saint-Point abrite encore, mais de manière localisée, de belles ceintures de végétation constituant une zonation typique de lacs mésotrophes carbonatés (magnocariçaie, roselières à Scirpe lacustre et Roseau commun, nupharaies et herbiers de potamots et de characées). Cependant, la présence de l'espèce invasive polluo-tolérante *Elodea nuttallii* suggère une dégradation des différentes communautés végétales mésotrophes. Globalement, les espèces recensées traduisent un degré de trophie méso-eutrophe.

5.6 COMPARAISONS AVEC LE SUIVI DE POPULATION DE MACROPHYTES 2009

Concernant l'UO 1, les observations réalisées en 2012 sont sensiblement similaires à celles réalisées en 2009. Toutefois, les herbiers de potamots à *Potamogeton lucens*, *Potamogeton friesii* et *Potamogeton x zizi*, recensés en 2009, n'ont pas été retrouvés en 2012 (seul *Potamogeton pectinatus* a été observé). Au contraire, les espèces *Hippuris vulgaris*, *Carex vesicaria*, *Solanum dulcamara*, *Polemonium caeruleum* ou *Amblystegium riparioides* n'ont été observées qu'en 2012.

Concernant l'UO 2, la profondeur maximale colonisée par les herbiers a diminué entre 2009 et 2012 (environ 1 m) et suggère ainsi une régression de la végétation. Certaines espèces comme *Potamogeton friesii* et *Elodea canadensis*, observées en 2009, n'ont pas été identifiées en 2012. Au contraire, d'autres espèces telles *Utricularia australis* ou *Potamogeton trichoides* n'ont été recensées qu'en 2012.

Concernant l'UO 3, l'espèce *Potamogeton friesii* et les herbiers de characées à *Chara contraria* et *Chara strigosa* n'ont pas été rencontrés en 2012, suggérant soit une régression soit plus simplement une non observation du fait de leur caractère très localisé en 2009.

Concernant l'UO 4, les différents herbiers observés en 2009 semblent avoir régressé (*Hippuris vulgaris, Potamogeton pectinatus*) ou disparu (*Potamogeton gramineus, Potamogeton friesii*).

Concernant l'UO 5, les espèces *Potamogeton friesii* et *Potamogeton gramineus* n'ont pas été retrouvées en 2012. Au contraire, l'espèce *Potamogeton berchtoldii* n'a été observée qu'en 2012.

L'UO 6 n'avait pas été réalisée en 2009, elle a été rajoutée en 2012 pour satisfaire aux exigences du nouveau protocole.

5.7 Releves des unites d'observation

Les relevés des 6 unités d'observations réalisés ont été reportés dans le formulaire de saisie version 4 élaboré par l'IRSTEA. Les 6 fichiers sont disponibles sur demande.

INTERPRETATION GLOBALE DES RESULTATS

Les résultats acquis durant le suivi annuel ont été interprétés en termes d'état écologique pour les plans d'eau d'origine naturelle et d'état chimique selon les critères et méthodes d'évaluation décrits dans l'arrêté du 25 janvier 2010.

Ces résultats ont également été traités en termes de niveau trophique à l'aide des outils de la diagnose rapide (Cemagref, 2003).

Les résultats de ces deux approches sont présentés dans le document complémentaire : Note synthétique d'interprétation des résultats.

✓ Critères d'applicabilité de la diagnose rapide

La diagnose rapide vise à évaluer l'état trophique des lacs et à mettre en évidence les phénomènes d'eutrophisation. Elle fait appel au principe fondamental du fonctionnement des lacs qui suppose qu'il existe un lien entre la composition physico-chimique à l'époque du mélange hivernal et les phénomènes qu'elle est susceptible d'engendrer dans les divers compartiments de l'écosystème au cours de la période de croissance végétale qui lui succède.

Cette méthode est donc adaptée aux plans d'eau qui stratifient durablement en été et exclut les plans d'eau au temps de séjour réduit (CEMAGREF, 1990, 2003) et les lacs dont la profondeur moyenne est inférieure à 3 m. Il convient également de noter que la diagnose rapide ne prend en compte que la biomasse phytoplanctonique sous l'aspect "production végétale" et n'intègre donc pas l'importance du recouvrement en macrophytes du plan d'eau.

Le lac de Saint-Point est un plan d'eau naturel d'une profondeur moyenne de 19 m. Il présente un fonctionnement dimictique avec une stratification thermique durable en période estivale. Ainsi, en 2012, elle est observable de début juin à fin septembre.

Le temps de séjour est long : il est évalué à 200 jours d'après les données disponibles.

Les périodes d'intervention des différentes campagnes de prélèvements menées en 2012 correspondent aux préconisations de la méthodologie.

Le lac de Saint-Point répond aux exigences pour appliquer la diagnose rapide.

Agence de l'Eau Rhône - Méditerranée & Corse Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Lac de Saint-Point (25)
ANNEXES
ANNEALS

1. LISTE DES MICROPOLLUANTS ANALYSES SUR EAU

Code			Code		
	Libel_param	Famille composés	SANDRE	Libel_param	Famille composés
5474	4-n-nonylphénol	Alkylphénols	1118	Benzo (ghi) Pérylène	HAP
1957	Nonylphénols	Alkylphénols	1117	Benzo (k) Fluoranthène	HAP
1920	p-(n-octyl)phénols	Alkylphénols	1476	Chrysène	HAP
1958	Para-nonylphénols ramifiés	Alkylphénols	1621	Dibenzo (ah) Anthracène	HAP
1959	Para-tert-octylphénol	Alkylphénols	1191	Fluoranthène	HAP
1593	Chloroaniline-2	Anilines et Chloroanilines	1623	Fluorène	HAP
1592	Chloroaniline-3	Anilines et Chloroanilines	1204	Indéno (123c) Pyrène	HAP
1591	Chloroaniline-4	Anilines et Chloroanilines	1619	Méthyl-2-Fluoranthène	HAP
1589	Dichloroaniline-2,4	Anilines et Chloroanilines	1618	Méthyl-2-naphtalène	HAP
1114	Benzène	BTEX	1517	Naphtalène	HAP
1602	Chlorotoluène-2	BTEX	1524	Phénanthrène	HAP
1601	Chlorotoluène-3	BTEX	1537	Pyrène	HAP
1600	Chlorotoluène-4	BTEX	1370	Aluminium	Métaux
1497	Ethylbenzène	BTEX	1376	Antimoine	Métaux
1633	Isopropylbenzène	BTEX	1368	Argent	Métaux
1278	Toluène	BTEX	1369	Arsenic	Métaux
5431	Xylène (ortho+meta+para)	BTEX	1396	Baryum	Métaux
	Xylène-ortho	BTEX	1377	Beryllium	Métaux
1955	Chloroalcanes C10-C13	Chloroalacanes	1362	Bore	Métaux
1467	Chlorobenzène (Mono)	Chlorobenzènes	1388	Cadmium	Métaux
1165	Dichlorobenzène-1,2	Chlorobenzènes	1389	Chrome	Métaux
1164	Dichlorobenzène-1.3	Chlorobenzènes	1379	Cobalt	Métaux
1166	Dichlorobenzène-1,4	Chlorobenzènes	1392	Cuivre	Métaux
1199	Hexachlorobenzène	Chlorobenzènes	1380	Etain	Métaux
1888	Pentachlorobenzène	Chlorobenzènes	1393	Fer	Métaux
1631	Tétrachlorobenzène-1,2,4,5	Chlorobenzènes	1394	Manganèse	Métaux
1630	Trichlorobenzène-1,2,3	Chlorobenzènes	1387	Mercure	Métaux
1283	Trichlorobenzène-1.2.4	Chlorobenzènes	1395	Molybdène	Métaux
1629	Trichlorobenzène-1,3,5	Chlorobenzènes	1386	Nickel	Métaux
1774	Trichlorobenzènes	Chlorobenzènes	1382	Plomb	Métaux
1469	Chloronitrobenzène-1,2	Chloronitrobenzènes	1385	Sélénium	Métaux
1468	Chloronitrobenzène-1,3	Chloronitrobenzènes	2559	Tellurium	Métaux
1470	Chloronitrobenzène-1,4	Chloronitrobenzènes	2555	Thallium	Métaux
1617	Dichloronitrobenzène-2,3	Chloronitrobenzènes	1373	Titane	Métaux
1615	Dichloronitrobenzène-2,5	Chloronitrobenzènes	1361	Uranium	Métaux
1614	Dichloronitrobenzène-3,4	Chloronitrobenzènes	1384	Vanadium	Métaux
	BDE100	Diphényléthers bromés	1383	Zinc	Métaux
	BDE153	Diphényléthers bromés	1135	Chloroforme (trichlorométhane)	OHV
	BDE154	Diphényléthers bromés	2611	Chloroprène	OHV
	BDE28	Diphényléthers bromés	2065	Chloropropène-3	OHV
	BDE47	Diphényléthers bromés	1160	Dichloréthane-1,1	OHV
	BDE99	Diphényléthers bromés	1161	Dichlorethane-1,1	OHV
1815	Décabromodiphényléther	Diphényléthers bromés	1162	Dichlorethylène-1,1	OHV
2609	Octabromodiphénylether	Diphényléthers bromés	1163	Dichloréthylène-1,2	OHV
1921	Pentabromodiphényléther	Diphényléthers bromés	1456	Dichloréthylène-1,2 cis	OHV
	Acide monochloroacétique			B1 11 (11 1) 1 a .	0107
	Chlorure de vinyle	Chlorure de vinyles	1727	Dichlorethylene-1,2 trans Dichlorométhane	OHV
2826	Diéthylamine	Divers	1652	Hexachlorobutadiène	OHV
2773	Diméthylamine	Divers	1271	Tétrachloréthane-1,1,2,2	OHV
1494	Epichlorohydrine	Divers	1271	Tétrachloréthylène	OHV
				•	
1453	Acénaphtène	HAP	1276	Tétrachlorure de C	OHV
1622	Acénaphtylène	HAP	1284	Trichloréthane-1,1,1	OHV
1458	Anthracène	HAP	1285	Trichloréthane-1,1,2	OHV
1082	Benzo (a) Anthracène	HAP	1286	Trichloréthylène	OHV
1115	Benzo (a) Pyrène	HAP	1771	Dibutylétain	Organostanneux complets

Agence de l'Eau Rhône - Méditerranée & Corse

Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Lac de Saint-Point (25)

	Etude des plans d'eau	du programme de surv		bassins Rhône-Méditerranée	e et Corse – Lac de Saint-P
Code	l	,	Code		
	Libel_param	Famille_composés	SANDRE	Libel_param	Famille composés
2879	Tributylétain-cation	Organostanneux complets	1187	Fénitrothion	Pesticides
1779	Triphénylétain	Organostanneux complets	1967	Fénoxycarbe	Pesticides
1242	PCB 101	PCB	2022	Fludioxonil	Pesticides
1243	PCB 118	PCB	1765	Fluroxypyr	Pesticides
1244	PCB 138	PCB	2547	Fluroxypyr-meptyl	Pesticides
1245	PCB 153	PCB	1194	Flusilazole	Pesticides
1090	PCB 169	PCB	1702	Formaldéhyde	Pesticides
1246	PCB 180	PCB	1506	Glyphosate	Pesticides
1239	PCB 28	PCB	1200	HCH alpha	Pesticides
1240	PCB 35	PCB	1201	HCH beta	Pesticides
1241	PCB 52	PCB	1202	HCH delta	Pesticides
1091	PCB 77	PCB	2046	HCH epsilon	Pesticides
1141	2 4 D	Pesticides	1203	HCH gamma	Pesticides
1212	2 4 MCPA	Pesticides	1405	Hexaconazole	Pesticides
1832	2-Hydroxy-atrazine	Pesticides	1877	Imidaclopride	Pesticides
1903	Acétochlore		1206		
		Pesticides	• ———	Iprodione	Pesticides
1688	Aclonifen	Pesticides	1207	Isodrine	Pesticides
1101	Alachlore	Pesticides	1208	Isoproturon	Pesticides
1103	Aldrine	Pesticides	1950	Kresoxim méthyl	Pesticides
1105	Aminotriazole	Pesticides	1094	Lambda Cyhalothrine	Pesticides
1907	AMPA	Pesticides	1209	Linuron	Pesticides
1107	Atrazine	Pesticides	1210	Malathion	Pesticides
1109	Atrazine déisopropyl	Pesticides	1214	Mécoprop	Pesticides
1108	Atrazine déséthyl	Pesticides	2987	Métalaxyl m = mefenoxam	Pesticides
1951	Azoxystrobine	Pesticides	1796	Métaldéhyde	Pesticides
1113	Bentazone	Pesticides	1215	Métamitrone	Pesticides
1686	Bromacil	Pesticides	1670	Métazachlore	Pesticides
1125	Bromoxynil	Pesticides	1216	Méthabenzthiazuron	Pesticides
1941	Bromoxynil octanoate	Pesticides	1227	Monolinuron	Pesticides
1129	Carbendazime	Pesticides	1519	Napropamide	Pesticides
1130	Carbofuran	Pesticides	1882	Nicosulfuron	Pesticides
1464	Chlorfenvinphos	Pesticides	1669	Norflurazon	Pesticides
1134	Chlorméphos	Pesticides	1667	Oxadiazon	Pesticides
			+		
1474	Chlorprophame	Pesticides	1666	Oxadixyl	Pesticides
1083	Chlorpyriphos éthyl	Pesticides	1231	Oxydéméton méthyl	Pesticides
1540	Chlorpyriphos méthyl	Pesticides	1234	Pendiméthaline	Pesticides
1136	Chlortoluron	Pesticides	1665	Phoxime	Pesticides
2017	Clomazone	Pesticides	1664	Procymidone	Pesticides
1680	Cyproconazole	Pesticides	1414	Propyzamide	Pesticides
1359	Cyprodinil	Pesticides	1432	Pyriméthanil	Pesticides
1143	DDD-o,p'	Pesticides	1892	Rimsulfuron	Pesticides
1144	DDD-p,p'	Pesticides	1263	Simazine	Pesticides
1145	DDE-o,p'	Pesticides	1662	Sulcotrione	Pesticides
1146	DDE-p,p'	Pesticides	1694	Tébuconazole	Pesticides
1147	DDT-o,p'	Pesticides	1661	Tébutame	Pesticides
1148	DDT-p,p'	Pesticides	1268	Terbuthylazine	Pesticides
1830	Déisopropyl-déséthyl-atrazine	Pesticides	2045	Terbuthylazine déséthyl	Pesticides
1149	Deltaméthrine	Pesticides	1954	Terbuthylazine hydroxy	Pesticides
1480	Dicamba	Pesticides	1269	Terbutryne	Pesticides
	Dichlorprop	Pesticides	1660	Tétraconazole	Pesticides
1170		Pesticides	1288	Trichlopyr	Pesticides
	Dichlorvos		1289	Trifluraline	
1173	Dieldrine Diflufénicanil	Pesticides	+	Chlorométhylphénol-4,3	Pesticides Phánala et ablaraphánala
1814		Pesticides	1636	71	Phénois et chlorophénois
1678	Diméthénamide	Pesticides	1471	Chlorophénol-2	Phénois et chlorophénois
1403	Diméthomorphe	Pesticides	1651	Chlorophénol-3	Phénols et chlorophénols
1177	Diuron	Pesticides	1650	Chlorophénol-4	Phénols et chlorophénols
1178	Endosulfan alpha	Pesticides	1486	Dichlorophénol-2,4	Phénols et chlorophénols
1179	Endosulfan beta	Pesticides	1235	Pentachlorophénol	Phénols et chlorophénols
1742	Endosulfan sulfate	Pesticides	1548	Trichlorophénol-2,4,5	Phénols et chlorophénols
1743	Endosulfan Total	Pesticides	1549	Trichlorophénol-2,4,6	Phénols et chlorophénols
1181	Endrine	Pesticides	1584	Biphényle	Semi volatils organiques divers
1744	Epoxiconazole	Pesticides	1461	DEPH	Semi volatils organiques divers
1184	Ethofumésate	Pesticides	1847	Tributylphosphate	Semi volatils organiques divers
					<u> </u>

2. LISTE DES MICROPOLLUANTS ANALYSES SUR SEDIMENTS

5474	•	amille_composés	Code_SANDR 1652	Hexachlorobutadiène	Famille_composés OHV
1957		Alkylphénols	1770	Dibutylétain (oxyde)	Organostanneux complets
1920		Alkylphénols	1936	Tétrabutylétain	Organostanneux complets
1958		Alkylphénols	2879	Tributylétain-cation	Organostanneux complets
1959		Alkylphénols	1779	Triphénylétain	Organostanneux complets
1602		BTEX	1242	PCB 101	PCB
1601		BTEX	1243	PCB 118	PCB
1600		BTEX	1244	PCB 138	PCB
1497		BTEX	1245	PCB 153	PCB
1633		BTEX	1090	PCB 169	PCB
5431		BTEX	1246	PCB 180	PCB
1292	, , , ,	BTEX	1239	PCB 28	PCB
1955	,	Chloroalacanes	1240	PCB 35	PCB
1165		Chlorobenzènes	1241	PCB 52	PCB
1164		Chlorobenzènes	1091	PCB 77	PCB
1166		Chlorobenzènes	1903	Acétochlore	Pesticides
1199		Chlorobenzènes	1688	Aclonifen	Pesticides
1888		Chlorobenzènes	1103	Aldrine	Pesticides
1631		Chlorobenzènes	1125	Bromoxynil	Pesticides
1630		Chlorobenzènes	1941	Bromoxynil octanoate	Pesticides
1283		Chlorobenzènes	1464	Chlorfenvinphos	Pesticides
1629		Chlorobenzènes	1134	Chlorméphos	Pesticides
1774		Chlorobenzènes	1474	Chlorprophame	Pesticides
1617		Chloronitrobenzènes	1083	Chlorpyriphos éthyl	Pesticides
1615		Chloronitrobenzènes	1540	Chlorpyriphos méthyl	Pesticides
1614		Chloronitrobenzènes	1359	Cyprodinil	Pesticides
2915		Diphényléthers bromés	1143	DDD-o,p'	Pesticides
2912		Diphényléthers bromés	1144	DDD-p,p'	Pesticides
2911		Diphényléthers bromés	1145	DDE-o,p'	Pesticides
2920		Diphényléthers bromés	1146	DDE-p,p'	Pesticides
2919		Diphényléthers bromés	1147	DDT-o,p'	Pesticides
2916		Diphényléthers bromés	1148	DDT-p,p'	Pesticides
1815		Diphényléthers bromés	1149	Deltaméthrine	Pesticides
2609		Diphényléthers bromés	1169	Dichlorprop	Pesticides
1921		Diphényléthers bromés	1173	Dieldrine	Pesticides
1453		HAP	1814	Diflufénicanil	Pesticides
1622		HAP	1178	Endosulfan alpha	Pesticides
1458		HAP	1179	Endosulfan beta	Pesticides
1082	Benzo (a) Anthracène	HAP	1742	Endosulfan sulfate	Pesticides
1115	Benzo (a) Pyrène	HAP	1743	Endosulfan Total	Pesticides
1116	Benzo (b) Fluoranthène F	HAP	1181	Endrine	Pesticides
1118	Benzo (ghi) Pérylène F	HAP	1744	Epoxiconazole	Pesticides
1117	Benzo (k) Fluoranthène F	HAP	1187	Fénitrothion	Pesticides
1476	Chrysène F	HAP	1967	Fénoxycarbe	Pesticides
1621	Dibenzo (ah) Anthracène F	HAP	2022	Fludioxonil	Pesticides
1191	Fluoranthène F	HAP	2547	Fluroxypyr-meptyl	Pesticides
1623	Fluorène F	HAP	1194	Flusilazole	Pesticides
1204	Indéno (123c) Pyrène F	HAP	1200	HCH alpha	Pesticides
1619		HAP	1201	HCH beta	Pesticides
1618		HAP	1202	HCH delta	Pesticides
1517	· · ·	HAP	2046	HCH epsilon	Pesticides
1524		HAP	1203	HCH gamma	Pesticides
1537		HAP	1405	Hexaconazole	Pesticides
1370		леtaux	1206	Iprodione	Pesticides
1376		Métaux	1207	Isodrine	Pesticides
		Métaux	1950	Kresoxim méthyl	Pesticides
1368	Argent				
1368		∕létaux			Pesticides
1369	Arsenic N	Métaux Métaux	1094	Lambda Cyhalothrine	Pesticides Pesticides
1369 1396	Arsenic N Baryum N	Лétaux	1094 1209	Lambda Cyhalothrine Linuron	Pesticides
1369 1396 1377	Arsenic N Baryum N Beryllium N	Лétaux Лétaux	1094 1209 1519	Lambda Cyhalothrine Linuron Napropamide	Pesticides Pesticides
1369 1396 1377 1362	Arsenic M Baryum M Beryllium M Bore M	Лétaux Лétaux Лétaux	1094 1209 1519 1667	Lambda Cyhalothrine Linuron Napropamide Oxadiazon	Pesticides Pesticides Pesticides
1369 1396 1377 1362 1388	Arsenic M Baryum N Beryllium N Bore N Cadmium N	Métaux Métaux Métaux Métaux	1094 1209 1519 1667 1234	Lambda Cyhalothrine Linuron Napropamide Oxadiazon Pendiméthaline	Pesticides Pesticides Pesticides Pesticides
1369 1396 1377 1362 1388 1389	Arsenic N Baryum N Beryllium N Bore N Cadmium N Chrome N	Métaux Métaux Métaux Métaux Métaux	1094 1209 1519 1667 1234 1664	Lambda Cyhalothrine Linuron Napropamide Oxadiazon Pendiméthaline Procymidone	Pesticides Pesticides Pesticides Pesticides Pesticides Pesticides
1369 1396 1377 1362 1388 1389 1379	Arsenic N Baryum N Beryllium N Bore N Cadmium N Chrome N Cobalt N	Métaux Métaux Métaux Métaux Métaux Métaux	1094 1209 1519 1667 1234 1664 1414	Lambda Cyhalothrine Linuron Napropamide Oxadiazon Pendiméthaline Procymidone Propyzamide	Pesticides Pesticides Pesticides Pesticides Pesticides Pesticides Pesticides
1369 1396 1377 1362 1388 1389 1379 1392	Arsenic N Baryum N Beryllium N Bore N Cadmium N Chrome N Cobalt N Cuivre N	Métaux Métaux Métaux Métaux Métaux Métaux Métaux	1094 1209 1519 1667 1234 1664 1414 1694	Lambda Cyhalothrine Linuron Napropamide Oxadiazon Pendiméthaline Procymidone Propyzamide Tébuconazole	Pesticides Pesticides Pesticides Pesticides Pesticides Pesticides Pesticides Pesticides
1369 1396 1377 1362 1388 1389 1379 1392 1380	Arsenic N Baryum N Beryllium N Bore N Cadmium N Chrome N Cobalt N Cuivre N Etain N	Métaux Métaux Métaux Métaux Métaux Métaux Métaux Métaux Métaux	1094 1209 1519 1667 1234 1664 1414 1694 1661	Lambda Cyhalothrine Linuron Napropamide Oxadiazon Pendiméthaline Procymidone Propyzamide Tébuconazole Tébutame	Pesticides
1369 1396 1377 1362 1388 1389 1379 1392 1380 1393	Arsenic N Baryum N Beryllium N Bore N Cadmium N Chrome N Cobalt N Cuivre N Etain N Fer N	Métaux	1094 1209 1519 1667 1234 1664 1414 1694 1661 1268	Lambda Cyhalothrine Linuron Napropamide Oxadiazon Pendiméthaline Procymidone Propyzamide Tébuconazole Tébutame Terbuthylazine	Pesticides
1369 1396 1377 1362 1388 1389 1379 1392 1380 1393 1394	Arsenic N Baryum N Beryllium M Bore N Cadmium N Chrome N Cobalt N Cuivre N Etain N Fer N Manganèse N	Métaux	1094 1209 1519 1667 1234 1664 1414 1694 1661 1268	Lambda Cyhalothrine Linuron Napropamide Oxadiazon Pendiméthaline Procymidone Propyzamide Tébuconazole Tébutame Terbuthylazine Terbutyne	Pesticides
1369 1396 1377 1362 1388 1389 1379 1392 1380 1393 1394 1387	Arsenic N Baryum N Beryllium N Bore N Cadmium N Chrome N Cobalt N Cuivre N Etain N Fer N Manganèse N Mercure N	Métaux	1094 1209 1519 1667 1234 1664 1414 1694 1661 1268 1269	Lambda Cyhalothrine Linuron Napropamide Oxadiazon Pendiméthaline Procymidone Propyzamide Tébuconazole Tébutame Terbuthylazine Terbutryne Tétraconazole	Pesticides
1369 1396 1377 1362 1388 1389 1379 1392 1380 1393 1393 1394 1387	Arsenic N Baryum N Beryllium N Bore N Cadmium N Cadmium N Chrome N Cobalt N Cuivre N Etain N Fer N Manganèse N Mercure N Molybdène N	Métaux	1094 1209 1519 1667 1234 1664 1414 1694 1661 1268 1269 1660 1289	Lambda Cyhalothrine Linuron Napropamide Oxadiazon Pendiméthaline Procymidone Propyzamide Tébuconazole Tébutame Terbuthylazine Terbutryne Tétraconazole Trifluraline	Pesticides
1369 1396 1377 1362 1388 1389 1379 1392 1380 1393 1394 1387 1387	Arsenic N Baryum N Beryllium N Bore N Cadmium N Chrome N Cobalt N Cuivre N Etain N Fer N Manganèse N Mercure N Nolybdène N Nickel N	Métaux	1094 1209 1519 1667 1234 1664 1414 1694 1661 1268 1269 1660 1289	Lambda Cyhalothrine Linuron Napropamide Oxadiazon Pendiméthaline Procymidone Propyzamide Tébuconazole Tébutame Terbuthylazine Terbutryne Tétraconazole Trifluraline Chlorométhylphénol-4,3	Pesticides Phénols et chlorophénols
1369 1396 1377 1362 1388 1389 1379 1392 1380 1393 1394 1387 1395 1386 1386	Arsenic N Baryum N Beryllium N Bore N Cadmium N Chrome N Cobalt N Cuivre N Etain N Fer N Manganèse N Mercure N Molybdène N Nickel N Plomb N	Métaux	1094 1209 1519 1667 1234 1664 1414 1694 1661 1268 1269 1660 1289 1636 1486	Lambda Cyhalothrine Linuron Napropamide Oxadiazon Pendiméthaline Procymidone Propyzamide Tébuconazole Tébutame Terbuthylazine Terbuthyne Tétraconazole Trifluraline Chlorométhylphénol-4,3 Dichlorophénol-2,4	Pesticides Phénols et chlorophénols Phénols et chlorophénols
1369 1396 1377 1362 1388 1389 1379 1392 1380 1393 1394 1387 1387	Arsenic N Baryum N Beryllium N Bore N Cadmium N Chrome N Cobalt N Cuivre N Etain N Fer N Manganèse N Mercure N Molybdène N Nickel N Plomb N	Métaux	1094 1209 1519 1667 1234 1664 1414 1694 1661 1268 1269 1660 1289	Lambda Cyhalothrine Linuron Napropamide Oxadiazon Pendiméthaline Procymidone Propyzamide Tébuconazole Tébutame Terbuthylazine Terbutryne Tétraconazole Trifluraline Chlorométhylphénol-4,3	Pesticides
1369 1396 1377 1362 1388 1389 1379 1392 1380 1393 1394 1387 1395 1386 1386	Arsenic N Baryum N Beryllium N Bore N Bore N Cadmium N Chrome N Cobalt N Cuivre N Etain N Fer N Manganèse N Mercure N Molybdène N Nickel N Plomb N Sélénium N	Métaux	1094 1209 1519 1667 1234 1664 1414 1694 1661 1268 1269 1660 1289 1636 1486	Lambda Cyhalothrine Linuron Napropamide Oxadiazon Pendiméthaline Procymidone Propyzamide Tébuconazole Tébutame Terbuthylazine Terbuthyne Tétraconazole Trifluraline Chlorométhylphénol-4,3 Dichlorophénol-2,4	Pesticides Phénols et chlorophénols Phénols et chlorophénols
1369 1396 1377 1362 1388 1389 1379 1392 1380 1393 1394 1387 1395 1386 1386 1386 1382	Arsenic Narsenic Nars	Métaux	1094 1209 1519 1667 1234 1664 1414 1694 1661 1268 1660 1289 1636 1486 1235	Lambda Cyhalothrine Linuron Napropamide Oxadiazon Pendiméthaline Procymidone Propyzamide Tébuconazole Tébutame Terbuthylazine Terbutryne Tétraconazole Trifluraline Chlorométhylphénol-4,3 Dichlorophénol	Pesticides Phénols et chlorophénols Phénols et chlorophénols
1369 1396 1377 1362 1388 1389 1379 1392 1380 1393 1394 1387 1387 1386 1386 1382 1382 1386 1382	Arsenic N Baryum N Beryllium N Bore N Cadmium N Cadmium N Chrome N Cobalt N Cuivre N Etain N Fer N Manganèse N Mercure N Nickel N Plomb N Sélénium N Tellurium N Thallium N	Métaux	1094 1209 1519 1667 1234 1664 1414 1694 1661 1268 1269 1660 1289 1636 1486 1235	Lambda Cyhalothrine Linuron Napropamide Oxadiazon Pendiméthaline Procymidone Propyzamide Tébuconazole Tébutame Terbuthylazine Terbutryne Tétraconazole Trifluraline Chlorométhylphénol-4,3 Dichlorophénol-2,4 Pentachlorophénol Trichlorophénol-7,4,5	Pesticides Phénols et chlorophénols
1369 1396 1377 1362 1388 1389 1379 1392 1380 1393 1394 1387 1387 1386 1386 1382 1385 2559 2555	Arsenic Baryum Beryllium Bore M Bore M Cadmium N Chrome M Cobalt Cobalt N Cuivre M Etain Fer Manganèse Mercure Molybdène N Nickel Plomb M Sélénium N Tellurium M Titane M N N Reryum N N Titane	Métaux	1094 1209 1519 1667 1234 1664 1414 1694 1661 1268 1269 1660 1289 1636 1486 1235 1548	Lambda Cyhalothrine Linuron Napropamide Oxadiazon Pendiméthaline Procymidone Propyzamide Tébuconazole Tébutame Terbuthylazine Terbuthyne Tétraconazole Trifluraline Chlorométhylphénol-4,3 Dichlorophénol-2,4 Pentachlorophénol-2,4,5 Trichlorophénol-2,4,6	Pesticides Phénols et chlorophénols Phénols et chlorophénols Phénols et chlorophénols Phénols et chlorophénols

Age	nce o	le l'Eau Rhône - Etude des _l				des bas	sins Rhône-Méditerranée	e et Corse – Lac de Saint-Poin	t (25)
	<i>3</i> .	COMPTES	RENDUS	DES	CAMPAGNES	DE	PRELEVEMENTS	PHYSICOCHIMIQUES	ET
		<i>PHYTOPLA</i>	NCTONIQUI	ES SUR	L'ANNEE 2012				

Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES GENERALES PLAN D'EAU - STATION Plan d'eau: Saint-Point (lac de) Date: 26/03/2012 Type (naturel, artificiel,...): naturel Code lac: U2015043 Organisme / opérateur : **S.T.E.**: C. Jeudy et A. Gravouille Campagne 1 page 1/5 Organisme demandeur: Agence de l'eau RM&C marché n° 08M082 LOCALISATION PLAN D'EAU Commune: Saint-Point-Lac (25) Type: N4 Lac marnant: non Temps de séjour : 200 lacs naturels de moyenne montagne calcaire, jours Superficie du plan d'eau: 407 ha profonds Profondeur maximale: Carte: (extrait SCAN25, IGN 1/25 000) largon LAC localisation du point de prélèvements **C** angle de prise de vue de la photographie STATION Photo du site:

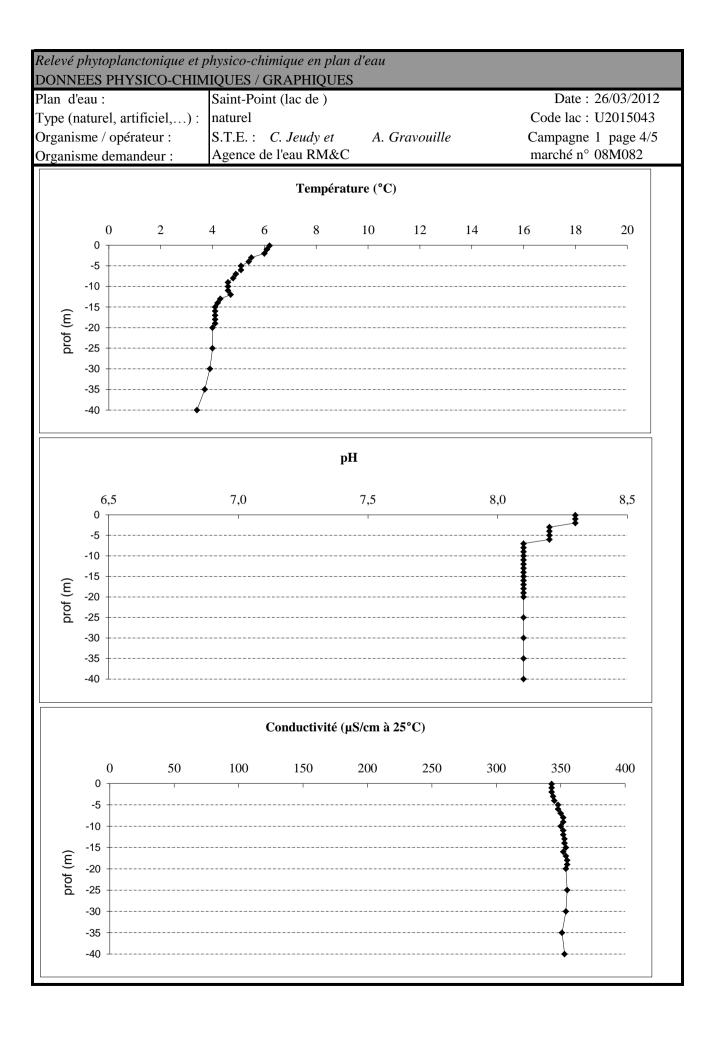
Relevé phytoplanctonique et phy	• •		
DONNEES GENERALES CAN			
Plan d'eau :	Saint-Point (lac de)		Date: 26/03/2012
Type (naturel, artificiel,):	naturel		Code lac: U2015043
Organisme / opérateurs :	S.T.E.: C. Jeudy et	A. Gravouille	Campagne 1 page 2/5
Organisme demandeur:	Agence de l'eau RM&C		marché n° 08M082
STATION			
Coordonnées de la station	relevées sur : GPS		
Lambert 93	X:951757	Y: 66392	28 alt.: 857 m
WGS 84 (systinternational)	GPS (en dms) X:	Y:	alt.: m
Profondeur :	·	<u> </u>	
Troididear	Vent: moyen		
	Météo : ensoleillé sec		
	Wieteo: ensoieme sec		
Conditions d'observation :	Surface de l'eau : f	faiblement agitée	
		C	
	Hauteur des vagues : (0,10 m P atm star	ndard: 912 hPa
	Bloom algal: non	Pression a	
Marnage:	non	Hauteur de la bai	
iviainage .	non	Tradition do la Sar	0,0 111
Campagne :	campagne de fin d'hiv de l'activité biologique	_	an d'eau avant démarrage
PRELEVEMENTS			
Heure de début du relevé :	12:00 I	Heure de fin du relevé	: 13:20
Prélèvements pour analyses :	eau chlorophylle r phytoplancton	matériel employé :	pompe
Castian	D^-1	-:1-	
Gestion:	Pêche, activités nautiques, vo	one	
C	Carra marks atmospherical Desired 12	. M Ct	. 02 01 20 01 41
Contact prealable:	Sous-préfecture de Pontarlier	r - Ivi. Stammier - Tel.	. 03.81.39.81.41
Remarques, observations:			

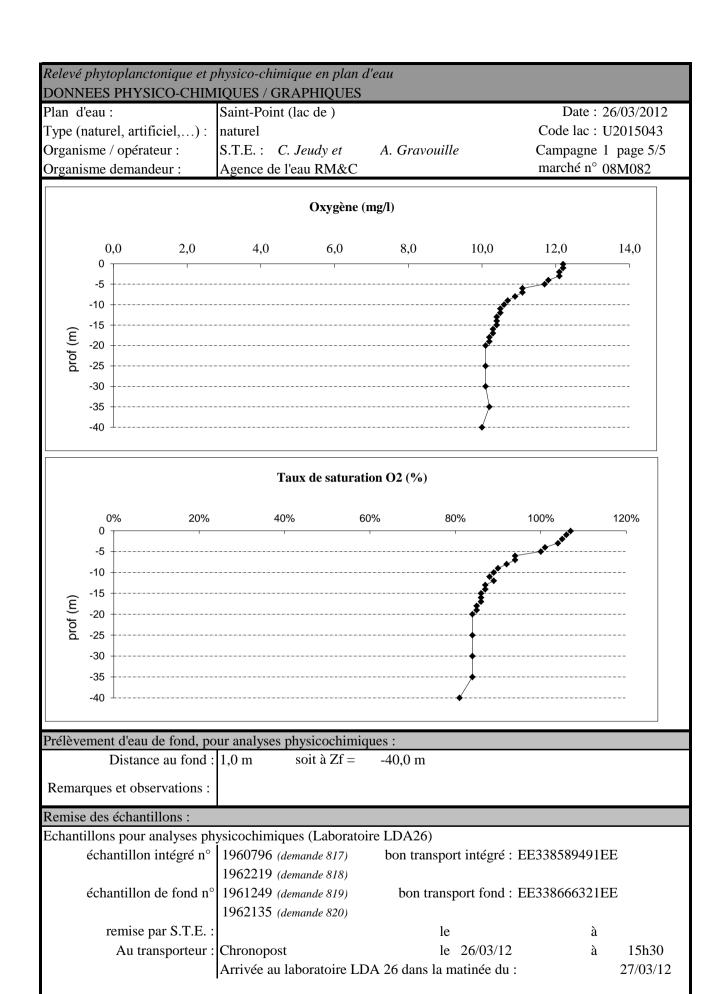
DONNEES PHYSICO-CHIMIQUES

Plan d'eau : Saint-Point (lac de) Date : 26/03/2012

Type (naturel, artificiel,...) : naturel Code lac : U2015043

Type (naturel, artificiel,...): naturel Code lac: U2015043


Organisme / opérateur: S.T.E.: C. Jeudy et A. Gravouille Campagne 1 page 3/5


Organisme demandeur: Agence de l'eau RM&C marché n° 08M082

TRANSPARENCE

Secchi en m: 3,6 Z euphotique (2,5 x Secchi): 9,0 m

Secchi en m:	3,6		Z eupho	otique (2,5 x S	ecchi): 9,0 m		
PROFIL VERTICAL							
Moyen de mesure utilisé:		in-situ à d	chaque p	orof.	X	en surface da	ns un récipient
Volume prélevé (en litres) :	Prof.	Temp.	pН	Cond.	O_2	O_2	Heure
volume prefeve (en nues).	(m)	(°C)		(µS/cm 25°)	(mg/l)	(%)	
prélèvement intégré (1,5 L)	-0,1	6,2	8,3	343	12,2	107%	12:00
prélèvement intégré (1,5 L)	-1,0	6,1	8,3	343	12,2	106%	
prélèvement intégré (1,5 L)	-2,0	6,0	8,3	343	12,1	105%	
prélèvement intégré (1,5 L)	-3,0	5,5	8,2	344	12,1	104%	
prélèvement intégré (1,5 L)	-4,0	5,4	8,2	345	11,8	101%	
prélèvement intégré (1,5 L)	-5,0	5,1	8,2	348	11,7	100%	
prélèvement intégré (1,5 L)	-6,0	5,1	8,2	348	11,1	94%	
prélèvement intégré (1,5 L)	-7,0	4,9	8,1	350	11,1	94%	
prélèvement intégré (1,5 L)	-8,0	4,8	8,1	352	10,9	92%	
prélèvement intégré (1,5 L)	-9,0	4,6	8,1	352	10,7	90%	12:30
	-10,0	4,6	8,1	350	10,6	89%	
	-11,0	4,6	8,1	352	10,5	88%	
	-12,0	4,7	8,1	352	10,5	89%	
	-13,0	4,3	8,1	353	10,4	87%	
	-14,0	4,2	8,1	353	10,4	87%	
	-15,0	4,1	8,1	354	10,4	86%	
	-16,0	4,1	8,1	352	10,3	86%	
	-17,0	4,1	8,1	354	10,3	86%	
	-18,0	4,1	8,1	355	10,2	85%	
	-19,0	4,1	8,1	355	10,2	85%	
	-20,0	4,0	8,1	354	10,1	84%	
	-25,0	4,0	8,1	355	10,1	84%	
	-30,0	3,9	8,1	354	10,1	84%	
	-35,0	3,7	8,1	351	10,2	84%	
prélèvement de fond	-40,0	3,4	8,1	353	10,0	81%	13:00

04/06/12

Echantillons pour analyses phytoplanctoniques à BECQ'EAU, le

Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES GENERALES PLAN D'EAU - STATION Plan d'eau: Saint-Point (lac de) Date: 13/06/2012 Type (naturel, artificiel,...): naturel Code lac: U2015043 **S.T.E.** : Organisme / opérateur : A. Gravouille et L. Krithari Campagne 2 page 1/5 Organisme demandeur: Agence de l'eau RM&C marché n° 08M082 LOCALISATION PLAN D'EAU

Commune: Saint-Point-Lac (25)

Lac marnant : non Type : N4

Temps de séjour : 200 jours lacs naturels de moyenne montagne calcaire,

Superficie du plan d'eau : 407 ha profonds

Profondeur maximale: 42 m

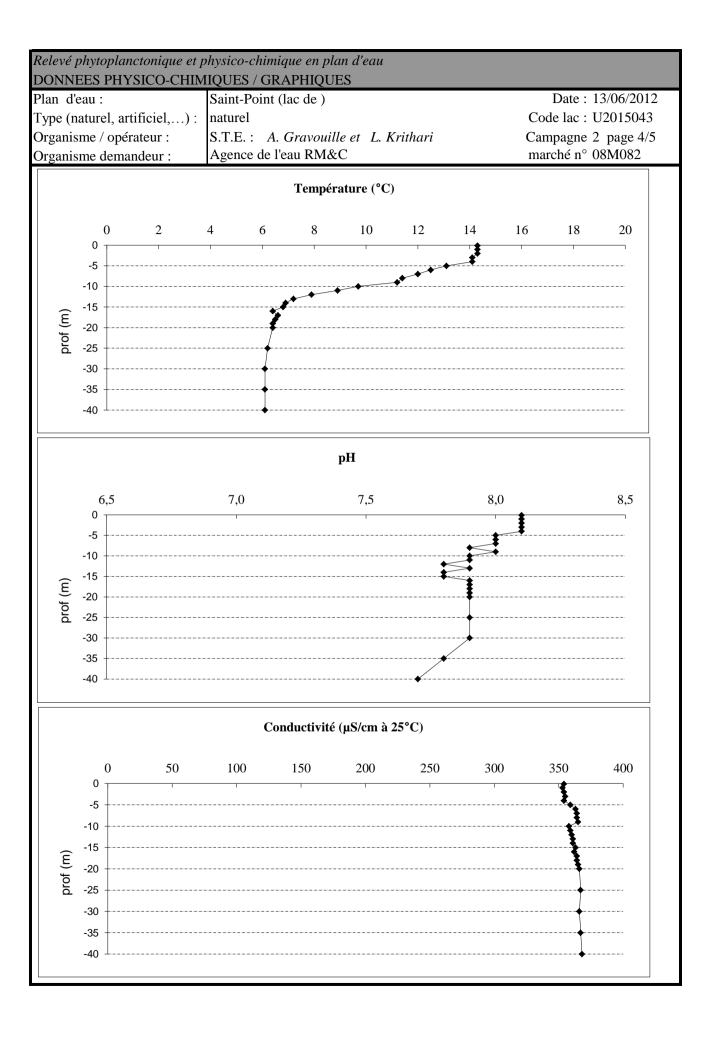
Carte: (extrait SCAN25, IGN 1/25 000)

localisation du point de prélèvements

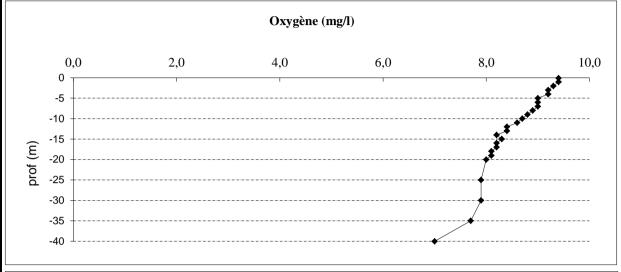
angle de prise de vue de la photographie

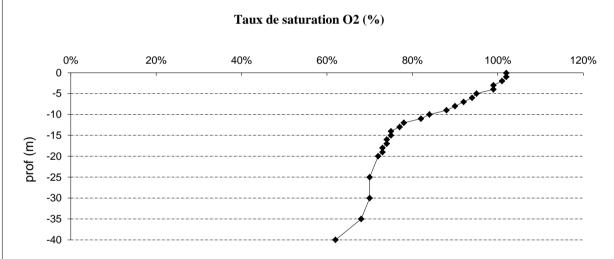
STATION

Photo du site:


Relevé phytoplanctonique et phy	ysico-chimique en plan d'eau	
DONNEES GENERALES CAN		
Plan d'eau :	Saint-Point (lac de) Date: 13/06/2012	
Type (naturel, artificiel,):	naturel Code lac: U2015043	;
Organisme / opérateurs :	S.T.E.: A. Gravouille et L. Krithari Campagne 2 page 2	2/5
Organisme demandeur:	Agence de l'eau RM&C marché n° 08M082	
STATION		
Coordonnées de la station	relevées sur : GPS	
Lambert 93	3 X:951757 Y: 6639228 alt.: 857	m
WGS 84 (systinternational)	GPS (en dms) X: Y: alt.:	m
Profondeur :	41,0 m	
	Vent: faible	
	Météo : pluie fine	
Conditions d'observation :	: Surface de l'eau : faiblement agitée	
	Taistenient agree	
	Hauteur des vagues : 0,07 m P atm standard : 912 hPa	
	Bloom algal: non Pression atm.: 918 hPa	
Marnage:		
Warnage .	. Hon Hauteur de la bande : 0,0 m	
Campagne :	campagne printanière de croissance du phytoplancton : mise en plac de la thermocline	ee
PRELEVEMENTS		
Heure de début du relevé :	: 12:10 Heure de fin du relevé : 13:50	
Prélèvements pour analyses :	eau chlorophylle matériel employé : pompe phytoplancton :	
Gestion:	: Pêche, activités nautiques, voile	
Gestion :	: Pêche, activités nautiques, voile	
	: Pêche, activités nautiques, voile : Sous-préfecture de Pontarlier - M. Stammler - Tél. : 03.81.39.81.41	
Contact préalable :	: Sous-préfecture de Pontarlier - M. Stammler - Tél. : 03.81.39.81.41	
	: Sous-préfecture de Pontarlier - M. Stammler - Tél. : 03.81.39.81.41	
Contact préalable :	: Sous-préfecture de Pontarlier - M. Stammler - Tél. : 03.81.39.81.41	
Contact préalable :	: Sous-préfecture de Pontarlier - M. Stammler - Tél. : 03.81.39.81.41	
Contact préalable :	: Sous-préfecture de Pontarlier - M. Stammler - Tél. : 03.81.39.81.41	
Contact préalable :	: Sous-préfecture de Pontarlier - M. Stammler - Tél. : 03.81.39.81.41	

DONNEES PHYSICO-CHIMIQUES


Saint-Point (lac de) Plan d'eau: Date: 13/06/2012 Type (naturel, artificiel,...): naturel Code lac: U2015043


Organisme / opérateur : S.T.E.: A. Gravouille et L. Krithari Campagne 2 page 3/5 Organisme demandeur : TRANSPARENCE marché n° 08M082 Agence de l'eau RM&C

6,0		Z eupho	15,0 m			
	in-situ à c	chaque p		X	en surface da	ans un récipient
Prof.	Temp.	pН	Cond.	O_2	O_2	Heure
(m)	(°C)		(μS/cm 25°)	(mg/l)	(%)	
-0,1	14,3	8,1	354	9,4	102%	12:10
-1,0	14,3	8,1	353	9,4	102%	
-2,0	14,3	8,1	354	9,3	101%	
-3,0	14,1	8,1	355	9,2	99%	
-4,0	14,1	8,1	354	9,2	99%	
-5,0	13,1	8,0	359	9,0	95%	
-6,0	12,5	8,0	363	9,0	94%	
-7,0	12,0	8,0	364	9,0	92%	
-8,0	11,4	7,9	364	8,9	90%	
-9,0	11,2	8,0	365	8,8	88%	
-10,0	9,7	7,9	358	8,7	84%	
-11,0	8,9	7,9	359	8,6	82%	
-12,0	7,9	7,8	360	8,4	78%	
-13,0	7,2	7,9	361	8,4	77%	
-14,0	6,9	7,8	361	8,2	75%	
-15,0	6,8	7,8	363	8,3	75%	12:30
-16,0	6,4	7,9	362	8,2	74%	
-17,0	6,6	7,9	364	8,2	74%	
-18,0	6,5	7,9	364	8,1	73%	
-19,0	6,4	7,9	365	8,1	73%	
-20,0	6,4	7,9	366	8,0	72%	
-25,0	6,2	7,9	367	7,9	70%	
-30,0	6,1	7,9	366	7,9	70%	
-35,0	6,1	7,8	367	7,7	68%	
-40,0	6,1	7,7	368	7,0	62%	13:30
_ _						
_ _						
	Prof. (m) -0,1 -1,0 -2,0 -3,0 -4,0 -5,0 -6,0 -7,0 -8,0 -9,0 -11,0 -12,0 -13,0 -14,0 -15,0 -16,0 -17,0 -18,0 -19,0 -20,0 -25,0 -30,0 -35,0	in-situ à de la composition del composition de la composition de la composition de la composition de la composition del composition de la	in-situ à chaque p Prof. Temp. pH (m) (°C) -0,1 14,3 8,1 -1,0 14,3 8,1 -2,0 14,3 8,1 -3,0 14,1 8,1 -4,0 14,1 8,1 -5,0 13,1 8,0 -6,0 12,5 8,0 -7,0 12,0 8,0 -8,0 11,4 7,9 -9,0 11,2 8,0 -10,0 9,7 7,9 -11,0 8,9 7,9 -12,0 7,9 7,8 -13,0 7,2 7,9 -14,0 6,9 7,8 -15,0 6,8 7,8 -16,0 6,4 7,9 -18,0 6,5 7,9 -19,0 6,4 7,9 -20,0 6,4 7,9 -25,0 6,2 7,9 -30,0 6,1 7,8	in-situ à chaque prof. Prof. Temp. pH Cond. (m) (°C) (μS/cm 25°) -0,1 14,3 8,1 354 -1,0 14,3 8,1 353 -2,0 14,1 8,1 355 -4,0 14,1 8,1 355 -4,0 14,1 8,1 354 -5,0 13,1 8,0 359 -6,0 12,5 8,0 363 -7,0 12,0 8,0 364 -8,0 11,4 7,9 364 -9,0 11,2 8,0 365 -10,0 9,7 7,9 358 -11,0 8,9 7,9 359 -12,0 7,9 7,8 360 -13,0 7,2 7,9 361 -14,0 6,9 7,8 361 -15,0 6,8 7,8 363 -16,0 6,4 7,9 362 -17,0 6,6 7,9 364 -18,0 6,5 7,9 364 -19,0 6,4 7,9 365 -20,0 6,4 7,9 366 -25,0 6,2 7,9 366 -35,0 6,1 7,9 366 -35,0 6,1 7,9 366	In-situ à chaque prof. X	in-situ à chaque prof. X en surface da (m) (°C) (μS/cm 25°) (mg/l) (%) -0,1 14,3 8,1 354 9,4 102% -1,0 14,3 8,1 353 9,4 102% -2,0 14,3 8,1 355 9,2 99% -4,0 14,1 8,1 355 9,2 99% -5,0 13,1 8,0 359 9,0 95% -6,0 12,5 8,0 363 9,0 94% -7,0 12,0 8,0 364 8,9 90% -8,0 11,4 7,9 364 8,9 90% -9,0 11,2 8,0 365 8,8 88% -10,0 9,7 7,9 358 8,7 84% -11,0 8,9 7,9 359 8,6 82% -12,0 7,9 7,8 360 8,4 78% -14,0 6,9 7,8 361 8,2 75% -15,0 6,8 7,8 362 8,2 74% -17,0 6,6 7,9 364 8,1 73% -19,0 6,4 7,9 365 8,1 73% -19,0 6,4 7,9 366 8,0 72% -25,0 6,2 7,9 366 7,9 70% -35,0 6,1 7,8 367 7,7 68%

Prélèvement d'eau de fond, pour analyses physicoch	chimiques:
--	------------

Distance au fond : 1.0 m soit à Zf = -40.0 m

Remarques et observations :

Remise des échantillons :

Echantillons pour analyses physicochimiques (Laboratoire LDA26)

échantillon intégré n° | 1960819 (demande 817) bon transport intégré : EE338849347EE

1962242 (demande 818)

échantillon de fond n° 1961269 (demande 819) bon transport fond : EE338559251EE

1962152 (demande 820)

remise par S.T.E.: le à

Au transporteur : Chronopost le 13/06/12 à 16h00

Arrivée au laboratoire LDA 26 dans la matinée du : 14/06/12

Echantillons pour analyses phytoplanctoniques à BECQ'EAU, le 25/06/12

DONNEES GENERALES PLAN D'EAU - STATION

Plan d'eau : Date : 25/07/2012
Type (naturel, artificiel,...) : naturel Code lac : U2015043
Organisme / opérateur : S.T.E. : S. Meistermann et L. Krithari Campagne 3 page 1/5
Organisme demandeur : Agence de l'eau RM&C marché n° 08M082

LOCALISATION PLAN D'EAU

Commune: Saint-Point-Lac (25)

Lac marnant : non Type : N4

Temps de séjour : 200 jours lacs naturels de moyenne montagne calcaire,

Superficie du plan d'eau : 407 ha profonds

Profondeur maximale: 42 m

Carte: (extrait SCAN25, IGN 1/25 000)

localisation du point de prélèvements

angle de prise de vue de la photographie

STATION

Photo du site:

Relevé phytoplanctonique et ph	• •	
DONNEES GENERALES CAN		2.05.05.00.10
Plan d'eau:	Saint-Point (lac de)	Date: 25/07/2012
Type (naturel, artificiel,):	naturel	Code lac : U2015043
Organisme / opérateurs :	S.T.E.: S. Meistermann et L. Krithari	Campagne 3 page 2/5
Organisme demandeur :	Agence de l'eau RM&C	marché n° 08M082
STATION	T	
Coordonnées de la station		
Lambert 93		
WGS 84 (systinternational)		alt.: m
Profondeur :	· ·	
	Vent: faible	
	Météo: ensoleillé sec	
Conditions d'observation :	Surface de l'eau : faiblement agitée	
	Hauteur des vagues : 0,02 m P atm stan	idard: 912 hPa
	Bloom algal: non Pression a	
Marnage:	non Hauteur de la bar	
	2000	
Campagne :	campagne estivale : thermocline bien installé croissance du phytoplancton	ée, 2ème phase de
PRELEVEMENTS		
Heure de début du relevé :	13:40 Heure de fin du relevé :	14:50
Prélèvements pour analyses :	eau chlorophylle matériel employé : phytoplancton	pompe
Gestion:	Pêche, activités nautiques, voile	
I		
Contact préalable :	Sous-préfecture de Pontarlier - M. Stammler - Tél. :	03.81.39.81.41
Contact préalable :	Sous-préfecture de Pontarlier - M. Stammler - Tél. :	03.81.39.81.41
Contact préalable :	Sous-préfecture de Pontarlier - M. Stammler - Tél. :	03.81.39.81.41
	Sous-préfecture de Pontarlier - M. Stammler - Tél. :	03.81.39.81.41
Contact préalable : Remarques, observations :	Sous-préfecture de Pontarlier - M. Stammler - Tél. :	03.81.39.81.41
·	Sous-préfecture de Pontarlier - M. Stammler - Tél. :	03.81.39.81.41
·	Sous-préfecture de Pontarlier - M. Stammler - Tél. :	03.81.39.81.41
·	Sous-préfecture de Pontarlier - M. Stammler - Tél. :	03.81.39.81.41
·	Sous-préfecture de Pontarlier - M. Stammler - Tél. :	03.81.39.81.41

DONNEES PHYSICO-CHIMIQUES

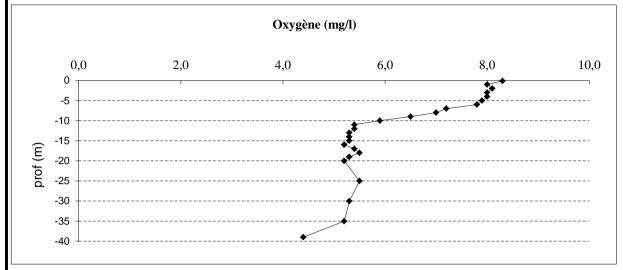
Saint-Point (lac de) Plan d'eau: Date: 25/07/2012 Type (naturel, artificiel,...): Code lac: U2015043 naturel

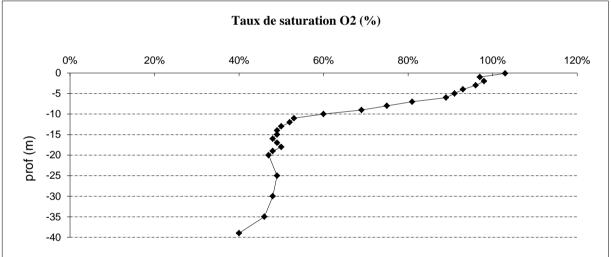
Organisme / opérateur : Campagne 3 page 3/5 S.T.E.: S. Meistermann e L. Krithari marché n° 08M082 Organisme demandeur : Agence de l'eau RM&C

TRANSPARENCE								
Secchi en m:	3,6		Z eupho	otique (2,5 x S	ecchi):	9,0	m	
PROFIL VERTICAL								
Moyen de mesure utilisé :		in-situ à	chaque p	orof.	X	en surface dans un récipi		
Volume prélevé (en litres) :	Prof.	Temp.	рН	Cond.	O_2	O_2	Heure	
Volume preieve (en nues).	(m)	(°C)		(µS/cm 25°)	(mg/l)	(%)		
prélèvement intégré (1 L)	-0,1	21,0	8,0	314	8,3	103%	13:40	
prélèvement intégré (1 L)	-1,0	20,0	8,0	314	8,0	97%		
prélèvement intégré (1 L)	-2,0	19,6	8,0	313	8,1	98%		
prélèvement intégré (1 L)	-3,0	19,3	8,0	313	8,0	96%		
prélèvement intégré (1 L)	-4,0	18,3	8,0	310	8,0	93%		
prélèvement intégré (1 L)	-5,0	17,6	7,9	310	7,9	91%		
prélèvement intégré (1 L)	-6,0	17,1	7,9	310	7,8	89%		
prélèvement intégré (1 L)	-7,0	15,8	7,8	324	7,2	81%		
prélèvement intégré (1 L)	-8,0	14,2	7,7	331	7,0	75%		
prélèvement intégré (1 L)	-9,0	13,6	7,7	331	6,5	69%	14:00	
	-10,0	12,1	7,6	330	5,9	60%		
	-11,0	10,1	7,5	323	5,4	53%		
	-12,0	9,2	7,5	329	5,4	52%		
	-13,0	7,9	7,5	327	5,3	50%		
	-14,0	7,4	7,5	328	5,3	49%		
	-15,0	7,2	7,5	335	5,3	49%		
	-16,0	6,8	7,6	336	5,2	48%		
	-17,0	6,8	7,6	330	5,4	49%		
	-18,0	6,8	7,6	323	5,5	50%		
	-19,0	6,7	7,6	325	5,3	48%		
	-20,0	6,7	7,6	325	5,2	47%		
	-25,0	6,4	7,6	329	5,5	49%		
	-30,0	6,3	7,6	322	5,3	48%		
	-35,0	6,3	7,5	327	5,2	46%		
prélèvement de fond	-39,0	6,2	7,5	332	4,4	40%	14:40	

Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES Date: 25/07/2012 Plan d'eau: Saint-Point (lac de) Type (naturel, artificiel,...): Code lac: U2015043 naturel Organisme / opérateur : S.T.E.: S. Meistermann e L. Krithari Campagne 3 page 4/5 Agence de l'eau RM&C marché n° 08M082 Organisme demandeur: Température (°C) 0 5 10 15 20 25 0 -5 -10 -15 prof (m) -20 -25 -30 -35 -40 pН 7,5 6,5 7,0 8,0 8,5 0 -5 -10 -15 prof (m) -20 -25 -30 -35 -40 Conductivité (µS/cm à 25°C) 50 100 300 0 150 200 250 350 400 0 -5 -10 -15 prof (m) -20 -25 -30 -35 -40

DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES


Saint-Point (lac de) Plan d'eau:


Type (naturel, artificiel,...): naturel Organisme / opérateur :

S.T.E.: S. Meistermann e L. Krithari

Organisme demandeur: Agence de l'eau RM&C

Date: 25/07/2012 Code lac: U2015043 Campagne 3 page 5/5 marché n° 08M082

Prélèvement d'eau de fond, pour analyses physicochimiques :

Distance au fond: 1.0 m

soit à Zf = -39,0 m

Remarques et observations :

Remise des échantillons:

Echantillons pour analyses physicochimiques (Laboratoire LDA26)

échantillon intégré n° 1960843 (demande 817) bon transport intégré: EE338666834EE

1962266 (demande 818)

échantillon de fond n° 1961290 (demande 819) bon transport fond: EE338666825EE

1962174 (demande 820)

remise par S.T.E.: le à

Au transporteur : Chronopost le 25/07/12 à 15h30 Arrivée au laboratoire LDA 26 dans la matinée du : 26/07/12

Echantillons pour analyses phytoplanctoniques à BECQ'EAU, le 27/08/12

DONNEES GENERALES PLAN D'EAU - STATION

Plan d'eau: Saint-Point (lac de) Date: 12/09/2012 Code lac: U2015043 Type (naturel, artificiel,...): naturel Organisme / opérateur : **S.T.E.** : Campagne 4 page 1/6 A. Gravouille et E. Dor Organisme demandeur: Agence de l'eau RM&C marché n° 08M082

LOCALISATION PLAN D'EAU

Commune: Saint-Point-Lac (25)

Type: N4 Lac marnant : non

Temps de séjour : 200 lacs naturels de moyenne montagne calcaire, jours

Superficie du plan d'eau : 407 ha profonds

Profondeur maximale

Carte: (extrait SCAN25, IGN 1/25 000)

localisation du point de prélèvements

angle de prise de vue de la photographie

STATION

Photo du site:

DONNEES GENERALES CAM Plan d'eau : Type (naturel, artificiel,) : Organisme / opérateurs : Organisme demandeur : STATION Coordonnées de la station	Saint-Point (lac de) naturel S.T.E.: A. Gravouille et E. Dor Agence de l'eau RM&C Date: 12/09/2 Code lac: U20150 Campagne 4 pag marché n° 08M08	
Type (naturel, artificiel,): Organisme / opérateurs: Organisme demandeur: STATION	naturel Code lac : U20150 S.T.E. : A. Gravouille et E. Dor Campagne 4 pag Agence de l'eau RM&C marché n° 08M08	
Organisme / opérateurs : Organisme demandeur : STATION	S.T.E.: A. Gravouille et E. Dor Campagne 4 pag Agence de l'eau RM&C marché n° 08M08	043
Organisme demandeur : STATION	Agence de l'eau RM&C marché n° 08M08	
STATION		-
	a realeváce que l	2
Coordonnées de la station	a lealassána ann a	
Lambert 93		7 m
WGS 84 (systinternational)		m
Profondeur :	·	
	Vent: faible	
	Météo: sec fortement nuageux	
Conditions d'observation :	: Surface de l'eau : faiblement agitée	
	Hauteur des vagues : 0,15 m P atm standard : 912 h	ıPa
	, ,	ıPa
Marnage:		m
Trainage .	Tradeout de la bailde .	
Campagne :	: 4 campagne de fin d'été : fin de stratification estivale, avant baisse température	de la
PRELEVEMENTS		
Heure de début du relevé :	: 12:00 Heure de fin du relevé : 13:10	
Heure de début du relevé : Prélèvements pour analyses :	eau chlorophylle matériel employé : pompe phytoplancton	
Prélèvements pour analyses :	eau chlorophylle matériel employé : pompe phytoplancton : sédiments benne Ekmann	
Prélèvements pour analyses :	eau chlorophylle matériel employé : pompe phytoplancton	
Prélèvements pour analyses : Gestion :	eau chlorophylle matériel employé : pompe phytoplancton : sédiments benne Ekmann : Pêche, activités nautiques, voile	
Prélèvements pour analyses : Gestion :	eau chlorophylle matériel employé : pompe phytoplancton : sédiments benne Ekmann	
Prélèvements pour analyses : Gestion :	eau chlorophylle matériel employé : pompe phytoplancton : sédiments benne Ekmann : Pêche, activités nautiques, voile	
Prélèvements pour analyses : Gestion :	eau chlorophylle matériel employé : pompe phytoplancton : sédiments benne Ekmann : Pêche, activités nautiques, voile	
Prélèvements pour analyses : Gestion : Contact préalable :	eau chlorophylle matériel employé : pompe phytoplancton : sédiments benne Ekmann : Pêche, activités nautiques, voile : Sous-préfecture de Pontarlier - M. Stammler - Tél. : 03.81.39.81.41	
Prélèvements pour analyses : Gestion :	eau chlorophylle matériel employé : pompe phytoplancton : sédiments benne Ekmann : Pêche, activités nautiques, voile : Sous-préfecture de Pontarlier - M. Stammler - Tél. : 03.81.39.81.41	
Prélèvements pour analyses : Gestion : Contact préalable :	eau chlorophylle matériel employé : pompe phytoplancton : sédiments benne Ekmann : Pêche, activités nautiques, voile : Sous-préfecture de Pontarlier - M. Stammler - Tél. : 03.81.39.81.41	
Prélèvements pour analyses : Gestion : Contact préalable :	eau chlorophylle matériel employé : pompe phytoplancton : sédiments benne Ekmann : Pêche, activités nautiques, voile : Sous-préfecture de Pontarlier - M. Stammler - Tél. : 03.81.39.81.41	
Prélèvements pour analyses : Gestion : Contact préalable :	eau chlorophylle matériel employé : pompe phytoplancton : sédiments benne Ekmann : Pêche, activités nautiques, voile : Sous-préfecture de Pontarlier - M. Stammler - Tél. : 03.81.39.81.41	
PRELEVEMENTS		

DONNEES PHYSICO-CHIMIQUES

Saint-Point (lac de) Plan d'eau:

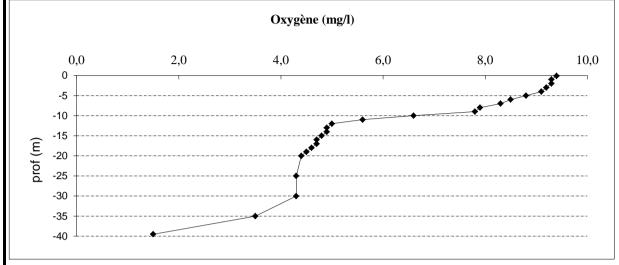
Type (naturel, artificiel,...): Code lac: U2015043 naturel Organisme / opérateur : Campagne 4 page 3/6 S.T.E.: A. Gravouille et E. Dor marché n° 08M082 Organisme demandeur : Agence de l'eau RM&C

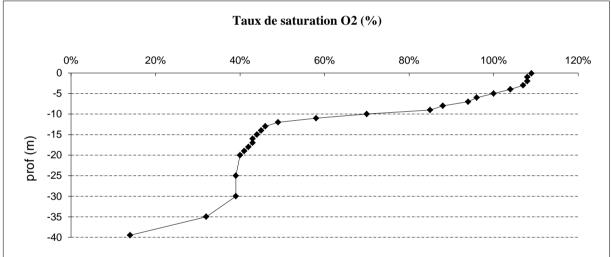
Date: 12/09/2012

TRANSPARENCE							
Secchi en m:	2,4		Z eupho	otique (2,5 x S	ecchi):	6,0	m
PROFIL VERTICAL		_					
Moyen de mesure utilisé :		in-situ à d	chaque p	orof.	X	en surface dans un récipient	
Volume prélevé (en litres) :	Prof.	Temp.	pН	Cond.	O_2	O_2	Heure
volume preserve (en nues).	(m)	(°C)		(µS/cm 25°)	(mg/l)	(%)	
prélèvement intégré (2 L)	-0,1	17,7	8,2	302	9,4	109%	12:00
prélèvement intégré (2 L)	-1,0	17,7	8,2	301	9,3	108%	
prélèvement intégré (2 L)	-2,0	17,7	8,2	302	9,3	108%	
prélèvement intégré (2 L)	-3,0	17,7	8,2	302	9,2	107%	
prélèvement intégré (2 L)	-4,0	17,3	8,1	308	9,1	104%	
prélèvement intégré (2 L)	-5,0	16,9	8,1	314	8,8	100%	
prélèvement intégré (2 L)	-6,0	16,5	8,1	322	8,5	96%	12:20
	-7,0	16,3	8,1	330	8,3	94%	
	-8,0	16,0	8,1	334	7,9	88%	
	-9,0	15,1	7,9	336	7,8	85%	
	-10,0	13,7	7,9	341	6,6	70%	
	-11,0	12,0	7,9	344	5,6	58%	
	-12,0	10,1	7,8	342	5,0	49%	
	-13,0	8,5	7,8	341	4,9	46%	
	-14,0	7,4	7,8	340	4,9	45%	
	-15,0	7,3	7,8	341	4,8	44%	
	-16,0	7,0	7,8	344	4,7	43%	
	-17,0	7,0	7,8	344	4,7	43%	
	-18,0	6,8	7,8	345	4,6	42%	
	-19,0	6,8	7,8	346	4,5	41%	
	-20,0	6,8	7,8	348	4,4	40%	
	-25,0	6,6	7,8	348	4,3	39%	
	-30,0	6,6	7,7	347	4,3	39%	
	-35,0	6,4	7,7	349	3,5	32%	
prélèvement de fond	-39,5	6,2	7,6	352	1,5	14%	12:50
<u> </u>							
ļ							
<u> </u>							
<u> </u>							
<u> </u>							
<u> </u>							
<u> </u>							

Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES Date: 12/09/2012 Plan d'eau: Saint-Point (lac de) Type (naturel, artificiel,...): naturel Code lac: U2015043 Organisme / opérateur : S.T.E.: A. Gravouille et E. Dor Campagne 4 page 4/6 Agence de l'eau RM&C marché n° 08M082 Organisme demandeur: Température (°C) 0 2 4 6 8 10 12 14 16 18 20 0 -5 -10 -15 prof (m) -20 -25 -30 -35 -40 pН 7,0 7,5 8,5 8,0 9,0 -5 -10 -15 prof (m) -20 -25 -30 -35 -40 Conductivité (µS/cm à 25°C) 50 100 300 0 150 200 250 350 400 0 -5 -10 -15 prof (m) -20 -25 -30 -35 -40

DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES


Saint-Point (lac de) Plan d'eau:


Type (naturel, artificiel,...): naturel Organisme / opérateur :

S.T.E.: A. Gravouille et E. Dor

Organisme demandeur: Agence de l'eau RM&C

Date: 12/09/2012 Code lac: U2015043 Campagne 4 page 5/6 marché n° 08M082

Prélèvement d'eau de fond, pour analyses physicochimiques :

Distance au fond: 1.0 m

soit à Zf =

-39,5 m

Remarques et observations :

Remise des échantillons:

Echantillons pour analyses physicochimiques (Laboratoire LDA26)

échantillon intégré n° 1960866 (demande 817) bon transport intégré: EE338529056EE

1962289 (demande 818)

échantillon de fond n° 1961316 (demande 819) bon transport fond: EE338529060EE

1962194 (demande 820)

remise par S.T.E.: le à

Au transporteur : Chronopost le 12/09/12 à 16h00 Arrivée au laboratoire LDA 26 dans la matinée du : 13/09/12

Echantillons pour analyses phytoplanctoniques à BECQ'EAU, le 17/10/12

Prélèvements de sé	dim	onte nov	r analyses	nhysica chimi	21105			
DONNEES GENE		•			4	IFNTS		
Plan d'eau :	NAL				ENT DE SEDIM	ILIVIO	Date: 12/0	00/2012
	iaia1		nt-Point (lac	e de)		C	ode lac : U20	
Type (naturel, artif				A C	-4			
Organisme / opérat				A. Gravouille	et	E. Dor	heur	
Organisme demand	leur	: Age	ence de l'eau	ıı RM&C		m	arché n° 08M	
G 144 1 1							page	e 6/6
Conditions de mil	ıeu	1 .				1.0		
chaud, ensoleillé		<u> </u>		e favorable à :		déb	its des affluei	nts
couvert	X	mor	t et sédime	ntation du plar	ncton			
pluie, neige		sédi	mentation	de MES de tou	te nature	>>	turbidité aff	luent
Vent							Secchi (m)	2,4
Matériel		-						•
		noll	e à main		benne X	niàgo	caro	ttion
drague fond plat		pen	e a mam		benne X	piège	Caro	utiei
Localisation génér	rale	de la zo	ne de prélè	èvements (en j	particulier, X Y	Lambert 93)		
Daint da ulua anan	1	- C 1	- (- c	· · · · · · · · · · · · · · · · · · ·	051757		V. ((2022	O
Point de plus grand	ie pr	oronaeu	r (cī campa	igne 4) X:	951/5/		Y: 663922	8
						1	1	1
Prélèvements				1	2	3	4	5
profondeur (en m)				40	40	40	40	
épaisseur échantil	lonn	ée						
récents (<2cn	n)						
anciens (>2cı	n)						
indéterm								
épaisseur	r, en	cm:		5	5	5	5	
granulomérie dom								
graviers								
sables								
limons								
vases				X	X	X	X	
argile								
aspect du sédimen	t							
homogèn								
hétérogè				X	X	X	X	
couleur				marron/gris	marron/gris	marron/gris	marron/gris	
odeur				oui	oui	oui	oui	
présence de débris	vég	étx non	décomp	non	non	non	non	
présence d'hydroca				non	non	non	non	
présence d'autres d	lébri	.S		non	non	non	non	
Remarques génér	ales	:						
Domina das (-1	4211 -							
Remise des échant				(T. 1	10420			
Echantillons pour a						41	20170	000
eci	ıantı	nons n°	eau insters	suuene: 2	016901	sédimen		
ramico	ner	S.T.E. :		le		À	20482	202
		orteur :	Chron		12/09/2012	à 2 à 16h	00	
arrivée au laboratoire LDA 26 en mi-journée du : 13/09/2012								
					J			