Suivi des plans d'eau des bassins Rhône-Méditerranée et Corse en application de la Directive Cadre sur l'Eau

(Sites de Référence, Réseau de Contrôle de Surveillance et Contrôle Opérationnel)

Note synthétique d'interprétation des résultats

Anse

(69 : Rhône)

Campagnes 2008

V2 – Décembre 2012 Intégration des résultats piscicoles de 2011

Méthodologie

Contenu des suivis

Le tableau suivant résume les différents éléments suivis par an et les fréquences d'intervention associées. Il s'agit du suivi qualitatif type mis en place sur les plans d'eau du programme de surveillance.

Les différents paramètres physico-chimiques analysés sur l'eau sont suivis lors de quatre campagnes calées aux différentes phases du cycle annuel de fonctionnement du plan d'eau, soit entre le mois de février et le mois d'octobre.

			Paramètres	Type de prélèvements/ Mesures	HIVER	PRINTEMPS	ETE	AUTOMNE
	Mesures in situ		O2 dis. (mg/l, %sat.), pH, COND (25°C), T°C, transparence secchi	Profils verticaux	Х	Х	Х	х
	Ę.	Physico-chimie classique	DBO5, PO4, Ptot, NH4, NKJ, NO3, NO2, COT, COD, MEST, Turbidité, Si dissoute	Prélèvement intégré et prélèvement ponctuel de fond	Х	Х	Х	Х
	Sur EAU	Substances prioritaires, autres substances et pesticides	Micropolluants*	Prélèvement intégré et prélèvement ponctuel de fond	Х	Х	х	Х
		Pigments chlorophylliens	Chlorophylle a + phéopigments	Prélèvement intégré	Х	х	х	Х
	•	Minéralisation	Ca ²⁺ , Na ⁺ , Mg ²⁺ , K ⁺ , dureté, TA, TAC, SO ₄ ²⁻ , Cl ⁻ , HCO ₃ ⁻	Prélèvement intégré	Х			
<u>,</u>	Eau	interstitielle : Physico-chimie	PO4, Ptot, NH4					
Sur SEDIMENTS	Phase solide (<2mm)	Physico-chimie	Corg., Ptot, NKJ, Granulomètrie, perte au feu	Prélèvement ponctuel au point de plus grande profondeur				Х
Sul	Чd	Substances prioritaires, autres substances et pesticides	Micropolluants*					
			Phytoplancton	Prélèvement intégré (Cemagref/Utermöhl)	Χ	Х	Х	Х
			Oligochètes	IOBL				Х
HYDROBIOLOGIE et		HYDRORIOI OGIE et	Mollusques	IMOL				Х
HYDROMORPHOLOGIE			Macrophytes	Protocole Cemagref (nov.2007)			Х	
			Hydromorphologie	A partir du Lake Habitat Survey (LHS)			Х	
			Suivi piscicole	Protocole CEN (en charge de l'ONEMA)			Х	

^{* :} se référer à l'annexe 5 de la circulaire DCE 2006/16, analyses à réaliser sur les paramètres pertinents à suivre sur le support concerné

Outils d'interprétation (détails en annexe 2)

L'interprétation des résultats a été réalisée selon deux approches complémentaires s'appuyant d'une part sur une méthode largement utilisée pour évaluer le niveau trophique des plans d'eau (Diagnose rapide) et sur l'Arrêté du 25 janvier 2010 permettant de qualifier les masses d'eau en terme d'état selon la DCE.

Diagnose rapide

Cette méthode a été mise au point par le Cemagref (protocole actualisé de 2003) et renseigne sur la qualité générale du plan d'eau en rapport avec son niveau trophique. Ce n'est pas une interprétation en terme d'état au sens de la DCE.

Etat écologique et état chimique au sens de la DCE

La présente note synthétique définit également un état écologique et un état chimique liés à un niveau de confiance. Cette évaluation est réalisée suivant les préconisations de l'« Arrêté du 25 janvier 2010 relatif aux méthodes et critères d'évaluation de l'état écologique, de l'état chimique et du potentiel écologique des eaux de surface ».

Caractéristiques du plan d'eau

Nom : Anse (aussi appelé plan d'eau du Colombier)

Code lac : **U4525003**Masse d'eau : **FRDL 51**Département : **69** (**Rhône**)
Région : **Rhône-Alpes**

Origine : **Anthropique** (Masse d'Eau Artificielle : MEA)

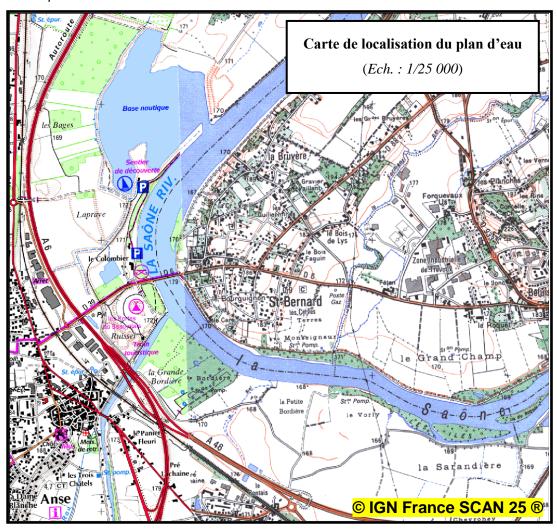
Typologie: A16 = plan d'eau peu profond, obtenu par creusement, en lit majeur d'un cours d'eau, en

relation avec la nappe, forme de type L, sans thermocline

Altitude (NGF): **167** Superficie (ha): **55** Volume (hm³): -

Profondeur maximum (m): 15

Temps de séjour (j) : -


Tributaire(s): principalement la nappe alluviale

Exutoire(s): -

Réseau de suivi DCE : **Réseau de contrôle de surveillance** (Cf. Annexe 1)

Période/Année de suivi : 2008 Objectif de bon état : 2015

Des informations complémentaires sur le contexte général du plan d'eau, sur les enjeux et le programme de mesures sont disponibles via l'atlas internet de bassin.

Résultats - Interprétation

Le plan d'eau d'Anse est localisé dans le département du Rhône, à proximité de Villefranche-sur-Saône. Il correspond à une ancienne gravière située sur un méandre de la Saône. Il constitue aujourd'hui l'élément central d'une zone de loisir dont les vocations sont multiples : promenade, détente, activités nautiques, baignade et pêche.

Le plan d'eau d'Anse a été ouvert sur la Saône jusqu'en 1994 dans le cadre de l'exploitation de la gravière. Depuis, le pertuis de communication qui permettait aux péniches d'évacuer les matériaux a été fermé.

La gravière d'Anse est principalement alimentée par la nappe alluviale d'accompagnement de la Saône. En situation de crue, la Saône est susceptible d'alimenter le plan d'eau.

[Informations tirées du rapport de suivi de la qualité du plan d'eau d'Anse-Colombier, Année 2008, DIREN Rhône-Alpes – GREBE].

Diagnose rapide

La gravière d'Anse présente une qualité générale la classant dans la catégorie des **plans d'eau oligotrophes à tendance mésotrophe**.

Certains paramètres n'ont pas pu être analysés, rendant le diagnostic incomplet. Cependant, les résultats obtenus sur le compartiment eau et sur le compartiment sédiment témoignent d'un milieu globalement de bonne qualité physico-chimique et biologique.

Les résultats détaillés de la diagnose rapide sont présentés en annexe 3.

Etat écologique et chimique au sens de la DCE

L'évaluation DCE rejoint le constat de la diagnose rapide et classe la gravière d'Anse en **bon potentiel écologique** sur la base des résultats obtenus en 2008 (Cf annexe 4).

Elle est également classée en **bon état chimique** (Cf. Annexe 5) puisque aucune des substances prises en compte pour évaluer l'état chimique ne dépasse les normes de qualité environnementales.

Des éléments complémentaires ont également été suivis : macrophytes et hydromorphologie (Cf annexe 6).

Suivi piscicole

Le suivi piscicole a été réalisé par l'ONEMA en 2011 (Cf. annexe 7).

Au vu de ces résultats, le peuplement piscicole du plan d'eau d'Anse apparaît en état relativement satisfaisant bien que des espèces exotiques comme la perche soleil et le poisson chat y soient présents. Il conviendrait de suivre l'abondance de ces espèces

L'analyse de la distribution spatiale des captures met en évidence l'absence de fréquentation de la strate inférieure du plan d'eau, pourtant peu profonde et oxygénée. Malgré l'absence constatée d'une surcharge de phosphore et de micropolluants minéraux et organiques dans l'eau et le sédiment, la sursaturation mesurée de cette strate profonde mériterait une approche approfondie de manière à mieux cerner l'état fonctionnel du milieu.

Annexes

Annexe 1 : Programme de surveillance

Dans le cadre de la mise en œuvre de la Directive Cadre européenne sur l'Eau (DCE), un programme de surveillance doit être établi pour suivre l'état écologique (ou le potentiel écologique) et l'état chimique des eaux douces de surface.

Différents réseaux constituent le programme de surveillance. Parmi ceux-ci, deux réseaux sont actuellement mis en oeuvre sur les plans d'eau :

- Le réseau de contrôle de surveillance (RCS) vise à donner une image globale de la qualité des eaux. Tous les plans d'eau naturels supérieurs à 50ha ont été pris en compte sur les bassins Rhône-Méditerranée et Corse. Pour les plans d'eau d'origine anthropique, une sélection a été opérée parmi les plans d'eau supérieurs à 50ha, afin de couvrir au mieux les différents types présents sur les bassins Rhône-Méditerranée et Corse (grandes retenues, plans d'eau de digue, plans d'eau de creusement).
- <u>Le contrôle opérationnel (CO)</u> vise à suivre spécifiquement les masses d'eau (naturelles ou anthropiques) supérieures à 50ha, à risque de non atteinte du bon état (ou du bon potentiel) des eaux en 2015.

Au total, 80 plans d'eau sont suivis sur les bassins Rhône-Méditerranée et Corse dans le cadre de ces deux réseaux.

Le contenu du programme de suivi sur les plans d'eau est identique pour le RCS et le CO. Un plan d'eau concerné par le CO sera cependant suivi à une fréquence plus soutenue (tous les 3 ans) comparativement à un plan d'eau strictement visé par le RCS (tous les 6 ans).

Annexe 2: Les outils d'interprétation

La Diagnose rapide

(d'après le Protocole actualisé de la diagnose rapide des plans d'eau, Jacques Barbe, Michel Lafont, Jacques Mouthon, Michel Philippe, Cemagref, Agence de l'Eau RMC, juillet 2003).

L'interprétation de la diagnose rapide s'appuie sur plusieurs types d'indices : les indices spécifiques basés sur un paramètre particulier, les indices fonctionnels élaborés à partir d'un ou de plusieurs paramètres regroupés pour refléter un aspect fonctionnel du plan d'eau. Ils sont de nature physicochimique ou biologique.

Ils sont tous construits pour s'échelonner en fonction de la dégradation de la qualité du milieu suivant une échelle de 0 à 100 (de l'ultra oligotrophie à l'hyper eutrophie).

Leur confrontation directe doit permettre ainsi de discerner facilement les concordances ou les discordances existant entre les principaux éléments fonctionnels du milieu.

Les indices physico-chimiques

Indice Pigments chlorophylliens

 $I_{\rm C}=16+41,89~x~log_{10}(X+0,5)$ où X est la somme de la chlorophylle_a et de la phéophytine_a exprimée en $\mu g/l.~X$ représente la moyenne des résultats obtenus sur l'échantillon intégré en dehors du brassage hivernal.

Indice Transparence

 $I_T=82-66,44 \ x \ log_{10}(X)$ où X est la moyenne des profondeurs de Secchi (en m) mesurées pendant la même période que précédemment.

La moyenne de ces deux indices constitue le premier indice fonctionnel : Indice **Production**.

<u>Indice P total hiver</u>

 $I_{PTH} = 115 + 39,6$ x $log_{10}(X)$ où X est la valeur du phosphore total (mg/l), mesurée lors de la campagne de fin d'hiver et obtenue à partir de l'échantillon intégré.

Indice N total hiver

 $I_{NTH}=47+65 \ x \ log_{10}(X)$ où X est la valeur de l'azote total (mg/l), mesurée lors de la campagne de fin d'hiver et obtenue à partir de l'échantillon intégré.

La moyenne de ces deux indices constitue l'indice fonctionnel **Nutrition**.

Indice Consommation journalière en O2 dissous

 $I_{O2j} = -50 + 62 \text{ x } log_{10}(X+10)$ où X est \overline{la} valeur de la consommation journalière en oxygène dissous en $mg/m^3/j$.

Cet indice constitue l'indice fonctionnel **Dégradation**.

Indice P total du sédiment

 $I_{PTS} = 109 + 55 \text{ x} \log_{10}(X)$ où X est la valeur du phosphore total du sédiment (en % de MS), obtenue lors de la campagne de prélèvement des sédiments ayant lieu normalement en fin de période de production biologique.

Cet indice constitue l'indice fonctionnel Stockage des minéraux du sédiment.

Indice Perte au feu du sédiment

 $I_{PF} = 53 \ x \ log_{10}(X)$ où X est la valeur de la Perte au feu du sédiment (en % de MS), obtenue lors de la même campagne que précédemment.

Cet indice constitue l'indice fonctionnel Stockage de la matière organique du sédiment.

Indice P total de l'eau interstitielle

 $I_{PTI} = 63 + 33 \text{ x } log_{10}(X)$ où X est la valeur du phosphore total de l'eau interstitielle (mg/l), obtenue lors de la campagne de sédiment.

Indice Ammonium de l'eau interstitielle

 $I_{NH4I}=18+45\ x\ log_{10}(X+0,4)$ où X est la valeur de l'ammonium de l'eau interstitielle (mg/l de N), obtenue lors de la campagne de sédiment.

La moyenne de ces deux indices constitue l'indice fonctionnel **Relargage**.

Quatre campagnes de prélèvements sont réalisées dans le cadre du protocole de la Diagnose rapide. Pour les quelques plans d'eau de référence où six campagnes ont été effectuées, les indices Pigments chlorophylliens et Transparence ont été calculés sur les résultats obtenus lors des cinq campagnes suivant la campagne de fin d'hiver.

A partir de ces six indices fonctionnels, deux indices physico-chimiques moyens peuvent être calculés pour synthétiser les résultats :

- Un indice physico-chimique moyen de pleine eau = moyenne des indices fonctionnels nutrition, production et dégradation ;
- Un indice physico-chimique moyen du sédiment = moyenne des indices fonctionnels stockage des minéraux du sédiment, stockage de la matière organique du sédiment et relargage.

Les indices biologiques sont au nombre de trois :

<u>L'Indice Planctonique</u> est calculé à partir des listes floristiques obtenues lors des différentes campagnes de la période de production biologique.

L'indice s'appuie sur des coefficients de qualité (Qi) attribués à chaque groupe algal (*les coefficients les plus élevés étant attribués aux groupes les plus liés à l'eutrophisation*) et sur des classes d'abondances relatives (Aj).

IP = moyenne de Σ Qi x Aj sur la base des résultats obtenus lors des trois campagnes estivales.

Avec les valeurs suivantes pour Qi et Aj :

Groupes algaux	Qi
Desmidiées	1
Diatomées	3
Chrysophycées	5
Dinophycées et Cryptophycées	9
Chlorophycées (sauf Desmidiées)	12
Cyanophycées	16
Eugléniens	20

Coefficients attribués aux groupes algaux repères

Abondance relative	Aj
0 à ≤ 10	0
10 à ≤ 30	1
30 à ≤ 50	2
50 à ≤ 70	3
70 à ≤ 90	4
90 à ≤ 100	5

Classes d'abondance relative du phytoplancton

L'indice planctonique tel que décrit dans la diagnose rapide est issu de prélèvements réalisés au filet à plancton. Les prélèvements réalisés dans le cadre de la DCE sont des prélèvements d'eau brute intégrés sur la zone euphotique (2,5 fois la transparence mesurée à l'aide du disque de Secchi).

<u>L'Indice Oligochètes</u>: $IO = 126 - 74 \times log_{10}(X+2,246)$ où X est la moyenne entre l'IOBL de la plus grande profondeur et la valeur moyenne des IOBL de profondeur intermédiaire.

L'indice IOBL par point de prélèvement (= 3 « coups » de bennes à une profondeur donnée) = S + 3log10 (D+1) où S = nombre de taxons parmi les oligochètes comptés et D = densité en oligochètes pour 0.1 m².

Le tableau ci-dessous présente le mode détermination de l'indice IMOL.

	au standard de détermination de édure of the determination of inde		MOL.			
Niveau d'échantillonnage	Repères malacologiques	Indices	Exemples (dates de prospection)			
Z ₁ = 9/10 Zmax	- Gastéropodes et Bivalves présents	8	Léman (1963)			
kij uto nineg di panjer gan zelig annté in es poseebena, nelid and parestavé ne toin il	- Gastéropodes absents, Bivalves seuls présents	7	Bourget (1940), Longemer (1977), Grand Maclu (1983). Chalain (1984),			
	. Absence de n	nollusques	s en Z ₁			
ddinogonob fisisesp	- Deux genres ou plus de deux genres de Gastéropodes présents	6	Lac Léman (1987), Saint-Point (1978) Grand Clairvaux (1982), Laffrey (1989).			
Z ₂ = -10 m (20 m)(2)	- Un seul genre de Gastéropode présent	5	Le Bourget (1988), Rémoray (1978 et 1989), Les Rousses (1980).			
	- Gastéropodes absents, pisidies présentes(1)	4	Gérardmer (1977), l'Abbaye (1980), Petit Clairvaux (1982), Val (1986).			
	Absence de mollusques en Z ₂					
aniques dans les sé euplaments (MOUT es lacs médio-euro	- Deux genres ou plus de deux genres de Gastéropodes présents	3	Petit Maclu (1983), Antre (1984), Petit Etival (1985).			
	- Un seul genre de Gastéropode présent	2	Grand Etival (1985)			
$Z_3 = -3 \text{ m}$ $(5-6 \text{ m})(2)$	- Gastéropodes absents, pisidies présentes(1)	essellesp 1987c; Öl 1 hébenden 1 hébenden 1 hébenden 1 hébenden	Ilay (1984), Narlay (1984) Aydat (1985), Bonlieu (1985) Nantua (1988), Sylans (1988) Petitchet (1989), Lamoura (1988), Pierre-Chatel (1989)			
	- Absence de mollusques	0	Lac des Corbeaux (1984) Lac Vert (1985), Lispach (1984),			

Les critères de l'état écologique et de l'état chimique

Les critères à prendre en compte et les modalités de calcul et d'agrégation des différents éléments de qualité permettant l'évaluation de l'état écologique et de l'état chimique des plans d'eau sont détaillés dans l'« Arrêté du 25 janvier 2010 relatif aux méthodes et critères d'évaluation de l'état écologique, de l'état chimique et du potentiel écologique des eaux de surface ».

Les critères pris en compte actuellement sont résumés ci-dessous (pour plus de précisions, se référer à l'arrêté).

Evaluation de l'état (/du potentiel) écologique :

- Eléments de qualité biologiques

Elément de	Métriques/Paramètres			D'EAU NA des class			PLANS D'EAU D'ORIGINE
qualité	•	Très bon	Bon	Moyen	Médiocre	Mauvais	ANTHROPIQUE
Dhytanlanatan	[Chl-a] moyenne estivale (µg/l)	Cf. Arrêté					
Phytoplancton	IPL (Indice Planctonique)	25	40	60	80		
	IMOL (Indice Mollusque)*	8	7	4	1		
	IOBL (Indice Oligochètes de Bioindication Lacustres)*	15	10	6	3		

^{* :} paramètres complémentaire pour conforter le diagnostic

Les travaux réalisés jusqu'à présent n'ont pas permis de produire des valeurs seuils pour les éléments de qualité macrophytes et poissons.

- Eléments physico-chimiques généraux

Davamètros nos élément de quelité	Limites des classes d'état					
Paramètres par élément de qualité	Très bon	Bon	Moyen	Médiocre	Mauvais	
Nutriments						
N minéral maximal (NO3 + NH4)(mg N/l)	0,2	0,4	1	2		
PO4 maximal (mg P/I)	0,01	0,02	0,03	0,05		
Phosphore total maximal (mg P/l)	0,015	0,03	0,06	0,1		
Transparence						
Transparence moyenne estivale (m)	5	3,5	2	0,8		
Bilan de l'oxygène						
Présence ou absence d'une désoxygènation de l'hypolimnion en % du déficit observé entre la surface et le fond pendant la période estivale (pour les lacs stratifiés)	*	50	*	*		
Salinité Acidification Température			*			

^{*:} pas de valeurs établies à ce stade des connaissances

N minéral maximal (NH4 + NO3) : azote minéral maximal annuel dans la zone euphotique, c'est-à-dire :

- l'azote minéral « d'hiver », en période de mélange total des eaux, sur échantillon intégré de la zone euphotique, si le temps de séjour est supérieur à 2 mois.
- l'azote maximal observé sur au minimum 3 campagnes « estivales » dans un échantillon intégré de la zone euphotique, si le temps de séjour est inférieur à 2 mois.

PO4 maximal: dans les lacs de temps de séjour supérieur à 2 mois, il s'agit de la valeur « hivernale » en période de mélange total des eaux, sur échantillon intégré de la zone euphotique. Dans les plans d'eau de temps de séjour inférieur à 2 mois, c'est le maximum des valeurs de 3 campagnes estivales.

Phosphore total maximal: dans les lacs de temps de séjour supérieur à 2 mois, il s'agit indifféremment de la moyenne annuelle dans la zone euphotique ou de la valeur hivernale en période de mélange complet des eaux, sur échantillon intégré de la zone euphotique. Dans les plans d'eau de temps de séjour inférieur à 2 mois, c'est le maximum des valeurs de 3 campagnes estivales.

Bilan de l'oxygène : paramètre et limite de classes donnés à titre indicatif (ce paramètre est ici considéré en tant que paramètre complémentaire à l'évaluation de l'état).

Il s'agit de la présentation des résultats bruts, un travail ultérieur d'expertise pouvant amener à une évaluation légèrement différente (ex.: pour un plan d'eau naturellement peu transparent, ce paramètre s'avérera non pertinent et ne sera alors pas pris en compte dans l'évaluation de l'état).

Les règles d'assouplissements décrites dans l'arrêté du 25 janvier 2010 pour définir la classe d'état des éléments de qualité physico-chimiques généraux ont été appliquées.

- Polluants spécifiques de l'état écologique

Polluants spécif	iques non synthètiques (analysés sur eau filtrée)		
Substances	NQE_MA (μg/l)		
Arsenic dissous	Fond géochimique + 4,2		
Chrome dissous	Fond géochimique + 3,4		
Cuivre dissous	Fond géochimique + 1,4		
Zinc dissous	Fond géochimique + 3,1 (si dureté ≤24 mg CaCO3/I)		
ZITIC dissous	Fond géochimique + 7,8 (si dureté >24 mg CaCO3/I)		
Polluants spécif	iques synthètiques (analysés sur eau brute)		
Substances	NQE_MA (μg/l)		
Chlortoluron	5		
Oxadiazon	0,75		
Linuron	1		
2,4 D	1,5		
2,4 MCPA	0,1		

NQE MA: Normes de Qualité Environnementales en Moyenne Annuelle

Au sein des éléments de qualité (EQ), c'est la règle du paramètre le plus déclassant qui est retenue.

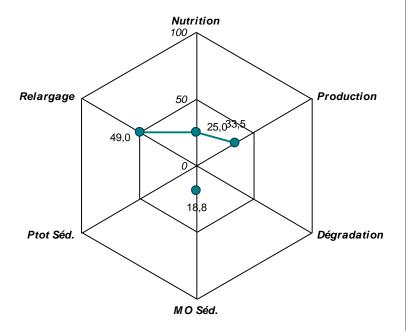
L'état écologique (plans d'eau naturels) est donné par l'EQ le plus déclassant (dans la limite de l'état « moyen » pour la physico-chimie et les polluants spécifiques). Les éléments hydromorphologiques n'interviennent que pour le classement en très bon état d'une masse d'eau (indicateur des éléments hydromorphologiques en cours de construction).

Le potentiel écologique (plans d'eau anthropiques) est évalué à partir du paramètre chlorophylle a et des éléments physico-chimiques. Pour pallier l'absence de tous les indicateurs biologiques adaptés pour évaluer le bon potentiel, on considère que les pressions hydromorphologiques hors contraintes techniques obligatoires (CTO) se traduisent par un effet négatif sur les potentialités biologiques des masses d'eau (Cf. arrêté du 25 janvier 2010 : tableau permettant d'attribuer une classe de potentiel écologique en prenant en compte les pressions hydromorphologiques non imposées par les CTO).

Dans le cadre de cette note d'interprétation, il a été considéré que les pressions hydromorphologiques non imposées par les CTO étaient nulles à faibles ce qui induit que le potentiel écologique de la masse d'eau est alors défini par les seuls indicateurs biologiques et physico-chimiques.

<u>Un niveau de confiance est attribué à l'état écologique</u> (selon la qualité de la donnée prise en compte, si l'ensemble des EQ ont été déterminés...). Trois niveaux de confiance sont distingués : 3 (élevé), 2 (moyen), 1 (faible).

Evaluation de l'état chimique (2 classes d'état) :

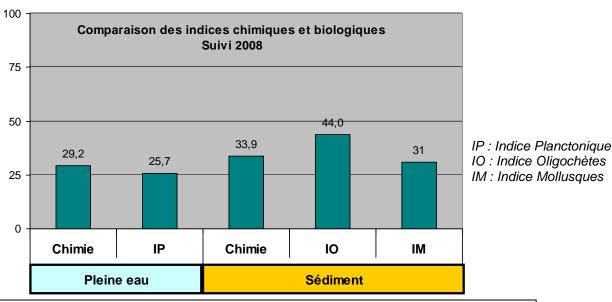

La liste des 41 substances prises en compte dans l'état chimique figure dans l'annexe 8 de l'arrêté du 25 janvier 2010, avec les NQE à respecter en valeur moyenne et en concentration maximale admissible.

Annexe 3 : Résultats de la diagnose rapide

Les indices fonctionnels physico-chimiques

Le calcul des indices avec la valeur des paramètres utilisés est résumé page suivante.

Graphique en radar des indices fonctionnels d'Anse Suivi 2008



Seuls 4 indices fonctionnels sur les 6 potentiels ont pu être calculés. Le phosphore total du sédiment n'a pas été analysé et le profil d'oxygénation observé, vraisemblablement fortement influencé par le fort recouvrement en macrophytes du plan d'eau, rend non pertinent le calcul de l'indice dégradation.

Les indices calculés témoignent globalement de la bonne qualité physico-chimique du plan d'eau. Les apports en nutriments sont faibles et la production primaire reste limitée. La charge organique du sédiment est faible. L'indice relargage est le seul à afficher une valeur plus élevée du fait de la concentration mesurée en phosphore dans le sédiment.

La production macrophytique n'est pas prise en compte dans le cadre de la diagnose mais joue sans doute un rôle important dans le fonctionnement écologique de la gravière d'Anse étant donné l'important recouvrement en characées (incidence sur les cycles nycthéméraux, « compétition » avec le phytoplancton pour l'utilisation des nutriments...).

Les indices synthétiques : un indice physico-chimique moyen pour chaque compartiment (un pour la pleine eau et un pour le sédiment) est affiché à côté des indices biologiques

Les indices physico-chimiques moyens du compartiment eau et du compartiment sédiment sont concordant avec les résultats obtenus pour les indices biologiques.

Le peuplement phytoplanctonique (représenté par l'IP) classe le plan d'eau en oligotrophe. Les indices biologiques du compartiment sédiment se situent pour leur part entre l'oligotrophie (IM) et la mésotrophie (IO) et témoigent respectivement des bonnes conditions d'oxygénation de l'hypolimnion et d'une capacité métabolique du sédiment pouvant être qualifiée de bonne à moyenne.

Anse

Les indices de la diagnose rapide

Valeurs brutes et calcul des indices

Les indices physico-chimiques

	Ptot ech intégré hiver (mg/l)	indice Ptot hiver	Ntot ech intégré hiver (mg/l)	indice Ntot hiver	INDICE NUTRITION moyen
2008	<0.020	<48	0,18 <x<1,18< td=""><td>0<x<52< td=""><td>25,0</td></x<52<></td></x<1,18<>	0 <x<52< td=""><td>25,0</td></x<52<>	25,0

Les limites de quantification utilisées pour le phosphore et le NKJ étant élevées, il n'est pas possible d'évaluer précisément la valeurs des indices Ptot, Ntot et NUTRITION

	Secchi moy (m) (3 campagnes estivales)	indice Transparence	Chloro a + Phéop. (µg/l) (moy 3 camp. estivales)	indice Pigments chlorophylliens	INDICE PRODUCTION
2008	4,9	36,3	1.3 <x< 2.3<="" td=""><td>27<x<35< td=""><td>33,5</td></x<35<></td></x<>	27 <x<35< td=""><td>33,5</td></x<35<>	33,5

	Conso journalière en O2 (mg/m³/j)	INDICE DEGRADATION
2008	-	non applicable (incidence du recourement en macrophytes sur les teneurs mesurées en profondeur)

	perte au feu (% MS)	indice Perte au feu séd = INDICE stockage MO du séd
2008	2,26	18,8

Correspondance entre indices de la diagnose rapide et niveau trophique

Indice Niveau trophique

Indice	Niveau trophique
0-15	Ultra oligotrophe
15-35	Oligotrophe
35-50	Mésotrophe
50-75	Eutrophe
75-100	Hyper eutrophe

L'évaluation de la perte au feu à été réalisée à partir du résultat en Corg selon la formule : valeur en Corg (%) X 1,724 (facteur généralement utilisé pour déterminer la proportion de MO dans le sol à partir de la teneur en en Corg)

	Ptot séd (mg/kg MS)	indice Ptot séd = INDICE stockage des minéraux du séd
2008	Non analysé	-

Rapport Carbone/Azote dans les sédiments = 11.5

	Ptot eau interst séd (mg/l)	indice Ptot eau interst	NH4 eau interst séd (mg/l)	indice NH4 eau interst	INDICE RELARGAGE
2008	0,9	61,5	2,8	36,5	49,0

Les indices biologiques

	Indice planctonique IP	Oligochètes IOBL global	Indice Oligochètes IO	Mollusques IMOL	Indice Mollusques IM
2008	25,7	10.6 : PM* moyen-fort	44	8	31

^{* :} Potentiel Métabolique

Annexe 4 : Potentiel écologique au sens de la DCE

Classes d'état

	Très bon (TB)
	Bon (B)
	Moyen (MOY)
ĺ	Médiocre (MED)
	Mauvais (MAUV)

Niveau de confiance

3	Elevé
2	Moyen
1	Faible

Le potentiel écologique est défini par agrégation de l'état de chacun des éléments de qualité selon les règles décrites dans l'« Arrêté du 25 janvier 2010 relatif aux méthodes et critères d'évaluation de l'état écologique, de l'état chimique et du potentiel écologique des eaux de surface ».

				es agrégés des ts de qualité	Polluants	Altérations		
Nom	Code	Type	Biologiques	Physico- chimiques généraux	spécifiques de l'état écologique	hydromorphologiques non imposées par les CTO**	Potentiel écologique	Niveau de confiance
Anse	FRDL51	ANT*	TB	В	В	Nulles à faibles	В	2/3

^{*} ANT : masse d'eau anthropique / ** CTO : contraintes techniques obligatoires

Les ensembles agrégés des éléments de qualité biologiques et physico-chimiques généraux sont respectivement classés en très bon état et en bon état.

Concernant les polluants spécifiques de l'état écologique, trois métaux ont été quantifiés à plusieurs reprises : arsenic, cuivre et zinc. A noter que les analyses sur métaux ont été effectuées sur eau brute : les paramètres cuivre et zinc n'ont donc pas été pris en compte pour évaluer la classe d'état des polluants spécifiques de l'état écologique, ce paramètre devant être analysé sur eau filtrée selon l'arrêté du 25 janvier 2010.

Le tableau suivant détaille la classe d'état de chaque paramètre pris en compte dans les éléments de qualité biologiques et physico-chimiques généraux.

				Paramètres biologiques	Paramètr	es Physico-chi	imiques géné	éraux
	Nom ME Code ME Type		Chlo-a	Nmin max	PO ₄ ³⁻ max	Ptot. Max	Transp.	
ĺ	Anse	FRDL51	ANT	<1,3	<0,27	<0,003	<0,02	4,9

Selon les règles de l'arrêté du 25 janvier 2010, la gravière d'Anse est classée en **bon potentiel** écologique.

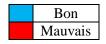
Chlo-a: concentration moyenne estivale en chlorophylle-a dans la zone euphotique (µg/L).

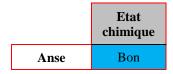
Nmin max: concentration maximale en azote minéral (NO3-+ NH4+) (mg/L).

PO43- max: concentration maximale en phosphate dans la zone euphotique (mg P /L). **Ptot. Max**: concentration maximale en phosphore dans la zone euphotique (mg/L).

Transp.: transparence (m), movenne estivale

Des paramètres "complémentaires" peuvent être intégrés au titre de l'expertise du potentiel écologique :


		Paramètres complémentaires	
		Physico-chimiques généraux	
Nom ME	Code ME	Туре	Déficit O2
Anse	FRDL51	ANT	0


Le résultat obtenu pour l'élément bilan d'oxygène conforte le bon potentiel observé puisqu'il exprime le bon niveau d'oxygénation de l'hypolimnion. Le résultat obtenu est cependant fortement influencé par le recouvrement en characées du plan d'eau (activité photosynthétique) et la relativement faible profondeur du plan d'eau.

Déficit O2 : déficit en oxygène entre la surface et le fond du lac (%).

Annexe 5 : Etat chimique au sens de la DCE

Classes d'état chimique

La gravière d'Anse est classée en bon état chimique.

Parmi les 41 substances de l'état chimique, deux substances ont été quantifiées ponctuellement :

- Un métal : le plomb, quantifié une seule fois à 1 μg/l.
- Un HAP : la naphtalène, quantifié deux fois en faible concentration sur les campagnes de mars et de mai (entre 0.01 et $0.02~\mu g/l$).

La liste des 41 substances de l'état chimique ainsi que leur Norme de Qualité Environnementale sont précisées dans l'arrêté du 25 janvier 2010.

Les micropolluants quantifiés dans l'eau (sur toutes les substances recherchées : molécules DCE et autres molécules analysées)

Les pesticides quantifiés :

83 molécules ont été recherchées (dont seule une dizaine figure dans la liste des 41 substances de l'état chimique) sur l'échantillon intégré de la zone euphotique à chaque campagne de prélèvement et également sur l'échantillon de fond à compter de la deuxième campagne annuelle.

Seul un pesticide a été quantifié ponctuellement, l'atrazine déséthyl. Il s'agit d'un métabolite d'herbicide. Il a été quantifié en faible concentration (0.04 μ g/l) sur l'échantillon intégré et sur celui du fond de la campagne de mai.

Les micropolluants quantifiés (hors pesticides):

En complément des substances quantifiées déjà citées (substances de l'état chimique et polluants spécifiques de l'état écologique), 10 autres paramètres ont été quantifiés :

- Six métaux : bore et baryum (presque systématiquement quantifiés), étain, sélénium, titane et uranium (ponctuellement quantifiés, en faibles concentrations) ;
- Un HAP: le méthyl-2-naphtalène. Il a été quantifié à deux reprises, en faibles concentrations (entre 0.01 et 0.03 μg/l), sur les mêmes échantillons où le naphtalène a été quantifié;
- Trois dérivés du benzène (BTEX), tous quantifiés sur les campagnes de mars et mai entre 0.5 et 0.7 µg/l par substance individuelle.

Les micropolluants quantifiés dans les sédiments: Sur les 140 substances recherchées sur sédiment, 26 ont été quantifiées. Il s'agit presque exclusivement de métaux (23 substances). Les concentrations mesurées n'ont pas révélées de concentrations excessives en métaux.

Annexe 6 : Eléments complémentaires suivis

Le suivi a également porté sur le peuplement macrophytique (adaptation du protocole Cemagref) et l'hydromorphologie du plan d'eau (à partir du Lake Habitat Survey).

Les méthodes de suivi de ces deux compartiments sont en cours de construction et il n'existe pas encore d'indice DCE compatible découlant de l'acquisition de ces données.

Les Macrophytes:

L'étude des macrophytes a mis en évidence le recouvrement important en characées sur la gravière d'Anse : estimé à 50% de la superficie du plan d'eau. En dehors des characées, les herbiers restent peu développés.

Il est également noté la présence d'espèces introduites suite à la reconstitution de frayères (printemps 2006).

Aucune espèce protégée en Rhône-Alpes n'a été observée sur le site lors des prospections.

Pour plus de détails sur le résultat des inventaires macrophytiques, se référer au rapport de suivi de la qualité du plan d'eau d'Anse-Colombier, Année 2008, DIREN Rhône-Alpes – GREBE.

L'Hydromorphologie:

La méthode aboutit au calcul de deux indices :

- ✓ LHMS : évaluation de l'altération du milieu ;
- ✓ LHQA : évaluation de la qualité des habitats du lac.

Le LHS a été réalisé en 2009 par la société Sciences et Techniques de l'Environnement.

Le plan d'eau est bordé essentiellement par des milieux naturels (forêts, bois, humide). La portion de rive adossée à la Saône est modifiée par la présence d'une digue et d'une zone aménagée pour l'accueil au public. L'altération du milieu est assez importante (26/42) de part la nature artificielle du plan d'eau.

Les zones rivulaires et la grève sont partiellement modifiées, ce qui limite la qualité des habitats des berges. Les substrats sont peu variés sur les berges. La zone littorale est sujette à l'envasement, et colonisée quasi intégralement par la végétation aquatique, avec des groupements d'hélophytes et d'hydrophytes ainsi que des algues filamenteuses. Globalement, la qualité des habitats de la gravière d'Anse est moyenne (note LHQA : 65/112).

LHMS		LHQ/	A
Score LHMS	26 /42	Score LHQA	65 /112
Modification de la grève	2 /8	Berges	8 /20
Usage intensif de la grève	4 /8	Plage/grève	16 /24
Pressions sur le lac	8 /8	Zone littorale	21 /32
Hydrologie (ouvrage)	6 /8	Lac	20 /36
Transport solide	6 /6		
Espèces exotiques	0 /4	J	

Fiche synthétique Etat du peuplement piscicole

Protocole CEN 14757

délégation régionale Rhône-Alpes Unité spécialisée milieux lacustres

Plan d'eau : ANSE Réseau : DCE Contrôle de Surveillance

Superficie: **52 Ha** Zmax: **13 m**

Date échantillonnage : du 26 au 28/06/11 Opérateur : ONEMA (USML & SD 69)

nb filets benthiques : 24 (1080 m2) nb filets pélagiques : 4 (660 m2)

Composition et structure du peuplement :

Espèce	Ca	ptures	Pource	ntages	Rende	ments
code	Effectifs	biomasses	num	pond	num	pond
	ind.	gr	%	%	ind/1000m2	gr/1000m2
BRO	2	601,3	0,38	1,82	1,15	345,57
cco	1	5500	0,19	16,66	0,57	3160,92
GAR	3	1350	0,57	4,09	1,72	775,86
GRE	12	161,3	2,29	0,49	6,90	92,70
OCL	4	31,7	0,76	0,10	2,30	18,22
PCH	10	178,4	1,90	0,54	5,75	102,53
PER	312	9231	59,43	27,96	179,31	5305,17
PES	119	734,6	22,67	2,22	68,39	422,18
ROT	50	7221,6	9,52	21,87	28,74	4150,34
SAN	2	3792	0,38	11,48	1,15	2179,31
SIL	1	1244	0,19	3,77	0,57	714,94
TAN	9	2973,5	1,71	1,71 9,01		1708,91
Total	525	33019,4	100	100	301,72	18976,67

BRO : brochet / CCO : carpe commune / GAR : gardon / GRE : grémille / OCL : écrevisse américaine / PCH : poisson chat / PER : perche / PES : perche soleil / ROT : rotengle / SAN : sandre / SIL : silure glane / TAN : tanche

Tab. 1: résultats de pêche sur le plan d'eau d'Anse (les rendements surfaciques prennent en compte tous les types de filets tendus)

En 2011, le peuplement du plan d'eau d'Anse est composé de **11** espèces de poissons auxquelles il convient d'ajouter l'écrevisse américaine (Orconectes limosus). L'échantillon est dominé par la perche, le rotengle et la perche-soleil. Les derniers résultats acquis sur ce plan d'eau datent de 1998 ou toutes ces espèces étaient déjà présentes. A cette époque le chevesne, la brême commune et le carassin avaient en outre été capturés. Hormis l'absence de ces espèces, il est possible d'écrire que le peuplement de ce plan d'eau est relativement stable.

Les rendements de pêche obtenus à Anse sont moyens surtout au plan pondéral, les effectifs capturés demeurant bas, toutes espèces confondues. On observe en parallèle que des espèces invasives et susceptibles de provoquer certains déséquilibres sont bien implantées dans le milieu (perche-soleil, poisson chat). Ce constat pour ces espèces associé à l'observation de l'abondance correcte du rotengle amène à penser que la strate superficielle du plan d'eau est suffisamment chaude pour autoriser leur développement.

Le plan d'eau d'Anse subit probablement de très faibles fluctuations de niveau ; celles-ci associées à la topographie des berges, en générales abruptes limite fortement la présence de zones inondables notamment pour le brochet. Ceci favorise les autres prédateurs que sont la perche et le sandre, moins exigeants pour leur phase de reproduction (profondeur, substrats, qualité).

Distribution spatiale des captures :

Compte tenu du fonctionnement du plan d'eau, la stratification reste peu marquée sur cette gravière et les mesures effectuées mettent en évidence une désoxygénation limitée d'une part à la fin de l'été et d'autre part à la strate épi-benthique (2m au dessus du fond).

On pourrait s'attendre à une faible différenciation verticale des captures, mais en réalité, une certaine stratification s'opère de ce point de vue. La strate 3-6m s'avère à la fois la plus diversifiée et la plus occupée : celle-ci correspond à un compromis acceptable (pour les espèces présentes) en terme de température et d'oxygénation, les strates inférieures étant, soit sursaturées en début d'été, soit possiblement anoxiques en fin d'été. A la saison de pêche, la strate 6-12 m est cependant très peu voire pas occupée par le poisson, que ce soit au niveau benthique ou pélagique

	Bent	Benthiques										Pélagiques					
Strate	BRO	CCC	GAR	GRE	OCL	PCH	PER	PES	ROT	SAN	SIL	TAN	Strate	GAR	GRE	PER	ROT
0-2,9	1	1			1	3	38	102	41			6	0-6	1		32	1
3-5,9 6-11,9	1			2	3	7	125	13	7	2	1	2	6-12	1	2	44	
6-11,9			1	4			53	4	1			1					
12-19,9				4			20										
Total	2	1	1	10	4	10	236	119	49	2	1	9		2	2	76	1

BRO : brochet / CCO : carpe commune / GAR : gardon / GRE : grémille / OCL : écrevisse américaine / PCH : poisson chat / PER : perche / PES : perche soleil / ROT : rotengle / SAN : sandre / SIL : silure glane / TAN : tanche

Tab. 2 : distribution spatiale des captures observées en 2011 sur le plan d'eau d'Anse (effectifs bruts)

Malgré une oxygénation acceptable de l'ensemble de la masse d'eau, les couches inférieures sont, selon les espèces, peu ou pas fréquentées. Ce constat amène à se poser des questions sur la qualité et l'état fonctionnel de la strate benthique profonde, voire du sédiment lacustre.

Structure des populations majoritaires :

Malgré un niveau d'abondance moyen, la population de perche affiche un état correct avec trois à quatre classes d'âge recensées, avec cependant un recrutement assez limité en juvéniles de l'année. Cependant à l'époque de l'échantillonnage, seule une fraction des perchettes de l'année est capturable au moyen de filets. L'abondance des adultes est correcte.

En ce qui concerne le rotengle, l'espèce ne s'est pas encore reproduite à la période d'intervention et les alevins ne sont pas maillables. Plusieurs classes d'âge sont cependant représentées dans l'échantillon, signe d'une population elle aussi en état satisfaisant. La population de perche soleil affiche une abondance notable et, au minimum 3 classes d'âge sont présentes à Anse.

Éléments de synthèse :

Au vu de ces résultats, le peuplement piscicole du plan d'eau d'Anse apparaît en état relativement satisfaisant bien que des espèces exotiques comme la perche soleil et le poisson chat y soient présents. Il conviendrait de suivre l'abondance de ces espèces

L'analyse de la distribution spatiale des captures met en évidence l'absence de fréquentation de la strate inférieure du plan d'eau, pourtant peu profonde et oxygénée. Malgré l'absence constatée d'une surcharge de phosphore et de micropolluants minéraux et organiques dans l'eau et le sédiment, la sursaturation mesurée de cette strate profonde mériterait une approche approfondie de manière à mieux cerner l'état fonctionnel du milieu.

Bibliographie:

ADAPRA., **1998**. Plan d'eau de Bordelan – Commune de Anse (69) -. Diagnose écologique (rapport de synthèse), 37 p.

ONEMA - Unité spécialisée milieux lacustres - 13, quai de Rives - 74 200 Thonon les Bains Tel 04 50 70 48 13 - fax : 04 50 70 48 13 - www.onema.fr