

Agence de l'Eau Rhône Méditerranée Corse

ÉTUDE DES PLANS D'EAU DU PROGRAMME DE SURVEILLANCE DES BASSINS RHONE-MEDITERRANEE ET CORSE RAPPORT DE DONNEES BRUTES ET INTERPRETATION LAC LEMAN

SUIVI ANNUEL 2016

Rapport n° 12-458/2017-PE2016-05 – janvier 2018

Sciences et Techniques de l'Environnement – B.P. 374 17, Allée du Lac d'Aiguebelette - Savoie Technolac 73372 Le Bourget du Lac cedex tél.: 04 79 25 08 06; tcp: 04 79 62 13 22

SOMMAIRE

<u>- СН</u>	APITRE 1 : CADRE DU PROGRAMME DE SUIVI	<u>1</u>
<u>- СН</u>	APITRE 2 : RAPPEL METHODOLOGIQUE	5
1	INVESTIGATIONS PHYSICOCHIMIQUES	7
	1.1 Méthodologie	
	1.2 Programme analytique	
	1.3 Déroulement du suivi 2016	
	1.3.1 Campagne 1	
	1.3.2 Campagne 2	
	1.3.3 Campagne 3	
	1.3.4 Campagne 4	
2	INVESTIGATIONS HYDROBIOLOGIQUES	12
<u>- СН</u>	APITRE 3 : DESCRIPTION DU PLAN D'EAU SUIVI	13
1	PRESENTATION DU PLAN D'EAU ET LOCALISATION	15
2	CONTENU DU SUIVI 2016	16
3	BILAN CLIMATIQUE REGIONAL	16
<u>- СН</u>	APITRE 4 : RESULTATS DES INVESTIGATIONS	17
1	INVESTIGATIONS PHYSICOCHIMIQUES	19
	1.1 Analyses des eaux	
	1.1.1 Profils verticaux et évolutions saisonnières	
	1.1.2 Paramètres de constitution et typologie du lac	
	1.1.3 Analyses physicochimiques des eaux (hors micropolluants)	
	1.1.4 Micropolluants minéraux	
	1.1.5 Micropolluants organiques	27
	1.2 Analyses des sédiments	28
	1.2.1 Analyses physicochimiques des sédiments (hors micropolluants)	
	1.2.2 Micropolluants minéraux	29
	1.2.3 Micropolluants organiques	30
2	PHYTOPLANCTON	31
	2.1 Prélèvements intégrés	
	2.2 Liste floristique	
	2.3 Evolutions saisonnières des groupements phytoplanctoniques	
<u>- AN</u>	NEXES -	37
	IEXE 1. Liste des micropolluants analysés sur eau	
	IEXE 2. Liste des micropolluants analysés sur sédiment	
ANN	EXE 3. Comptes rendus des campagnes physico-chimiques et phytoplanctonique	s
	IEXE 4. Résultats du suivi piscicole 2016 – ONEMA	
	IEXE 5. Note explicative du conseil scientifique de la CIPEL	

FICHE QUALITE DU DOCUMENT

	Agence de l'Eau Rhône Méditerranée Corse (AERMC)
	Direction des Données et Redevances
	2-4, Allée de Lodz
Maître d'ouvrage	69363 Lyon Cedex 09
	Interlocuteur: Mr IMBERT Loïc
	Coordonnées: loic.imbert@eaurmc.fr
Titre du projet	Etude des plans d'eau du programme de surveillance des bassins Rhône- Méditerranée et Corse – Rapport de données brutes et interprétation – Lac Léman
Référence du document	Rapport n°12-458/2017-PE2016-05
Date	Mai 2017
Auteur(s)	S.T.E. Sciences et Techniques de l'Environnement – B.P. 374
	17, Allée du Lac d'Aiguebelette – Savoie Technolac
	73372 Le Bourget du Lac Cedex
	Tél.: 04.79.25.08.06; Tcp.: 04.79.62.13.22

Contrôle qualité

Version	Rédigé par	Date	Visé par	Date
V1	Hervé Coppin	30/05/2017	Audrey Péricat	30/05/2017
V2	Audrey Péricat	18/10/2017		

Thématique

Mots-clés	Géographiques : Bassin Rhône-Méditerranée – Rhône-Alpes – Haute-Savoie (74) – Lac Léman
	Thématiques : Réseaux de surveillance – Etat trophique – Plan d'eau
Résumé	Le rapport rend compte de l'ensemble des données collectées sur le lac Léman lors des campagnes de suivi 2016. Une présentation du plan d'eau et du cadre d'intervention est menée puis les résultats des investigations sont développés dans la suite du document.

Diffusion

Envoyé à :				
Nom	Organisme	Date	Format(s)	Nombre d'exemplaire(s)
Loïc IMBERT	AERMC	20/10/2017	Papier	1
Suite aux remarques sur l	es rapports provisoires 2016			

Copie à :				
Nom	Organisme	Date	Format(s)	Nombre d'exemplaire(s)
Eric BERTRAND	S.T.E.	20/10/2017	Informatique	1
pour information				

Agence de	e l'Eau Rhône Méditerranée Corse
	Étude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Lac Léman (74)

- Chapitre 1 : Cadre du programme de Suivi -

Dans le cadre de la mise en œuvre de la Directive Cadre Européenne sur l'Eau (DCE), un programme de surveillance doit être établi pour suivre l'état écologique (ou le potentiel écologique) et l'état chimique des eaux douces de surface.

Différents réseaux constituent le programme de surveillance. Parmi ceux-ci, deux réseaux sont actuellement mis en œuvre sur les plans d'eau :

- Le réseau de contrôle de surveillance (RCS) vise à donner une image globale de la qualité des eaux. Tous les plans d'eau naturels supérieurs à 50 ha ont été pris en compte sur les bassins Rhône-Méditerranée et Corse. Pour les plans d'eau d'origine anthropique, une sélection a été opérée parmi les plans d'eau supérieurs à 50 ha, afin de couvrir au mieux les différents types présents (grandes retenues, plans d'eau de digue, plans d'eau de creusement).
- <u>Le contrôle opérationnel (CO)</u> vise à suivre spécifiquement les masses d'eau (naturelles ou anthropiques) supérieures à 50 ha, à risque de non atteinte du bon état (ou du bon potentiel) des eaux en 2015.

Au total, 79 plans d'eau sont suivis sur les bassins Rhône-Méditerranée et Corse dans le cadre de ces deux réseaux.

Le contenu du programme de suivi sur les plans d'eau est généralement identique pour le RCS et le CO. Un plan d'eau concerné par le CO sera cependant suivi à une fréquence plus soutenue (tous les 3 ans) comparativement à un plan d'eau strictement visé par le RCS (tous les 6 ans).

Le tableau 1 résume les différents éléments suivis sur une année et les fréquences d'intervention associées. Il s'agit du suivi qualitatif type mis en place sur les plans d'eau concernés par le RCS et le CO. Pour chaque plan d'eau, selon leur typologie et l'historique de leur suivi, ce programme peut faire l'objet d'ajustements concernant l'hydrobiologie.

Tableau 1 : Synoptique générique des investigations menées sur une année de suivi d'un plan d'eau

			Paramètres	Type de prélèvements/ Mesures	HIVER	PRINTEMPS	ЕТЕ	AUTOMNE
		Mesures in situ	O2 dis. (mg/l, %sat.), pH, COND (25°C), T°, transparence secchi	Profils verticaux	х	х	х	х
			DBO5, PO4, Ptot, NH4, NKJ, NO3,	Intégré	Х	Х	Х	Х
	_		NO2, Corg, MEST, Turbidité, Si dissoute	Ponctuel de fond	Х	Х	Х	Х
	Sur EAU	Physico-chimie classique et	NA:	Intégré	Х	Х	Х	Х
	'n	micropolluants	Micropolluants sur eau*	Ponctuel de fond	Х	Х	Х	Х
	U)		Chlaranhulla a Lapháchiamanta	Intégré	Х	Х	Х	Х
			Chlorophylle a + phéopigments	Ponctuel de fond				
		Paramètres de	Ca ²⁺ , Na ⁺ , Mg ²⁺ , K ⁺ , dureté, TAC,	Intégré	Х			
		Minéralisation	SO ₄ ²⁻ , Cl ⁻ , HCO ₃ ⁻	Ponctuel de fond				
S	Ea	au interst.: Physico-chimie	PO4, Ptot, NH4					
Ir SEDIMENTS	Phase solide	Physico-chimie classique	Corg., Ptot, Norg, Granulomètrie, perte au feu	Prélèvement au point de plus grande profondeur				х
Sur		Micropolluants	Micropolluants sur sédiments*					
			Phytoplancton	Intégré - Protocole IRSTEA/Utermöhl	Х	Х	Х	Х
	H	IYDROBIOLOGIE et	Invertébrés	Protocole en cours de développement		Х		
	HY	DROMORPHOLOGIE	Diatomées	Protocole IRSTEA			Х	
		1	Macrophytes	Norme XP T 90-328			Х	

^{* :} se référer à l'arrêté du 7 août 2015 établissant le programme de surveillance de l'état des eaux.

En 2016, le suivi physico-chimique et hydrobiologique a porté sur 8 plans d'eau désignés au titre du réseau de contrôle de surveillance (RCS) et du contrôle opérationnel (CO) sur la partie centrale du bassin Rhône-Méditerranée.

Étude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Lac Léman (74)
- Chapitre 2: Rappel methodologique -

Agence de l'Eau Rhône Méditerranée Corse

1 INVESTIGATIONS PHYSICOCHIMIQUES

Le suivi 2016 est effectué en collaboration avec l'INRA de Thonon, organisme assurant le suivi scientifique du plan d'eau pour le compte de la Commission Internationale pour la Protection des Eaux du Léman (CIPEL).

1.1 METHODOLOGIE

Le contenu des investigations physicochimiques est similaire sur les quatre campagnes, excepté un point : un échantillon de sédiment est prélevé lors de la dernière campagne.

Le profil vertical et les prélèvements sont réalisés dans le secteur de plus grande profondeur que l'on recherche à partir des données collectées au préalable (bathymétrie, étude, communication avec les gestionnaires). Dans le cas des retenues, cette zone se situe en général à proximité du barrage dans le chenal central. Sur le terrain, la recherche du point de plus grande profondeur est menée à l'aide d'un échosondeur.

Au droit du point de plus grande profondeur, on effectue, dans l'ordre :

- a) une mesure de transparence au disque de Secchi, effectuée par l'INRA.
- **b) un profil vertical** de température (°C), conductivité (μS/cm à 25°C), pH (u. pH) et oxygène dissous (% sat. et mg/l), effectué par l'INRA.
- c) quatre prélèvements pour analyses physicochimiques des micropolluants minéraux et organiques, effectués par S.T.E.:
 - l'échantillon intégré est en général constitué de prélèvements ponctuels tous les mètres¹ sur la zone euphotique (soit 2,5 fois la transparence) ; ces prélèvements unitaires, de même volume, sont réalisés à l'aide d'une bouteille Kemmerer (en téflon) et disposés dans une bonbonne en verre pyrex de 20 litres graduée et équipée d'un robinet verre/téflon pour conditionner les échantillons. Pour les analyses physicochimiques (uniquement micropolluants minéraux et organiques), 13 litres sont nécessaires. Une fois l'échantillon finalisé, le conditionnement est réalisé sur le bateau, en respectant l'ensemble des prescriptions du laboratoire.
 - l'échantillon ponctuel de fond est prélevé à 300 m, soit à environ 9 m du fond. Les prélèvements sont réalisés à l'aide d'une bouteille Kemmerer (en téflon) et disposés dans une bonbonne en verre pyrex de 20 litres graduée et équipée d'un robinet verre/téflon pour

¹ Compte tenu de la transparence Tr. de certains plans d'eau, exprimable en plusieurs mètres, la règle du Tr. x 2,5 a parfois conduit à une valeur calculée supérieure à la profondeur du plan d'eau. Dans ces cas, le prélèvement a été arrêté à 1 m du fond, pour éviter le prélèvement d'eau de contact avec le sédiment, qui peut, selon les cas, présenter des caractéristiques spécifiques. Inversement, lorsque la transparence est très faible, amenant à une épaisseur de zone euphotique d'à peine quelques mètres, les prélèvements peuvent être resserrés à un pas moindre que 1 m (par exemple : tous les 50 cm).

conditionner les échantillons. Pour les analyses physicochimiques (uniquement micropolluants minéraux et organiques), 13 litres sont nécessaires. Une fois l'échantillon finalisé, le conditionnement est réalisé sur le bateau, en respectant l'ensemble des prescriptions du laboratoire.

• les échantillons ponctuels de profondeur intermédiaire (à 100 m et 200 m) réalisés uniquement sur les plans d'eau de grande profondeur suivis dans le cadre du programme de surveillance (cas du lac Léman). Le mode d'échantillonnage est similaire au prélèvement de fond.

Pour chaque échantillon, le laboratoire CARSO fournit une glacière avec les flaconnages préalablement étiquetés adaptés aux analyses demandées par l'Agence de l'Eau RM&C. Les échantillons sont conservés dans une enceinte isolée au contact de blocs réfrigérants et de glace fondante, puis envoyés par transporteur TNT pour un acheminement au laboratoire CARSO dans un délai de 24h, sauf cas particuliers.

- d) quatre prélèvements pour analyses physicochimiques classiques, effectués par l'INRA :
 - l'échantillon intégré destiné à l'analyse du phytoplancton et de la chlorophylle et aux analyses de physico-chimie classique. Les prélèvements sont intégrateurs de la colonne d'eau correspondant à la zone euphotique.
 - l'échantillon ponctuel de fond destiné aux analyses de physico-chimie classique. Les prélèvements sont réalisés à environ 1 m du fond, pour éviter la mise en suspension des sédiments.
 - les échantillons ponctuels de profondeur intermédiaire (à 100 m et 200 m) destinés aux analyses de physico-chimie classique. Le mode d'échantillonnage est similaire au prélèvement de fond.

e) un prélèvement de sédiment, effectué par S.T.E.:

Ce type de prélèvement n'est réalisé que lors d'une seule campagne, celle de fin d'été (septembre), susceptible de représenter la phase la plus critique pour ce compartiment. Le prélèvement de sédiments est réalisé impérativement **après** les prélèvements d'eau afin d'éviter tout risque de mise en suspension de particules du sédiment lors de son échantillonnage, et donc de contamination du prélèvement d'eau (surtout celui du fond).

Il est réalisé par une série de prélèvements à la benne Ekman. Au vu de sa taille et de la fraction ramenée par ce type de benne (en forme de secteur angulaire), on réalise de 2 à 5 prélèvements pour ramener une surface de l'ordre de 1/10 m². On observe sur chacun de ces échantillons la structure du sédiment dans le double but de :

- description (couleur, odeur, aspect, granulométrie,..);
- sélection de la seule tranche superficielle (environ 2-3 premiers cm) destinée à l'analyse.

Pour chaque échantillon, le laboratoire LDA26 fournit une glacière avec le flaconnage adapté aux analyses demandées par l'Agence de l'Eau RM&C.

Les échantillons sont conservés dans une enceinte isolée au contact de blocs réfrigérants et de glace fondante, puis envoyés par transporteur Chronopost pour un acheminement au Laboratoire

Départemental de la Drôme (LDA26) dans un délai de 24h, sauf cas particuliers.

1.2 PROGRAMME ANALYTIQUE

Concernant les analyses, les paramètres suivants sont mesurés :

- ✓ sur le prélèvement intégré destiné aux analyses de physico-chimie classique et de la chlorophylle :
 - o MES, COD, PO₄³⁻, Ptot, NH₄⁺, NKJ, NO₃⁻, NO₂⁻, silicates;
 - \circ chlorophylle a;
 - o dureté, TAC, HCO₃-, Ca⁺⁺, Mg⁺⁺, Na⁺, K⁺, Cl⁻, SO₄--.
- ✓ sur le prélèvement de fond et les prélèvements intermédiaires destinés aux analyses de physico-chimie classique :
 - o MES, COD, PO₄³⁻, Ptot, NH₄⁺, NKJ, NO₃⁻, NO₂⁻, silicates.
- ✓ sur le prélèvement intégré, le prélèvement de fond et les prélèvements intermédiaires destinés aux analyses de micropolluants minéraux et organiques :
 - o micropolluants minéraux et organiques : liste des substances fournie en annexe 1.

Les paramètres analysés sur les **sédiments** prélevés lors de la 4^{ème} campagne sont les suivants :

- ✓ sur la phase solide (fraction < 2 mm):
 - o granulométrie;
 - o matières sèches minérales, perte au feu, matières sèches totales ;
 - o carbone organique;
 - o phosphore total;
 - o azote Kjeldahl;
 - o ammonium;
 - o micropolluants minéraux et organiques : liste des substances fournie en annexe 2.
- ✓ Sur l'eau interstitielle :
 - o orthophosphates;
 - o phosphore total;
 - o ammonium.

1.3 DEROULEMENT DU SUIVI 2016

Les investigations physicochimiques ont été réalisées lors de quatre campagnes qui correspondent aux différentes étapes de développement de la vie lacustre.

1.3.1 CAMPAGNE 1

La première campagne correspond à la phase d'homothermie du plan d'eau. La masse d'eau est homogène (en température et en oxygène). Sur les lacs monomictiques², cette phase intervient en hiver. La campagne est donc réalisée en fin d'hiver avant que l'activité biologique ne débute (début

² Plan d'eau qui présente une seule alternance stratification / déstratification annuelle.

mars en Rhône-Alpes). Pour les lacs dimictiques³, cette phase intervient après le dégel du plan d'eau, la masse d'eau se mélange à l'issue de la période de stratification inverse (Cf. figures 1 et 2).

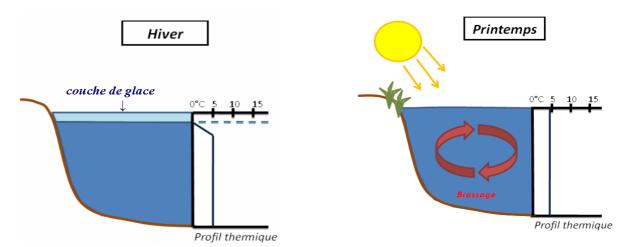


Figure 1 : Stratification thermique hivernale

Figure 2: Brassage de fin d'hiver

(Figures qui concernent un lac dimictique, source S.T.E.)

1.3.2 CAMPAGNE 2

La seconde campagne correspond à la période de démarrage et de développement de l'activité biologique des lacs. Il s'agit de la période de mise en place de la stratification thermique conditionnée par le réchauffement (Cf. figure 4). Cette phase intervient au printemps et c'est à cette période que l'activité biologique atteint son maximum. La campagne est donc généralement réalisée durant les mois de mai à juin (exceptionnellement juillet pour les plans d'eau d'altitude).

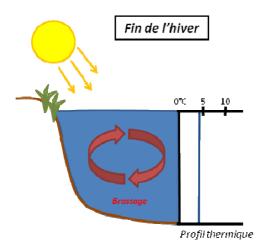


Figure 3 : Brassage de fin d'hiver

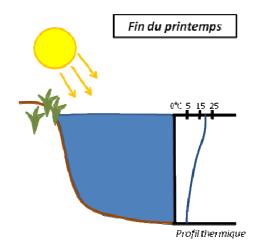


Figure 4 : Phase de stratification printanière

1.3.3 CAMPAGNE 3

La troisième campagne correspond à la période de stratification maximum du plan d'eau avec une thermocline bien installée. Elle correspond à la 2^{ème} phase de croissance du phytoplancton (Cf.

³ Plan d'eau qui présente deux alternances de stratification / déstratification annuellement : l'une en hiver, l'autre en été. En hiver, la stratification est généralement accompagnée du gel sur la surface du lac.

S.T.E. Sciences et Techniques de l'Environnement – Rapport 12-458/2017-PE2016-05 – octobre 2017 – page 10

figure 6). Cette phase intervient en période estivale. La campagne est donc réalisée durant les mois de juillet et août, lorsque l'activité biologique est maximale.

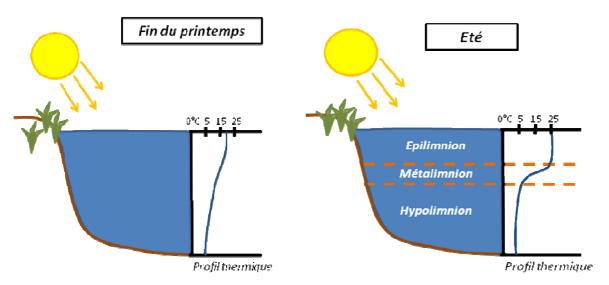


Figure 5 : Phase de stratification printanière

Figure 6 : Stratification installée

1.3.4 <u>CAMPAGNE 4</u>

La quatrième campagne correspond à la fin de la stratification estivale du plan d'eau. Elle intervient avant la baisse de la température et la disparition de la thermocline. L'épilimnion présente alors son épaisseur maximale. Cette phase intervient en fin d'été : la campagne est donc réalisée durant le mois de septembre.

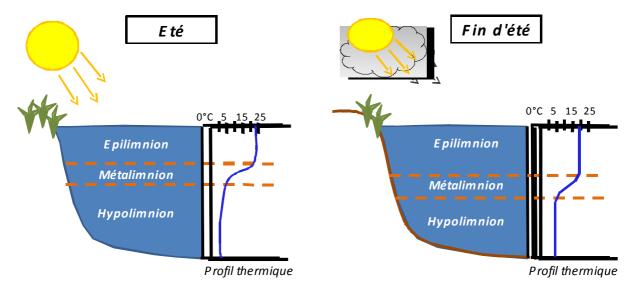


Figure 7 : Phase de stratification estivale (C3)

Figure 8 : Fin d'été, baisse de la thermocline (C4)

2 INVESTIGATIONS HYDROBIOLOGIQUES

Concernant les investigations hydrobiologiques, seule l'étude des peuplements phytoplanctoniques a été menée sur le lac Léman en 2016. Elle a été réalisée à partir du protocole standardisé d'échantillonnage, de conservation, d'observation et de dénombrement du phytoplancton en plan d'eau pour la mise en œuvre de la DCE (IRSTEA – INRA; version 3.3 de mars 2009). Cette étude a été menée par l'INRA.

Le suivi du peuplement macrophytique selon la norme XP T90-328 n'a pas été réalisé sur le Léman en raison de sa très grande superficie (581 km²) rendant problématique se mise en œuvre. La CIPEL a par ailleurs déjà fait réaliser en 2009 une "Etude de la végétation macrophytique du Léman". De même, il n'y a pas eu d'étude de la faune benthique invertébrés en 2016 sur ce plan d'eau, dans l'attente du développement d'un indice invertébrés DCE compatible.

=	CHAPITRE 3 : DESCRIPTION DU PLAN D'EAU SUIVI -

1 Presentation du plan d'eau et localisation

Le lac Léman est le plus grand lac alpin, il se situe en France (Haute-Savoie) et en Suisse (Cantons de Genève, Valais et Vaud). A une altitude de 372 m, ce lac est formé par une crypto-dépression sur le tracé du Rhône, qui s'écoule de l'Est vers le Sud-Ouest. On distingue deux parties sur le plan d'eau : Le Grand Lac (de Montreux à Yvoire) et le Petit Lac (d'Yvoire à Genève).

Le plan d'eau est naturel d'origine glaciaire et tectonique. Le Grand lac s'est formé suite à un plissement tectonique, le petit lac semble être issu d'actions du glacier du Rhône. Le lac Léman présente de grandes dimensions, il couvre une superficie de 581 km². La cuvette de plus grande profondeur (309 m mesurés) se situe au centre du grand lac dans l'axe Evian- Lausanne. Le volume de la masse d'eau est estimé à 89 milliards de m³.

Le bassin versant géographique du plan d'eau comprend tout le haut bassin versant du Rhône (partie Suisse), à l'amont de Genève. En plus des apports du Rhône (70% des apports), l'alimentation du lac se fait par des écoulements de surface au nord et au sud du lac. Côté Suisse, on trouve principalement l'Aubonne et la Venoge et côté français, la Dranse, le Foron. L'exutoire de surface du lac est le Rhône, au droit de Genève.

N.B : Dans le cadre de la prestation de suivi RCS, les campagnes de prélèvements ont été coordonnées avec le suivi CIPEL/INRA.

Carte 1 : Localisation du lac Léman (Haute-Savoie)

2 CONTENU DU SUIVI 2016

Le lac Léman est suivi au titre des Réseaux de Contrôle de Surveillance (RCS) et du Contrôle Opérationnel (CO). Le tableau ci-dessous indique la répartition des missions aussi bien en phase terrain qu'en phase laboratoire/détermination. S.T.E. a, en outre, eu en charge de coordonner la mission et de collecter l'ensemble des données pour établir les rapports et mener l'exploitation des données.

La pollution diffuse par les pesticides et l'altération de la morphologie sont à l'origine du risque de non atteinte des objectifs environnementaux sur ce plan d'eau.

Lac Léman		Phase	Laboratoire - détermination		
Campagne	C1	C2	C3	C4	
Date	01/03/2016	09/05/2016	08/08/2016	17 et 18/10/2016	automne/hiver 2016-2017
Physicochimie des eaux	S.T.E. / INRA	S.T.E. / INRA	S.T.E. / INRA	S.T.E. / INRA	INRA (physico-chimie classique) CARSO (micropolluants)
Physicochimie des sédiments				S.T.E.	LDA26
Phytoplaneton	INRA	INRA	INR A	INRA	INRA

Tableau 2 : Synoptique des interventions de terrain et de laboratoire sur le plan d'eau, par campagne

3 BILAN CLIMATIQUE REGIONAL

En Rhône-Alpes, le bilan climatique de l'année 2016⁴ fait état d'une année chaude exceptée au printemps et en octobre. La pluviométrie a été excédentaire le premier semestre puis déficitaire ensuite. L'ensoleillement a suivi la tendance contraire à la pluviométrie : déficitaire le premier semestre puis excédentaire ensuite. Dans le détail :

- ✓ l'hiver a été exceptionnellement doux, avec des gelées peu fréquentes en plaine, et une pluviométrie élevée, excédentaire de 10 à 50% en Rhône-Alpes;
- ✓ le printemps a été très arrosé, plutôt frais et peu ensoleillé. Les gelées ont notamment été fréquentes fin avril ;
- ✓ l'été s'est révélé plutôt sec, assez chaud et ensoleillé. Il a notamment été marqué par une alternance de fraîcheur et de chaleur estivale et une vague de chaleur tardive en fin de saison. Les précipitations ont été importantes en juin puis peu fréquentes en juillet et août;
- ✓ l'automne a été marqué par un fort contraste entre les mois de septembre et d'octobre très secs et un mois de novembre très humide et agité en fin de mois.

_

⁴ Source : <u>www.meteofrance.fr</u>

ne Méditerranée (plans d'eau du pr	rogramme de surveil	lance des bassins	Rhône-Méditer	ranée et Corse -	- Lac Léman (74
- CHA	PITRE 4	: RES	ULTAT.	S DES	
	INVEST	TIGATIA	ONS -		
	INVEST	IUAII)		

1 INVESTIGATIONS PHYSICOCHIMIQUES

Les comptes rendus des campagnes de prélèvements physicochimiques et phytoplanctoniques sont présentés en annexe 3.

1.1 ANALYSES DES EAUX

1.1.1 Profils verticaux et evolutions saisonnieres

Le suivi prévoit la réalisation de profils verticaux sur la colonne d'eau à chaque campagne. Quatre paramètres sont mesurés : la température, la conductivité, l'oxygène (en concentration et en % saturation) et le pH. Les graphiques regroupant ces résultats pour chaque paramètre lors des 4 campagnes sont affichés dans ce chapitre.

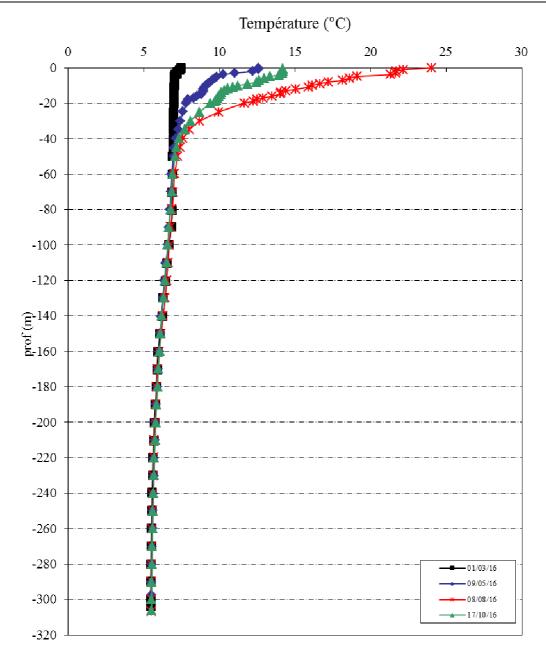


Figure 9 : Profils verticaux de température au point de plus grande profondeur

Lors de la 1^{ère} campagne, la température est relativement homogène sur la colonne d'eau (5,5 à 7,5°C). On constate un léger réchauffement en surface.

Au printemps, la stratification s'installe doucement avec une augmentation de la température des eaux à 12,6°C en surface. L'épilimnion est en cours de définition, il s'étend sur un seul mètre. La thermocline est établie entre 1 et environ 40 m de profondeur.

La température atteint 24°C en surface durant l'été, la thermocline est établie entre 4 et 40 m de profondeur. La situation est identique lors de la campagne 4 mis à part que l'épilimnion s'est nettement refroidit (14,2°C).

La stratification thermique est bien établie sur le lac Léman sur l'année 2016. Notons que l'épilimnion présente une faible épaisseur durant toute la période estivale (maximum 4 m).

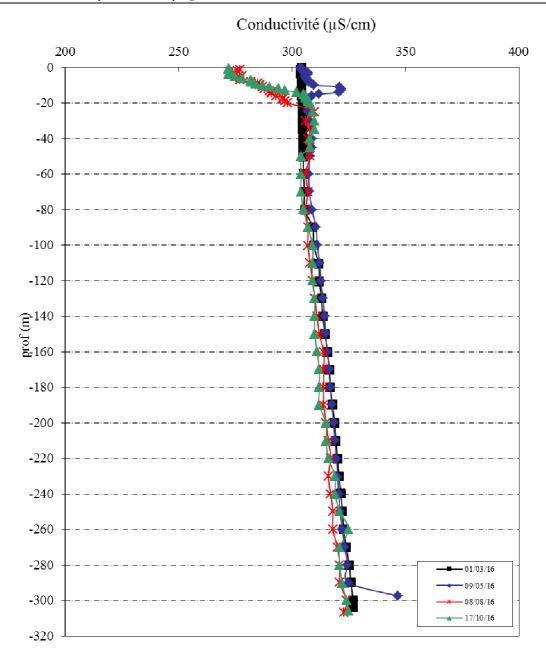


Figure 10 : Profils verticaux de conductivité au point de plus grande profondeur

La conductivité indique une eau moyennement minéralisée, typiquement en lien avec la nature calcaire des substrats. Elle varie peu : les valeurs lors des 4 campagnes de mesures sont comprises entre 270 et 350 μ S/cm à 25°C. Globalement, la conductivité diminue dans l'épilimnion du fait du développement du phytoplancton lors des campagnes 3 et 4 (270 μ S/cm). A partir de 20 m de profondeur, les valeurs restent similaires lors des quatre campagnes.

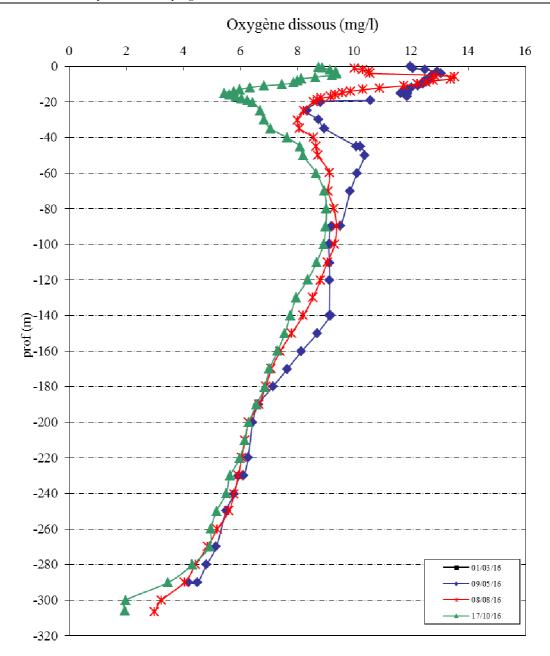


Figure 11 : Profils verticaux d'oxygène (mg/l) au point de plus grande profondeur

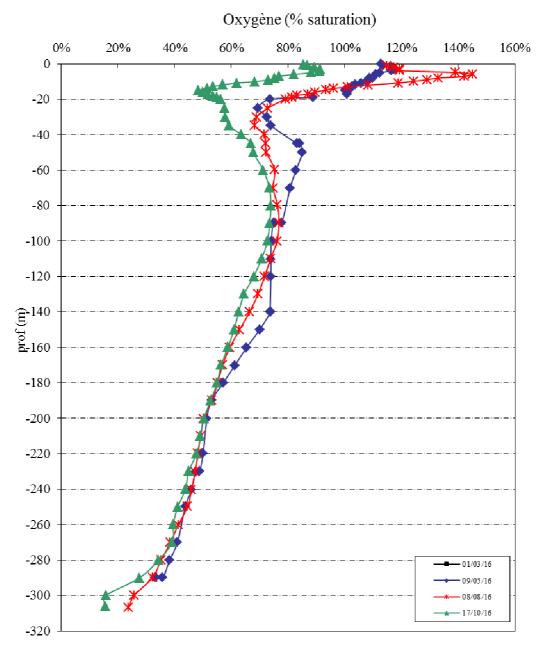


Figure 12: Profils verticaux d'oxygène (% sat.) au point de plus grande profondeur

N.B. : Un dysfonctionnement de la sonde n'a pas permis l'établissement d'un profil oxygénique lors de la campagne 1.

Lors de la campagne 2, le profil se caractérise par :

- une sursaturation en oxygène significative en surface, jusqu'à 8 m de profondeur (110 à 117% de saturation), en lien avec l'activité photosynthétique;
- une diminution progressive de l'oxygène dissous jusqu'à 20 m de profondeur (74% de saturation);
- une homogénéité de la colonne d'eau entre 20 et 140 m de profondeur (74% de saturation) ;
- une diminution progressive de l'oxygène dissous jusqu'au fond (33% de saturation), en lien avec les processus de dégradation de la matière organique.

Les profils des campagnes 3 et 4 sont similaires. Notons tout de même :

- en surface, une sursaturation plus importante en campagne 3 (jusqu'à 145% de saturation à 6 m de profondeur) et l'absence de sursaturation en campagne 4. L'activité photosynthétique est donc importante en campagne 3 et nulle à faible en campagne 4;
- une désoxygénation plus marquée en campagne 4 à 15 m de profondeur (48% de saturation), probablement en lien avec une forte mortalité phytoplanctonique ;
- au fond, une légère accentuation de la désoxygénation au fur et à mesure des campagnes (24% de saturation le 08/08/2016 et 16% de saturation le 17/10/2016).

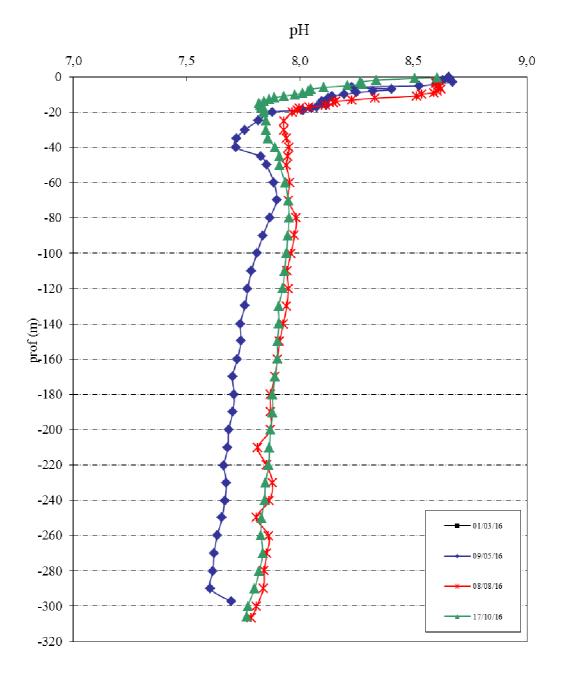


Figure 13: Profils verticaux de pH au point de plus grande profondeur

N.B.: Un dysfonctionnement de la sonde n'a pas permis l'établissement d'un profil pH lors de la campagne 1.

Le pH est compris entre 7,6 et 8,7. Lors des 3 campagnes estivales :

- il est élevé en surface (environ 8,6), en lien avec l'activité photosynthétique ;
- il est relativement homogène de 20 m de profondeur au fond (7,7 en campagne 2 ; 7,9 en campagnes 3 et 4).

1.1.2 PARAMETRES DE CONSTITUTION ET TYPOLOGIE DU LAC

N.B. pour tous les tableaux suivants : LQ = limite de quantification.

Tableau 3 : Résultats des paramètres de minéralisation

Lac Lé	Lac Léman code limite			01/03/2016					09/05/	2016			08/08/	2016		17/10/2016			
code plan d'eau	: V03-4003	Sandre	quantification	Intégré	100 m	200 m	Fond	Intégré	100 m	200 m	Fond	Intégré	100 m	200 m	Fond	Intégré	100 m	200 m	Fond
Dureté calculée	°F	1345		14,1	14,8	15,4	15,4	15,2	15,0	15,6	16,2	13,3	14,6	15,2	15,5	14,0	15,2	15,8	16,2
T.A.C.	°F	1347	0,5	8,9	9,1	9,5	10,2	9,0	9,0	9,5	10,3	8,0	8,8	9,4	10,0	8,6	9,4	10,0	10,9
HCO3 ⁻	mg(HCO3)/l	1327		108,0	111,0	115,9	124,4	109,2	109,2	115,9	125,1	97,6	106,8	114,7	122,0	104,3	114,1	122,0	133,0
Calcium	mg(Ca)/l	1374	2	46,4	49,3	51,8	51,7	50,6	49,9	52,6	54,9	42,9	47,8	50,2	51,8	46,7	51,2	53,5	55,0
Magnésium	mg(Mg)/l	1372	0,1	6,2	6,2	6,1	6,1	6,2	6,2	6,1	6,2	6,2	6,4	6,4	6,4	5,7	6,0	6,0	6,0
Sodium	mg(Na)/l	1375	0,1	7,0	6,7	6,6	6,4	6,3	6,2	6,0	5,9	6,4	6,8	6,6	6,5	6,7	7,2	7,0	6,7
Potassium	mg(K)/l	1367	0,1	1,7	1,7	1,7	1,7	1,7	1,7	1,7	1,7	1,6	1,8	1,7	1,7	1,7	1,8	1,7	1,8
Chlorures	mg(Cl)/l	1337	0,5	11,2	10,4	10,0	10,0	11,0	10,5	10,1	9,9	10,2	10,8	10,3	10,1	10,5	10,9	10,4	10,2
Sulfates	mg(SO ₄)/l	1338	1	49,6	48,9	48,9	48,7	50,7	49,4	49,3	49,0	46,4	49,0	48,9	48,0	47,6	49,6	49,0	47,8

Les résultats indiquent une eau modérément riche en hydrogénocarbonates, de dureté moyenne. Les eaux sont assez équilibrées, on note des concentrations moyennes pour la plupart des composés. Les teneurs en potassium et chlorures sont toutefois assez élevées.

1.1.3 Analyses Physicochimiques des Eaux (Hors Micropolluants)

Tableau 4 : Résultats des paramètres de physico-chimie classique sur eau.

Lac Lém	an	code	limite		01/03/	2016			09/05/	2016			08/08/	2016		17/10/2016			
code plan d'eau :	V03-4003	Sandre	quantification	Intégré	100 m	200 m	Fond	Intégré	100 m	200 m	Fond	Intégré	100 m	200 m	Fond	Intégré	100 m	200 m	Fond
M.E.S.	mg/l	1305	0,01	0,68	0,73	0,04	0,13	1,00	0,45	0,20	0,25	2,20	0,42	0,34	0,09	0,93	0,54	0,30	<lq< td=""></lq<>
C.O.D.	mg(C)/l	1841	0,12	2,20	0,90	0,75	0,77	0,93	0,93	0,86	0,90	1,16	0,77	0,70	0,73	0,88	0,60	0,61	0,77
Azote Kjeldahl	mg(N)/l	1319		0,11	0,05	0,05	0,15	0,21	0,12	0,07	0,21	0,08	0,06	0,01	0,06	0,12	0,04	0,06	0,05
NH4 ⁺	mg(NH4)/1	1335	0,001	0,004	0,001	0,001	0,001	0,008	0,003	0,005	0,003	0,013	0,004	<lq< td=""><td>0,006</td><td>0,006</td><td>0,001</td><td>0,001</td><td>0,003</td></lq<>	0,006	0,006	0,001	0,001	0,003
NO ₃	mg(NO3)/1	1340	0,13	2,70	2,80	2,60	2,10	2,10	2,70	2,48	1,99	1,46	2,61	2,48	1,82	1,99	2,92	2,57	2,08
NO ₂	mg(NO2)/1	1339	0,003	0,007	0,003	0,003	0,003	0,023	0,003	0,003	0,003	0,026	0,003	0,003	0,007	0,023	0,003	0,003	0,003
PO4	mg(PO4)/l	1433	0,006	0,024	0,040	0,095	0,150	0,018	0,040	0,098	0,147	0,012	0,024	0,092	0,141	0,021	0,028	0,064	0,162
Phosphore Total	mg(P)/l	1350	0,003	0,015	0,015	0,032	0,050	0,013	0,013	0,031	0,046	0,011	0,009	0,031	0,049	0,008	0,011	0,029	0,052
Silicates	mg(SiO ₂)/l	1342	0,05	0,7	1,5	3,5	6,0	0,5	1,4	3,3	5,7	<lq< td=""><td>1,2</td><td>3,5</td><td>6,7</td><td>0,5</td><td>1,3</td><td>3,3</td><td>7,0</td></lq<>	1,2	3,5	6,7	0,5	1,3	3,3	7,0
Chlorophylle a	μg/l	1439		3,0				4,5				5,8				2,2			

Les analyses des fractions dissoutes ont été réalisées sur eau filtrée (COD, NH4, NO3, NO2, PO4, Si). La valeur de la concentration en COD est jugée comme incertaine sur l'échantillon intégré du 01/03/2016.

Les eaux du lac Léman sont peu chargées en matières en suspension. Les concentrations en carbone organique dissous et en azote organique sont généralement faibles.

En fin d'hiver, les concentrations en nutriments disponibles sont moyennes pour l'azote ([NO_3^-] = 2,7 mg/l et faibles pour le phosphore ([$PO_4^{3^-}$] \leq 0,024 mg/l dans l'échantillon intégré. Le rapport N/P^5 est donc élevé lors de la campagne de fin d'hiver. Le phosphore est donc le facteur limitant pour la production végétale par rapport à l'azote, favorisant le développement des chlorophycées.

⁵ le rapport N/P est calculé à partir de [Nminéral]/ [P-PO₄³⁻] avec N minéral = [N-NO₃⁻]+[N-NO₂⁻]+[N-NH₄⁺] sur la campagne de fin d'hiver.

La concentration en nitrates diminue dans la zone euphotique durant la période estivale (2,10 mg/l en C2 puis 1,46 mg/l en C3): les nitrates sont consommés par le phytoplancton. Les teneurs en orthophosphates sont plus élevées dans les eaux du fond lors des 4 campagnes (0,141 à 0,162 mg/l), ce qui suggère une accumulation de phosphore dans le fond du lac, qui n'est pas forcément remis à disposition dans la masse d'eau.

Les silicates sont concentrés dans les eaux du fond tandis que les concentrations sont très faibles dans la zone euphotique $(5,7 \ a \ 7,0 \ mg/l \ au \ fond \ ; \le 0,7 \ mg/l \ dans \ la zone euphotique)$.

La production chlorophyllienne est moyenne dans le lac Léman : la concentration en chlorophylle a est comprise entre 2,2 et 5,8 μ g/l lors des quatre campagnes.

1.1.4 MICROPOLLUANTS MINERAUX

Tableau 5 : Résultats d'analyses de métaux sur eau

Lac L	Lac Léman code li				01/03/	2016			09/05/	2016			08/08/	2016		17/10/2016			
code plan d'ea	u: V03-4003	Sandre	quantification	Intégré	100 m	200 m	300 m	Intégré	100 m	200 m	300 m	Intégré	100 m	200 m	300 m	Intégré	100 m	200 m	300 m
Aluminium	μg(Al)/l	1370	2	5,9	2,2		<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,8</td><td>3,0</td><td><lq< td=""><td><lq< td=""><td>5,4</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,8</td><td>3,0</td><td><lq< td=""><td><lq< td=""><td>5,4</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>3,8</td><td>3,0</td><td><lq< td=""><td><lq< td=""><td>5,4</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>3,8</td><td>3,0</td><td><lq< td=""><td><lq< td=""><td>5,4</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>3,8</td><td>3,0</td><td><lq< td=""><td><lq< td=""><td>5,4</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	3,8	3,0	<lq< td=""><td><lq< td=""><td>5,4</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>5,4</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	5,4	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Antimoine	μg(Sb)/l	1376	0,5	<lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>⟨LQ</td><td>∠LQ</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>⟨LQ</td><td>∠LQ</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>		<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>⟨LQ</td><td>∠LQ</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>⟨LQ</td><td>∠LQ</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>⟨LQ</td><td>∠LQ</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>⟨LQ</td><td>∠LQ</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>⟨LQ</td><td>∠LQ</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>⟨LQ</td><td>∠LQ</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>⟨LQ</td><td>∠LQ</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>⟨LQ</td><td>∠LQ</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>⟨LQ</td><td>∠LQ</td><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td>⟨LQ</td><td>∠LQ</td><td><lq< td=""></lq<></td></lq<>	⟨LQ	∠ LQ	<lq< td=""></lq<>
Argent	μg(Ag)/l	1368	0,01	<lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td></td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>		<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Arsenic	μg(As)/l	1369	0,5	1,1	1,1		1,4	0,9	1,1	1,3	1,6	1,0	1,1	1,5	1,6	1,1	1,1	1,5	1,7
Baryum	μg(Ba)/l	1396	0,5	19,0	19,4		19,3	18,4	18,4	18,8	18,8	16,2	18,9	17,9	17,7	16,9	18,1	18,1	18,2
Beryllium	μg(Be)/l	1377	0,01	<lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td></td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>		<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Bore	μg(B)/l	1362	10	11	-11		11	<lq< td=""><td>10</td><td>11</td><td>11</td><td><lq< td=""><td>12</td><td>11</td><td>11</td><td><lq< td=""><td>11</td><td>14</td><td>10</td></lq<></td></lq<></td></lq<>	10	11	11	<lq< td=""><td>12</td><td>11</td><td>11</td><td><lq< td=""><td>11</td><td>14</td><td>10</td></lq<></td></lq<>	12	11	11	<lq< td=""><td>11</td><td>14</td><td>10</td></lq<>	11	14	10
Cadmium	μg(Cd)/l	1388	0,01	<lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,013</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,013</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>		<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,013</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,013</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,013</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,013</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,013</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,013</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,013</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,013</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,013</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	0,013	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Chrome	μg(Cr)/l	1389	0,5	<lq< td=""><td>2,5</td><td></td><td>1,6</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,5</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	2,5		1,6	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,5</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,5</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,5</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0,5	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Cobalt	μg(Co)/l	1379	0,05	<lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td></td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>		<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Cuivre	μg(Cu)/l	1392	0,1	0,77	0,50		0,63	0,43	0,41	0,42	0,43	0,69	2,00	0,58	0,61	0,55	0,47	0,52	0,45
Etain	μg(Sn)/l	1380	0,5	<lq< td=""><td><lq< td=""><td>\angle</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>\angle</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	\angle	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Fer	μg(Fe)/l	1393	1	<lq< td=""><td><lq< td=""><td></td><td>1,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,1</td><td><lq< td=""><td><lq< td=""><td>1,1</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td></td><td>1,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,1</td><td><lq< td=""><td><lq< td=""><td>1,1</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>		1,0	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,1</td><td><lq< td=""><td><lq< td=""><td>1,1</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,1</td><td><lq< td=""><td><lq< td=""><td>1,1</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,1</td><td><lq< td=""><td><lq< td=""><td>1,1</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,1</td><td><lq< td=""><td><lq< td=""><td>1,1</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,1</td><td><lq< td=""><td><lq< td=""><td>1,1</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>1,1</td><td><lq< td=""><td><lq< td=""><td>1,1</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>1,1</td><td><lq< td=""><td><lq< td=""><td>1,1</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>1,1</td><td><lq< td=""><td><lq< td=""><td>1,1</td></lq<></td></lq<></td></lq<>	1,1	<lq< td=""><td><lq< td=""><td>1,1</td></lq<></td></lq<>	<lq< td=""><td>1,1</td></lq<>	1,1
Manganèse	μg(Mn)/l	1394	0,5	<lq< td=""><td><lq< td=""><td></td><td>1,2</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,6</td><td><lq< td=""><td>0,5</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td></td><td>1,2</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,6</td><td><lq< td=""><td>0,5</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>		1,2	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,6</td><td><lq< td=""><td>0,5</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,6</td><td><lq< td=""><td>0,5</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,6</td><td><lq< td=""><td>0,5</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0,6	<lq< td=""><td>0,5</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0,5	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Mercure	μg(Hg)/l	1387	0,01	<lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td></td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>		<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Molybdène	μg(Mo)/l	1395	1	1,4	1,4		1,4	1,4	1,4	1,4	1,4	1,4	1,3	1,3	1,4	1,4	1,4	1,4	1,4
Nickel	μg(Ni)/l	1386	0,5	0,6	0,6		0,8	0,5	0,6	0,6	0,6	<lq< td=""><td>0,6</td><td>0,6</td><td>0,5</td><td>0,5</td><td>0,6</td><td>0,6</td><td>0,5</td></lq<>	0,6	0,6	0,5	0,5	0,6	0,6	0,5
Plomb	μg(Pb)/l	1382	0,05	<lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td></td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>		<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Sélénium	μg(Se)/l	1385	0,1	0,11	0,12		0,11	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,11</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,11</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,11</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,11</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,11</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,11</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,11</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,11</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,11</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	0,11	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Tellure	μg(Te)/l	2559	0,5	<lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td></td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>		<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Thallium	μg(Tl)/l	2555	0,01	<lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td></td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>		<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Titane	μg(Ti)/l	1373	0,5	<lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,5</td><td><lq< td=""><td><lq< td=""><td>1,9</td><td>0,5</td><td><lq< td=""><td><lq< td=""><td>0,6</td><td>1,1</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,5</td><td><lq< td=""><td><lq< td=""><td>1,9</td><td>0,5</td><td><lq< td=""><td><lq< td=""><td>0,6</td><td>1,1</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>		<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,5</td><td><lq< td=""><td><lq< td=""><td>1,9</td><td>0,5</td><td><lq< td=""><td><lq< td=""><td>0,6</td><td>1,1</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,5</td><td><lq< td=""><td><lq< td=""><td>1,9</td><td>0,5</td><td><lq< td=""><td><lq< td=""><td>0,6</td><td>1,1</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,5</td><td><lq< td=""><td><lq< td=""><td>1,9</td><td>0,5</td><td><lq< td=""><td><lq< td=""><td>0,6</td><td>1,1</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,5</td><td><lq< td=""><td><lq< td=""><td>1,9</td><td>0,5</td><td><lq< td=""><td><lq< td=""><td>0,6</td><td>1,1</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0,5	<lq< td=""><td><lq< td=""><td>1,9</td><td>0,5</td><td><lq< td=""><td><lq< td=""><td>0,6</td><td>1,1</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>1,9</td><td>0,5</td><td><lq< td=""><td><lq< td=""><td>0,6</td><td>1,1</td></lq<></td></lq<></td></lq<>	1,9	0,5	<lq< td=""><td><lq< td=""><td>0,6</td><td>1,1</td></lq<></td></lq<>	<lq< td=""><td>0,6</td><td>1,1</td></lq<>	0,6	1,1
Uranium	μg(U)/l	1361	0,05	1,97	1,95		1,97	1,86	1,86	1,89	1,85	1,67	1,78	1,83	1,81	1,80	1,88	1,93	1,85
Vanadium	μg(V)/l	1384	0,1	0,11	0,17		0,13	<lq< td=""><td>0,10</td><td>0,10</td><td>0,10</td><td>0,11</td><td>0,12</td><td>0,13</td><td>0,12</td><td>0,12</td><td>0,12</td><td>0,13</td><td>0,10</td></lq<>	0,10	0,10	0,10	0,11	0,12	0,13	0,12	0,12	0,12	0,13	0,10
Zinc	μg(Zn)/l	1383	1	<lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td>1,72</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td>1,72</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>		<lq< td=""><td><lq< td=""><td>1,72</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,72</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,72</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,72</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,72</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,72</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,72</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,72</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>1,72</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>1,72</td><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td>1,72</td><td><lq< td=""></lq<></td></lq<>	1,72	<lq< td=""></lq<>

Les analyses sur les métaux ont été effectuées sur eau filtrée.

Parmi les éléments de constitution du substrat, on trouve régulièrement du baryum, du bore, du molybdène, de l'uranium et du vanadium et plus ponctuellement de l'aluminium, du fer, du manganèse, du sélénium et du titane.

Parmi les métaux lourds, on note la présence :

- d'arsenic dans tous les échantillons, à des concentrations comprises entre 0,9 à 1,7 µg/l;
- de cuivre dans tous les échantillons, à des concentrations modérées (0,41 à 2,00 μg/l);
- de nickel dans 14 des 15 échantillons, à des concentrations faibles (0,5 et 0,8 µg/l);
- de chrome dans l'échantillon à 100 m de campagne 1, dans l'échantillon à 300 m de campagne 1 et dans l'échantillon à 300 m de campagne 2 (respectivement 2,5, 1,6 et 0,5 µg/l);
- de cadmium dans l'échantillon intégré de campagne 4 (0,013 μg/l) ;
- de zinc dans l'échantillon à 200 m de campagne 4 (1,72 μg/l).

1.1.5 MICROPOLLUANTS ORGANIQUES

Le tableau 6 indique les micropolluants organiques qui ont été quantifiés lors des campagnes de prélèvements. La liste de l'ensemble des substances analysées est fournie en annexe 1.

Tableau 6 : Résultats d'analyses de micropolluants organiques présents sur eau

Lac Léman		code	limite		01/03/	2016			09/05/	2016			08/08/	2016		17/10/2016			
code plan d'eau : V03-4	1003	Sandre	quantification	Intégré	100 m	200 m	300 m	Intégré	100 m	200 m	300 m	Intégré	100 m	200 m	300 m	Intégré	100 m	200 m	300 m
2 6 Dichlorobenzamide	μg/l	2011	0,005	0,008	0,008		0,009	0,006	0,006	0,007	0,008	<lq< td=""><td>0,006</td><td>0,008</td><td>0,006</td><td>0,005</td><td>0,005</td><td>0,007</td><td>0,006</td></lq<>	0,006	0,008	0,006	0,005	0,005	0,007	0,006
AMPA	μg/l	1907	0,02	<lq< td=""><td><lq< td=""><td></td><td>0,023</td><td><lq< td=""><td>0,022</td><td>0,035</td><td>0,048</td><td><lq< td=""><td><lq< td=""><td>0,022</td><td>0,020</td><td><lq< td=""><td>0,020</td><td>0,038</td><td>0,021</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td></td><td>0,023</td><td><lq< td=""><td>0,022</td><td>0,035</td><td>0,048</td><td><lq< td=""><td><lq< td=""><td>0,022</td><td>0,020</td><td><lq< td=""><td>0,020</td><td>0,038</td><td>0,021</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>		0,023	<lq< td=""><td>0,022</td><td>0,035</td><td>0,048</td><td><lq< td=""><td><lq< td=""><td>0,022</td><td>0,020</td><td><lq< td=""><td>0,020</td><td>0,038</td><td>0,021</td></lq<></td></lq<></td></lq<></td></lq<>	0,022	0,035	0,048	<lq< td=""><td><lq< td=""><td>0,022</td><td>0,020</td><td><lq< td=""><td>0,020</td><td>0,038</td><td>0,021</td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,022</td><td>0,020</td><td><lq< td=""><td>0,020</td><td>0,038</td><td>0,021</td></lq<></td></lq<>	0,022	0,020	<lq< td=""><td>0,020</td><td>0,038</td><td>0,021</td></lq<>	0,020	0,038	0,021
Bisphénol-A	μg/l	2766	0,05	<lq< td=""><td><lq< td=""><td>\setminus</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,095</td><td><lq< td=""><td>0,061</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,065</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>\setminus</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,095</td><td><lq< td=""><td>0,061</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,065</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	\setminus	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,095</td><td><lq< td=""><td>0,061</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,065</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,095</td><td><lq< td=""><td>0,061</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,065</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,095</td><td><lq< td=""><td>0,061</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,065</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,095</td><td><lq< td=""><td>0,061</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,065</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,095</td><td><lq< td=""><td>0,061</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,065</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0,095	<lq< td=""><td>0,061</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,065</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0,061	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,065</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,065</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,065</td></lq<></td></lq<>	<lq< td=""><td>0,065</td></lq<>	0,065
Bupivacaine	μg/l	6518	0,005	<lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td>0,006</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td>0,006</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>		<lq< td=""><td><lq< td=""><td>0,006</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,006</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,006</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,006</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,006</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,006</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,006</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,006</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,006</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,006</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,006</td></lq<></td></lq<>	<lq< td=""><td>0,006</td></lq<>	0,006
Caféine	μg/l	6519	0,02	<lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td>0,043</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,056</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td></td><td><lq< td=""><td>0,043</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,056</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>		<lq< td=""><td>0,043</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,056</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0,043	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,056</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,056</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,056</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0,056	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Carbamazepine	μg/l	5296	0,005	0,014	0,017		0,026	0,013	0,017	0,024	0,027	<lq< td=""><td>0,014</td><td>0,018</td><td>0,016</td><td>0,008</td><td>0,015</td><td>0,022</td><td>0,028</td></lq<>	0,014	0,018	0,016	0,008	0,015	0,022	0,028
Cotinine	μg/l	6520	0,02	<lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td>0,075</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td></td><td><lq< td=""><td>0,075</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>		<lq< td=""><td>0,075</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0,075	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
DEHP	μg/l	6616	0,4	<lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,97</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,74</td><td>0,67</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,97</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,74</td><td>0,67</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>		<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,97</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,74</td><td>0,67</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,97</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,74</td><td>0,67</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,97</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,74</td><td>0,67</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0,97	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,74</td><td>0,67</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,74</td><td>0,67</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,74</td><td>0,67</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0,74	0,67	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Ethyl tert-butyl ether	μg/l	2673	0,5	<lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,1</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,1</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>		<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,1</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>1,1</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>1,1</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>1,1</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	1,1	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Mepivacaine	μg/l	6521	0,01	0,015	0,016		0,032	<lq< td=""><td>0,016</td><td>0,025</td><td>0,030</td><td><lq< td=""><td>0,017</td><td>0,026</td><td>0,021</td><td><lq< td=""><td>0,016</td><td>0,027</td><td>0,035</td></lq<></td></lq<></td></lq<>	0,016	0,025	0,030	<lq< td=""><td>0,017</td><td>0,026</td><td>0,021</td><td><lq< td=""><td>0,016</td><td>0,027</td><td>0,035</td></lq<></td></lq<>	0,017	0,026	0,021	<lq< td=""><td>0,016</td><td>0,027</td><td>0,035</td></lq<>	0,016	0,027	0,035
Métolachlore	μg/l	1221	0,005	<lq< td=""><td><lq< td=""><td></td><td>0,007</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,005</td><td>0,006</td><td><lq< td=""><td><lq< td=""><td>0,006</td><td>0,006</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td></td><td>0,007</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,005</td><td>0,006</td><td><lq< td=""><td><lq< td=""><td>0,006</td><td>0,006</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>		0,007	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,005</td><td>0,006</td><td><lq< td=""><td><lq< td=""><td>0,006</td><td>0,006</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,005</td><td>0,006</td><td><lq< td=""><td><lq< td=""><td>0,006</td><td>0,006</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,005</td><td>0,006</td><td><lq< td=""><td><lq< td=""><td>0,006</td><td>0,006</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,005</td><td>0,006</td><td><lq< td=""><td><lq< td=""><td>0,006</td><td>0,006</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,005</td><td>0,006</td><td><lq< td=""><td><lq< td=""><td>0,006</td><td>0,006</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,005</td><td>0,006</td><td><lq< td=""><td><lq< td=""><td>0,006</td><td>0,006</td></lq<></td></lq<></td></lq<>	0,005	0,006	<lq< td=""><td><lq< td=""><td>0,006</td><td>0,006</td></lq<></td></lq<>	<lq< td=""><td>0,006</td><td>0,006</td></lq<>	0,006	0,006
Naphtalène	μg/l	1517	0,005	<lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,007</td><td><lq< td=""><td>0,005</td><td>0,006</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,007</td><td><lq< td=""><td>0,005</td><td>0,006</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>		<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,007</td><td><lq< td=""><td>0,005</td><td>0,006</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,007</td><td><lq< td=""><td>0,005</td><td>0,006</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,007</td><td><lq< td=""><td>0,005</td><td>0,006</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,007</td><td><lq< td=""><td>0,005</td><td>0,006</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,007</td><td><lq< td=""><td>0,005</td><td>0,006</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,007</td><td><lq< td=""><td>0,005</td><td>0,006</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,007</td><td><lq< td=""><td>0,005</td><td>0,006</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,007</td><td><lq< td=""><td>0,005</td><td>0,006</td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,007</td><td><lq< td=""><td>0,005</td><td>0,006</td></lq<></td></lq<>	0,007	<lq< td=""><td>0,005</td><td>0,006</td></lq<>	0,005	0,006
Nicotine	μg/l	5657	0,02	0,036	<lq< td=""><td></td><td><lq< td=""><td>0,207</td><td><lq< td=""><td>0,022</td><td>0,023</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,046</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>		<lq< td=""><td>0,207</td><td><lq< td=""><td>0,022</td><td>0,023</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,046</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0,207	<lq< td=""><td>0,022</td><td>0,023</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,046</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0,022	0,023	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,046</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,046</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,046</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,046</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,046</td><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,046</td><td><lq< td=""></lq<></td></lq<>	0,046	<lq< td=""></lq<>
Perchlorate	μg/l	6219	0,1	<lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,12</td><td>0,11</td><td>0,11</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td></td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,12</td><td>0,11</td><td>0,11</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>		<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,12</td><td>0,11</td><td>0,11</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,12</td><td>0,11</td><td>0,11</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,12</td><td>0,11</td><td>0,11</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,12</td><td>0,11</td><td>0,11</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,12</td><td>0,11</td><td>0,11</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0,12	0,11	0,11	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Phénazone	μg/l	5420	0,005	<lq< td=""><td><lq< td=""><td></td><td><lq< td=""><td>0,006</td><td><lq< td=""><td><lq< td=""><td>0,008</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td></td><td><lq< td=""><td>0,006</td><td><lq< td=""><td><lq< td=""><td>0,008</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>		<lq< td=""><td>0,006</td><td><lq< td=""><td><lq< td=""><td>0,008</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0,006	<lq< td=""><td><lq< td=""><td>0,008</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,008</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0,008	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Prilocaine	μg/l	6531	0,005	0,006	0,007		0,007	<lq< td=""><td>0,006</td><td>0,006</td><td>0,006</td><td><lq< td=""><td>0,005</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0,006	0,006	0,006	<lq< td=""><td>0,005</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0,005	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>

Il s'agit d'une présentation des résultats bruts, certaines valeurs pouvant être qualifiées d'incertaines suite à la validation finale des résultats (cas par exemple des valeurs mesurées en BTEX, DEHP, formaldéhyde, dont une contamination via la chaîne de prélèvement et/ou d'analyse de laboratoire est parfois privilégiée).

Divers micropolluants organiques ont été quantifiés dans les eaux du lac Léman :

- plusieurs produits phytosanitaires ou métabolites : le 2,6-dichlorobenzamide (à 14 reprises), l'AMPA (à 9 reprises) et le métalochlore (à 5 reprises) ;
- plusieurs substances médicamenteuses dont 3 utilisées comme anesthésiques : la bupivacaine (à 1 reprise), la mepivacaine (à 12 reprises), la prilocaine (à 7 reprises), la carbamazépine (à 14 reprises), la phénazone (à 2 reprise), la carbamazépine (à 14 reprises, un antiépileptique) et la phénazone (à 2 reprises, un analgésique) ;

On recense également :

- le bisphénol-A dans 3 échantillons. Il est utilisé comme monomère de résines époxydes et de polycarbonates. On le trouve notamment dans des contenants alimentaires (boîtes de conserve, canettes, biberons...);
- la caféine dans 2 échantillons ;
- la nicotine dans 5 échantillons et son principal métabolite, la cotinine, dans 1 échantillon ;
- le DEHP dans 3 échantillons. C'est un phtalate, une substance permettant d'augmenter la flexibilité des plastiques. Il est le plus souvent utilisé en tant que plastifiant ;
- l'éthyl-tert-butyl éther dans 1 échantillon, utilisé comme additif dans l'essence ;
- le naphtalène, un hydrocarbure aromatique polycyclique, dans 3 échantillons ;
- le perchlorate dans 3 échantillons. Il existe divers sels de perchlorates qui sont utilisés dans de nombreuses applications industrielles.

1.2 ANALYSES DES SEDIMENTS

1.2.1 Analyses physicochimiques des sediments (hors micropolluants)

Le tableau 7 fournit la synthèse de l'analyse granulométrique menée sur les sédiments prélevés.

Tableau 7 : Synthèse granulométrique sur le sédiment du point de plus grande profondeur

Sédiment : composition granulométrique (%)										
Lac Léman	18/10/2016									
code plan d'eau : V03-4003	16/10/2010									
classe granulométrique (µm)	%									
0 à 20	59,9									
20 à 63	32,0									
63 à 150	7,2									
150 à 200	0,8									
> 200	0,0									

Il s'agit de sédiments fins, de nature à dominante limoneuse, de 0 à $20~\mu m$ à 59.9~% (exempts de débris grossiers).

Les analyses de physico-chimie classique menées sur la fraction solide et sur l'eau interstitielle du sédiment sont rapportées au tableau 8.

Tableau 8 : Analyse de sédiments

Eau interstitielle du sédiment : Physico-chimie													
Lac Léman	l	aada Sandra	seuil quantification	19/10/2016									
code plan d'eau : Vo	03-4003	code Sandie	seun quantinication	16/10/2010									
NH4 ⁺	mg(NH4)/l	1335	0,5	2,05									
PO4	mg(PO4)/1	1433	0,015	9,722									
Phosphore Total	mg(P)/l	1350	0,01	3,28									

Sédiment : Physico-chimie						
Lac Léman		code Sandre	seuil quantification	18/10/2016		
code plan d'eau : V03-4003						
Matières sèches minérales	% MS	5539		94,1		
Perte au feu	% MS	6578		5,9		
Matières sèches totales	%	1307		48,6		
Carbone organique	mg(C)/kg MS	1841	1000	30900		
Azote Kjeldahl	mg(N)/kg MS	1319	1000	4039		
NH4 ⁺	mg(N)/kg MS	1335	200	<lq< td=""></lq<>		
Phosphore Total	mg(P)/kg MS	1350	1	787,2		

Dans les sédiments, la teneur en matière organique est moyenne avec 5,9 % de perte au feu. La concentration en azote Kjeldahl est assez élevée (environ 4,0 g/kg MS). Ainsi, le rapport C/N est de 7,7, il indique une prédominance de matière algale récemment déposée dont une fraction sera recyclée en azote minéral. La concentration en phosphore total est moyenne, proche de 0,8 g/kg MS.

L'eau interstitielle contient les minéraux facilement mobilisables dans les sédiments. La concentration en ammonium est moyenne (2,05 mg/l). Les teneurs en phosphore total et orthophosphates sont très élevées (respectivement 3,28 et 9,72 mg/l), en lien avec des apports passés très importants.

Ces résultats suggèrent l'existence d'un relargage de ces composés à l'interface eau-sédiment du fait des conditions réductrices régnant en profondeur. Cependant, il n'est pas observé d'augmentation des teneurs en certains métaux, traceurs de ce phénomène de relargage (fer, manganèse) sur les échantillons d'eau de fond.

Les valeurs obtenues sur eau interstitielle sont ainsi à prendre avec précaution étant donné que la technique de prélèvement employée ne permet pas de maintenir l'échantillon dans les conditions physico-chimiques régnant en profondeur, ce qui peut alors biaiser les résultats obtenus.

1.2.2 MICROPOLLUANTS MINERAUX

Ils ont été dosés sur la fraction solide du sédiment.

Tableau 9 : Résultats d'analyses de micropolluants minéraux sur sédiment

Sédiment : Micropolluants minéraux						
Lac Léman code plan d'eau : V03-4003		code Sandre	seuil quantification	18/10/2016		
Aluminium	mg(Al)/kg MS	1370	10	66050		
Antimoine	mg(Sb)/kg MS	1376	0,2	1,5		
Argent	mg(Ag)/kg MS	1368	0,2	0,2		
Arsenic	mg(As)/kg MS	1369	0,2	12,3		
Baryum	mg(Ba)/kg MS	1396	0,4	495,4		
Beryllium	mg(Be)/kg MS	1377	0,2	2,3		
Bore	mg(B)/kg MS	1362	1	47,9		
Cadmium	mg(Cd)/kg MS	1388	0,2	0,4		
Chrome	mg(Cr)/kg MS	1389	0,2	97,3		
Cobalt	mg(Co)/kg MS	1379	0,2	16,5		
Cuivre	mg(Cu)/kg MS	1392	0,2	50,6		
Etain	mg(Sn)/kg MS	1380	0,2	4,2		
Fer	mg(Fe)/kg MS	1393	10	34400		
Manganèse	mg(Mn)/kg MS	1394	0,4	1174		
Mercure	mg(Hg)/kg MS	1387	0,02	0,11		
Molybdène	mg(Mo)/kg MS	1395	0,2	3,2		
Nickel	mg(Ni)/kg MS	1386	0,2	78,8		
Plomb	mg(Pb)/kg MS	1382	0,2	32,1		
Sélénium	mg(Se)/kg MS	1385	0,2	2,0		
Tellure	mg(Te)/kg MS	2559	0,2	<lq< td=""></lq<>		
Thallium	mg(Th)/kg MS	2555	0,2	0,8		
Titane	mg(Ti)/kg MS	1373	1	2377		
Uranium	mg(U)/kg MS	1361	0,2	4,9		
Vanadium	mg(V)/kg MS	1384	0,2	75,4		
Zinc	mg(Zn)/kg MS	1383	0,4	136,7		

Les sédiments du lac Léman sont relativement riches en micropolluants minéraux. On peut citer entre autres l'aluminium, le baryum, le fer, le manganèse, le titane et l'uranium.

Parmi les métaux lourds, les concentrations en nickel, en chrome et en cuivre sont élevées, supérieures aux moyennes observées sur les plans d'eau suivis sur les bassins Rhône-Méditerranée

et Corse. La concentration en zinc est également non négligeable. Ces résultats sont cependant à nuancer étant donné la grande profondeur du Léman et la faible sédimentation annuelle, la qualité observée au niveau du compartiment sédiment n'est pas nécessairement représentative de la situation actuelle, mais plus des apports passés.

1.2.3 MICROPOLLUANTS ORGANIQUES

Le tableau 10 indique les micropolluants organiques qui ont été quantifiés dans les sédiments lors de la campagne de prélèvements. La liste de l'ensemble des substances analysées est fournie en annexe 2.

Tableau 10 : Résultats d'analyses de micropolluants organiques présents sur sédiment

Sédiment : Micropolluants organiques mis en évidence						
Lac Léman code plan d'eau : V03-4003		code Sandre	seuil quantification	18/10/2016		
Anthracène	μg/kg MS	1458	10	16		
Benzo (a) Anthracène	μg/kg MS	1082	10	54		
Benzo (a) Pyrène	μg/kg MS	1115	10	51		
Benzo (b) Fluoranthène	μg/kg MS	1116	10	104		
Benzo (ghi) Pérylène	μg/kg MS	1118	10	42		
Benzo (k) Fluoranthène	μg/kg MS	1117	10	31		
Chrysène	μg/kg MS	1476	10	50		
Fluoranthène	μg/kg MS	1191	40	110		
Indéno (123c) Pyrène	μg/kg MS	1204	10	36		
PCB 101	μg/kg MS	1242	1	2		
PCB 118	μg/kg MS	1243	1	1		
PCB 138	μg/kg MS	1244	1	2		
PCB 153	μg/kg MS	1245	1	2		
PCB 180	μg/kg MS	1246	1	1		
PCB 44	μg/kg MS	1628	1	1		
Phénanthrène	μg/kg MS	1524	50	54		
Pyrène	μg/kg MS	1537	40	97		

Des hydrocarbures et des PCB sont quantifiés dans les sédiments du lac Léman :

- 6 substances appartenant aux PCB (polychlorobiphényles) pour une concentration totale faible de 9 μg/kg;
- 11 hydrocarbures aromatiques polycycliques (HAP) pour une concentration totale modérée de 645 μg/kg MS.

Ces résultats sont comparables à ceux obtenus lors du précédent suivi effectué en 2010 dans le cadre du RCS, où la somme en PCB atteignait 5 μ g/kg MS et la somme en HAP quantifiés 456 μ g/kg MS.

2 PHYTOPLANCTON

2.1 Prelevements integres

Les prélèvements intégrés destinés à l'analyse du phytoplancton ont été réalisés en même temps que les prélèvements pour analyses physicochimiques classiques. Sur le lac Léman, la zone euphotique et la transparence mesurées sont représentées par le graphique de la figure 14. La zone euphotique varie entre 13,3 et 21,3 m sur les quatre campagnes réalisées. La transparence est élevée en première campagne (8,5 m) puis diminue pendant la période estivale. Elle reste toutefois assez élevée, comprise entre 5,3 et 7,0 m.

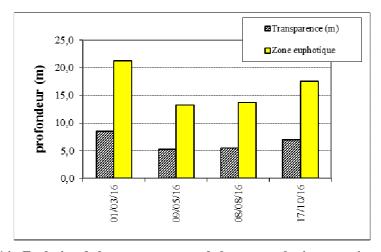


Figure 14 : Evolution de la transparence et de la zone euphotique aux 4 campagnes

La liste des espèces de phytoplancton par plan d'eau a été établie selon la méthodologie développée par l'IRSTEA: *Protocole standardisé d'échantillonnage, de conservation, d'observation et de dénombrement du phytoplancton en plan d'eau pour la mise en œuvre de la DCE*, Mars 2009.

La diversité taxonomique N correspond au nombre de taxons identifiés à l'espèce, à l'exclusion des groupes et familles, ainsi que des taxons identifiés au genre quand une espèce du même genre est présente et déterminée à l'espèce. Le nombre N' correspond à la diversité taxonomique totale incluant tous les taxons aux différents niveaux d'identification (nombre le plus probable).

2.2 LISTE FLORISTIQUE

Tableau 11 : Liste taxonomique du phytoplancton (en nombre d'objets algaux/ml)

		Lac Léman				Date pré	lèvement	
Embranchement	Classe	Nom Taxon	Code Sandre	Type d'objet	01/03/2016	09/05/2016	08/08/2016	17/10/2016
		Achnanthidium catenatum	7074	cellule			87	92
		Diatoma elongatum	6616	cellule	19	22		
	BACILLARIOPHYCEAE	Ulnaria acus	19120	cellule		44	1861	19
		Ulnaria delicatissima var. angustissima	19116	cellule	95	33	17	
BACILLARIOPHYTA	COSCINODISCOPHYCEAE	Cyclotella costei	8615	cellule	19	154	800	10
		Puncticulata radiosa	8731	cellule				5
	ED LOW L DIODUNGELE	Stephanodiscus minutulus	8753	cellule	57			
	FRAGILARIOPHYCEAE	Asterionella formosa	4860	cellule	1366	835	244	
		Fragilaria crotonensis	6666	cellule	38	461	609	
CHAROPHYTA	CONJUGATOPHYCEAE	Mougeotia gracillima	5288	cellule		44	70	
	CHLORODENDROPHYCEAE	Tetraselmis cordiformis	5981	cellule			35	19
		Chlamydomonas globosa	6019	cellule				5
	arr on on ward a	Kirchneriella microscopica	5700	cellule				19
CHLOROPHYTA	CHLOROPHYCEAE	Monoraphidium arcuatum	5729	cellule	209	55	17	
		Monoraphidium convolutum	5733	cellule	19			5
	TREBOLINIONINGE LE	Chlorella vulgaris	5933	cellule	57	55	104	117
	TREBOUXIOPHYCEAE	Stichococcus bacillaris	6004	cellule			157	44
		Cryptomonas sp.	6269	cellule				24
CRYPTOPHYTA	CRYPTOPHYCEAE	Plagioselmis lacustris	9633	cellule	1309	626	87	184
		Plagioselmis nannoplanctica	9634	cellule	3359	1132	661	408
		Aphanizomenon flos-aquae	6291	filament			35	
		Aphanocapsa delicatissima	6308	colonie				39
CIVA NODA CEEDIA	CNA NONINGEAE	Planktothrix rubescens	6433	filament				68
CYANOBACTERIA	CYANOPHYCEAE	Pseudanabaena catenata	6456	filament			35	5
		Pseudanabaena limnetica	6459	filament				15
		Synechocystis parvula	20271	cellule	114	209	957	277
		Ceratium hirundinella	6553	cellule				5
DINOPHYTA	DINOPHYCEAE	Gymnodinium sp.	4925	cellule			17	
DINOPHYTA	DINOPHYCEAE	Gymnodinium helveticum	6558	cellule	19			
		Katodinium fungiforme	9765	cellule		11		
НАРТОРНҮТА	COCCOLITHOPHYCEAE	Erkenia subaequiciliata	6149	cellule		66	644	238
		Bicoeca ovata	6106	cellule	38	77	70	
		Chrysolykos planctonicus	6118	cellule			87	10
		Dinobryon bavaricum	6127	cellule	133	44	139	34
		Dinobryon divergens	6130	cellule	380	187		10
	CHRYSOPHYCEAE	Dinobryon sociale var. americanum	6137	cellule	19	33	70	233
	CHRISOPHICEAE	Dinobryon sociale var. stipitatum	6135	cellule				19
HETEROKONTOPHYTA		Kephyrion sp.	6150	cellule	209	143	52	
		Ochromonas sp.	6158	cellule			87	
		Pseudokephyrion blatnense	32289	cellule	19			
		Salpingoeca frequentissima	6170	cellule			17	
	DICTYOCHOPHYCEAE	Pseudopedinella sp.	4764	cellule		33		10
	SYNUROPHYCEAE	Mallomonas sp.	6217	cellule		11		15
	XANTHOPHYCEAE	Tribonema ambiguum	20284	filament	114	297		
	Abondance cel	llulaire totale (nb objets/ml)			7591	4570	6958	1927
	Diver	sité taxonomique N			20	22	25	27
		Diversité N'			20	22	25	27

Tableau 12: Liste taxonomique du phytoplancton (en mm³/l)

		Lac Léman	, I		<u> </u>	Date pré	Lac Léman Date prélèvement									
Embranchement	Classe	Nom Taxon	Code Sandre	Type d'objet	01/03/2016	09/05/2016		17/10/2016								
		Achnanthidium catenatum	7074	cellule	0.000,000	.,,,	0.1151	0.1220								
		Diatoma elongatum	6616	cellule	0,1167	0,1351	0,1101	0,1220								
	BACILLARIOPHYCEAE	Ulnaria acus	19120	cellule	0,1107	0,2461	10,4235	0.1087								
		Ulnaria delicatissima var. angustissima	19116	cellule	2,2773	0,7910	0,4175	0,1007								
BACILLARIOPHYTA	COSCINODISCOPHYCEAE	Cyclotella costei	8615	cellule	0,0483	0,3912	2,0352	0,0247								
BACILLARIOITITA	COSCINODISCOTTICEAE	Puncticulata radiosa	8731	cellule	0,0403	0,3912	2,0332	0,0763								
		Stephanodiscus minutulus	8753	cellule	0,0280			0,0703								
	FRAGILARIOPHYCEAE	l *	4860	cellule	3,5525	2,1710	0,6332									
		Asterionella formosa														
CILA DODINZEA	COMMICA TODINGEAE	Fragilaria crotonensis	6666	cellule	0,1640	1,9934	2,6302									
CHAROPHYTA	CONJUGATOPHYCEAE	Mougeotia gracillima	5288 5981	cellule		0,6765	1,0712	0.2106								
	CHLORODENDROPHYCEAE	Tetraselmis cordiformis		cellule			0,3935	0,2196								
		Chlamydomonas globosa	6019	cellule				0,0055								
	CHLOROPHYCEAE	Kirchneriella microscopica	5700	cellule				0,0004								
CHLOROPHYTA		Monoraphidium arcuatum	5729	cellule	0,0706	0,0186	0,0059									
		Monoraphidium convolutum	5733	cellule	0,0126			0,0032								
	TREBOUXIOPHYCEAE	Chlorella vulgaris	5933	cellule	0,0024	0,0023	0,0044	0,0049								
		Stichococcus bacillaris	6004	cellule			0,0736	0,0205								
		Cryptomonas sp.	6269	cellule				0,3322								
CRYPTOPHYTA	CRYPTOPHYCEAE	Plagioselmis lacustris	9633	cellule	6,9111	3,3053	0,4591	0,9737								
		Plagioselmis nannoplanctica	9634	cellule	2,3815	0,8023	0,4687	0,2891								
		Aphanizomenon flos-aquae	6291	filament			0,6830									
		Aphanocapsa delicatissima	6308	colonie				0,0203								
CYANOBACTERIA	CYANOPHYCEAE	Planktothrix rubescens	6433	filament				1,9216								
CIANOBACILA		Pseudanabaena catenata	6456	filament			0,0699	0,0098								
		Pseudanabaena limnetica	6459	filament				0,0413								
		Synechocystis parvula	20271	cellule	0,0003	0,0006	0,0026	0,0007								
		Ceratium hirundinella	6553	cellule				1,9064								
DINOPHYTA	DINOPHYCEAE	Gymnodinium sp.	4925	cellule			0,1721									
DINOFHITA	DINOFHICEAE	Gymnodinium helveticum	6558	cellule	1,1824											
		Katodinium fungiforme	9765	cellule		0,0897										
HAPTOPHYTA	COCCOLITHOPHYCEAE	Erkenia subaequiciliata	6149	cellule		0,0231	0,2253	0,0833								
		Bicoeca ovata	6106	cellule	0,1526	0,3092	0,2797									
		Chrysolykos planctonicus	6118	cellule			0,3414	0,0381								
		Dinobryon bavaricum	6127	cellule	0,2003	0,0663	0,2099	0,0512								
		Dinobryon divergens	6130	cellule	3,0584	1,5050		0,0782								
	army mony many n	Dinobryon sociale var. americanum	6137	cellule	0,1529	0,2656	0,5607	1,8777								
	CHRYSOPHYCEAE	Dinobryon sociale var. stipitatum	6135	cellule				0,1565								
HETEROKONTOPHYTA		Kephyrion sp.	6150	cellule	0,2186	0,1495	0,0546									
		Ochromonas sp.	6158	cellule	,	,	0,0569									
		Pseudokephyrion blatnense	32289	cellule	0,0477		,									
		Salpingoeca frequentissima	6170	cellule	.,		0,0205									
	DICTYOCHOPHYCEAE	Pseudopedinella sp.	4764	cellule		0,0027	-,	0,0008								
	SYNUROPHYCEAE	Mallomonas sp.	6217	cellule	1	0,0863		0,1144								
	XANTHOPHYCEAE	Tribonema ambiguum	20284	filament	1,8109	4,7178		-,								
		olume total (mm³/l)	20201		22,389	17,749	21,408	8,481								
		rsité taxonomique N			20	22	25	27								
	Divi	<u> </u>			20	22	25	27								
	Diwrsité N'							21								

2.3 EVOLUTIONS SAISONNIERES DES GROUPEMENTS PHYTOPLANCTONIQUES

Les échantillons destinés à la détermination du phytoplancton sont constitués d'un prélèvement intégré sur la zone euphotique (équivalant à 2,5 fois la transparence lors de la campagne). Le graphique suivant présente la répartition du phytoplancton par groupe algal à partir des biovolumes (mm³/l).

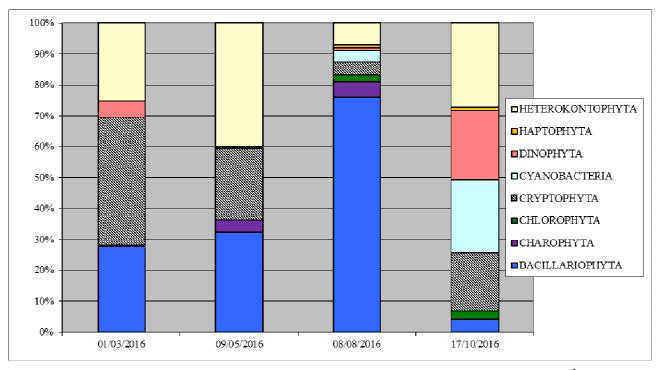


Figure 15 : Répartition du phytoplancton sur le lac Léman à partir des biovolumes (mm³/l)

Le peuplement phytoplanctonique présente un biovolume assez important aux différentes dates d'échantillonnage. En effet, au mois de mars, le biovolume est élevé avec 22 mm³/l. Il reste élevé durant la période estivale (18 mm³/l le 09/05/2016 et 21 mm³/l le 08/08/2016) avant de diminuer à l'automne (8 mm³/l).

Les précisions apportées dans cette partie sur l'écologie des espèces identifiées sont tirées de l'interprétation du suivi phytoplanctonique 2016 du lac Léman effectuée dans le cadre du suivi scientifique de la CIPEL (Rimet F., 2017. Phytoplancton du Léman, Campagne 2016. Rapp. Comm. Int. Prot. Eaux Léman contre pollut., Campagne 2016, 81-92).

Au mois de mars, le peuplement phytoplanctonique est dominé par les Cryptophyta (42% du biovolume total), représentés par les espèces cosmopolites *Plagioselmis lacustris* (espèce indicatrice des milieux mésotrophes) et *Plagioselmis nannoplanctica*, fréquemment recensées dans les lacs et les petits plans d'eau. Les Bacillariophyta et les Heterokontophyta sont également bien représentés (respectivement 28% et 25% du biovolume total).

En mai, la répartition reste sensiblement la même. Notons toutefois que les Heterokontophyta et dans une moindre mesure les Bacillariophyta se sont développés au détriment des Cryptophyta. La xanthophycée *Tribonema ambiguum* est alors l'espèce la plus représentée. Il s'agit d'un taxon bien

représenté dans le Léman qui tolère les faibles intensités lumineuses et les épilimnions bien brassés. La cryptophycée *Plagioselmis lacustris* reste abondante sur le printemps.

La campagne du 08/08/2016 est caractérisée par un pic de biomasse (21,3 mm³/l), les diatomées se développent et dominent alors nettement le peuplement phytoplanctonique (76% du biovolume total). L'espèce *Ulnaria acus* prolifère, il s'agit d'une diatomée penné, indicatrice de lacs peu profonds et de rivières (*Reynolds et al*, 2002, *Padisak et al*, 2007). Sa présence est aussi probablement à relier à de fortes pluies survenues à la fin juillet et début aout (22/07 : 23 mm de pluie, 4/08 : 18 mm) qui entrainent l'arrivée de ces taxons littoraux dans le milieu pélagique (source : Rimet, 2017).

En octobre, le peuplement phytoplanctonique diminue nettement. Le peuplement algal est assez équilibré : les espèces ubiquistes *comme Dinobryon sociale, Ceratium hirundinella* (dinophycées) et *Plagioselmis lacustris* (déjà cité) colonisent la masse d'eau. La fin de l'été est caractérisée par une prolifération des Cyanobactéries et l'arrivée d'une cyanobactérie filamenteuse potentiellement toxique, *Planktothrix rubescens*. Ce taxon est indicateur d'un milieu stratifié et se développe habituellement dans le métalimnion ou hypolimnion supérieur de lacs oligo-mesotrophes profonds (Padisak et al. 2007).

Le résultat de l'IPLAC avec une note de 0,619 indique un **bon état du compartiment phytoplancton** (classe G). Les teneurs en chlorophylle *a* sont moyennes (jusqu'à 5,8 μg/l au mois d'août), ce qui révèle un milieu assez productif au cours de la période de production biologique. La Métrique de Biomasse Algale (MBA) présente ainsi un classe d'état médiocre (MBA=0,355). La bonne note globale de l'IPLAC repose sur la valeur de la Métrique de Composition Spécifique du peuplement (MCS) qui affiche un bon état (MCS=0,733). Il convient cependant de remarquer que la valeur IPLAC se situe proche du seuil faisant basculer de l'état bon à moyen (seuil à 0,6).

	- ANNEX	ZES -	
	- AUNIEA	IES -	

		_		
A	Annexe 1.	ISTE DES	MICROPOLLUANTS .	ANALYSES SUR EAU

	Etude des plans d'eau du	programme (de surve	illance de	s bassins Rhône-Méditerranée et Co	orse – Lac Lê	man (74)
Code SANDRE	Paramètre	Limite de Quantification	Unité	Code SANDRE	Paramètre	Limite de Quantification	Unité
2934	1-(3-chloro-4-methylphenyl)uree	0,05	μg/L	1697	Alléthrine	0,03	μg/L
5399	17alpha-Estradiol	5	ng/L	7501	Allyxycarbe	0,02	μg/L
7011	1-Hydroxy Ibuprofen	0,005	μg/L	6651	alpha-Hexabromocyclododecane	0,5	μg/L
1264	2 4 5 T	0,02	μg/L	1812	Alphaméthrine	0,005	μg/L
1141	2 4 D	0,02	μg/L	5370	Alprazolam	0,005	μg/L
1142	2 4 DB	0,1	μg/L	1370	Aluminium	2	μg(Al)/L
2872	2 4 D isopropyl ester	0,005	μg/L	1104	Amétryne	0,02	μg/L
2873	2 4 D méthyl ester	0,005	μg/L	5697	Amidithion	0,02	μg/L
1212	2 4 MCPA	0,02	μg/L	2012	Amidosulfuron	0,02	μg/L
1213	2 4 MCPB	0,03	μg/L	5523	Aminocarbe	0,02	μg/L
2011	2 6 Dichlorobenzamide	0,005	μg/L	2537	Aminochlorophénol-2,4	0,1	μg/L
2815	2-chloro-4-nitrotoluene	0,15	μg/L	7667	Aminopyrine	0,02	μg/L
2818	2-Chloro-6-methylaniline	0,02	μg/L	1105	Aminotriazole	0,05	μg/L
3159	2-hydroxy-desethyl-Atrazine	0,02	μg/L	7516	Amiprofos-methyl	0,02	μg/L
7012	2-Hydroxy Ibuprofen	1	μg/L	1308	Amitraze	0,005	μg/L
2615 2613	2-Naphtol 2-nitrotoluène	0,1 0,02	μg/L μg/L	6967 6781	Amitriptyline	0,005	μg/L μg/L
6427	2-tertbutyl 4-méthylphénol	0,02	μg/L μg/L	1907	Amlodipine AMPA	0,03	μg/L μg/L
7019	3,4,5-trichloroaniline	0,02	μg/L μg/L	5385	Androstenedione	0,005	μg/L μg/L
5695	3,4,5-Trimethacarb	0,02	μg/L μg/L	6594	Anilofos	0,003	μg/L μg/L
2819	3-Chloro-2-methylaniline	0,02	μg/L μg/L	1458	Anthracène	0,02	μg/L μg/L
2820	3-Chloro-4 méthylaniline	0,05	μg/L μg/L	2013	Anthraquinone	0,005	μg/L μg/L
2823	4-Chloro-N-methylaniline	0,1	μg/L μg/L	1376	Antimoine	0,5	μg(Sb)/L
6536	4-Methylbenzylidene camphor	0,02	μg/L μg/L	1368	Argent	0,01	μg(Ag)/L
5474	4-n-nonylphénol	0,1	μg/L	1369	Arsenic	0,5	μg(As)/L
1958	4-nonylphénols ramifiés	0,1	μg/L	1965	Asulame	0,02	μg/L
2610	4-tert-butylphénol	0,02	μg/L	5361	Atenolol	0,005	μg/L
1959	4-tert-octylphénol	0,03	μg/L	1107	Atrazine	0,02	μg/L
2863	5,6,7,8-Tetrahydro-2-naphthol	0,1	μg/L	1832	Atrazine 2 hydroxy	0,02	μg/L
2822	5-Chloroaminotoluene	0,02	μg/L	1109	Atrazine déisopropyl	0,02	μg/L
2817	6-Chloro-3-méthylaniline	0,02	μg/L	1108	Atrazine déséthyl	0,02	μg/L
6456	Acebutolol	0,005	μg/L	1830	Atrazine déséthyl déïsopropyl	0,1	μg/L
1453	Acénaphtène	0,01	μg/L	2014	Azaconazole	0,005	μg/L
1622	Acénaphtylène	0,01	μg/L	2015	Azaméthiphos	0,02	μg/L
1100	Acéphate	0,02	μg/L	2937	Azimsulfuron	0,02	μg/L
1454	Acétaldéhyde	5	μg/L	1110	Azinphos éthyl	0,005	μg/L
5579	Acetamiprid	0,02	μg/L	1111	Azinphos méthyl	0,005	μg/L
1903	Acétochlore	0,005	μg/L	1951	Azoxystrobine	0,02	μg/L
5581	Acibenzolar-S-Methyl	0,02	μg/L	1396	Baryum	0,5	μg(Ba)/L
5408 5369	Acide clofibrique Acide fenofibrique	0,01 0,005	μg/L	2915 2913	BDE100 BDE138	0,0002 0,0003	μg/L
	Acide monochloroacétique	0,003	μg/L μg/L		BDE153	0,0003	μg/L μg/L
1521	Acide nitrilotriacétique (NTA)	5	μg/L μg/L	2912	BDE153 BDE154	0,0002	μg/L μg/L
6549	Acide pentacosafluorotridecanoique	0,2	μg/L μg/L	2921	BDE17	0,0002	μg/L μg/L
6550	Acide perfluorodecane sulfonique (PFDS)	0,05	μg/L μg/L	6231	BDE 181	0,0002	μg/L μg/L
6509	Acide perfluoro-decanoïque (PFDA)	0,03	μg/L μg/L	2910	BDE183	0,0005	μg/L μg/L
6507	Acide perfluoro-dodecanoïque (PFDoA)	0,02	μg/L μg/L	2909	BDE190	0,0005	μg/L μg/L
6542	Acide perfluoroheptane sulfonique	0,02	μg/L μg/L	5986	BDE 203	0,002	μg/L μg/L
6830	Acide perfluorohexanesulfonique (PFHS)	0,02	μg/L	5997	BDE 205	0,002	μg/L
5980	Acide perfluoro-n-butanoïque	0,2	μg/L	1815	BDE209	0,005	μg/L
5977	Acide perfluoro-n-heptanoïque (PFHpA)	0,01	μg/L	2920	BDE28	0,0002	μg/L
5978	Acide perfluoro-n-hexanoïque (PFHxA)	0,01	μg/L	2919	BDE47	0,0002	μg/L
6508	Acide perfluoro-n-nonanoïque (PFNA)	0,02	μg/L	2918	BDE66	0,0002	μg/L
5979	Acide perfluoro-n-pentanoïque	0,1	μg/L	2917	BDE71	0,0002	μg/L
6510	Acide perfluoro-n-undecanoïque (PFUnA)	0,02	μg/L	7437	BDE77	0,0002	μg/L
6560	Acide perfluorooctanesulfonique (PFOS)	0,02	μg/L	2914	BDE85	0,0002	μg/L
5347	Acide perfluoro-octanoïque (PFOA)	0,02	μg/L	2916	BDE99	0,0002	μg/L
6547	Acide Perfluorotetradecanoique (PFTeA)	0,1	μg/L	1687	Bénalaxyl	0,005	μg/L
6025	Acide sulfonique de perfluorobutane	0,12	μg/L	7423	BENALAXYL-M	0,03	μg/L
1970	Acifluorfen	0,02	μg/L	1329	Bendiocarbe	0,02	μg/L
1688	Aclonifen	0,001	μg/L	1112	Benfluraline	0,005	μg/L
1310	Acrinathrine	0,005	μg/L	2924	Benfuracarbe	0,05	μg/L
1101	Alachlore	0,005	μg/L	2074	Benoxacor	0,005	μg/L
1102	Aldicarbe	0,02	μg/L	5512	Bensulfuron-methyl	0,02	μg/L
1807	Aldicarbe sulfone	0,02	μg/L	6595	Bensulide	0,02	μg/L
1806	Aldicarbe sulfoxyde	0,02	μg/L	1113	Bentazone	0,02	μg/L
1103	Aldrine	0,001	μg/L	7460	Benthiavalicarbe-isopropyl	0,02	μg/L

	Etude des plans d'eau du		de survei		s bassins Rhône-Méditerranée et Co		man (74 ₎
Code SANDRE	Paramètre	Limite de Quantification	Unité	Code SANDRE	Paramètre	Limite de Quantification	Unité
	Benthiocarbe	0,05	μg/L	1757	Chlordane beta	0,005	μg/L
	Benzène	0,03	μg/L μg/L	1758	Chlordane gamma	0,005	μg/L μg/L
	Benzene, 1-chloro-2-methyl-3-nitro-	0,15	μg/L μg/L	1866	Chlordécone	0,003	μg/L μg/L
	Benzidine	0,25	μg/L	5553	Chlorefenizon	0,005	μg/L
	Benzo (a) Anthracène	0,01	μg/L	1464	Chlorfenvinphos	0,02	μg/L
	Benzo (a) Pyrène	0,01	μg/L	2950	Chlorfluazuron	0,01	μg/L
	Benzo (b) Fluoranthène	0,0005	μg/L	1133	Chloridazone	0,005	μg/L
1118	Benzo (ghi) Pérylène	0,0005	μg/L	5522	Chlorimuron-ethyl	0,02	μg/L
1117	Benzo (k) Fluoranthène	0,0005	μg/L	5405	Chlormadinone	0,2	μg/L
1377	Beryllium	0,01	μg(Be)/L	1134	Chlorméphos	0,005	μg/L
	Beta cyfluthrine	0,01	μg/L	5554	Chlormequat	0,05	μg/L
	beta-Hexabromocyclododecane	0,5	μg/L	1606	Chloro-2-p-toluidine	0,02	μg/L
	Betaxolol	0,005	μg/L	1955	Chloroalcanes C10-C13	0,15	μg/L
	Bezafibrate	0,2	μg/L	1593	Chloroaniline-2	0,05	μg/L
	Bifénox	0,005	μg/L	1592	Chloroaniline-3	0,05	μg/L
	Bifenthrine	0,005	μg/L	1591	Chloroaniline-4	0,05	μg/L
	Bioresméthrine	0,005	μg/L	1467	Chlorobenzène	0,5	μg/L
	Biphényle Disametri	0,005	μg/L	2016	Chlorobromuron	0,02	μg/L
	Bisoprolol Bisophénol A	0,005 0,05	μg/L	1612	Chloroforma (Trichloromáthana)	0,1	μg/L
	Bisphénol-A Bitertanol	0,005	μg/L μg/L	1135 2821	Chloroforme (Trichlorométhane) Chlorométhylaniline-4,2	0,5	μg/L μg/L
	Bixafen	0,003	μg/L μg/L	1635	Chlorométhylphénol-2,5	0,02	μg/L μg/L
	Bore	10	μg/L μg(B)/L	2759	Chlorométhylphénol-2,6	0,02	μg/L μg/L
	Boscalid	0,02	μg(D)/L μg/L	1634	Chlorométhylphénol-4,2	0,05	μg/L μg/L
	Bromacil	0,005	μg/L	1636	Chlorométhylphénol-4,3	0,05	μg/L μg/L
-	Bromadiolone	0,05	μg/L	1603	Chloronaphtalène-1	0,02	μg/L μg/L
	Bromazepam	0,01	μg/L	1604	Chloronaphtalène-2	0,02	μg/L
	Bromoforme	0,5	μg/L	1341	Chloronèbe	0,005	μg/L
-	Bromophos éthyl	0,005	μg/L	1594	Chloronitroaniline-4,2	0,1	μg/L
	Bromophos méthyl	0,005	μg/L	1469	Chloronitrobenzène-1,2	0,02	μg/L
1685	Bromopropylate	0,005	μg/L	1468	Chloronitrobenzène-1,3	0,02	μg/L
1125	Bromoxynil	0,02	μg/L	1470	Chloronitrobenzène-1,4	0,05	μg/L
1941	Bromoxynil octanoate	0,01	μg/L	2814	Chloronitrotoluène-2,3	0,1	μg/L
1860	Bromuconazole	0,02	μg/L	1605	Chloronitrotoluène-4,2	0,1	μg/L
7502	Bufencarbe	0,02	μg/L	1684	Chlorophacinone	0,1	μg/L
6742	Buflomedil	0,05	μg/L	1471	Chlorophénol-2	0,05	μg/L
	Bupirimate	0,01	μg/L	1651	Chlorophénol-3	0,05	μg/L
	Bupivacaine	0,005	μg/L	1650	Chlorophénol-4	0,05	μg/L
	Buprofézine	0,005	μg/L	2611	Chloroprène	0,5	μg/L
	Butamifos	0,02	μg/L	2065	Chloropropène-3	0,5	μg/L
	Butraline	0,005	μg/L	1473	Chlorothalonil	0,01	μg/L
	Buturon	0,02	μg/L		Chlorotoluène-2	0,5	μg/L
	Butylate	0,02	μg/L	1601	Chlorotoluène-3	0,5	μg/L
	Butylbenzène n	0,5	μg/L	1600	Chlorotoluène-4	0,5	μg/L
	Butylbenzène sec	0,5	μg/L	1683	Chloroxuron	0,02	μg/L
	Butylbenzène tert Cadmium	0,5 0,01	μg/L μg(Cd)/L	1474 1083	Chlorprophame Chlorpyriphos éthyl	0,005 0,005	μg/L μg/L
	Cadusafos	0,01	μg(Ca)/L μg/L	1540	Chlorpyriphos etnyl Chlorpyriphos méthyl	0,005	μg/L μg/L
	Cadusaios Cafeine	0,02	μg/L μg/L	1353	Chlorsulfuron	0,003	μg/L μg/L
	Captafol	0,02	μg/L μg/L	6743	Chlortetracycline	0,02	μg/L μg/L
	Captane	0,01	μg/L μg/L	2966	Chlorthal dimethyl	0,005	μg/L μg/L
	Carbamazepine	0,005	μg/L μg/L	1813	Chlorthiamide	0,003	μg/L μg/L
	Carbamazepine epoxide	0,005	μg/L μg/L	5723	Chlorthiophos	0,02	μg/L μg/L
	Carbaryl	0,02	μg/L	1136	Chlortoluron	0,02	μg/L μg/L
	Carbendazime	0,02	μg/L	1579	Chlorure de Benzyle	0,1	μg/L
	Carbétamide	0,02	μg/L	2715	Chlorure de Benzylidène	0,1	μg/L
	Carbofuran	0,02	μg/L	2977	CHLORURE DE CHOLINE	0,1	μg/L
1805	Carbofuran 3 hydroxy	0,02	μg/L	1753	Chlorure de vinyle	0,1	μg/L
	Carbophénothion	0,02	μg/L	1389	Chrome	0,5	μg(Cr)/L
1864	Carbosulfan	0,1	μg/L	1476	Chrysène	0,01	μg/L
	Carboxine	0,02	μg/L	5481	Cinosulfuron	0,02	μg/L
	Carfentrazone-ethyl	0,005	μg/L	6540	Ciprofloxacine	0,02	μg/L
	Chinométhionate	0,005	μg/L	6537	Clarithromycine	0,005	μg/L
					I ame		l n
5418	Chloramphénicol	0,1	μg/L	6968	Clenbuterol	0,005	μg/L
5418 7500	Chloramphénicol Chlorantraniliprole	0,02	μg/L	2978	Clethodim	0,02	μg/L
5418 7500 1336	Chloramphénicol						

Code SANDRE Paramètre Limite de Quantification Unité Code SANDRE Paramètre 1868 Clofentézine 0,02 μg/L 1160 Dichloréthane-1,1 2017 Clomazone 0,005 μg/L 1161 Dichloréthane-1,2 1810 Clopyralide 0,02 μg/L 1162 Dichloréthylène-1,1 2018 Cloquintocet mexyl 0,005 μg/L 1456 Dichloréthylène-1,2 cis 1379 Cobalt 0,05 μg/C o)/L 1727 Dichloréthylène-1,2 trans 6520 Cotinine 0,02 μg/L 2929 Dichlormide 2972 Coumafène 0,05 μg/L 1590 Dichloroaniline-2,3 1682 Coumaphos 0,02 μg/L 1589 Dichloroaniline-2,4 2019 Coumatétralyl 0,02 μg/L 1588 Dichloroaniline-2,5	Limite de Quantification 0,5 0,5 0,5 0,5 0,5 0,05 0,05 0,02 0,02	Unité µg/L µg/L µg/L µg/L µg/L µg/L µg/L
1868 Clofentézine 0,02 μg/L 1160 Dichloréthane-1,1	0,5 0,5 0,5 0,5 0,5 0,05 0,05 0,02 0,05 0,02	µg/L µg/L µg/L µg/L
2017 Clomazone 0,005 μg/L 1161 Dichloréthane-1,2 1810 Clopyralide 0,02 μg/L 1162 Dichloréthylène-1,1 2018 Cloquintocet mexyl 0,005 μg/L 1456 Dichloréthylène-1,2 cis 1379 Cobalt 0,05 μg/Co)/L 1727 Dichloréthylène-1,2 trans 6520 Cotinine 0,02 μg/L 2929 Dichlormide 2972 Coumaiène 0,05 μg/L 1590 Dichloroaniline-2,3 1682 Coumaphos 0,02 μg/L 1589 Dichloroaniline-2,4 2019 Coumatétralyl 0,02 μg/L 1588 Dichloroaniline-2,5	0,5 0,5 0,5 0,5 0,05 0,05 0,02 0,05 0,02	µg/L µg/L µg/L µg/L
1810 Clopyralide 0,02 μg/L 1162 Dichloréthylène-1,1	0,5 0,5 0,5 0,05 0,05 0,02 0,05 0,02	μg/L μg/L μg/L
2018 Cloquintocet mexyl 0,005 μg/L 1456 Dichloréthylène-1,2 cis 1379 Cobalt 0,05 μg(Co)/L 1727 Dichloréthylène-1,2 trans 6520 Cotinine 0,02 μg/L 2929 Dichlormide 2972 Coumafène 0,05 μg/L 1590 Dichloroaniline-2,3 1682 Coumaphos 0,02 μg/L 1589 Dichloroaniline-2,4 2019 Coumatétralyl 0,02 μg/L 1588 Dichloroaniline-2,5	0,5 0,05 0,02 0,05 0,05	μg/L μg/L
6520 Cotinine 0,02 μg/L 2929 Dichlormide 2972 Coumafène 0,05 μg/L 1590 Dichloroaniline-2,3 1682 Coumaphos 0,02 μg/L 1589 Dichloroaniline-2,4 2019 Coumatétralyl 0,02 μg/L 1588 Dichloroaniline-2,5	0,05 0,02 0,05 0,02	
2972 Coumafène 0,05 μg/L 1590 Dichloroaniline-2,3 1682 Coumaphos 0,02 μg/L 1589 Dichloroaniline-2,4 2019 Coumatétralyl 0,02 μg/L 1588 Dichloroaniline-2,5	0,02 0,05 0,02	μg/L
1682 Coumaphos 0,02 μg/L 1589 Dichloroaniline-2,4 2019 Coumatétralyl 0,02 μg/L 1588 Dichloroaniline-2,5	0,05 0,02	
2019 Coumatétralyl 0,02 µg/L 1588 Dichloroaniline-2,5	0,02	μg/L
		μg/L
		μg/L
1639 Crésol-méta 0,05 μg/L 1587 Dichloroaniline-2,6	0,02	μg/L
1640 Crésol-ortho 0,05 μg/L 1586 Dichloroaniline-3,4	0,02	μg/L
1638 Crésol-para 0,05 μg/L 1585 Dichloroaniline-3,5	0,02	μg/L
5724 Crotoxyphos 0,02 μg/L 1165 Dichlorobenzène-1,2	0,05	μg/L
5725 Crufomate 0,02 μg/L 1164 Dichlorobenzène-1,3 1392 Cuivre 0,1 μg(Cu)/L 1166 Dichlorobenzène-1,4	0,5	μg/L
	0,05	μg/L
1137 Cyanazine 0,02 µg/L 1484 Dichlorobenzidine-3,3' 5726 Cyanofenphos 0,02 µg/L 1167 Dichlorobromométhane	0,5	μg/L μg/L
1084 Cyanures libres 10 μg(CN)/L 1168 Dichlorométhane	5	μg/L μg/L
1004 Cyanades notes	0,05	μg/L μg/L
6733 Cyclophosphamide 0,02 µg/L 1616 Dichloronitrobenzène-2,4	0,05	μg/L μg/L
2729 CYCLOXYDIME 0,02 µg/L 1615 Dichloronitrobenzène-2,5	0,05	μg/L μg/L
1696 Cycluron 0,02 µg/L 1614 Dichloronitrobenzène-3,4	0,05	μg/L
1681 Cyfluthrine 0,005 µg/L 1613 Dichloronitrobenzène-3,5	0,05	μg/L
5569 Cyhalofop-butyl 0,05 µg/L 2981 Dichlorophène	0,02	μg/L
1138 Cyhalothrine 0,005 µg/L 1645 Dichlorophénol-2,3	0,05	μg/L
1139 Cymoxanil 0,02 μg/L 1486 Dichlorophénol-2,4	0,02	μg/L
1140 Cyperméthrine 0,005 µg/L 1649 Dichlorophénol-2,5	0,02	μg/L
1680 Cyproconazole 0,02 µg/L 1648 Dichlorophénol-2,6	0,05	μg/L
1359 Cyprodinil 0,005 μg/L 1647 Dichlorophénol-3,4	0,05	μg/L
2897 Cyromazine 0,02 µg/L 1646 Dichlorophénol-3,5	0,05	μg/L
7503 Cythioate 0,02 µg/L 2081 Dichloropropane-2,2	0,1	μg/L
5930 Daimuron 0,02 μg/L 1834 Dichloropropylène-1,3 Cis	0,1	μg/L
2094 Dalapon 0,02 μg/L 1835 Dichloropropylène-1,3 Trans	0,1	μg/L
6677 Danofloxacine 0,1 µg/L 1169 Dichlorprop	0,03	μg/L
1929 DCPMU (métabolite du Diuron) 0,02 µg/L 2544 Dichlorprop-P 1930 DCPU (métabolite Diuron) 0,05 µg/L 1170 Dichlorvos	0,03	μg/L μg/L
1930 DCPO (Hetatoolile Didnot) 0,03 µg/L 1170 Dichiol vos 1143 DDD-o,p' 0,001 µg/L 5349 Diclofenac	0,01	μg/L μg/L
1144 DDD-p,p' 0,001 µg/L 1171 Diclofop méthyl	0,05	μg/L μg/L
1145 DDE-0,p' 0,001 µg/L 1172 Dicofol	0,005	μg/L
1146 DDE-p,p' 0,001 µg/L 5525 Dicrotophos	0,005	μg/L
1147 DDT-o,p' 0,001 µg/L 2847 Didéméthylisoproturon	0,05	μg/L
1148 DDT-p,p' 0,001 µg/L 1173 Dieldrine	0,001	μg/L
6616 DEHP 0,4 μg/L 7507 Dienestrol	0,005	μg/L
1149 Deltaméthrine 0,005 μg/L 1402 Diéthofencarbe	0,02	μg/L
1150 Déméton-O 0,01 µg/L 2826 Diéthylamine	10	μg/L
1550 Déméton O + S 0,01 μg/L 2628 Diethylstilbestrol	0,005	μg/L
1152 Déméton-S 0,01 μg/L 2982 Difenacoum	0,02	μg/L
1153 Déméton S méthyl 0,005 μg/L 1905 Difénoconazole	0,02	μg/L
1154 Déméton S méthyl sulfone 0,01 µg/L 5524 Difenoxuron	0,02	μg/L
2051 Déséthyl-terbuméthon 0,02 µg/L 2983 Difethialone	0,02	μg/L
5750 Desethylterbutylazine-2-hydroxy 0,05 µg/L 1488 Diflubenzuron	0,05	μg/L
2980 Desmediphame 0,02 µg/L 1814 Diffurencianil 2738 Desmethylisoproturon 0,02 µg/L 6647 Dihydrocodeine	0,005 0,005	μg/L
2738 Desméthylisoproturon 0,02 µg/L 6647 Dihydrocodeine 1155 Desmétryne 0,02 µg/L 6729 Diltiazem	0,005	μg/L μg/I
1133 Destrictivité	0,003	μg/L μg/L
1156 Diallate 0,02 µg/L 7142 Dimepiperate	0,02	μg/L μg/L
5372 Diazepam 0,005 µg/L 2546 Dimétachlore	0,005	μg/L μg/L
1157 Diazinon 0,005 µg/L 5737 Dimethametryn	0,02	μg/L μg/L
1621 Dibenzo (ah) Anthracène 0,01 µg/L 1678 Diméthénamide	0,005	μg/L μg/L
1158 Dibromochlorométhane 0,5 µg/L 5617 Dimethenamid-P	0,03	μg/L
1498 Dibromoéthane-1,2 0,5 µg/L 1175 Diméthoate	0,01	μg/L
1513 Dibromométhane 0,5 µg/L 1403 Diméthomorphe	0,02	μg/L
7074 Dibutyletain cation 0,0025 µg/L 2773 Diméthylamine	10	μg/L
1480 Dicamba 0,03 µg/L 6292 Dimethylaniline	0,025	μg/L
1679 Dichlobénil 0,005 μg/L 1641 Diméthylphénol-2,4	0,02	μg/L
1159 Dichlofenthion 0,02 μg/L 6972 Dimethylvinphos	0,02	μg/L
1360 Dichloftuanide 0,005 µg/L 1698 Dimétilan	0,02	μg/L

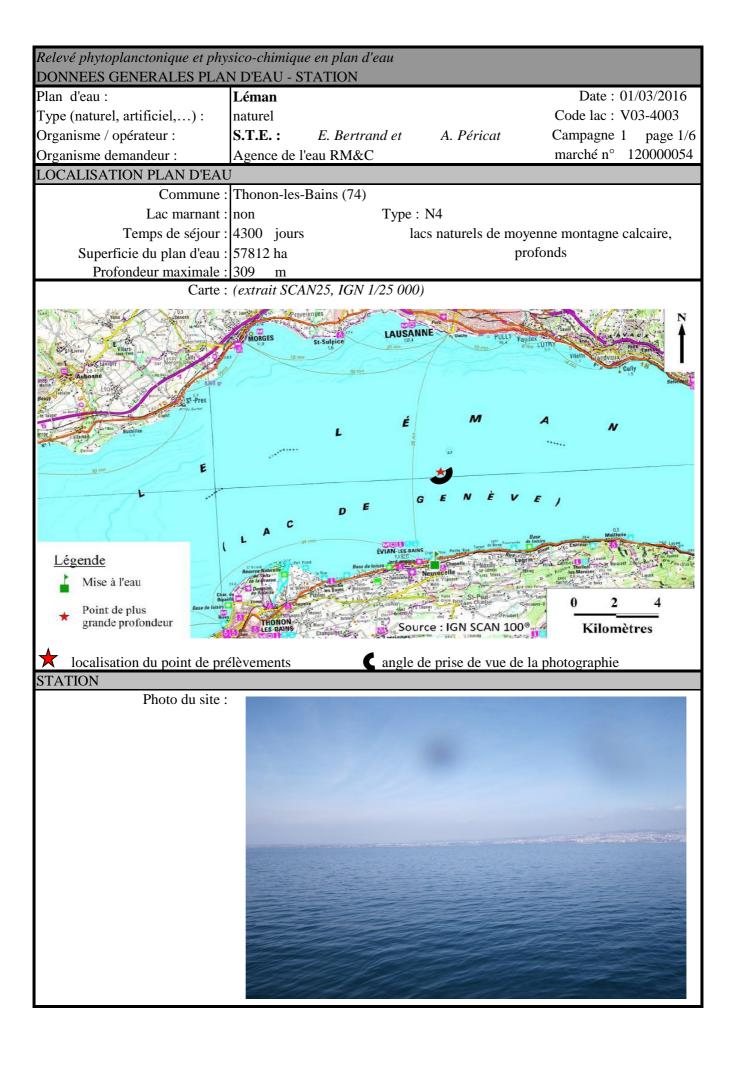
Code	Paramètre	Limite de	Unité	Code	s bassins Rhöne-Méditerranée et Co Paramètre	Limite de	Unité
SANDRE		Quantification		SANDRE		Quantification	
5748 1871	dimoxystrobine Diniconazole	0,02	μg/L	1187 5627	Fénitrothion Fenizon	0,005 0,005	μg/L
1578	Dinitrotoluène-2,4	0,02	μg/L μg/L	5763	Fenobucarb	0,003	μg/L μg/L
1577	Dinitrotoluène-2,6	0,5	μg/L μg/L	5368	Fenofibrate	0,02	μg/L μg/L
5619	Dinocap	0,05	μg/L	6970	Fenoprofen	0,02	μg/L
1491	Dinosèbe	0,02	μg/L	5970	Fenothiocarbe	0,02	μg/L
1176	Dinoterbe	0,03	μg/L	1973	Fénoxaprop éthyl	0,02	μg/L
7494	Dioctyletain cation	0,0025	μg/L	1967	Fénoxycarbe	0,02	μg/L
5743	Dioxacarb	0,02	μg/L	1188	Fenpropathrine	0,005	μg/L
5478	Diphenylamine	0,05	μg/L	1700	Fenpropidine	0,01	μg/L
7495 1699	Diphenyletain cation	0,001	μg/L μg/L	1189 1190	Fenpropimorphe Fenthion	0,005	μg/L μg/L
1492	Diquat Disulfoton	0,005	μg/L μg/L	1500	Fénuron	0,02	μg/L μg/L
5745	Ditalimfos	0,05	μg/L	1701	Fenvalérate	0,01	μg/L
1177	Diuron	0,02	μg/L	1393	Fer	1	μg(Fe)/L
1490	DNOC	0,02	μg/L	2009	Fipronil	0,005	μg/L
3383	Dodécyl phénol	1	μg/L	1840	Flamprop-isopropyl	0,02	μg/L
	Dodine	0,02	μg/L	6539	Flamprop-methyl	0,02	μg/L
6969	Doxepine	0,01	μg/L	1939	Flazasulfuron	0,02	μg/L
6791	Doxycycline	0,005	μg/L	6393	Floricamid	0,005	μg/L
	DPU (Diphenylurée)	0,01	μg/L	2810	Florasulam Florfenicol	0,02	μg/L
5751 1493	Edifenphos EDTA	0,02 5	μg/L μg/L	6764 6545	Fluazifop	0,1 0,02	μg/L μg/L
	Endosulfan alpha	0,001	μg/L μg/L	1825	Fluazifop-butyl	0,02	μg/L μg/L
1179	Endosulfan beta	0,001	μg/L	2984	Fluazinam	0,1	μg/L
1742	Endosulfan sulfate	0,001	μg/L	2022	Fludioxonil	0,02	μg/L
1181	Endrine	0,001	μg/L	1676	Flufénoxuron	0,02	μg/L
2941	Endrine aldehyde	0,005	μg/L	2023	Flumioxazine	0,005	μg/L
6784	Enrofloxacine	0,02	μg/L	1501	Fluométuron	0,02	μg/L
	Epichlorohydrine	0,1	μg/L	1191	Fluoranthène	0,005	μg/L
1873	EPN	0,02	μg/L	1623	Fluorène	0,005	μg/L
1744 1182	Epoxiconazole EPTC	0,02	μg/L	5638	Fluoxastrobine Fluoxetine	0,02 0,005	μg/L
7504	Equilin Equilin	0,005	μg/L μg/L	5373 2565	Flupyrsulfuron methyle	0,003	μg/L μg/L
	Erythromycine	0,005	μg/L μg/L	2056	Fluquinconazole	0,02	μg/L μg/L
	Esfenvalérate	0,005	μg/L		Fluridone	0,02	μg/L
5397	Estradiol	5	ng/L	1675	Flurochloridone	0,005	μg/L
6446	Estriol	0,005	μg/L	1765	Fluroxypyr	0,02	μg/L
	Estrone	5	ng/L	2547	Fluroxypyr-meptyl	0,02	μg/L
1380	Etain	0,5	μg(Sn)/L	2024	Flurprimidol	0,005	μg/L
	Ethametsulfuron-methyl	0,02	μg/L	2008	Flurtamone	0,02	μg/L
	Ethephon	0,02	μg/L		Flusilazole	0,02	μg/L
1763 5528	Ethidimuron Ethiofencarbe sulfone	0,02 0,02	μg/L μg/L	2985 1503	Flutolanil Flutriafol	0,02	μg/L
6534	Ethiofencarbe sulfoxyde	0,02	μg/L μg/L		Folpel	0,02	μg/L μg/L
1183	Ethion	0,02	μg/L μg/L	2075	Fomesafen	0,05	μg/L μg/L
1874	Ethiophencarbe	0,02	μg/L	1674	Fonofos	0,02	μg/L
1184	Ethofumésate	0,005	μg/L		Foramsulfuron	0,02	μg/L
1495	Ethoprophos	0,02	μg/L	5969	Forchlorfenuron	0,02	μg/L
	Ethoxysulfuron	0,02	μg/L	1702	Formaldéhyde	1	μg/L
1497	Ethylbenzène	0,5	μg/L	1703	Formétanate	0,05	μg/L
	Ethylène Thio Urée	0,1	μg/L	1504	Formothion	0,001	μg/L
6601	Ethylène Urée Ethyl tout, butul othor	0,1	μg/L	1975	Foséthyl aluminium	0,02	μg/L
2673 2629	Ethyl tert-butyl ether Ethynyl estradiol	0,5 20	μg/L ng/L	2744 1908	Fosthiazate Furalaxyl	0,02 0,005	μg/L μg/L
5625	Etoxazole	0,05	ng/L μg/L	2567	Furathiocarbe	0,003	μg/L μg/L
	Etrimfos	0,005	μg/L μg/L	7441	Furilazole	0,05	μg/L μg/L
2020	Famoxadone	0,005	μg/L	5364	Furosemide	0,02	μg/L
5761	Famphur	0,02	μg/L	6653	gamma-Hexabromocyclododecane	0,5	μg/L
2057	Fénamidone	0,02	μg/L	5365	Gemfibrozil	0,02	μg/L
1185	Fénarimol	0,005	μg/L	1526	Glufosinate	0,02	μg/L
2742	Fénazaquin	0,05	μg/L	2731	Glufosinate-ammonium	0,022	μg/L
	Fenbuconazole Fenbuconic and the second sec	0,02	μg/L	1506	Glyphosate	0,02	μg/L
2078 7513	Fenbutatin oxyde Fenchlorazole-ethyl	0,1 0,1	μg/L	5508 2047	Halosulfuron-methyl Haloxyfop	0,02 0,05	μg/L
1186	Fenchlorazole-ethyl Fenchlorphos	0,1	μg/L μg/L	1833	Haloxyfop-éthoxyéthyl	0,05	μg/L μg/L
	Fenhexamid	0,005	μg/L μg/L	1200	HCH alpha	0,005	μg/L μg/L
		5,005	MAL	.200	1 mp.m	5,005	MA L

	Etude des plans d'eau du	programme d	de surve	illance de	s bassins Rhône-Méditerranée et Co	orse – Lac Lê	man (74)
Code SANDRE	Paramètre	Limite de Quantification	Unité	Code SANDRE	Paramètre	Limite de Quantification	Unité
1201	HCH beta	0,005	μg/L	5374	Lorazepam	0,01	μg/L
1202	HCH delta	0,005	μg/L	2026	Lufénuron	0,05	μg/L
2046	HCH epsilon	0,005	μg/L	1210	Malathion	0,02	μg/L
1203	HCH gamma	0,005	μg/L	5787	Malathion-o-analog	0,02	μg/L
2599	Heptabromodiphényléther	0,0015	μg/L	7327	Maléate de Timolol	0,005	μg/L
1197	Heptachlore	0,005	μg/L	1211	Mancozèbe	0,03	μg/L
1748	Heptachlore époxyde cis	0,005	μg/L	6399	Mandipropamid	0,02	μg/L
1749	Heptachlore époxyde trans	0,005	μg/L	1705	Manèbe	0,03	μg/L
1910	Heptenophos	0,02	μg/L	1394	Manganèse	0,5	μg(Mn)/L
2600	Hexabromodiphényléther	0,0007	μg/L	6700	Marbofloxacine	0,1	μg/L
1199	Hexachlorobenzène	0,001	μg/L	2745	MCPA-1-butyl ester	0,005	μg/L
1652	Hexachlorobutadiène	0,02	μg/L	2746	MCPA-2-ethylhexyl ester	0,005	μg/L
1656	Hexachloroéthane	0,5	μg/L	2747	MCPA-butoxyethyl ester	0,005	μg/L
1405	Hexaconazole	0,02	μg/L	2748	MCPA-ethyl-ester	0,01	μg/L
1875	Hexaflumuron	0,05	μg/L	2749	MCPA-methyl-ester	0,005	μg/L
1673	Hexazinone	0,02	μg/L	5789	Mecarbam	0,05	μg/L
1876	Hexythiazox	0,02	μg/L	1214	Mécoprop	0,02	μg/L
5350	Ibuprofene	0,1	μg/L	2750	Mecoprop-1-octyl ester	0,005	μg/L
6727	Ifosfamide	0,005	μg/L	2751	Mecoprop-2,4,4-trimethylphenyl ester	0,005	μg/L
1704	Imazalil Imazamáthokonz	0,02	μg/L	2752	Mecoprop-2-butoxyethyl ester	0,005	μg/L
1695 1911	Imazaméthabenz Imazaméthabenz méthyl	0,02 0,01	μg/L	2753 2754	Mecoprop-2-ethylhexyl ester Mecoprop-2-octyl ester	0,005 0,005	μg/L
		·	μg/L		1 1 2		μg/L
2986 2090	Imazamox Imazapyr	0,02 0,02	μg/L μg/L	2755 2870	Mecoprop-methyl ester Mecoprop n isobutyl ester	0,005 0,005	μg/L μg/L
	IMAZAQUINE	0,02	μg/L μg/L	1968	Méfenacet	0,005	μg/L μg/L
7510	Imibenconazole	0,02	μg/L μg/L	2930	Méfenpyr diethyl	0,005	μg/L μg/L
1877	Imidaclopride	0,02	μg/L μg/L	2568	Mefluidide	0,003	μg/L μg/L
6971	Imipramine	0,02	μg/L	2987	Méfonoxam	0,02	μg/L
1204	Indéno (123c) Pyrène	0,0005	μg/L	5533	Mepanipyrim	0,005	μg/L
	Indometacine	0,02	μg/L	5791	Mephosfolan	0,02	μg/L
5483	Indoxacarbe	0,02	μg/L	1969	Mépiquat	0,05	μg/L
2741	Iodocarbe	0,02	μg/L	2089	Mépiquat chlorure	0,066	μg/L
	Iodofenphos	0,005	μg/L	6521	Mepivacaine	0,01	μg/L
2563	Iodosulfuron	0,02	μg/L	1878	Mépronil	0,005	μg/L
1205	Ioxynil	0,02	μg/L	1510	Mercaptodiméthur	0,02	μg/L
	Ioxynil methyl ester	0,005	μg/L	1804	Mercaptodiméthur sulfoxyde	0,02	μg/L
1942	Ioxynil octanoate	0,01	μg/L	1387	Mercure	0,01	μg(Hg)/L
7508	Ipoconazole	0,02	μg/L	2578	Mesosulfuron methyle	0,02	μg/L
5777	Iprobenfos Iprodione	0,02	μg/L	2076	Mésotrione Mésolami	0,05 0,02	μg/L
1206 2951	Iprovalicarbe	0,005 0,02	μg/L μg/L	1706 1796	Métalaxyl Métaldéhyde	0,02	μg/L μg/L
	Irbesartan	0,005	μg/L μg/L		Métamitrone	0.02	μg/L μg/L
	Irgarol	0,005	μg/L μg/L	1670	Métazachlore	0,005	μg/L μg/L
1976	Isazofos	0,02	μg/L	1879	Metconazole	0,02	μg/L
1836	Isobutylbenzène	0,5	μg/L	1216	Méthabenzthiazuron	0,02	μg/L
1207	Isodrine	0,001	μg/L	5792	Methacrifos	0,02	μg/L
1829	Isofenphos	0,02	μg/L	1671	Méthamidophos	0,02	μg/L
5781	Isoprocarb	0,02	μg/L	1217	Méthidathion	0,02	μg/L
1633	Isopropylbenzène	0,5	μg/L	1218	Méthomyl	0,02	μg/L
2681	Isopropyltoluène o	0,5	μg/L	6793	Methotrexate	0,05	μg/L
	Isopropyltoluène p	0,5	μg/L	1511	Méthoxychlore	0,005	μg/L
	Isoproturon	0,02	μg/L	1619	Méthyl-2-Fluoranthène	0,001	μg/L
6643	Isoquinoline	0,005	μg/L	1618	Méthyl-2-Naphtalène	0,005	μg/L
2722	Isothiocyanate de methyle	1	μg/L	2067	Metiram	0,03	μg/L
1672	Isoxaben Isoxadifon áthula	0,02	μg/L	1515	Métobromuron Métobobloro	0,02	μg/L
2807 1945	Isoxadifen-éthyle	0,005 0,02	μg/L μg/L	1221 5796	Métolachlore Metolachlore	0,005	μg/L
5784	Isoxaflutol Isoxathion	0,02		5796	Metolcarb Metoprolol	0,02	μg/L
	Karbutilate	0,02	μg/L μg/L	1912	Métosulame	0,003	μg/L μg/L
-	Ketoprofene	0,02	μg/L μg/L	1222	Métoxuron	0,02	μg/L μg/L
	Ketorolac	0,05	μg/L μg/L	5654	Metrafenone	0,005	μg/L μg/L
	Kresoxim méthyl	0,02	μg/L μg/L	1225	Métribuzine	0,02	μg/L
1094	Lambda Cyhalothrine	0,005	μg/L	1797	Metsulfuron méthyl	0,02	μg/L
1406	Lénacile	0,005	μg/L	1226	Mévinphos	0,02	μg/L
6770	Levonorgestrel	0,05	μg/L	7143	Mexacarbate	0,02	μg/L
7843	Lincomycine	0,005	μg/L	1707	Molinate	0,005	μg/L
1209	Linuron	0,02	μg/L	1395	Molybdène	1	μg(Mo)/L

~ .	Etude des plans à édu du	1 0	ue survei		s bassins Rhône-Méditerranée et Co -		mun (74)
Code	Paramètre	Limite de	Unité	Code	Paramètre	Limite de	Unité
SANDRE	No. 1 a 1 a 2	Quantification	77	SANDRE		Quantification	77
2542	Monobutyletain cation	0,0025	μg/L	2032	PCB 156	0,00012	μg/L
1880 1227	Monocrotophos Monolinuron	0,02	μg/L	5435 5436	PCB 157 PCB 167	0,000018 0,00003	μg/L
7496	Monooctyletain cation	0,02	μg/L μg/L	1090	PCB 167	0,00003	μg/L μg/L
7490	Monophenyletain cation	0,001	μg/L μg/L	1626	PCB 170	0,0000	μg/L μg/L
1228	Monuron	0,001	μg/L μg/L	1246	PCB 170	0,0012	μg/L μg/L
6671	Morphine	0,02	μg/L μg/L	5437	PCB 189	0,00012	μg/L μg/L
7475	Morpholine	2	μg/L	1625	PCB 194	0,0012	μg/L
1512	MTBE	0,5	μg/L	1624	PCB 209	0,0012	μg/L
6342	Musc xylène	0,1	μg/L	1239	PCB 28	0,0012	μg/L
1881	Myclobutanil	0,02	μg/L	1886	PCB 31	0,0012	μg/L
6443	Nadolol	0,005	μg/L	1240	PCB 35	0,0012	μg/L
1516	Naled	0,02	μg/L	2031	PCB 37	0,005	μg/L
1517	Naphtalène	0,005	μg/L	1628	PCB 44	0,0012	μg/L
1518	Naphtol-1	0,1	μg/L	1241	PCB 52	0,0012	μg/L
1519	Napropamide	0,005	μg/L	2048	PCB 54	0,0012	μg/L
5351	Naproxene	0,05	μg/L	5803	PCB 66	0,005	μg/L
1937	Naptalame	0,05	μg/L	1091	PCB 77	0,00006	μg/L
1520	Néburon	0,02	μg/L	5432	PCB 81	0,000006	μg/L
1386	Nickel	0,5	μg(Ni)/L	1762	Penconazole	0,02	μg/L
1882	Nicosulfuron	0,02	μg/L	1887	Pencycuron	0,02	μg/L
5657	Nicotine	0,02	μg/L	1234	Pendiméthaline	0,005	μg/L
2614	Nitrobenzène	0,1	μg/L	6394	Penoxsulam	0,02	μg/L
1229	Nitrofène	0,005	μg/L	1888	Pentachlorobenzène	0,001	μg/L
1637	Nitrophénol-2	0,05	μg/L	1235	Pentachlorophénol	0,06	μg/L
1957	Nonylphénols	0,1	μg/L	7509	Penthiopyrad	0,02	μg/L
5400	Norethindrone	0,02	μg/L	7670	Pentoxifylline	0,005	μg/L
6761	Norfloxacine	0,1	μg/L	6219	Perchlorate Is a CREGGA	0,1	μg/L
6772	Norfluoxetine	0,005	μg/L	6548	Perfluorooctanesulfonamide (PFOSA)	0,02	μg/L
1669 2737	Norflurazon	0,005 0,005	μg/L	1523 1499	Perméthrine Phénamiphos	0,01	μg/L
1883	Norflurazon desméthyl Nuarimol	0,005	μg/L	1524	Phénanthrène	0,005	μg/L
2609	Octabromodiphénylether	0,003	μg/L μg/L	5420	Phénazone	0,005	μg/L μg/L
2904	Octylphénols	0,002	μg/L μg/L	1236	Phenmédiphame	0,003	μg/L μg/L
6767	O-Demethyltramadol	0,005	μg/L μg/L	2876	Phenol, 4-(3-methylbutyl)-	0,02	μg/L μg/L
6533	Ofloxacine	0,003	μg/L μg/L	5813	Phenthoate	0,02	μg/L μg/L
2027	Ofurace	0,005	μg/L μg/L	7708	Phenytoin	0,05	μg/L μg/L
1230	Ométhoate	0,02	μg/L	1525	Phorate	0,02	μg/L
1668	Oryzalin	0,1	μg/L	1237	Phosalone	0,02	μg/L
2068	Oxadiargyl	0,005	μg/L	1971	Phosmet	0,02	μg/L
1667	Oxadiazon	0,005	μg/L	1238	Phosphamidon	0,02	μg/L
1666	Oxadixyl	0,005	μg/L	1665	Phoxime	0,02	μg/L
1850	Oxamyl	0,02	μg/L	1708	Piclorame	0,05	μg/L
5510	Oxasulfuron	0,02	μg/L	5665	Picolinafen	0,05	μg/L
5375	Oxazepam	0,01	μg/L	2669	Picoxystrobine	0,02	μg/L
6682	Oxycodone	0,005	μg/L	1709	Piperonil butoxide	0,005	μg/L
1231	Oxydéméton méthyl	0,02	μg/L	5819	Piperophos	0,02	μg/L
1952	Oxyfluorfène	0,01	μg/L	1528	Pirimicarbe	0,02	μg/L
	Oxytetracycline	0,005	μg/L	5531	Pirimicarbe Desmethyl	0,02	μg/L
1920	p-(n-octyl)phénol	0,03	μg/L	5532	Pirimicarbe Formamido Desmethyl	0,02	μg/L
2545	Paclobutrazole	0,02	μg/L	7668	Piroxicam	0,005	μg/L
5806	Paraoxon	0,02	μg/L	1382	Plomb	0,05	μg(Pb)/L
1522	Paraquat	0,05	μg/L	5821	p-Nitrotoluene	0,15	μg/L
2618	Para-sec-butylphenol	0,1	μg/L	6734	Prednisolone	0,05	μg/L
1232	Parathion éthyl	0,01	μg/L	1949	Pretilachlore	0,005	μg/L
1233	Parathion méthyl	0,005	μg/L	6531	Prilocaine	0,005	μg/L
1242	PCB 101	0,0012	μg/L	6847	Pristinamycine IIA	0,02	μg/L
1627	PCB 105	0,0003	μg/L	1253	Prochloraze	0,02	μg/L
	PCB 114	0,00003	μg/L	1664	Procymidone	0,005	μg/L
1243	PCB 118	0,0012	μg/L	1889	Profénofos	0,02	μg/L
5434	PCB 123	0,00003	μg/L	5402	Progesterone Draméourha	0,005	μg/L
2943 1089	PCB 125		μg/L	1710	Promécarbe Prométon	0,02	μg/L
	PCB 126 PCB 128	0,000006 0,0012	μg/L	1711 1254	Prométon Prométrame	0,005 0,02	μg/L μg/L
1244	PCB 128	0,0012	μg/L μg/L	1712	Prométryne Propachlore	0,02	μg/L μg/L
1885	PCB 138	0,0012	μg/L μg/L	6398	Propamocarb	0,01	μg/L μg/L
	PCB 153	0,0012	μg/L μg/L		Propanil	0,005	μg/L μg/L
1473	1 01 100	0,0012	μყ∟	1004	I TOPUIII	0,003	$\mu g L$

SANDRE	Code	Linue des pians à eau du	Limite de	ue survei	Code	s bassins Rhône-Méditerranée et Co I	Limite de	man (74)
December December		Paramètre		Unité		Paramètre		Unité
Propagazinación O.02 pgl. 2664 Spiroscuriere O.02 pgl. 2664 Spiroscuriere O.02 pgl. 2664 Spiroscuriere O.02 pgl. 2664 Spiroscuriere O.03 pgl. 2664 Spiroscuriere O.05 pgl. 2668 Propagazine O.02 pgl. 1511 Spiroscuriere O.05 pgl. 2668 Propagazine O.02 pgl. 1511 Spiroscuriere O.02 pgl. 2662 Subtominoscuriere O.02 pgl. 2662 Subtominoscuriere O.02 pgl. 2663 Subtominoscuriere O.02 pgl. 2663 Subtominoscuriere O.02 pgl. 2663 Subtominoscuriere O.02 pgl. 2663 Subtominoscuriere O.02 pgl. 2664 Subtominoscuriere O.02 pgl. 26		Propaphos	-	μg/L			_	μg/L
Propositive 0.02 pgl. 1541 Shreine 0.05 pgl.		*	0,02			*	0,02	μg/L
	1255	Propargite	0,005	μg/L	3160	s-Triazin-2-ol, 4-amino-6-(ethylamino)-	0,05	μg/L
1534 Proplame 0.002 1971 6575 Sulfarentenovarie 0.02 1971 1534 Proplame 0.002 1971 6675 Sulfarenovarie 0.02 1971 1535 Proposur 0.012 1971 6675 Sulfarenovarie 0.02 1971 1535 Proposur 0.012 1971 1535 Sulfarenovarie 0.012 1971 1535 Proposur 0.012 1971 1535 Sulfarenovarie 0.015 1971 1535	1256	Propazine	0,02	μg/L	1541	Styrène	0,5	μg/L
1574	5968	Propazine 2-hydroxy	0,02	μg/L	1662	Sulcotrione	0,05	μg/L
Proposition	1533	Propétamphos	0,005	μg/L	5356	Sulfamethoxazole	0,02	μg/L
2989 Propriethe 0.1 197L 5507 Solforesthuron-methyl 0.02 197L 1955 1970 197L	1534	Prophame	0,02	μg/L	6575	Sulfaquinoxaline	0,02	μg/L
1535 Proposur 0.02 1971 2018 Salfoudiron 0.02 1971 1894 Salfoudiron 0.02 1971 1895 Telescenzole 0.02 1972 1895 Telescenzole 0.02 1972 1895 Telescenzole 0.02 1972 1895 Telescenzole 0.02 1972	1257	Propiconazole	0,02	μg/L	6662	Sulfluramid (EtFOSA)	0,05	μg/L
Section						ž		μg/L
Section			,					μg/L
1837 Propytherwine 0.5 pg/L 1193 Tauthwalanue 0.005 pg/L		1 ,				<u> </u>		μg/L
			,				,	μg/L
Section Propagnician							- 1	μg/L
1414 Propyzamide							,	μg/L
Production							,	μg/L
1092 Prossiliforne 0.02 pgf. 1542 Chebriume 0.005 pgf.		1,0	,			1,0		μg/L
Postaliforon		*				1	,	μg/L
Soft								
Test							,	
Section Principories Co. Co.								
Prackofso							,	
2570 Pyrazkostrobise 0.02 µg/L 7086 Tembotrione 0.05 µg/L 5509 Pyrathufen-ethyl 0.02 µg/L 1898 Tembotrione 0.005 µg/L 5509 Pyrazhphos 0.02 µg/L 1659 Tembacise 0.005 µg/L 5630 Pyrazosylino 0.02 µg/L 1659 Tembacise 0.005 µg/L 5630 Pyrazosylino 0.02 µg/L 1660 Tembacise 0.002 µg/L 5537 Pyrène 0.005 µg/L 1267 Temburkon 0.02 µg/L 5536 Pyrhūsarh 0.02 µg/L 1266 Terbundison 0.005 µg/L 1890 Pyritabene 0.005 µg/L 1268 Terbundison 0.002 µg/L 1890 Pyritabene 0.005 µg/L 1268 Terbundison 0.002 µg/L 5506 Pyritaphenthion 0.02 µg/L 1268 Terbundison 0.02 µg/L 5506 Pyritaphenthion 0.02 µg/L 1294 Terbundison 1204 0.02 µg/L 5606 Pyritaphenthion 0.00 µg/L 1294 Terbundison 1204 0.02 µg/L 1663 Pyrificnox 0.01 µg/L 1954 Terbundison 1204 0.02 µg/L 1663 Pyrificnox 0.00 µg/L 1269 Terbundison 1204 0.00 µg/L 1260 Pyriniphos ethyl 0.002 µg/L 1270 Terbundisothen 1412 0.00 µg/L 1260 Pyriniphos ethyl 0.002 µg/L 1270 Termulahorthane-1.1.1.2 0.5 µg/L 5499 Pyripoxykine 0.005 µg/L 1271 Termulahorthane-1.1.1.2 0.5 µg/L 5499 Pyripoxykine 0.005 µg/L 1271 Termulahorthane-1.1.1.2 0.5 µg/L 5490 Pyroxykine 0.005 µg/L 1271 Termulahorthane-1.1.1.2 0.5 µg/L 5490 Pyroxykine 0.005 µg/L 1272 Termulahorthane-1.1.1.2 0.5 µg/L 5490 Pyripoxykine 0.005 µg/L 1271 Termulahorthane-1.1.1.2 0.5 µg/L 5490 Pyripoxykine 0.005 µg/L 1272 Termulahorthane-1.1.2.3 0.005 µg/L 5490 Pyripoxykine 0.005 µg/L 1271 Termulahorthane-1.1.2.3 0.005 µg/L 5490 Pyripoxykine 0.005 µg/L 1270 Termulahorthane-1.1.2.3 0.005 µg/L 5490 Pyripoxykine 0.005 µg/L 1271 Termulahorthane-1.1.1.2 0.5 µg/L 5490 Pyripoxykine 0.005 µg/L 1271 Termula								
Solution		,						μg(Te)/L μg/L
1258 Pyrazophos 0.02 1921 1659 Terbacile 0.005 1921 1668 Pyrazosuliuro-ethyl 0.02 1921 1266 Terbuerton 0.02 1921 1266 Terbuerton 0.02 1921 1267 Terbuerton 0.02 1921 1267 Terbuerton 0.002 1921 1267 Terbuerton 0.002 1921 1269 Terbuerton 0.02 1921 1269 Terbuertoparia 1269 Terbuertoparia								
G886 Pyrazzosujúrno-ethyl 0.02 µg/L 5835 Terbucarb 0.02 µg/l						•	,	μg/L
								μg/L
1537 Pyrène 0.005 pg/L 1267 Terbuphos 0.005 pg/L 1968 Pyributicarb 0.02 pg/L 6963 Terbutaline 0.02 pg/L 1268 Terbutaline 0.02 pg/L 1268 Terbutaline 0.02 pg/L 1268 Terbutaline 0.02 pg/L 1268 Terbuthykazine 0.02 pg/L 1259 Pyridaphenthion 0.02 pg/L 1268 Terbuthykazine déséthyl 0.02 pg/L 1259 Pyridaphenthion 0.01 pg/L 1269 Terbuthykazine déséthyl 0.02 pg/L 1269 Terbuthykazine hydroxy 0.005 pg/L 1270 Tertachlorethykane 0.005 pg/L 1270 Tertachlorethykane 0.005 pg/L 1271 Tertachlorethykane 0.5 pg/L 1272 Tertachlorethykane 0.5 pg/L 1272 Tertachlorethykane 0.5 pg/L 1272 Tertachlorethykane 0.5 pg/L 1272 Tertachlorethykane 0.5 pg/L 1273 Tertachlorethykane 0.5 pg/L 1273 Tertachlorethykane 0.5 pg/L 1273 Tertachlorethykane 0.5 pg/L 1273 Tertachlorethykane 0.5 pg/L 1274 Tertachlorethykane 0.5 pg/L 1274 Tertachlorethykane 0.005 pg/L 1274 Tertachlorethykane 0.05 pg/L 1274 Tertachlorethykane 0.5 pg/L 1274 Tertachlorethykane 0.5 pg/L 1275 Tertachlorethykane 0.5 pg/L 1275 Tertachlorethykane 0.5 pg/L 1276 Tertachlorethykane 0.0 pg/L 1277 Tertachlorethykane 0.0 pg/L 12		•	,				,	μg/L
Section Pyributicarb 0.02 pg/L 1268 Terbutalpiae 0.02 pg/L 1268 Terbutalpiazine 0.02 pg/L 1268 Terbutalpiazine 0.02 pg/L 1268 Terbutalpiazine 0.02 pg/L 1269 Terbutalpiazine 0.002 pg/L 1269 Terbutalpiazine 0.005 pg/L 1270 Terbutalpiazine 0.005 pg/L 1270 Terbutalpiazine 0.005 pg/L 1270 Terbutalpiazine 0.005 pg/L 1270 Terbutalpiazine 0.005 pg/L 1271 Terbutalpiazine 1.1,1,2 0.5 pg/L 1271 Ter								μg/L
Second Pyritaphenthion Second S						<u> </u>	0,02	μg/L
1259 Pyridate 0,01 pg/L 1954 Terbuthylazine hydroxy 0,02 pg/L 1663 Pyrifehox 0,01 pg/L 1269 Terbutryne 0,005 pg/L 13432 Pyrifehox 0,005 pg/L 5384 Testosterone 0,0005 pg/L 1260 Pyrimiphos éthyl 0,005 pg/L 1936 Terbutryletain 0,005 pg/L 1276 Terbutryletain 0,005 pg/L 1277 Terbuthoréthane-1,1,2,2 0,05 pg/L 1279 Terbuthoréthylène 0,05 pg/L 1279 Terbuthoréthylène 0,05 pg/L 1279 Terbuthoréthylène 0,02 pg/L 1279 Terbuthoréthylène 0,02 pg/L 1279 Terbuthoréthylène 0,02 pg/L 1279 Terbuthoréthylène 0,05 pg/L 1279 Terbuthoréthylène 0,02 pg/L 1279 Terbuthoréthylène	1890		0,005		1268		0,02	μg/L
1663 Pyrilénox 0,01 19/L 1269 Terbutryne 0,02 19/L 1432 Pyrinéthanil 0,005 19/L 15384 Testosterone 0,005 19/L 1260 Pyrinéthos éthyl 0,02 19/L 1936 Terabutyletain 0,005 19/L 1261 Pyrinéthos méthyl 0,005 19/L 1270 Tétrachloréthane-1,1,1,2 0,5 19/L 1261 Pyrinéthos méthyl 0,005 19/L 1271 Tétrachloréthane-1,1,1,2 0,5 19/L 1271 Tétrachloréthane-1,1,1,2 0,05 19/L 1273 Tétrachloréthane-1,1,1,2 0,05 19/L 1274 Tétrachloréthane-1,2,3,4 0,02 19/L 1283 0,005 19/L 1273 1274 Tétrachlorobenzène-1,2,3,5 0,1 19/L 1273 1274 1274 Tétrachlorobenzène-1,2,4,5 0,05 19/L 1274	5606	Pyridaphenthion	0,02	μg/L	2045	Terbuthylazine déséthyl	0,02	μg/L
1432 Pyrinéthanil 0.005 µg/L 5384 Testosterone 0.005 µg/L 1200 Pyrinéphos éthyl 0.02 µg/L 1270 Tétrachloréthane-1,1,1,2 0.05 µg/L 1271 Tétrachloréthane-1,1,1,2 0.05 µg/L 1271 Tétrachloréthane-1,1,2,2 0.05 µg/L 1271 Tétrachloréthyène 0.55 µg/L 1272 Tétrachloréthyène 0.55 µg/L 1272 Tétrachloréthyène 0.55 µg/L 1272 Tétrachloréthyène 0.55 µg/L 1273 Tétrachlorothenène-1,2,3,4 0.02 µg/L 1273 Tétrachlorothenène-1,2,3,5 0.1 µg/L 1238 Quinoxyène 0.005 µg/L 1631 Tétrachlorothenène-1,2,3,5 0.1 µg/L 1238 Quinoxyène 0.01 µg/L 1273 Tétrachlorothenène-1,2,4,5 0.05 µg/L 1274 Tétrachlorothenène-1,2,3,5 0.0,5 µg/L 1274 Tétrachlorothenène-1,2,3,5 0.0,5 µg/L 1274 Tétrachlorothenène-1,2,3,5 0.0,5 µg/L 1274 Tétrachlorothenòne-1,2,3,5 0.0,5 µg/L	1259	Pyridate	0,01	μg/L	1954	Terbuthylazine hydroxy	0,02	μg/L
1260 Pyriniphos éthyl 0.02 µg/L 1936 Tetrabutyktain 0.005 µg/L 1270 Tétrachoréthane-1,1,1,2 0.5 µg/L 1270 Tétrachoréthane-1,1,1,2 0.5 µg/L 1271 Tétrachoréthane-1,1,2,2 0.05 µg/L 1273 Tétrachoréthane-1,1,2,2 0.05 µg/L 1273 Tétrachoréthane-1,1,2,2 0.05 µg/L 1273 Tétrachoréthane-1,1,2,3,4 0.02 µg/L 1274 Tétrachoréthane-1,2,3,4 0.02 µg/L 1274 Tétrachoréthyène 0.5 µg/L 1274	1663	Pyrifénox	0,01	μg/L	1269	Terbutryne	0,02	μg/L
1261 Pyrimiphos méthyl		y .	0,005	μg/L	5384	Testosterone	0,005	μg/L
S499 Pyriproxylène 0,005 µg/L 1271 Tétrachloréthane-1,1,2,2 0,05 µg/L 1371 Tétrachloréthane-1,1,2,2 0,05 µg/L 1371 Tétrachloréthylène 0,5 µg/L 1891 Quinqlphos 0,02 µg/L 2010 Tétrachlorotenzène-1,2,3,4 0,002 µg/L 2087 Quinnerac 0,02 µg/L 2336 Tétrachlorobenzène-1,2,3,5 0,1 µg/L 2087 Quintoxylèn 0,005 µg/L 1631 Tétrachlorobenzène-1,2,4,5 0,1 µg/L 1538 Quintoxène 0,001 µg/L 1273 Tétrachlorobenzène-1,2,4,5 0,05 µg/L 1273 Tétrachlorobenzène-1,2,4,5 0,05 µg/L 1274 Tétrachlorophénol-2,3,4,6 0,5 µg/L 1270 Quizalofop 0,02 µg/L 1275 Tétrachlorophénol-2,3,4,6 0,5 µg/L 1276 Tétrachlorophénol-2,3,5,6 0,5 µg/L 1282 Rimsulfuron 0,005 µg/L 1277 Tétrachlorophénol-2,3,5,6 0,02 µg/L 1283 Rimsulfuron 0,005 µg/L 1276 Tétrachlorophénol-2,3,5,6 0,02 µg/L 1283 Rimsulfuron 0,005 µg/L 1276 Tétrachlorophénol-2,3,5,6 0,02 µg/L 1283 Rimsulfuron 0,005 µg/L 1276 Tétrachlorophénol-2,3,5,6 0,5 µg/L 1283 Rimsulfuron 0,005 µg/L 1284 Rimsulfuron 0,005 µg/L 1285 Rimsulfuron 0,001 µg/L 1285 Rimsulfuron 0,001 µg/L 1285 Rimsulfuron 0,001 µg/L 1285 Rimsulfuron 0,002 µg/L 1285 Rimsulfuro	1260	Pyrimiphos éthyl	0,02	μg/L	1936	Tetrabutyletain	0,005	μg/L
Total	1261	Pyrimiphos méthyl	0,005	μg/L	1270	Tétrachloréthane-1,1,1,2	0,5	μg/L
1891 Quinalphos Quinalphos Quinalphos Quinalphos Quinareac Quinareac Quinareac Quinareac Quinareac Quinavyfen Q	5499	* 1 *	0,005	μg/L	1271	Tétrachloréthane-1,1,2,2	0,05	μg/L
2087 Quimerac Q	7340	Pyroxsulam			1272	Tétrachloréthylène	0,5	μg/L
2028 Quinoxyfen Q.005 μg/L 1631 Tétrachlorobenzène-1.2.4.5 Q.1 μg/L 1538 Quintozène Q.01 μg/L 1273 Tétrachlorophénol-2.3.4.5 Q.05 μg/L 2069 Quizalofop Q.02 μg/L 1274 Tétrachlorophénol-2.3.4.6 Q.5 μg/L 2070 Quizalofop ethyl Q.02 μg/L 1275 Tétrachlorophénol-2.3.5.6 Q.5 μg/L 2575 Tétrachlorophénol-2.3.5.6 Q.5 μg/L 2575 Tétrachlorophénol-2.3.5.6 Q.5 μg/L 2575 Tétrachlorophénol-2.3.5.6 Q.5 μg/L 2575 Tétrachlorophénol-2.3.5.6 Q.5 μg/L 2859 Resmethrine Q.01 μg/L 1277 Tétrachlorophénol-2.3.5.6 Q.5 μg/L 2859 Resmethrine Q.01 μg/L 1277 Tétrachlorophénol-2.3.5.6 Q.02 μg/L 1892 Rimsulfuron Q.005 μg/L 1660 Tétraconazole Q.002 μg/L 2029 Roténone Q.005 μg/L 6750 Tetracycline Q.1 μg/L 4750 Tetracycline Q.1 μg/L 4750 Tetracycline Q.1 μg/L 4750 Tetracycline Q.1 μg/L 4750 Tetracycline Q.005 μg/L 4750 Tetracycline Q.005							,	μg/L
1538 Quintozène Q.01 μg/L 1273 Tétrachlorophénol-2,3,4,5 Q.05 μg/L Q.069 Quizalofop Q.02 μg/L 1274 Tétrachlorophénol-2,3,4,6 Q.5 μg/L Q.070 Quizalofop éthyl Q.02 μg/L 1275 Tétrachlorophénol-2,3,5,6 Q.5 μg/L Q.05 μg/L 1276 Tétrachlorophénol-2,3,5,6 Q.5 μg/L Q.05 μg/L 1276 Tétrachlorophénol-2,3,5,6 Q.5 μg/L Q.05 μg/L 1276 Tétrachlorophénol-2,3,5,6 Q.5 μg/L Q.05 μg/L 1277 Tétrachlorophénol-2,3,5,6 Q.5 μg/L Q.05 μg/L			,				·	μg/L
2069 Quizalofop 0,02 μg/L 1274 Tétrachlorophénol-2,3,4,6 0,5 μg/L 2070 Quizalofop éthyl 0,02 μg/L 1275 Tétrachlorophénol-2,3,5,6 0,5 μg/L 6529 Ranitidine 0,05 μg/L 1276 Tétrachlorure de C 0,5 μg/L 2859 Resmethrine 0,01 μg/L 1276 Tétrachlorure de C 0,5 μg/L 2859 Resmethrine 0,01 μg/L 1676 Tétrachlorure de C 0,5 μg/L 2859 Resmethrine 0,00 μg/L 1676 Tétrachlorure de C 0,00 μg/L 2029 Roténone 0,002 μg/L 1660 Tétraconazole 0,002 μg/L 2029 Roténone 0,005 μg/L 6750 Tetracycline 0,1 μg/L 6527 Salbutamol 0,005 μg/L 1900 Tétradifon 0,005 μg/L 1923 Sébuthylazine 0,002 μg/L 5249 Tétraphénylétain 0,005 μg/L 1923 Sébuthylazine 2-hydroxy 0,02 μg/L 5837 Tetrasul 0,01 μg/T 1262 Secbuthylazine desethyl 0,02 μg/L 2555 Thallium 0,01 μg/T 1262 Secbuthylazine 0,02 μg/L 1713 Thiabendazole 0,02 μg/L 1835 Sélénium 0,1 μg(Se)/L 5671 Thiacloprid 0,05 μg/L 1808 Séthoxydine 0,02 μg/L 1940 Thiafluamide 0,02 μg/L 1808 Séthoxydine 0,02 μg/L 1714 Thiazasulfuron 0,05 μg/L 1539 Silvex 0,02 μg/L 5934 Thidiazuron 0,05 μg/L 1539 Silvex 0,02 μg/L 1913 Thiiensulfuron méthyl 0,05 μg/L 1539 Silvex 0,02 μg/L 1913 Thiiensulfuron méthyl 0,05 μg/L 1539 Silvex 0,02 μg/L 1539 Thiodicarbe 0,02 μg/L 1538 Simazine 0,02 μg/L 1547 Thioaxosulfone 0,02 μg/L 1547 Thioaxosulfone 0,02 μg/L 1547 Thioaxosulfone 0,00 μg/L 1544 Sotalol 0,005 μg/L 5475 Thiofanox sulfone 0,02 μg/L 5424 Sotalol 0,005 μg/L 5475 Thiofanox sulfone 0,002 μg/L 5424 Sotalol 0,005 μg/L 5475 Thiofanox sulfone 0,005 μg/L 5424 Sotalol 0,005 μg/L 5475 Thiofanox sulfone 0,005 μg/L 5424 Sotalol 0,005 μg/L 5475 Thiofanox sulfone 0,005 μg/L 5424 Sotalol 0,005 μg/L 5475			- 1				·	μg/L
Quizalofop éthyl Quizalofop éthyl Quo μg/L 1275 Tétrachlorophénol-2,3,5,6 Quizalofop éthyl Quo Quizalofop éthyl Quo						*		μg/L
Comparison Co		<u> </u>				1		μg/L
2859 Resmethrine 0,01 µg/L 1277 Tétrachlorvinphos 0,02 µg/L 1892 Rinsulfuron 0,02 µg/L 1660 Tétraconazole 0,02 µg/L 2029 Roténone 0,005 µg/L 6750 Tetracycline 0,1 µg/L 6527 Salbutamol 0,005 µg/L 1900 Tétracycline 0,005 µg/L 1923 Sébuthylazine 0,02 µg/L 5249 Tétraphénylétain 0,005 µg/L 6101 Sebuthylazine 2-hydroxy 0,02 µg/L 5837 Tetrasul 0,01 µg/L 5981 Sebutylazine desethyl 0,02 µg/L 2555 Thallium 0,01 µg/T 1262 Secbumeton 0,02 µg/L 1713 Thiaedazole 0,02 µg/T 1385 Sélénium 0,1 µg/Se/L 5671 Thiacloprid 0,05 µg/T 1769 Sertraline 0,05 µg/L 1940							·	μg/L
Rinsulfuron							·	μg/L
2029 Roténone 0,005 μg/L 6750 Tetracycline 0,1 μg/E 6527 Salbutamol 0,005 μg/L 1900 Tétradifon 0,005 μg/E 1923 Sébuthylazine 0,02 μg/L 5249 Tétraphénylétain 0,005 μg/E 6101 Sebuthylazine 2-hydroxy 0,02 μg/L 5837 Tetrasul 0,01 μg/E 5981 Sebutylazine desethyl 0,02 μg/L 2555 Thallium 0,01 μg/E 1262 Secbumeton 0,02 μg/L 1713 Thiabendazole 0,02 μg/E 1385 Sélénium 0,1 μg/Se)/L 5671 Thiacloprid 0,05 μg/E 1385 Sélénium 0,1 μg/Se)/L 5671 Thiacloprid 0,05 μg/E 1808 Séthoxydime 0,05 μg/L 1940 Thiafluamide 0,02 μg/E 1808 Séthoxydime 0,02 μg/L 1714 Thiazasulfuron 0,05 μg/E 1839 Siduron 0,02 μg/L 1714 Thiazasulfuron 0,05 μg/E 1839 Silvex 0,02 μg/L 1913 Thifensulfuron méthyl 0,05 μg/E 1831 Simazine 0,02 μg/L 1913 Thifensulfuron méthyl 0,05 μg/E 1831 Simazine 0,02 μg/L 1715 Thiocyclam hydrogen oxalate 0,01 μg/E 1831 Simazine 0,02 μg/L 1715 Thiofanox 0,05 μg/E 1838 Simvastatine 0,1 μg/L 5476 Thiofanox sulfone 0,02 μg/E 1844 Sotalol 0,005 μg/E 1846 0,005 μg/E 1846 0,005 μg/E 1844 Sotalol 0,005 μg/E 1846 0,005 μg/E 1846 0,005 μg/E 1844 Sotalol 0,005 μg/E 1846 0,								μg/L
6527 Salbutamol 0,005 μg/L 1900 Tétradifon 0,005 μg/L 1923 Sébuthylazine 0,02 μg/L 5249 Tétraphénylétain 0,005 μg/L 6101 Sebuthylazine 2-hydroxy 0,02 μg/L 5837 Tetrasul 0,01 μg/L 5981 Sebutylazine desethyl 0,02 μg/L 2555 Thallium 0,01 μg/L 1262 Secbumeton 0,02 μg/L 1713 Thiabendazole 0,02 μg/L 1385 Sélénium 0,1 μg/Se)/L 5671 Thiacloprid 0,05 μg/L 1388 Sélénium 0,05 μg/L 1940 Thiafthamide 0,02 μg/L 1808 Séthoxydime 0,02 μg/L 6390 Thiamethoxam 0,02 μg/L 1893 Siduron 0,02 μg/L 1714 Thiazasulfuron 0,05 μg/L 1893 Silvex 0,02 μg/L 1913 Thifensulfuron 0,02 μg/L 1539 Silvex 0,02 μg/L 1913 Thifensulfuron méthyl 0,05 μg/L 1263 Simazine 0,02 μg/L 1913 Thifensulfuron méthyl 0,05 μg/L 1831 Simazine 0,02 μg/L 1913 Thiocyclam hydrogen oxalate 0,01 μg/L 1831 Simazine 0,02 μg/L 1715 Thiocyclam hydrogen oxalate 0,01 μg/L 1831 Simazine 0,02 μg/L 1715 Thiofanox 0,05 μg/L 1715 1716								μg/L
1923 Sébuthylazine 0,02 μg/L 5249 Tétraphénylétain 0,005 μg/l 6101 Sebuthylazine 2-hydroxy 0,02 μg/L 5837 Tetrasul 0,01 μg/l 5981 Sebutylazine desethyl 0,02 μg/L 2555 Thallium 0,01 μg/l 1262 Secbumeton 0,02 μg/L 1713 Thiabendazole 0,02 μg/l 1385 Sélénium 0,1 μg(Se)/L 5671 Thiacloprid 0,05 μg/l 1808 Séthoxydime 0,05 μg/L 1940 Thiafluamide 0,02 μg/l 1808 Séthoxydime 0,02 μg/L 6390 Thiamethoxam 0,02 μg/l 1893 Siduron 0,02 μg/L 1714 Thiazasulfuron 0,05 μg/l 1539 Silvex 0,02 μg/L 1913 Thifensulfuron méthyl 0,05 μg/l 1263 Simazine 0,02 μg/L 1714 Thiocyclam hydrogen oxalate 0,01 μg/l 1831 Simazine hydroxy 0,02 μg/L 1715 Thiofanox 0,05 μg/l 5358 Simvastatine 0,1 μg/L 5476 Thiofanox sulfone 0,02 μg/l 5424 Sotalol 0,005 μg/L 2071 Thiométon 0,005 μg/l 5424 Sotalol 0,005 μg/L 2071 Thiométon 0,005 μg/l 180marine 0,000 μg/l 180marine 0,000 μg/L 2071 Thiométon 0,005 μg/l 180marine 0,000 μg/l 180marine							,	
6101 Sebuthylazine 2-hydroxy 0,02 μg/L 5837 Tetrasul 0,01 μg/L								
5981 Sebutylazine desethyl 0,02 μg/L 2555 Thallium 0,01 μg/T 1262 Secbumeton 0,02 μg/L 1713 Thiabendazole 0,02 μg/T 1385 Sélénium 0,1 μg/Se)/L 5671 Thiacloprid 0,05 μg/T 6769 Sertraline 0,05 μg/L 1940 Thiadloprid 0,02 μg/T 1808 Séthoxydime 0,02 μg/L 6390 Thiamethoxam 0,02 μg/T 1893 Siduron 0,02 μg/L 1714 Thiazasulfuron 0,05 μg/T 5609 Silthiopham 0,02 μg/L 5934 Thidiazuron 0,02 μg/T 1539 Silvex 0,02 μg/L 1913 Thifensulfuron méthyl 0,05 μg/T 1263 Simazine 0,02 μg/L 7512 Thiocyclam hydrogen oxalate 0,01 μg/T 1831 Simezine hydroxy 0,02 μg/L 1093		3						
1262 Secbumeton 0,02 μg/L 1713 Thiabendazole 0,02 μg/L 1385 Selénium 0,1 μg(Se)/L 5671 Thiacloprid 0,05 μg/L 1808 Sethoxydime 0,02 μg/L 1940 Thiafluamide 0,02 μg/L 1808 Sethoxydime 0,02 μg/L 6390 Thiamethoxam 0,02 μg/L 1893 Siduron 0,02 μg/L 1714 Thiazasulfuron 0,05 μg/L 1539 Silvex 0,02 μg/L 1913 Thifensulfuron méthyl 0,05 μg/L 1263 Simazine 0,02 μg/L 1913 Thifensulfuron méthyl 0,05 μg/L 1831 Simazine hydroxy 0,02 μg/L 1093 Thiodicarbe 0,02 μg/L 1831 Simazine hydroxy 0,02 μg/L 1715 Thiofanox 0,05 μg/L 1715 1716								μg/L μg(Tl)/L
1385 Sélénium 0,1 μg/Se)/L 5671 Thiacloprid 0,05 μg/L 6769 Sertraline 0,05 μg/L 1940 Thiafluamide 0,02 μg/L 1808 Séthoxydime 0,02 μg/L 6390 Thiamethoxam 0,02 μg/L 1893 Siduron 0,02 μg/L 1714 Thiazasulfuron 0,05 μg/L 5609 Silthiopham 0,02 μg/L 5934 Thidiazuron 0,02 μg/L 1539 Silvex 0,02 μg/L 1913 Thifensulfuron méthyl 0,05 μg/L 1263 Simazine 0,02 μg/L 7512 Thiocyclam hydrogen oxalate 0,01 μg/L 1831 Simazine hydroxy 0,02 μg/L 1093 Thiodicarbe 0,02 μg/L 5477 Simétryne 0,02 μg/L 1715 Thiofanox 0,05 μg/L 5358 Simvastatine 0,1 μg/L 5476 Thiofanox sulfone 0,02 μg/L 2974 S Métolachlore 0,1 μg/L 5475 Thiofanox sulfoxyde 0,02 μg/L 5424 Sotalol 0,005 μg/L 2071 Thiométon 0,005 μg/L 5426 Sotalol 0,005 μg/L 2071 Thiométon 0,005 μg/L 5427 Simétryne 0,005 μg/L 2071 Thiométon 0,005 μg/L 5428 Sotalol 0,005 μg/L 2071 Thiométon 0,005 μg/L 5429 Sotalol 0,005 μg/L 2071 Thiométon 0,005 μg/L 5420 Sotalol 0,005 μg/L 2071 Thiométon 0,005 μg/L 5420 Sotalol 0,005 μg/L 2071 Thiométon 0,005 μg/L 5420 Sotalol 0,005 μg/L 2071 Thiométon 0,005 μg/L 5421 Sotalol 0,005 μg/L 2071 Thiométon 0,005 μg/L 5421 Sotalol 0,005 μg/L 2071 Thiométon 0,005 μg/L 5422 Sotalol 0,005 μg/L 2071 Thiométon 0,005 μg/L 5424 Sotalol 0,005 μg/L 2071 Thiométon 0,005 μg/L 5424 Sotalol 0,005 μg/L 2071 Thiométon 0,005 μg/L 5424 Sotalol 0,005 μg/L 2071 Thiométon 0,005 μg/L 5425 Sotalol 0,005 μg/L 2071 Thiométon 0,005 μg/L 2071 Thiométon 0,005 μg/L 2071 Thiométon 0,005 μg/L 5426 Sotalol 0,005 μg/L 2071 Thiométon 0,005 μg/L 2071 Thiométon 0,005 μg/L 2071 Thiométon 0,005								μg(11)/L μg/L
6769 Sertraline 0,05 μg/L 1940 Thiafluamide 0,02 μg/L 1808 Séthoxydime 0,02 μg/L 6390 Thiamethoxam 0,02 μg/L 1893 Siduron 0,02 μg/L 1714 Thiazasulfuron 0,05 μg/L 15609 Silthiopham 0,02 μg/L 5934 Thidiazuron 0,02 μg/L 1539 Silvex 0,02 μg/L 1913 Thifensulfuron méthyl 0,05 μg/L 1263 Simazine 0,02 μg/L 7512 Thiocyclam hydrogen oxalate 0,01 μg/L 1831 Simazine hydroxy 0,02 μg/L 1093 Thiodicarbe 0,02 μg/L 1715 Thiofanox 0,05 μg/L 1715 1716 171								μg/L μg/L
1808 Séthoxydime 0,02 μg/L 6390 Thiamethoxam 0,02 μg/L			,					μg/L μg/L
1893 Siduron 0,02 μg/L 1714 Thiazasulfuron 0,05 μg/L 5609 Silthiopham 0,02 μg/L 5934 Thidiazuron 0,02 μg/L 1539 Silvex 0,02 μg/L 1913 Thifensulfuron méthyl 0,05 μg/L 1263 Simazine 0,02 μg/L 7512 Thiocyclam hydrogen oxalate 0,01 μg/L 1831 Simazine hydroxy 0,02 μg/L 1093 Thiodicarbe 0,02 μg/L 1715 Thiofanox 0,05 μg/L 1715 1716							,	μg/L μg/L
5609 Silthiopham 0,02 μg/L 5934 Thidiazuron 0,02 μg/L 1539 Silvex 0,02 μg/L 1913 Thifensulfuron méthyl 0,05 μg/L 1263 Simazine 0,02 μg/L 7512 Thiocyclam hydrogen oxalate 0,01 μg/L 1831 Simazine hydroxy 0,02 μg/L 1093 Thiodicarbe 0,02 μg/L 5477 Simétryne 0,02 μg/L 1715 Thiofanox 0,05 μg/L 5358 Simvastatine 0,1 μg/L 5476 Thiofanox sulfone 0,02 μg/L 2974 S Métolachlore 0,1 μg/L 5475 Thiofanox sulfonyde 0,02 μg/L 5424 Sotalol 0,005 μg/L 2071 Thiométon 0,005 μg/L 5426 Thiofanox sulfonyde 0,005 μg/L 5427 Thiométon 0,005 μg/L 5428 Sotalol 0,005 μg/L 2071 Thiométon 0,005 μg/L 5428 Thidiazuron 0,005 μg/L 5429 Thiométon 0,005 μg/L 5420 Thiométon 0,005 μg/L 5420 Thiométon 0,005 μg/L 5420 Thiométon 0,005 μg/L 5420 Thiométon 0,005 μg/L 5421 Thiométon 0,005 μg/L 5422 Thiométon 0,005 μg/L 5423 Thiométon 0,005 μg/L 5424 Thiométon 0,005 μg/L 5424 Thiométon 0,005 μg/L 5424 Thiométon 0,005 μg/L 5424 Thiométon 0,005 μg/L 5425 Thiométon 0,005 μg/L 5426 Thiométon 0,005 μg/L 5427 Thiométon 0,005 μg/L 5428 Thiométon 0,005 μg/L 5428 Thiométon 0,005 μg/L 5429 Thiométon 0,005 μg/L 5420 Thiométon 0,005								μg/L μg/L
1539 Silvex 0,02 μg/L 1913 Thifensulfuron méthyl 0,05 μg/L 1263 Simazine 0,02 μg/L 7512 Thiocyclam hydrogen oxalate 0,01 μg/L 1831 Simazine hydroxy 0,02 μg/L 1093 Thiodicarbe 0,02 μg/L 1715 Thiofanox 0,05 μg/L 1715 Thiofanox 0,05 μg/L 1715 Thiofanox 0,05 μg/L 1715 Thiofanox 0,02 μg/L 1715 Thiofanox sulfone 0,02 μg/L 1715 Thiofanox sulfone 0,02 μg/L 1715 Thiofanox sulfone 0,02 μg/L 1715 1716 1								μg/L
1263 Simazine 0,02 μg/L 7512 Thiocyclam hydrogen oxalate 0,01 μg/L 1831 Simazine hydroxy 0,02 μg/L 1093 Thiodicarbe 0,02 μg/L 5477 Simétryne 0,02 μg/L 1715 Thiofanox 0,05 μg/L 5358 Simvastatine 0,1 μg/L 5476 Thiofanox sulfone 0,02 μg/L 2974 S Métolachlore 0,1 μg/L 5475 Thiofanox sulfoxyde 0,02 μg/L 5424 Sotalol 0,005 μg/L 2071 Thiométon 0,005 μg/L								μg/L
1831 Simazine hydroxy 0,02 μg/L 1093 Thiodicarbe 0,02 μg/L 5477 Simétryne 0,02 μg/L 1715 Thiofanox 0,05 μg/L 5358 Simvastatine 0,1 μg/L 5476 Thiofanox sulfone 0,02 μg/L 2974 S Métolachlore 0,1 μg/L 5475 Thiofanox sulfoxyde 0,02 μg/L 5424 Sotalol 0,005 μg/L 2071 Thiométon 0,005 μg/L								μg/L
5477 Simétryne 0,02 μg/L 1715 Thiofanox 0,05 μg/L 5358 Simvastatine 0,1 μg/L 5476 Thiofanox sulfone 0,02 μg/L 2974 S Métolachlore 0,1 μg/L 5475 Thiofanox sulfoxyde 0,02 μg/L 5424 Sotalol 0,005 μg/L 2071 Thiométon 0,005 μg/L						i i c		μg/L
5358 Simvastatine 0,1 μg/L 5476 Thiofanox sulfone 0,02 μg/L 2974 S Métolachlore 0,1 μg/L 5475 Thiofanox sulfoxyde 0,02 μg/L 5424 Sotalol 0,005 μg/L 2071 Thiométon 0,005 μg/L			0,02				0,05	μg/L
2974 S Métolachlore 0,1 μg/L 5475 Thiofanox sulfoxyde 0,02 μg/L 5424 Sotalol 0,005 μg/L 2071 Thiométon 0,005 μg/L						i		μg/L
5424 Sotalol 0,005 μg/L 2071 Thiométon 0,005 μg/L	2974	S Métolachlore	0,1			Thiofanox sulfoxyde	0,02	μg/L
5610 Spinosad 0.01 ug/L 5838 Thionazin 0.05 ug/L			0,005		2071	Thiométon	0,005	μg/L
, , , , , , , , , , , , , , , , , , ,	5610	Spinosad	0,01	μg/L	5838	Thionazin	0,05	μg/L

Étude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Lac Léman (74							man (74)
Code	Paramètre	Limite de	Unité	Code	Paramètre	Limite de	Unité
SANDRE	raranieue	Quantification	Office	SANDRE	Faranieue	Quantification	Office
7514	Thiophanate-ethyl	0,05	μg/L	1642	Trichlorophénol-2,3,6	0,25	μg/L
1717	Thiophanate-méthyl	0,05	μg/L	1548	Trichlorophénol-2,4,5	0,05	μg/L
1718	Thirame	0,1	μg/L	1549	Trichlorophénol-2,4,6	0,05	μg/L
6524	Ticlopidine	0,01	μg/L	1723	Trichlorophénol-3,4,5	0,25	μg/L
5922	Tiocarbazil	0,02	μg/L	1854	Trichloropropane-1,2,3	0,5	μg/L
1373	Titane	0,5	μg(Ti)/L	1196	Trichlorotrifluoroéthane-1,1,2	0,5	μg/L
5675	Tolclofos-methyl	0,02	μg/L	2898	Tricyclazole	0,02	μg/L
1278	Toluène	1	μg/L	2885	Tricyclohexyletain cation	0,0005	μg/L
1719	Tolylfluanide	0,005	μg/L	1811	Tridémorphe	0,1	μg/L
1658	Tralométhrine	0,005	μg/L	5842	Trietazine	0,02	μg/L
6720	Tramadol	0,005	μg/L	6102	Trietazine 2-hydroxy	0,02	μg/L
1544	Triadiméfon	0,005	μg/L	5971	Trietazine desethyl	0,02	μg/L
1280	Triadiménol	0,02	μg/L	2678	Trifloxystrobine	0,02	μg/L
1281	Triallate	0,02	μg/L	1902	Triflumuron	0,02	μg/L
1914	Triasulfuron	0,02	μg/L	1289	Trifluraline	0,005	μg/L
1901	Triazamate	0,05	μg/L	2991	Triflusulfuron-methyl	0,02	μg/L
1657	Triazophos	0,02	μg/L	1802	Triforine	0,02	μg/L
2990	Triazoxide	0,05	μg/L	5357	Trimethoprime	0,005	μg/L
2064	Tribenuron-Methyle	0,02	μg/L	1857	Triméthylbenzène-1,2,3	1	μg/L
2879	Tributyletain cation	0,0002	μg/L	1609	Triméthylbenzène-1,2,4	1	μg/L
1847	Tributylphosphate	0,005	μg/L	1509	Triméthylbenzène-1,3,5	1	μg/L
5840	Tributyl phosphorotrithioite	0,02	μg/L	2096	Trinexapac-ethyl	0,02	μg/L
1288	Trichlopyr	0,02	μg/L	2886	Trioctyletain cation	0,0005	μg/L
1284	Trichloréthane-1,1,1	0,5	μg/L	6372	Triphenyletain cation	0,001	μg/L
1285	Trichloréthane-1,1,2	0,5	μg/L	2992	Triticonazole	0,02	μg/L
1286	Trichloréthylène	0,5	μg/L	7482	Uniconazole	0,02	μg/L
1287	Trichlorfon	0,02	μg/L	1361	Uranium	0,05	μg(U)/L
2734	Trichloroaniline-2,3,4	0,02	μg/L	1290	Vamidothion	0,01	μg/L
7017	Trichloroaniline-2,3,5	0,02	μg/L	1384	Vanadium	0,1	μg(V)/L
2732	Trichloroaniline-2,4,5	0,02	μg/L	1291	Vinclozoline	0,005	μg/L
1595	Trichloroaniline-2,4,6	0,05	μg/L	1293	Xylène-meta	0,5	μg/L
1630	Trichlorobenzène-1,2,3	0,1	μg/L	1292	Xylène-ortho	0,5	μg/L
1283	Trichlorobenzène-1,2,4	0,1	μg/L	1294	Xylène-para	1	μg/L
1629	Trichlorobenzène-1,3,5	0,1	μg/L	1383	Zinc	1	μg(Zn)/L
1195	Trichlorofluorométhane	0,05	μg/L	1721	Zinèbe	0,03	μg/L
1644	Trichlorophénol-2,3,4	0,05	μg/L	5376	Zolpidem	0,005	μg/L
1643	Trichlorophénol-2,3,5	0,05	μg/L	2858	Zoxamide	0,02	μg/L

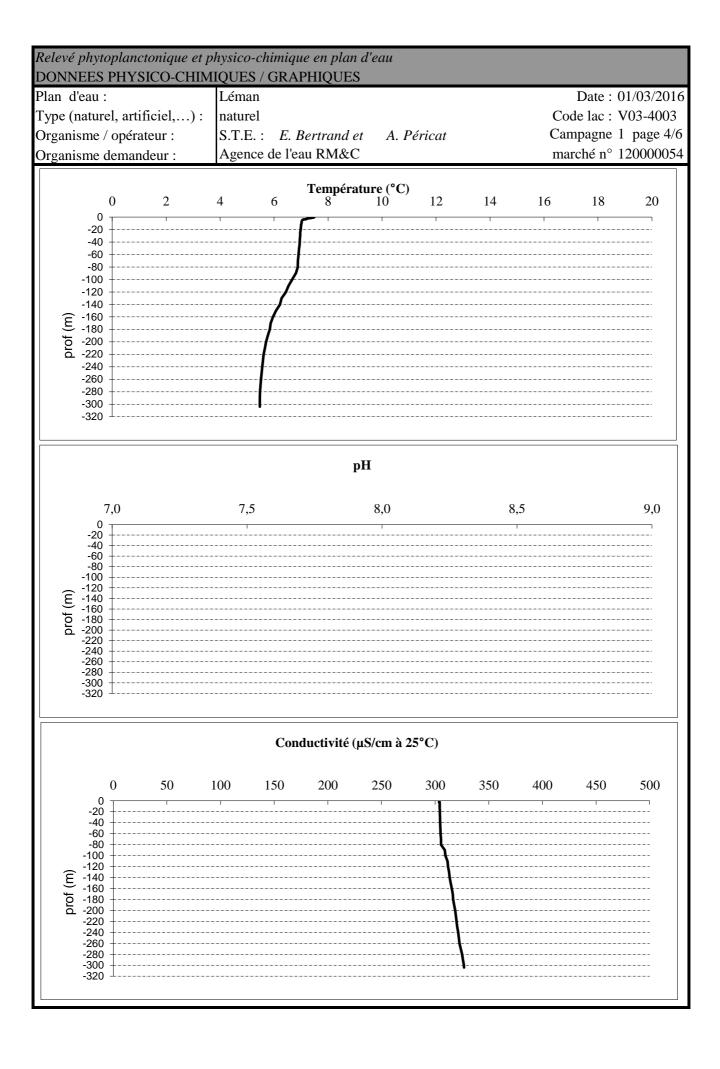

Annexe 2. LISTE DES MICROPOLLUANTS ANALYSES SUR SEDIMENT

G 1	Etuae aes pians a eau ai		e ae survei		s bassins Rhône-Méditerranée et C _T		eman (74 ₎
Code SANDRE	Paramètre	Limite de Quantification	Unité	Code SANDRE	Paramètre	Limite de Quantification	Unité
	4-n-nonylphénol	40	μg/kg	1650	Chlorophénol-4	50	μg/kg
	4-nonylphenols ramifiés	40	μg/kg μg/kg	2611	Chloroprène	20	μg/kg μg/kg
	4-tert-butylphénol	40	μg/kg	2065	Chloropropène-3	5	μg/kg
-	4-tert-octylphénol	40	μg/kg	1602	Chlorotoluène-2	5	μg/kg
-	Acénaphtène	10	μg/kg	1601	Chlorotoluène-3	5	µg/kg
	Acénaphtylène	20	μg/kg	1600	Chlorotoluène-4	5	μg/kg
1903	Acétochlore	10	μg/kg	1474	Chlorprophame	10	μg/kg
6560	Acide perfluorooctanesulfonique (PFOS)	50	μg/kg	1083	Chlorpyriphos éthyl	10	μg/kg
1688	Aclonifen	20	μg/kg	1540	Chlorpyriphos méthyl	20	μg/kg
1103	Aldrine	20	μg/kg	1389	Chrome	0,2	mg(Cr)/kg
1812	Alphaméthrine	10	μg/kg	1476	Chrysène	10	μg/kg
-	Aluminium	10	mg(Al)/kg	2017	Clomazone	10	μg/kg
	Anthracène	10	μg/kg	1379	Cobalt	0,2	mg(Co)/kg
-	Antimoine	0,2	mg(Sb)/kg	1639	Crésol-méta	50	μg/kg
-	Argent	0,2	mg(Ag)/kg	1640	Crésol-ortho	50	μg/kg
-	Arsenic	0,2	mg(As)/kg	1638	Crésol-para	50	μg/kg
-	Azinphos éthyl	50	μg/kg	1392	Cuivre	0,2	mg(Cu)/kg
-	Azoxystrobine	10	μg/kg	1140	Cyperméthrine	20	μg/kg
	Baryum RDE100	0,4 10	mg(Ba)/kg	1680	Cyproconazole	10	μg/kg
	BDE100 BDE138	10	μg/kg μg/kg	1359 1143	Cyprodinil DDD-o,p'	10 5	μg/kg μg/kg
	BDE158	10	μg/kg μg/kg	1143	DDD-0,p DDD-p,p'	5	μg/kg μg/kg
	BDE153	10	μg/kg μg/kg	1144	DDE-o,p'	5	μg/kg μg/kg
	BDE134 BDE183	10	μg/kg μg/kg	1145	DDE-0,p	5	μg/kg μg/kg
	BDE 196	10	μg/kg μg/kg	1147	DDT-o,p'	5	μg/kg μg/kg
	BDE 197	10	μg/kg	1148	DDT-p,p'	5	μg/kg
-	BDE 198	10	μg/kg	6616	DEHP	100	μg/kg
-	BDE 203	10	μg/kg	1149	Deltaméthrine	10	μg/kg
	BDE 204	10	μg/kg	1157	Diazinon	25	μg/kg
5997	BDE 205	10	μg/kg	1621	Dibenzo (ah) Anthracène	10	μg/kg
1815	BDE209	10	μg/kg	1158	Dibromochlorométhane	5	μg/kg
2920	BDE28	10	μg/kg	1498	Dibromoéthane-1,2	5	μg/kg
2919	BDE47	10	μg/kg	7074	Dibutyletain cation	10	μg/kg
7437	BDE77	10	μg/kg	1160	Dichloréthane-1,1	10	μg/kg
2916	BDE99	10	μg/kg	1161	Dichloréthane-1,2	10	μg/kg
1114	Benzène	5	μg/kg	1162	Dichloréthylène-1,1	10	μg/kg
-	Benzidine	100	μg/kg	1456	Dichloréthylène-1,2 cis	10	μg/kg
-	Benzo (a) Anthracène	10	μg/kg	1727	Dichloréthylène-1,2 trans	10	μg/kg
	Benzo (a) Pyrène	10	μg/kg	1590	Dichloroaniline-2,3	20	μg/kg
-	Benzo (b) Fluoranthène	10	μg/kg	1589	Dichloroaniline-2,4	50	μg/kg
-	Benzo (ghi) Pérylène	10	μg/kg	1588	Dichloroaniline-2,5	50	μg/kg
	Benzo (k) Fluoranthène	10	μg/kg	1587	Dichloroaniline-2,6	50	μg/kg
	Beryllium	0,2	mg(Be)/kg		Dichloroaniline-3,4	50	μg/kg
-	Bifénox	50	μg/kg	1585	Dichloroaniline-3,5	50	μg/kg
	Biphényle Pore	10	μg/kg mg/P)/kg	1165	Dichlorobenzène 1,2	10	μg/kg
	Bore Bromoforme	5	mg(B)/kg	1164	Dichlorobenzène-1,3	10	μg/kg
		10	μg/kg	1166	Dichlorobenzène-1,4	5	μg/kg
	Bromoxynil Bromoxynil octanoate	50	μg/kg μg/kg	1167 1168	Dichlorobromométhane Dichlorométhane	10	μg/kg μg/kg
	Cadmium	0,2	μg/kg mg(Cd)/kg	1617	Dichloronitrobenzène-2,3	50	μg/kg μg/kg
	Chlorfenvinphos	20	µg/kg	1616	Dichloronitrobenzène-2,4	20	μg/kg μg/kg
	Chlorméphos	10	μg/kg μg/kg	1615	Dichloronitrobenzène-2,5	50	μg/kg μg/kg
	Chloroalcanes C10-C13	2 000	μg/kg μg/kg	1614	Dichloronitrobenzène-3,4	50	μg/kg μg/kg
	Chloroaniline-2	50	μg/kg μg/kg	1613	Dichloronitrobenzène-3,5	20	μg/kg μg/kg
	Chloroaniline-3	50	μg/kg	1645	Dichlorophénol-2,3	50	μg/kg
	Chloroaniline-4	50	μg/kg	1486	Dichlorophénol-2,4	50	μg/kg
	Chlorobenzène	10	μg/kg	1649	Dichlorophénol-2,5	50	μg/kg
	Chlorodinitrobenzène-1,2,4	20	μg/kg	1648	Dichlorophénol-2,6	50	μg/kg
	Chloroforme (Trichlorométhane)	5	μg/kg	1647	Dichlorophénol-3,4	50	μg/kg
	Chlorométhylphénol-2,5	50	μg/kg	1646	Dichlorophénol-3,5	50	μg/kg
	Chlorométhylphénol-4,3	50	μg/kg	1655	Dichloropropane-1,2	10	μg/kg
1594	Chloronitroaniline-4,2	50	μg/kg	1654	Dichloropropane-1,3	10	μg/kg
	Chloronitrobenzène-1,2	20	μg/kg	2081	Dichloropropane-2,2	10	μg/kg
				2082	Dichloropropène-1,1	10	μg/kg
-	Chloronitrobenzène-1,3	20	μg/kg		1 1		
1470	Chloronitrobenzène-1,4	20	μg/kg	1834	Dichloropropylène-1,3 Cis	10	μg/kg
1470 1471	*				1 1		

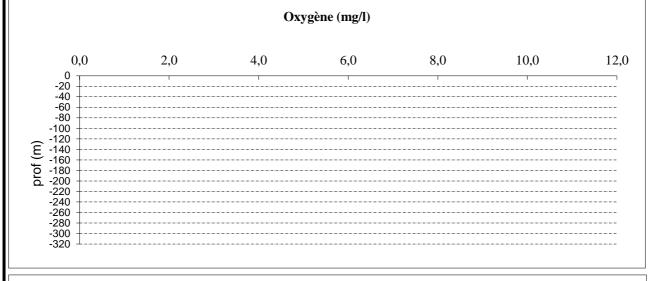
Code		Limite de		Code	s bassins Rhône-Méditerranée et C 	Limite de	
SANDRE	Paramètre	Quantification	Unité	SANDRE	Paramètre	Quantification	Unité
1169	Dichlorprop	20	μg/kg	5434	PCB 123	1	μg/kg
1170	Dichlorvos	30	μg/kg		PCB 126	1	μg/kg
_	Dicofol	20	μg/kg		PCB 138	1	μg/kg
1173	Dieldrine	20	μg/kg	1245	PCB 153	1	μg/kg
1814 1403	Diffufénicanil	10	μg/kg		PCB 156	1	μg/kg
	Diméthomorphe Diméthylphénol-2,4	50	μg/kg μg/kg	5435 5436	PCB 157 PCB 167	1	μg/kg μg/kg
1578	Dinitrotoluène-2,4	50	μg/kg μg/kg	1090	PCB 169	1	μg/kg μg/kg
1577	Dinitrotoluène-2,6	50	μg/kg	1626	PCB 170	1	μg/kg
7494	Dioctyletain cation	100	μg/kg		PCB 180	1	μg/kg
7495	Diphenyletain cation	10	μg/kg	5437	PCB 189	1	μg/kg
1178	Endosulfan alpha	20	μg/kg	1625	PCB 194	1	μg/kg
1179	Endosulfan beta	20	μg/kg	1624	PCB 209	1	μg/kg
1742	Endosulfan sulfate	20	μg/kg		PCB 28	1	μg/kg
1181	Endrine	20	μg/kg	1240	PCB 35	1	μg/kg
1744	Epoxiconazole	10	μg/kg		PCB 44	1	μg/kg
1380 1497	Etain Ethylbenzène	5	mg(Sn)/kg	1241 1091	PCB 52 PCB 77	1	μg/kg μg/kg
1187	Fénitrothion	10	μg/kg μg/kg	5432	PCB 77	1	μg/kg μg/kg
1967	Fénoxycarbe	10	μg/kg μg/kg	1234	Pendiméthaline	10	μg/kg μg/kg
1393	Fer	10	mg(Fe)/kg	1888	Pentachlorobenzène	5	μg/kg μg/kg
2022	Fludioxonil	10	μg/kg	1235	Pentachlorophénol	50	μg/kg
1191	Fluoranthène	40	μg/kg	1524	Phénanthrène	50	μg/kg
1623	Fluorène	40	μg/kg	1665	Phoxime	10	μg/kg
2547	Fluroxypyr-meptyl	20	μg/kg	1382	Plomb	0,2	mg(Pb)/kg
1194	Flusilazole	10	μg/kg	1664	Procymidone	10	μg/kg
	HCH alpha	10	μg/kg	1414	Propyzamide	10	μg/kg
	HCH beta	10	μg/kg	1537	Pyrène	40	μg/kg
1202	HCH delta	10	μg/kg	2028	Quinoxyfen	10	μg/kg
2046 1203	HCH epsilon HCH gamma	10	μg/kg μg/kg	1385 7128	Sélénium Somme de 3 Hexabromocyclododecanes	0,2 10	mg(Se)/kg µg/kg
1197	Heptachlore	10	μg/kg μg/kg	1662	Sulcotrione	10	μg/kg μg/kg
1748	Heptachlore époxyde cis	10	μg/kg μg/kg	1694	Tébuconazole	10	μg/kg μg/kg
	Heptachlore époxyde trans	10	μg/kg	1661	Tébutame	10	μg/kg
1199	Hexachlorobenzène	10	μg/kg	2559	Tellure	0,2	mg(Te)/kg
1652	Hexachlorobutadiène	1	μg/kg	1268	Terbuthylazine	10	μg/kg
1656	Hexachloroéthane	1	μg/kg	1269	Terbutryne	10	μg/kg
1405	Hexaconazole	10	μg/kg	1936	Tetrabutyletain	5	μg/kg
1204	Indéno (123c) Pyrène	10	μg/kg	1270	Tétrachloréthane-1,1,1,2	5	μg/kg
1206	Iprodione	10	μg/kg	1271	Tétrachloréthane-1,1,2,2	10	μg/kg
	Irgarol Isodrine	10	μg/kg	1272	Tétrachloréthylène	5 10	μg/kg
_	Isogrine Isopropylbenzène	5	μg/kg μg/kg	2010 2536	Tétrachlorobenzène-1,2,3,4 Tétrachlorobenzène-1,2,3,5	10	μg/kg
1950	Kresoxim méthyl	10	μg/kg μg/kg	1631	Tétrachlorobenzène-1,2,4,5	10	μg/kg μg/kg
1094	Lambda Cyhalothrine	10	μg/kg μg/kg	1273	Tétrachlorophénol-2,3,4,5	50	μg/kg μg/kg
1209	Linuron	10	μg/kg μg/kg	1274	Tétrachlorophénol-2,3,4,6	50	μg/kg μg/kg
1394	Manganèse	0,4	mg(Mn)/kg	1275	Tétrachlorophénol-2,3,5,6	50	μg/kg
1387	Mercure	0,02	mg(Hg)/kg	1276	Tétrachlorure de C	5	μg/kg
1619	Méthyl-2-Fluoranthène	50	μg/kg	1660	Tétraconazole	10	μg/kg
1618	Méthyl-2-Naphtalène	50	μg/kg	2555	Thallium	0,2	mg(Tl)/kg
1395	Molybdène	0,2	mg(Mo)/kg	1373	Titane	1	mg(Ti)/kg
	Monobutyletain cation	75	μg/kg	1278	Toluène	5	μg/kg
7496	Monooctyletain cation Monophamyletain action	40	μg/kg	2879	Tributyletain cation	25	μg/kg
7497 1517	Monophenyletain cation Naphtalène	40 25	μg/kg μg/kg	1847 1288	Tributylphosphate Trichlopyr	20 10	μg/kg μg/kg
1517	Napropamide	10	μg/kg μg/kg	1288	Trichloréthane-1,1,1	5	μg/kg μg/kg
1386	Nickel	0,2	mg(Ni)/kg	1285	Trichloréthane-1,1,2	5	μg/kg μg/kg
1637	Nitrophénol-2	50	μg/kg	1286	Trichloréthylène	5	μg/kg μg/kg
6598	Nonylphénols linéaire ou ramifiés	40	μg/kg	2734	Trichloroaniline-2,3,4	50	μg/kg
1669	Norflurazon	10	μg/kg	7017	Trichloroaniline-2,3,5	20	μg/kg
1667	Oxadiazon	10	μg/kg	2732	Trichloroaniline-2,4,5	50	μg/kg
1920	p-(n-octyl)phénol	40	μg/kg	1595	Trichloroaniline-2,4,6	50	μg/kg
1232	Parathion éthyl	20	μg/kg	1630	Trichlorobenzène-1,2,3	10	μg/kg
	PCB 101	1	μg/kg	1283	Trichlorobenzène-1,2,4	10	μg/kg
	PCB 105	1	μg/kg	1629	Trichlorobenzène-1,3,5	10	μg/kg
-	PCB 114	1	μg/kg	1195	Trichloronhánal 2.2.4	50	μg/kg
1243	PCB 118	1	μg/kg	1644	Trichlorophénol-2,3,4	50	μg/kg

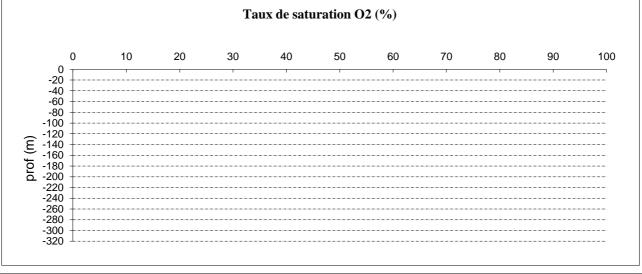
Code SANDRE	Paramètre	Limite de Quantification	Unité	Code SANDRE	Paramètre	Limite de Quantification	Unité
1643	Trichlorophénol-2,3,5	50	μg/kg	2886	Trioctyletain cation	100	μg/kg
1642	Trichlorophénol-2,3,6	50	μg/kg	6372	Triphenyletain cation	15	μg/kg
1548	Trichlorophénol-2,4,5	50	μg/kg	1361	Uranium	0,2	mg(U)/kg
1549	Trichlorophénol-2,4,6	50	μg/kg	1384	Vanadium	0,2	mg(V)/kg
1723	Trichlorophénol-3,4,5	50	μg/kg	1293	Xylène-meta	2	μg/kg
6506	Trichlorotrifluoroethane	5	μg/kg	1292	Xylène-ortho	2	μg/kg
2885	Tricyclohexyletain cation	15	μg/kg	1294	Xylène-para	2	μg/kg
1289	Trifluraline	10	μg/kg	1383	Zinc	0,4	mg(Zn)/kg
2736	Trinitrotoluène	20	μg/kg				

Annexe 3. COMPTES RENDUS DES CAMPAGNES PHYSICO-CHIMIQUES ET PHYTOPLANCTONIQUES

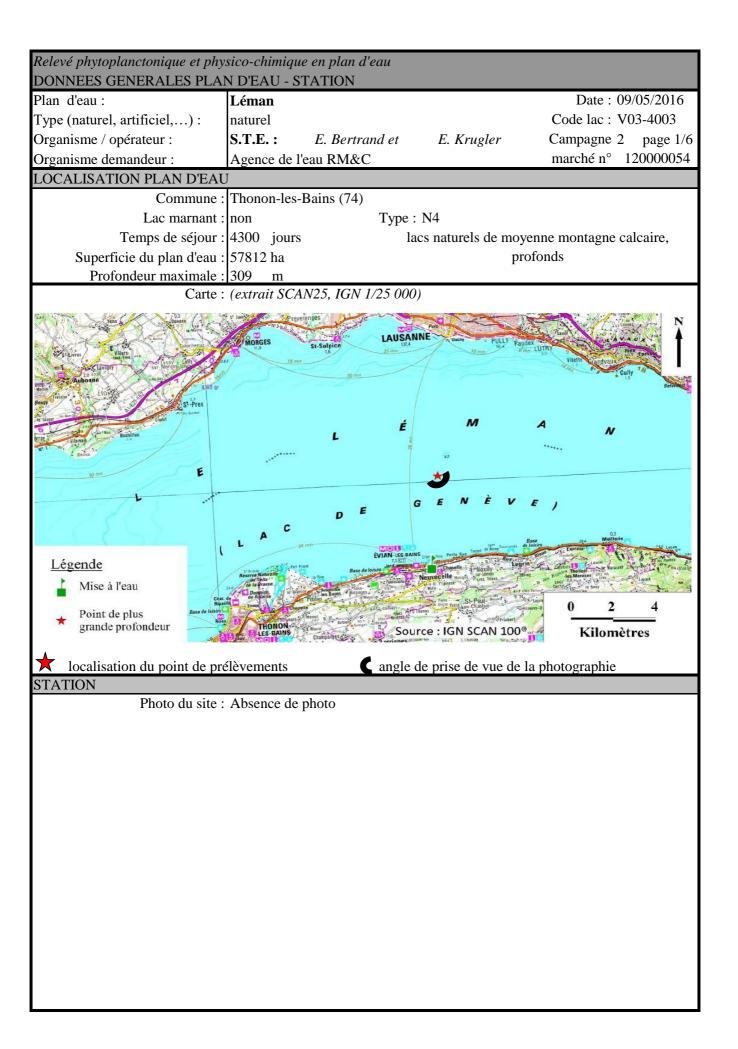


Relevé phytoplanctonique et phy. DONNEES GENERALES CAM	* *		
Plan d'eau:	Léman		Date: 01/03/2016
Type (naturel, artificiel,):	naturel		Code lac: V03-4003
Organisme / opérateurs :	S.T.E.: E. Bertrand et	A. Péricat	Campagne 1 page 2/6
Organisme demandeur :	Agence de l'eau RM&C		marché n° 120000054
STATION	rigence de reductione		
Coordonnées de la station	relevées sur : GPS		
Lambert 93		Y: 66000	00 alt.: 372 m
WGS 84 (systinternational)		Y:	alt.: m
Profondeur:	309,0 m	1.	
Troionacui .	Vent: nul		
	Météo : ensoleillé sec		
	ivicteo : chsoleme sec		
Conditions d'observation :	Surface de l'eau : liss	e	
	Hauteur des vagues : 0,0	0 m P atm stan	idard: 969 hPa
	Bloom algal: non	Pression a	
Marnage:		Hauteur de la ban	
Mamage.	non	nauteur de la bai	ide: 0,0 m
PRELEVEMENTS ZONE EUPI Heure de début du relevé : Prélèvements pour analyses :	11:30 He eau pour μpoll ma	ure de fin du relevé : tériel employé : ure : 11:30	17:00 bouteille téflon
Gestion:			
Contact préalable :			
Remarques, observations:	Mesures in-situ, prélèvements p classique, de la chlorophylle et d dans le cadre du suivi régulier d Prélèvements à la profondeur in manque de temps. Dysfonctionnement des sondes	lu phytoplancton effe e la qualité des eaux termédiaire de 200 m	ectués par l'INRA CIPEL - INRA. n non réalisés par


Relevé phytoplanctonique et p	Relevé phytoplanctonique et physico-chimique en plan d'eau							
DONNEES PHYSICO-CHIMIQUES								
Plan d'eau:	Léman	Date: 01/03/2016						
Type (naturel, artificiel,):	naturel	Code lac: V03-4003						
Organisme / opérateur :	S.T.E.: E. Bertrand et A. Péricat	Campagne 1 page 3/6						
Organisme demandeur :	Agence de l'eau RM&C	marché n° 120000054						


- 6	Agence u	ie reau Kiv	ιας			marche n	120000054
TRANSPARENCE							
Secchi en m:	8,5		Z eupho	otique (2,5 x So	ecchi):	21,3	m
PROFIL VERTICAL							
Moyen de mesure utilisé :	X	in-situ à c	haque pro	of.		en surface dar	ns un récipient
prof prélèvements Phy-chi	Prof.	Temp.	pН	Cond.	O_2	O_2	Heure
prof prefevements i fly-em	(m)	(°C)		(μS/cm 25°)	(%)	(mg/l)	
	-0,3	7,5		304			16:15
	-1,4	7,4		304			
	-2,3	7,2		304			
	-3,3	7,2		304			
	-3,9	7,1		304			
	-4,8	7,0		304			
	-5,9	7,0		304			
	-7,3	7,0		304			
	-7,9	7,0		304			
prélèvement intégré :	-9,2	7,0		304			
prélèvements ponctuels d'1L tous		7,0		304			
les mètres	-11,1	7,0		304			
	-12,3	7,0		304			
	-13,1	7,0		304			
	-14,3	7,0		304			
	-15,1	7,0		304			
	-16,2	7,0		304			
	-17,1	7,0		304			
	-18,2	7,0		304			
	-19,1	7,0		304			
	-20,1	7,0		304			
	-25,1	7,0		305			
	-30,0	7,0		305			
	-34,8	7,0		305			
	-40,2	7,0		305			
	-45,1	6,9		305			
	-50,1	6,9		305			
	-60,2	6,9		305			
	-70,1	6,9		305			
	-80,2	6,9		306			
	-89,8	6,8		309			
prélèvement intermédiaire	-100,0	6,7		310			
	-110,3	6,5		312			
	-120,4	6,4		312			
	-130,0	6,3		313			
	-140,2	6,2		314			
	-149,9	6,1		315			
	-160,1	6,0		316			
	-170,3	5,9		316			

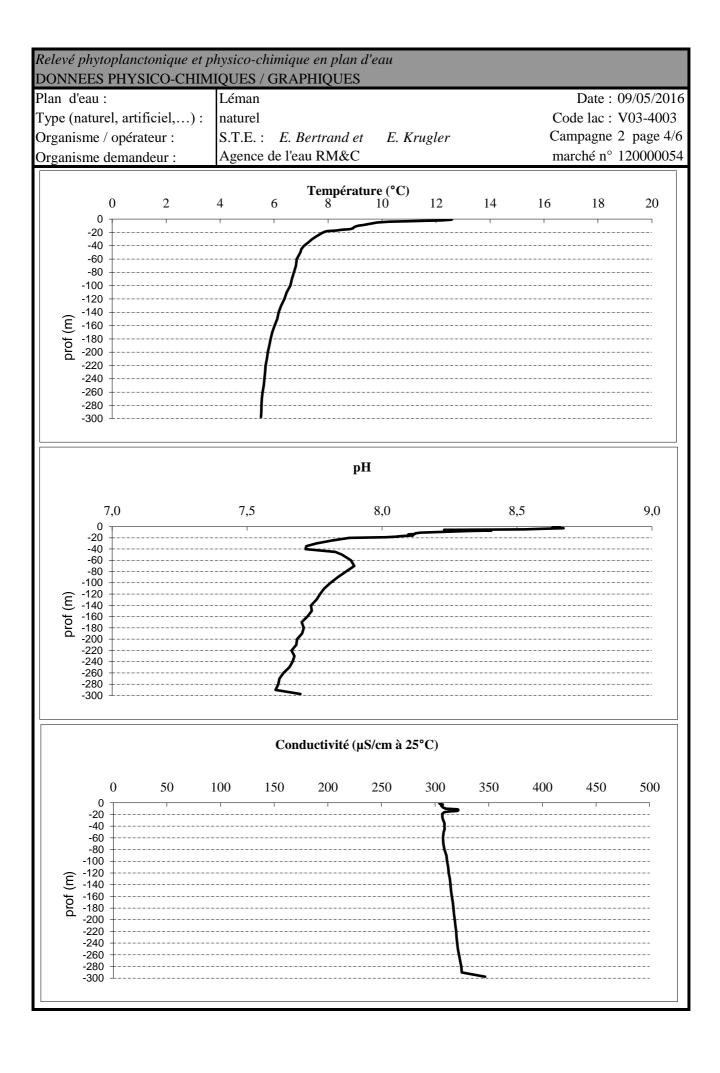
	-179,9	5,8	317		
	-				
	-189,8	5,8	318		
	-200,3	5,7	319		
	-210,2	5,7	319		
	-220,2	5,6	320		
	-230,0	5,6	321		
	-239,8	5,6	322		
	-249,8	5,5	322		
	-260,0	5,5	323		
	-270,1	5,5	324		
	-280,1	5,5	325		
	-289,9	5,5	326		
prélèvement de fond	-300,0	5,5	327		
	-304,0	5,5	327		16:40



Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES Plan d'eau: Type (naturel, artificiel,...): Organisme / opérateur: Organisme demandeur: Date: 01/03/2016 Code lac: V03-4003 Campagne 1 page 5/6 Magence de l'eau RM&C marché n° V03-4003

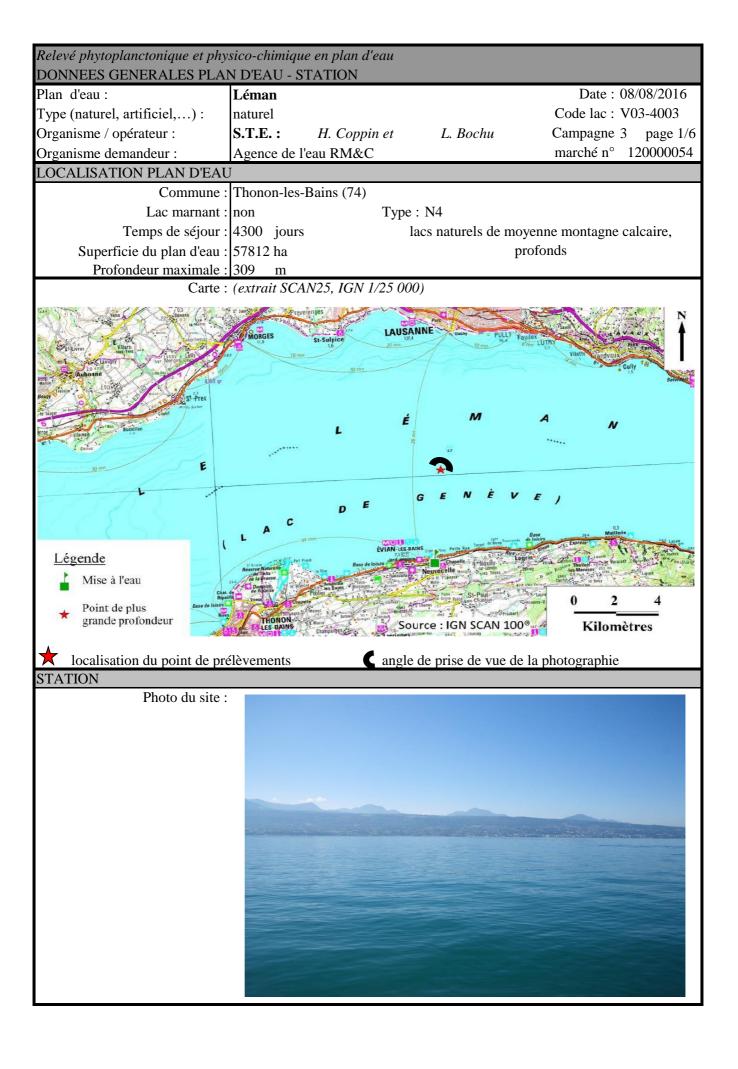
Relevé phytoplanctonique et pl	hysico-chimique en plan d'e	гаи					
DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES							
Plan d'eau:	Léman		Date: 01/03/2016				
Type (naturel, artificiel,):	naturel		Code lac: V03-4003				
Organisme / opérateur :	S.T.E.: E. Bertrand et	A. Péricat	Campagne 1 page 6/6 marché n° 120000054				
Organisme demandeur:	Agence de l'eau RM&C	ice de l'eau RM&C					
Prélèvement d'eau de fond, pour analyses physicochimiques :							
heure de prélèvement :		moyen utilisé :	bouteille téflon				
Distance au fond:	9.0 m soit à Zf =	300,0 m					
Prélèvement d'eau intermédiaire, pour analyses physicochimiques :							
heure de prélèvement :		moyen utilisé:	bouteille téflon				
profondeur :							
Prélèvement d'eau intermédiaire, pour analyses physicochimiques :							
heure de prélèvement :		moyen utilisé:	/				
profondeur :	200,0 m						
Remise des échantillons :							
Echantillons pour analyses phy							
échantillon intégré n°		bon transport					
échantillon de fond n°		bon transport					
échantillon 100 m n°		bon transport					
échantillon 200 m n°	329702	bon transport	. /				
_	•						
Au transporteur:							
	Arrivée au laboratoire CAI	RSO dans la matinée du :	02/03/16				

	Relevé phytoplanctonique et physico-chimique en plan d'eau								
DONNEES GENERALES CAM	IPAGNE								
Plan d'eau :	Léman Date : 09/05/2016								
Type (naturel, artificiel,):	naturel Code lac: V03-4003								
Organisme / opérateurs :	S.T.E.: E. Bertrand et E. Krugler Campagne 2 page 2/6								
Organisme demandeur :	Agence de l'eau RM&C marché n° 120000054								
STATION									
Coordonnées de la station	relevées sur : GPS								
Lambert 93	X:977500 Y: 6600000 alt.: 372 m								
WGS 84 (systinternational)	GPS (en dms) X: Y: alt.: m								
Profondeur :									
	Vent: faible								
	Météo : sec fortement nuageux								
	see fortement maagean								
Conditions d'observation :	Surface de l'eau : lisse								
conditions a observation.	Burrace de Feau . Hisse								
	Hauteur des vagues: 0,00 m P atm standard: 969 hPa								
	.,								
Marraga									
Marnage:	non Hauteur de la bande : 0,0 m								
Campagne :	campagne printanière de croissance du phytoplancton : mise en place de la thermocline								
PRELEVEMENTS ZONE EUPI	HOTIQUE								
Heure de début du relevé :									
	10.30 Heart at thi an itieve. 17.00								
Prélèvements pour analyses :									
Prélèvements pour analyses :	eau pour μpoll matériel employé : bouteille téflon								
Prélèvements pour analyses :									
Prélèvements pour analyses :	eau pour μpoll matériel employé : bouteille téflon								
Prélèvements pour analyses :	eau pour μpoll matériel employé : bouteille téflon								
Prélèvements pour analyses :	eau pour μpoll matériel employé : bouteille téflon								
Prélèvements pour analyses :	eau pour μpoll matériel employé : bouteille téflon								
Prélèvements pour analyses :	eau pour μpoll matériel employé : bouteille téflon								
Prélèvements pour analyses :	eau pour μpoll matériel employé : bouteille téflon								
Prélèvements pour analyses :	eau pour μpoll matériel employé : bouteille téflon								
	eau pour μpoll matériel employé : bouteille téflon								
Prélèvements pour analyses : Gestion :	eau pour μpoll matériel employé : bouteille téflon								
Gestion:	eau pour μpoll matériel employé : bouteille téflon								
	eau pour μpoll matériel employé : bouteille téflon								
Gestion:	eau pour μpoll matériel employé : bouteille téflon								
Gestion:	eau pour μpoll matériel employé : bouteille téflon								
Gestion:	eau pour μpoll matériel employé : bouteille téflon								
Gestion : Contact préalable :	eau pour μpoll matériel employé : bouteille téflon								
Gestion : Contact préalable :	eau pour μpoll matériel employé : bouteille téflon heure : 11:00								
Gestion : Contact préalable :	eau pour μpoll matériel employé : bouteille téflon heure : 11:00 Mesures in-situ, prélèvements pour analyses de la physico-chimie classique, de la chlorophylle et du phytoplancton effectués par l'INRA								
Gestion : Contact préalable :	eau pour µpoll matériel employé : bouteille téflon heure : 11:00 Mesures in-situ, prélèvements pour analyses de la physico-chimie								
Gestion : Contact préalable :	eau pour μpoll matériel employé : bouteille téflon heure : 11:00 Mesures in-situ, prélèvements pour analyses de la physico-chimie classique, de la chlorophylle et du phytoplancton effectués par l'INRA								


Relevé phytoplanctonique et physico-chimique en plan d'eau

DONNEES PHYSICO-CHIMIQUES

Plan d'eau: Léman Date: 09/05/2016 Type (naturel, artificiel,...): naturel Code lac: V03-4003 Organisme / opérateur : S.T.E.: E. Bertrand et E. Krugler Campagne 2 page 3/6 marché n° 120000054 Organisme demandeur: Agence de l'eau RM&C


TRANSPARENCE							
Secchi en m:	5,3 Z euphotique (2,5 x Secchi): 13,3 m						
PROFIL VERTICAL							
Moyen de mesure utilisé :	X	in-situ à chaque prof.				en surface dans un récipient	
prof prélèvements Phy-chi	Prof.	Temp.	pН	Cond.	O_2	O_2	Heure
	(m)	(°C)		(μS/cm 25°)	(%)	(mg/l)	
	-0,1	12,6	8,7	304	113	12,0	11:00
	-1,0	12,6	8,7	304	113	12,0	
	-1,9	12,2	8,6	305	117	12,5	
	-3,1	11,0	8,7	307	117	12,9	
	-3,9	10,3	8,6	307	116	13,1	
prálovoment intégrá :	-5,1	9,8	8,5	306	112	12,7	
prélèvement intégré : prélèvements ponctuels d'1,5L	-5,9	9,7	8,2	306			
tous les mètres	-7,0	9,5	8,4	307	111	12,7	
	-8,1	9,4	8,3	307	110	12,6	
	-9,0	9,3	8,2	309	109	12,5	
	-10,0	9,1	8,2	310	108	12,4	
	-11,0	9,0	8,1	321	106	12,2	
	-12,1	9,0	8,1	322	104	12,0	
	-13,1	8,9	8,1	321	103	11,9	
	-14,0	8,9	8,1	321	101	11,7	
	-15,0	8,8	8,1	312	100	11,6	
	-15,9	8,5	8,1	309	102	11,9	
	-17,0	8,3	8,1	308	101	11,8	
	-18,0	7,9	8,0	307			
	-18,9	7,9	8,0	307			
	-20,0	7,8	7,9	307	89	10,6	
	-24,9	7,6	7,8	307	74	8,8	
	-30,1	7,4	7,8	308	69	8,3	
	-34,9	7,3	7,7	309	73	8,8	
	-40,1	7,1	7,7	309	74	9,0	
	-45,1	7,0	7,8	309	83	10,1	
	-49,9	7,0	7,9	308	84	10,2	
	-60,0	6,8	7,9	307	85	10,4	
	-69,9	6,8	7,9	308	83	10,1	
	-80,0	6,7	7,9	309	81	9,9	
	-90,1	6,7	7,8	311	78	9,5	
prélèvement intermédiaire	-99,9	6,6	7,8	311	75	9,2	
	-110,2	6,5	7,8	312	74	9,1	
	-120,1	6,4	7,8	313	74	9,1	
	-129,8	6,3	7,8	314	74	9,1	
	-140,2	6,2	7,7	314	74	9,1	
	-149,8	6,1	7,7	315	74	9,2	
	-160,1	6,0	7,7	316	70	8,7	
	-169,9	5,9	7,7	316	65	8,1	

	-180,0	5,9	7,7	317	61	7,6	
	-189,9	5,8	7,7	317	57	7,1	
prélèvement intermédiaire	-200,0	5,8	7,7	318	53	6,6	
	-210,1	5,7	7,7	319	51	6,4	
	-220,3	5,7	7,7	320	50	6,3	
	-230,3	5,7	7,7	320	49	6,1	
	-240,3	5,6	7,7	321	47	6,0	
	-249,8	5,6	7,7	321	46	5,8	
	-260,0	5,6	7,6	322	44	5,5	
	-270,2	5,5	7,6	323	41	5,2	
	-280,1	5,5	7,6	324	38	4,8	
	-290,1	5,5	7,6	325	36	4,5	
prélèvement de fond	-297,4	5,5	7,7	347	33	4,2	11:00

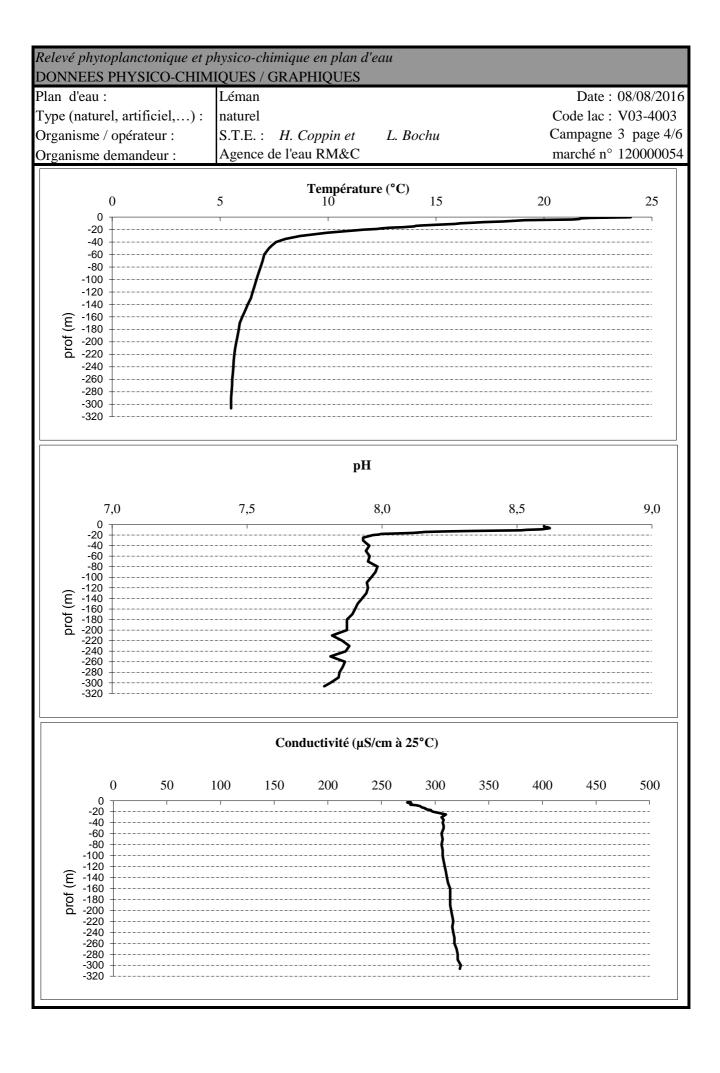
Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES Date: 09/05/2016 Plan d'eau: Léman Type (naturel, artificiel,...): Code lac: V03-4003 naturel Organisme / opérateur : S.T.E.: E. Bertrand et E. Krugler Campagne 2 page 5/6 Organisme demandeur: Agence de l'eau RM&C marché n° V03-4003 Oxygène (mg/l) 0,0 2,0 4,0 6,0 8,0 10,0 12,0 14,0 0 -20 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -300 Taux de saturation O2 (%) 0 20 40 60 80 100 120 0 -20 -60 -80 -100 -120 -140 -140 -160 -180 -200 -220 -240 -260 -280

Relevé phytoplanctonique et p	hysico-chimique en plan d'e	eau							
DONNEES PHYSICO-CHIM	IQUES / GRAPHIQUES								
Plan d'eau:	Léman		Date: 09/05/2016						
Type (naturel, artificiel,):	naturel		Code lac: V03-4003						
Organisme / opérateur :	S.T.E.: E. Bertrand et	E. Krugler	Campagne 2 page 6/6						
Organisme demandeur:	Agence de l'eau RM&C		marché n° 120000054						
Prélèvement d'eau de fond, pour analyses physicochimiques :									
heure de prélèvement :	13:10	moyen utilisé :	bouteille téflon						
Distance au fond:	9,0 m soit à $Zf =$	300,0 m							
Prélèvement d'eau intermédiaire, pour analyses physicochimiques :									
heure de prélèvement :		moyen utilisé:	bouteille téflon						
profondeur :									
Prélèvement d'eau intermédiair									
heure de prélèvement :		moyen utilisé:	bouteille téflon						
profondeur :	200,0 m								
Remise des échantillons :									
Echantillons pour analyses phy	<u>, </u>								
échantillon intégré n°		bon transport							
échantillon de fond n°		bon transport							
échantillon 100 m n°		bon transport	693101100350 3048						
échantillon 200 m n°	329703	bon transport	693101100350 3054						
	,								
Au transporteur :		le 09/05/16							
	Arrivée au laboratoire CA	RSO dans la matinée du :	10/05/16						

Relevé phytoplanctonique et phy	sico-chimique en plan d'eau		
DONNEES GENERALES CAM	PAGNE		
Plan d'eau :	Léman		Date: 08/08/2016
Type (naturel, artificiel,):	naturel		Code lac: V03-4003
Organisme / opérateurs :	S.T.E.: H. Coppin et	L. Bochu	Campagne 3 page 2/6
Organisme demandeur :	Agence de l'eau RM&C		marché n° 120000054
STATION			
Coordonnées de la station	relevées sur : GPS		
Lambert 93	X:977500	Y: 660000	00 alt.: 372 m
WGS 84 (systinternational)	GPS $(en \ dms)$ X:	Y:	alt.: m
Profondeur :	309,0 m		
	Vent: nul		
	Météo: ensoleillé sec		
Conditions d'observation :	Surface de l'eau : li	sse	
	Hauteur des vagues : 0	,00 m P atm stan	dard: 969 hPa
	Bloom algal: non	Pression a	tm.: / hPa
Marnage:	non	Hauteur de la ban	de: 0,0 m
Campagne:	campagne estivale : the croissance du phytoplan		e, 2ème phase de
PRELEVEMENTS ZONE EUP	•		
Heure de début du relevé :		leure de fin du relevé :	
Prélèvements pour analyses :		natériel employé :	bouteille téflon
	h	eure: 11:20	
Gestion:			
Contact préalable :			
Remarques, observations:	Mesures in-situ, prélèvements	pour analyses de la ph	ysico-chimie
	classique, de la chlorophylle e	t du phytoplancton effe	ectués par l'INRA
	dans le cadre du suivi régulier	de la qualité des eaux	CIPEL - INRA.

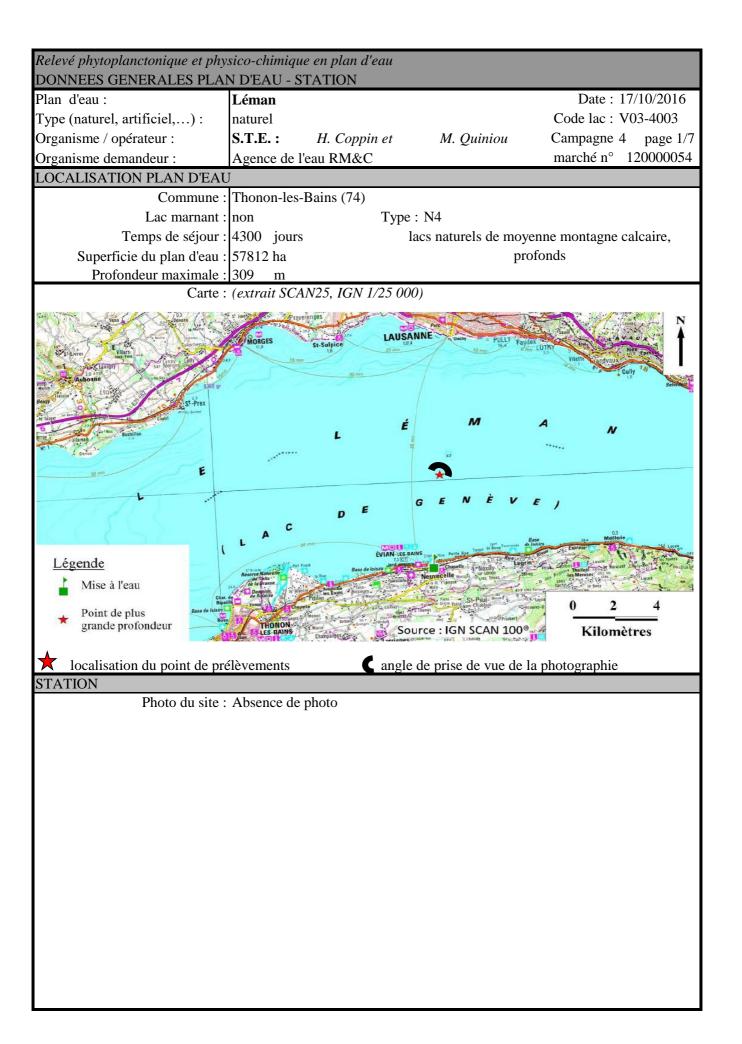
Relevé phytoplanctonique et physico-chimique en plan d'eau

DONNEES PHYSICO-CHIMIQUES


Plan d'eau: Léman Date: 08/08/2016 Type (naturel, artificiel,...): Code lac: V03-4003 naturel Organisme / opérateur : S.T.E.: H. Coppin et L. Bochu Campagne 3 page 3/6 marché n° 120000054

Agence de l'eau RM&C

Organisme demandeur : TRANSPARENCE


TRANSPARENCE					:		
Secchi en m :	5,5		Z eupho	otique (2,5 x So	ecchi):	13,8	m
PROFIL VERTICAL							,
Moyen de mesure utilisé :	X	in-situ à c				en surface dan	
prof prélèvements Phy-chi	Prof.	Temp.	pН	Cond.	O_2	O_2	Heure
1 1	(m)	(°C)		(μS/cm 25°)	(%)	(mg/l)	
	-0,1	24,0					10:44
	-1,2	22,2		277	115	10,0	
	-1,9	21,7		276	117	10,3	
	-2,9	21,6	8,6	274	119	10,5	
	-3,9	21,3	8,6	275	119	10,5	
	-5,0	19,1	8,6	278	139	12,8	
prélèvement intégré :	-5,8	18,6	8,6	277	145	13,5	
prélèvements ponctuels d'1L tous	-7,1	18,1	8,6	277	142	13,4	
les mètres	-8,0	17,2	8,6	282	133	12,8	
	-9,0	16,7	8,6	285	129	12,5	
	-9,9	16,1	8,5	286	124	12,2	
	-10,8	15,9	8,5	287	119	11,7	
	-12,1	15,1	8,3	288	108	10,9	
	-13,1	14,4	8,2	290	101	10,3	
	-14,0	14,1	8,2	291	96	9,9	
	-14,8	14,0	8,1	291	93	9,6	
	-16,0	13,5	8,1	293	90	9,3	
	-17,0	12,9	8,0	296	87	9,2	
	-17,8	12,5	8,0	296	83	8,8	
	-18,9	12,3	8,0	297	81	8,7	
	-19,9	11,7	8,0	298	79	8,6	
	-25,0	10,0	7,9	310	73	8,2	
	-30,2	8,7	7,9	306	69	8,0	
	-34,9	8,0	7,9	308	68	8,1	
	-40,1	7,6	8,0	307	72	8,6	
	-45,1	7,4	7,9	308	72	8,7	
	-50,0	7,3	7,9	308	72	8,7	
	-59,8	7,0	8,0	306	75	9,1	
	-70,1	7,0	7,9	307	75	9,1	
	-79,8	6,9	8,0	306	76	9,3	
	-89,8	6,8	8,0	307	77	9,4	
prélèvement intermédiaire	-100,2	6,7	8,0	307	76	9,3	
	-110,0	6,6	7,9	308	74	9,1	
	-120,0	6,5	7,9	309	72	8,8	
	-130,0	6,4	7,9	310	69	8,5	
	-140,0	6,3	7,9	311	66	8,2	
	-150,0	6,2	7,9	312	63	7,8	
	-160,2	6,0	7,9	314	59	7,4	
	-169,9	5,9	7,9	314	57	7,1	

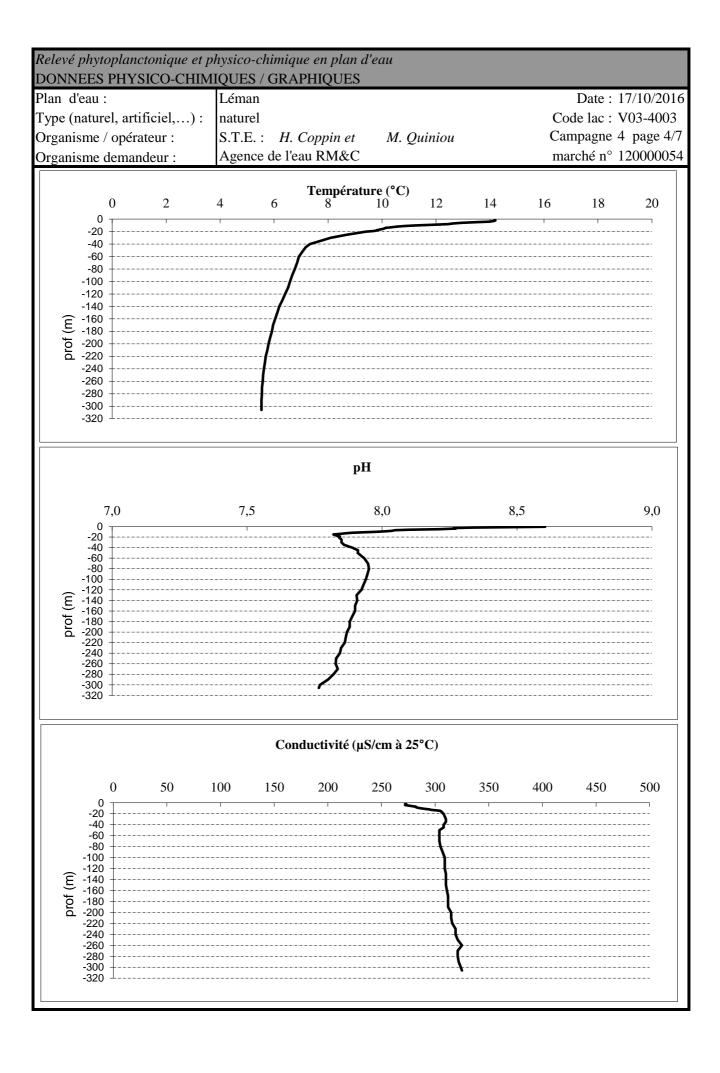
	-179,9	5,9	7,9	314	55	6,9	
	-189,9	5,8	7,9	314	53	6,7	
prélèvement intermédiaire	-200,2	5,8	7,9	315	50	6,3	
	-210,1	5,7	7,8	316	49	6,2	
	-219,8	5,7	7,9	317	48	6,1	
	-230,1	5,6	7,9	316	47	5,9	
	-240,3	5,6	7,9	317	46	5,8	
	-249,8	5,6	7,8	318	45	5,6	
	-260,1	5,6	7,9	318	41	5,2	
	-270,1	5,6	7,9	320	39	4,9	
	-280,0	5,5	7,8	321	35	4,4	
	-289,9	5,5	7,8	321	32	4,1	
prélèvement de fond	-300,1	5,5	7,8	324	26	3,2	
	-306,6	5,5	7,8	323	24	3,0	12:25

Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES Date: 08/08/2016 Plan d'eau: Léman Type (naturel, artificiel,...): Code lac: V03-4003 naturel Organisme / opérateur : S.T.E.: H. Coppin et L. Bochu Campagne 3 page 5/6 Organisme demandeur: Agence de l'eau RM&C marché n° V03-4003 Oxygène (mg/l) 0,0 2,0 4,0 6,0 8,0 10,0 12,0 14,0 0 -20 -40 -60 -80 -120 -140 -160 -180 -220 -240 -260 -280 -300 -320 Taux de saturation O2 (%) 20 40 60 80 100 120 140 0 -20 -40 -60 -80 -120 -140 -160 -200 -220 -240 -260 -280 -300 -320

Relevé phytoplanctonique et physico-chimique en plan d'eau								
DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES								
Plan d'eau:	Léman		Date: 08/08/2016					
Type (naturel, artificiel,):	naturel		Code lac: V03-4003					
Organisme / opérateur :	S.T.E.: H. Coppin et	L. Bochu	Campagne 3 page 6/6					
Organisme demandeur:	Agence de l'eau RM&C		marché n° 120000054					
Prélèvement d'eau de fond, pou		es:						
heure de prélèvement :	11:20	moyen utilisé :	bouteille téflon					
Distance au fond:	9,0 m soit à $\mathbb{Z}f =$	300,0 m						
Prélèvement d'eau intermédiair	re, pour analyses physicochi	miques:						
heure de prélèvement :		moyen utilisé:	bouteille téflon					
profondeur :								
Prélèvement d'eau intermédiair		miques:						
heure de prélèvement :	14:00	moyen utilisé:	bouteille téflon					
profondeur :	200,0 m							
Remise des échantillons :								
Echantillons pour analyses phy		(CARSO)						
échantillon intégré n°		bon transport	693101100353 8325					
échantillon de fond n°	329731	bon transport	693101100353 8390					
échantillon 100 m n°	329705	bon transport	693101100353 8405					
échantillon 200 m n°	329706	bon transport	693101100353 8383					
Au transporteur:		le 08/08/16	. 101100					
	Arrivée au laboratoire CAF	RSO dans la matinée du :	09/08/16					

Relevé phytoplanctonique et phy DONNEES GENERALES CAM	4 4			
Plan d'eau:	Léman		Date: 1	7/10/2016
Type (naturel, artificiel,):	naturel		Code lac: V	03-4003
Organisme / opérateurs :	S.T.E.: H. Coppin et	M. Quiniou	Campagne 4	page 2/7
Organisme demandeur:	Agence de l'eau RM&C		marché n°	120000054
STATION				
Coordonnées de la station	relevées sur : GPS			
Lambert 93	X:977500	Y: 66000	00 al	t.: 372 m
WGS 84 (systinternational)	GPS (en dms) X:	Y:	al	t.: m
Profondeur :	309,0 m			
	Vent: nul			
	Météo: orageux-forte plu	ie		
Conditions d'observation :	Surface de l'eau : liss	se		
	Hauteur des vagues : 0,0	00 m P atm star	ndard: 969	hPa
	Bloom algal: non	Pression a	ıtm. : /	hPa
Marnage:	non	Hauteur de la bar	nde: 0	,0 m
Ç				
Campagne : PRELEVEMENTS ZONE EUPP	campagne de fin d'été : f température HOTIQUE	in de stratification es	tivale, avant ba	usse de la
Heure de début du relevé :	•	ure de fin du relevé :	17:00	
Prélèvements pour analyses :		tériel employé :	bouteille téflo	n
		are: 16:30		
Gestion:				
Contact préalable :				
Remarques, observations:	Mesures in-situ, prélèvements p classique, de la chlorophylle et dans le cadre du suivi régulier d Prélèvement intermédiaire à 200 Prélèvement de sédiment effects	du phytoplancton effo e la qualité des eaux) m effectué le 18/10	ectués par l'INI CIPEL - INR <i>A</i>	
	Profil provisoire (en vours de va			

Relevé phytoplanctonique et physico-chimique en plan d'eau


DONNEES PHYSICO-CHIMIQUES

Plan d'eau: Date: 17/10/2016 Léman Type (naturel, artificiel,...): Code lac: V03-4003 naturel Organisme / opérateur : S.T.E.: H. Coppin et M. Quiniou Campagne 4 page 3/7 marché n° 120000054

Organisme demandeur: Agence de l'eau RM&C

TRANSPARENCE							
Secchi en m:	7,0		Z eupho	otique (2,5 x S	ecchi):	17,5	m
PROFIL VERTICAL							
Moyen de mesure utilisé :	X	in-situ à cl	haque pro	of.		en surface dans	s un récipient
prof prélèvements Phy-chi	Prof.	Temp.	pН	Cond.	O_2	O_2	Heure
prof prefevements Phy-chi	(m)	(°C)		(µS/cm 25°)	(%)	(mg/l)	
	-0,4	14,2	8,6	272	85	8,7	15:40
	-0,9	14,2	8,5	272	87	8,9	
	-1,9	14,2	8,3	273	89	9,1	
	-3,0	14,2	8,3	273	91	9,4	
	-4,0	14,0	8,3	272	91	9,4	
	-5,0	13,3	8,2	275	88	9,2	
	-6,0	13,0	8,1	278	82	8,6	
45	-7,0	12,6	8,0	282	77	8,1	
prélèvement intégré :	-8,1	12,5	8,0	282	75	8,0	
prélèvements ponctuels d'1L tous les mètres	-9,1	11,9	8,0	284	73	7,9	
ies metres	-10,1	11,2	8,0	287	68	7,5	
	-10,9	10,9	7,9	290	62	6,8	
	-11,9	10,6	7,9	294	57	6,3	
	-12,9	10,4	7,9	297	54	6,0	
	-14,0	10,1	7,8	302	52	5,8	
	-15,0	10,1	7,8	305	48	5,5	
	-16,0	10,0	7,8	306	50	5,6	
	-17,0	9,9	7,8	306	52	5,9	
	-18,0	9,8	7,8	307	53	6,1	
	-19,1	9,7	7,8	307	55	6,2	
	-20,1	9,4	7,8	308	56	6,4	
	-25,0	8,7	7,9	309	58	6,7	
	-30,1	8,1	7,9	310	58	6,8	
	-34,9	7,7	7,9	310	59	7,1	
	-40,1	7,3	7,9	308	64	7,7	
	-44,9	7,2	7,9	308	67	8,1	
	-50,0	7,1	7,9	304	68	8,2	
	-60,0	6,9	7,9	304	71	8,7	
	-70,0	6,9	7,9	304	73	8,9	
	-80,0	6,8	8,0	305	74	9,0	
	-90,0	6,7	7,9	307	74	9,0	
prélèvement intermédiaire	-100,0	6,6	7,9	309	73	8,9	
	-110,0	6,5	7,9	309	71	8,7	
	-119,9	6,4	7,9	309	68	8,4	
	-130,0	6,3	7,9	310	64	8,0	
	-139,9	6,2	7,9	310	63	7,8	
	-149,9	6,1	7,9	310	61	7,6	
	-159,9	6,0	7,9	311	59	7,3	
	-169,9	6,0	7,9	312	56	7,0	

	-180,1	5,9	7,9	312	55	6,9	
	-190,1	5,9	7,9	312	53	6,6	
prélèvement intermédiaire	-200,1	5,8	7,9	315	50	6,3	
	-210,1	5,8	7,9	315	49	6,2	
	-220,1	5,7	7,9	316	48	6,0	
	-230,0	5,7	7,8	319	45	5,6	
	-240,0	5,6	7,8	319	44	5,5	
	-250,0	5,6	7,8	321	41	5,2	
	-260,0	5,6	7,8	325	40	5,0	
	-269,9	5,6	7,8	321	39	4,9	
	-280,1	5,6	7,8	321	34	4,3	
	-290,1	5,5	7,8	322	28	3,5	
prélèvement de fond	-300,0	5,5	7,8	324	16	2,0	
	-305,9	5,5	7,8	325	16	2,0	16:22

Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES Date: 17/10/2016 Plan d'eau: Léman Type (naturel, artificiel,...): Code lac: V03-4003 naturel Organisme / opérateur : S.T.E.: H. Coppin et M. Quiniou Campagne 4 page 5/7 Organisme demandeur: Agence de l'eau RM&C marché n° V03-4003 Oxygène (mg/l) 0,0 12,0 2,0 4,0 6,0 8,0 10,0 14,0 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -300 -320 Taux de saturation O2 (%) 20 40 60 80 100 120 140 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -300 -320

Relevé phytoplanctonique et physico-chimique en plan d'eau								
DONNEES PHYSICO-CHIM	IQUES / GRAPHIQUES							
Plan d'eau:	Léman		Date: 17/10/2016					
Type (naturel, artificiel,):	naturel		Code lac: V03-4003					
Organisme / opérateur :	S.T.E.: H. Coppin et	M. Quiniou	Campagne 4 page 6/7					
Organisme demandeur:	Agence de l'eau RM&C		marché n° 120000054					
Prélèvement d'eau de fond, pour analyses physicochimiques :								
heure de prélèvement :	12:30	moyen utilisé :	bouteille téflon					
Distance au fond:		300,0 m						
Prélèvement d'eau intermédiaire, pour analyses physicochimiques :								
heure de prélèvement :		moyen utilisé:	bouteille téflon					
profondeur :								
Prélèvement d'eau intermédiair								
heure de prélèvement :		moyen utilisé:	bouteille téflon					
profondeur :	200,0 m							
Remise des échantillons :								
Echantillons pour analyses phy								
échantillon intégré n°		bon transport						
échantillon de fond n°		bon transport						
échantillon 100 m n°		bon transport	693101100356 4942					
échantillon 200 m n°	329708	bon transport	693101100356 4959					
	1							
Au transporteur :		le 17/10/16	à 18h30					
	Arrivée au laboratoire CAl	RSO dans la matinée du :	18/10/16					

D (1)	7			
Prélèvements de sédiments pour analy.		•	IMENITO	
DONNEES GENERALES PLAN D'E	AU - PRELE\	EMENT DE SED	INENIS	Deta : 19/10/2016
Plan d'eau : Leman				Date: 18/10/2016
Type (naturel, artificiel, naturel				Code lac : V03-4003
Organisme / opérateur : S.T.E.	Н. Соррії	n et	M. Quiniou	heure: 13:30
Organisme demandeur : Agence de	l'eau RM&C			marché n° 120000054
				page 7/7
Conditions de milieu				
chaud, ensoleillé période est	imée favorable	e à :	d	ébits des affluents
couvert X mort et séd	imentation du	plancton		
pluie, neige sédimentati	ion de MES de	e toute nature	>>	turbidité affluent
vent				Secchi (m) 7,0
Matériel				
drague fond plat pelle à mais	n	benne	X piège	carottier
drague fond plat pene a man	П	beilile	A piege	Carottier
Localisation générale de la zone de p	rélèvements ((en particulier, X	Y Lambert 93)	
Point do plus grando profondour (Cf. o	omnogno (1)	X: 977500		Y: 6600000
Point de plus grande profondeur (Cf. c	ampagne 4)	A: 977300		1: 000000
Prélèvements	1	2	3	
profondeur (en m)	309	309	309	
épaisseur échantillonnée				
récents (<2cm)	X	X	X	
anciens (>2cm)				
indéterminé				
épaisseur, en cm :				
granulomérie dominante				
graviers				
sables				
limons	X	X	X	
vases	X	X	X	
argile				
aspect du sédiment				
homogène	X	X	X	
hétérogène				
couleur	noir	noir	noir	
odeur	NON	NON	NON	
présence de débris végétx non décomp	o NON	NON	NON	
présence d'hydrocarbures (irisations)	NON	NON	NON	
présence d'autres débris	NON	NON	NON	
				!
Remarques générales :				
Remise des échantillons :				
Echantillons pour analyses physicochin	niques (Labor	atoire I DA26)		
échantillons n° /	inques (Laboti	atone LDA20)		
Cenantinons II				
remise par S.T.E.:		le	à	
-	hronopost	le 18/10/20		6h00

arrivée au laboratoire LDA 26 le matin du :

19/10/2016

Annexe 4. RESULTATS DU SUIVI PISCICOLE 2016 – ONEMA

Direction régionale Auvergne-Rhône-Alpes Unité Spécialisée Milieux Lacustres

Fiche synthétique Etat du peuplement piscicole Protocole CEN 14757

Plan d'eau : **LEMAN** Réseau : **DCE Surveillance**

Superficie: 58700 Ha Zmax: 309 m

Date échantillonnage : du 10 au 18/10/16 Opérateur : ONEMA (USML)

Nb filets benthiques : 59 (2655 m2) Nb filets pélagiques : 16 (2640 m2)

Composition et structure du peuplement :

Espèce		2	010		2016				
	Pource	ntages	Rendemen	Rendements de pêche		ntages	Rendements de pêche		
code	numériques	pondéraux	numériques	pondéraux	numériques	pondéraux	numériques	pondéraux	
	%	%	ind./1000m2	gr./1000m2	%	%	ind./1000m2	gr./1000m2	
ABL	13,58	12,17	80,06	1364,96	6,11	5,49	47,21	788,67	
BLE					0,02	0,00	0,19	0,38	
BRO					0,15	1,82	1,13	261,95	
CHA					0,05	0,03	0,38	4,15	
CHE	0,15	8,35	0,85	936,75	0,07	6,70	0,57	962,80	
COR	0,68	5,21	3,99	584,33	0,05	0,05	0,38	7,55	
GAR	9,14	16,56	53,85	1856,98	15,52	24,48	119,92	3516,53	
GOU	3,92	3,41	23,08	382,19	0,81	0,78	6,23	111,99	
LOT	0,12	0,93	0,71	103,99	0,10	0,52	0,76	74,03	
OBL	0,05	0,04	0,28	3,99	0,02	0,08	0,19	10,95	
PER	67,83	36,71	399,72	4117,66	73,48	47,16	567,71	6775,26	
PFL	4,28	9,93	25,21	1113,39	2,69	7,20	20,77	1034,56	
ROT					0,05	0,62	0,38	88,76	
TAN	0,05	5,98	0,28	671,23	0,02	1,55	0,19	223,23	
TRF	0,02	0,00	0,14	0,28	0,02	1,08	0,19	155,62	
VAN	0,19	0,72	1,14	80,91	0,83	2,44	6,42	349,95	
Total	100	100	589,3	11216,7	100	100	772,6	14366,4	
Richesse				13				17	
I.I.L.*				0,49				0,38	

ABL: ablette / BLE: blennie / BRO: brochet / CHA: chabot / CHE: chevaine / COR: corégone / GAR: gardon / GOU: goujon / LOT: lote / OBL: omble chevalier / PER: perche / PFL: écrevisse signal / ROT: rotengle / TAN: tanche / TRF: truite de rivière / VAN: vandoise

 Tab. 1 : résultats de pêche sur le Léman (les rendements surfaciques prennent en compte tous les types de filets tendus)

En 2016, le peuplement contrôlé sur la station de pêche retenue pour le Léman est composé de 16 espèces de poissons et de l'écrevisse signal. L'échantillon reste dominé par la perche, le gardon et l'ablette, le niveau d'abondance de l'écrevisse signal reste élevé. Cette liste est toujours lacunaire car le nombre d'espèces courantes se situe aux environs de 18 sur ce secteur, il manque en particulier les brêmes et la carpe. Par ailleurs l'omble chevalier et la truite affichent des abondances toujours relativement basses. En dépit de mauvaises conditions de pêche en début de semaine (fort coup de vent ayant entrainé des pertes de matériel), l'augmentation du nombre d'espèces, des effectifs et biomasses capturés donnent néanmoins une image plus conforme du peuplement du « creux d'Amphion ».

^{*} Les classes d'état affichées correspondent à l'application de l'arrêté « Evaluation » du 27 juillet 2015. L'application des seuils ajustés suite à l'intercalibration européenne de 2015 conduirait à un état moyen pour les deux années de suivi.

Cette opération a eu lieu dans une période de forte exportation en corégone et brochet, la perche semblant en déclin de ce point de vue. Le niveau très faible du corégone dans l'échantillon peut s'expliquer par la sous prospection de l'espace pélagique et les conditions météorologiques qui ont affecté la campagne de pêche. Les rendements globaux de captures sont toutefois plus forts que ceux qui ont été mesurés en 2010 sur le même site.

Distribution spatiale des captures :

Hormis pour l'omble chevalier, la distribution verticale des espèces sur le Léman s'avère conforme à l'oxygénation constatée en cette fin d'été sur le lac. En effet, sur l'ensemble de la couche lacustre prospectée (70m environ), l'oxygénation est très correcte et l'hypolimnion débute vers -45m.

De ce fait, la capture d'espèces de tendance plutôt thermophile, comme l'ablette, le gardon, la perche jusqu'à 35-36m est cohérente. En revanche, la faible abondance de l'omble chevalier dans les strates inférieures de cet hypolimnion (50m et plus) demeure inquiétante malgré des captures de chabot, goujon et lote dans ces strates.

Peu de captures ont été réalisées dans la strate superficielle, 0-3 m, mais au Léman, l'habitat littoral est dominé par les habitats galets et blocs artificiels assez peu attractif à cette saison et il est soumis à une houle qui peut être forte. Notons quand même la capture d'une truite, blennie, brochet et vandoises sur la zone littorale profonde (3-6m).

	Benthiques																Pélagiques				
Strate	ABL	BLE	BRO	СНА	CHE	COR	GAR	GOU	LOT	OBL	PER	PFL	ROT	TAN	TRL	VAN	Strate	ABL	GAR	PER	VAN
0-2,9	11						96	11			120	6				12	0-6	15	12		
3-5,9	13	1	1		3		278	5			286	5	2		1	6	6-12	38	7	6	
6-11,9	1		2				114	7			547	21		1		8	12-18	3	2	2	
12-19,9	25		2				63	2			1150	49				6	18-24	3		2	
20-34,9	82						25	5			704	23					24-30	27	22	92	1
35-49,9	3		1	1		2	5		1		86	6				1	30-36	26	11	1	
50-74,9								1	1	1	1						36-42				
>75	1			1				2	2		1						42-48	1			
																	48-54			8	

Tab. 2 : distribution spatiale des captures observées en 2016 sur le Léman (effectifs bruts)

Structure des populations majoritaires :

Au vu de l'effectif capturé, il n'est pas possible de statuer sur l'état de la population de corégone.

La densité d'alevins de l'année de perche est toujours très importante mais l'échantillon obtenu présente moins d'adultes âgés qu'en 2010. Cependant, si la capacité de recrutement demeure excellente, on observe les effets de la pêche sur les poissons de deux étés et dépassant la taille de 150mm, car cette cohorte affiche une abondance toujours très basse.

Malgré un niveau d'abondance général bas, les structures des populations d'ablette et gardon apparaissent correctes, avec un niveau de recrutement assez satisfaisant alors que la population de gouion affiche une structure déficitaire en adultes (poissons de plus de 13cm).

Éléments de synthèse :

L'image du peuplement piscicole du Léman en 2016 sur le secteur d'Amphion semble plus représentative de la diversité piscicole réelle du lac. Elle est sanctionnée par une note l.l.L. en baisse qualifiant l'état de médiocre, ce qui est probablement sévère (l'application des seuils issus de l'intercalibation européenne de 2015 conduirait au maintien de l'état moyen observé en 2010). Les rendements de pêche sont en légère hausse par rapport à 2010 bien que les espèces sensibles où caractéristiques de l'hypolimnion, omble, corégone, lote, restent, elles, sous-représentées dans l'échantillon.

Bibliographie:

ONEMA, **2011**. Echantillonnage du peuplement piscicole du Léman français (secteur d'Amphion) – Réseau de Contrôle de Surveillance : éléments d'analyse -. Rap. Onema, dél. rég. Rhône-Alpes, 18 p.

Annexe 5. NOTE EXPLICATIVE DU CONSEIL SCIENTIFIQUE DE LA CIPEL

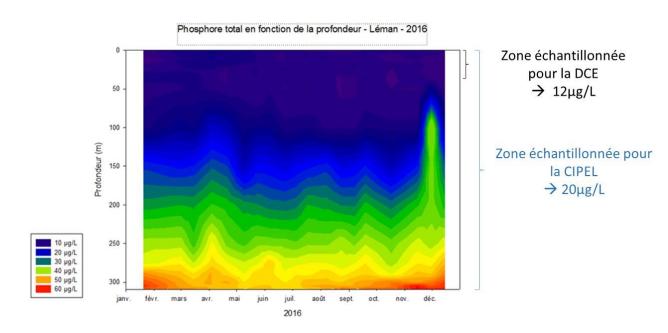
Suivi scientifique du Léman de la CIPEL et évaluation de son état écologique au sens de la directive cadre sur l'eau (DCE)

Note explicative du conseil scientifique – décembre 2017

En 2016, des mesures complémentaires ont été réalisées dans le cadre du suivi scientifique de la CIPEL pour permettre une évaluation de l'état écologique¹ du Léman au sens de la directive cadre sur l'eau (DCE). Ces données alimentent le réseau de surveillance mis en place en France pour répondre aux exigences de la DCE.

Le suivi scientifique réalisé par la CIPEL et le réseau de surveillance DCE répondent à des objectifs distincts :

- Le réseau de surveillance DCE a pour objectif d'évaluer l'état écologique (et chimique) des masses d'eau de façon standard à l'échelle du territoire français, mais également entre Etats membres de l'Union européenne (des travaux d'intercalibration assurent une harmonisation des classes de qualité). Cette évaluation permet d'identifier et de prioriser les masses d'eau sur lesquelles il est nécessaire d'agir pour atteindre les objectifs de bon état. Les suivis ainsi mis en œuvre ne sont en revanche pas toujours suffisants pour identifier les processus altérés : des suivis complémentaires sont alors nécessaires pour préciser les actions à mettre en œuvre et pour suivre leurs effets sur le milieu.
- Le suivi scientifique de la CIPEL apporte des explications sur les raisons des évolutions observées au sein des communautés biologiques (végétaux, poissons...), ce que ne permet pas le réseau de surveillance DCE. De façon générale, le programme de surveillance de la CIPEL contribue à l'amélioration des connaissances pour une gestion respectueuse de l'environnement et permet d'exposer des argumentaires aux usagers quant aux choix des préconisations de la CIPEL. Par ailleurs, les protocoles d'échantillonnages, globalement stables depuis plus de 30 ans et comparables à ceux réalisés dans de nombreux lacs de pays développés, permettent de quantifier les changements et d'évaluer la sensibilité du lac aux forçages anthropiques qui s'exercent dans le bassin versant (politique de restauration ou pollutions diverses) et à l'échelle mondiale (réchauffement climatique). De plus, les données récoltées dans le cadre de ce suivi offrent la possibilité d'une analyse méthodologique rétrospective. Elles permettent ainsi d'améliorer voir d'adapter le protocole de surveillance (Anneville et al. 2001) et de tester des indicateurs de qualité ou de sensibilité aux changements anthropiques (Kaiblinger et al., 2009 ; Kraemer et al., 2015 ; Palenzuela et al., 2016).


¹ Conformément à l'arrêté du 27 juillet 2015 modifiant l'arrêté du 25 janvier 2010 relatif aux méthodes et critères d'évaluation de l'état écologique, de l'état chimique et du potentiel écologique des eaux de surface pris en application des articles R. 212-10, R. 212-11 et R. 212-18 du code de l'environnement

Il convient donc de comparer avec précaution les données présentées dans le cadre du suivi scientifique CIPEL et celles obtenues pour le réseau de surveillance DCE. En effet, les protocoles d'échantillonnage, les paramètres mesurés et le traitement des données pour ces deux approches diffèrent sur plusieurs points. Par conséquent, pour un même paramètre ou indicateur, les valeurs présentées pour ces deux suivis peuvent être significativement différentes.

Ces différences peuvent être expliquées par :

• Les profondeurs d'échantillonnage: les prélèvements sont réalisés à des profondeurs qui diffèrent suivant les deux approches. Les résultats obtenus peuvent donc diverger compte tenu de la forte variabilité verticale généralement observée pour les paramètres utilisés. En particulier, les paramètres physico-chimiques de l'état écologique prennent seulement en compte les données disponibles au niveau de la zone euphotique (dont la profondeur correspond approximativement à 2,5 fois la profondeur mesurée au disque de Secchi). Cette zone correspond à la couche où a lieu la photosynthèse. Par conséquent, cette zone est riche en phytoplancton mais appauvrie en nutriments utilisés pour la production de matière par les organismes phytoplanctoniques. En revanche, les paramètres utilisés pour le suivi CIPEL sont mesurés sur plusieurs profondeurs, de la surface jusqu'au fond du lac, prenant ainsi en considération l'ensemble des valeurs observées sur toute la colonne d'eau.

• Le mode de calcul: les concentrations en nutriments présentées dans le suivi scientifique CIPEL sont calculées en pondérant les concentrations ponctuelles mesurées sur l'ensemble de la colonne d'eau par le volume des différentes strates ainsi échantillonnées. Le suivi DCE ne considère que les mesures réalisées dans la zone euphotique. Pour les raisons expliquées dans le paragraphe précédent, ce calcul aura tendance à sous-estimer la valeur de certains paramètres, et en particulier ceux utilisés lors de la photosynthèse par les organismes phytoplanctoniques.

Exemple : les concentrations en phosphore total calculées pour le suivi DCE sont de 12 μg/L (valeur médiane sur la zone euphotique), et de 20μg/L pour le suivi scientifique de la CIPEL.

- Les fréquences d'échantillonnage : le calcul des indicateurs utilisés pour l'évaluation de l'état écologique (DCE) considère 4 campagnes d'échantillonnage réparties sur l'année. Or les lacs comme le Léman présentent une importante variabilité temporelle des paramètres mesurés. C'est pourquoi, 21 campagnes de mesures ont lieu dans le cadre du suivi CIPEL. Cette variabilité temporelle est contrainte par l'évolution saisonnière des conditions météorologiques mais elle est également fortement influencée par l'occurrence d'évènements ponctuels comme des orages, des épisodes venteux, de fortes crues sur les affluents, les canicules, etc. Selon la date à laquelle a lieu l'échantillonnage DCE, les mesures seront plus ou moins influencées par ces aléas météorologiques. Par ailleurs, certaines espèces phytoplanctoniques peuvent présenter des efflorescences sur des durées limitées (inférieures au mois). En conséquence un intervalle de temps d'échantillonnage aussi large que celui réalisé dans le cadre de la DCE ne peut capturer ces évènements de courte durée qui peuvent toutefois avoir des effets non négligeables en termes de biomasse ou d'impact sur les usages (développement de cyanobactéries toxiques). Ainsi, selon le paramètre utilisé, le diagnostic établi pour la DCE sera fortement influencé par les dates d'échantillonnage, ce qui augmente l'incertitude quant aux valeurs présentées.
- Les unités des paramètres : les concentrations en macropolluants (nitrate, phosphate...) peuvent être présentées en concentration de la molécule (nitrate, phosphate...) ou de l'élément d'intérêt (azote, phosphore). Il convient donc d'être vigilant sur les unités utilisées.
- les indicateurs utilisés: différents indicateurs peuvent être utilisés sur un même jeu de données. Par exemple, l'indice utilisé dans le cadre du suivi scientifique CIPEL pour caractériser le peuplement algal est l'indice Brettum. Cet indice, spécifiquement développé pour les grands lacs péri alpins, qui permet de définir une classe de qualité du peuplement, apparaît davantage pénalisant que l'indice planctonique lacustre (IPLAC) utilisé pour répondre à la DCE.

Les valeurs des paramètres et indicateurs présentés dans le cadre du suivi scientifique CIPEL et celles calculées pour définir l'état écologique ne sont donc pas comparables et expriment des aspects différents de l'état de santé de l'écosystème.