

SURVEILLANCE DE LA QUALITÉ DES PLANS D'EAU DES BASSINS RHÔNE MÉDITERRANÉE CORSE – LOT 1

RETENUE DE CIZE-BOLOZON (AIN) - SUIVI 2022

RAPPORT DE DONNÉES ET D'INTERPRÉTATION

Décembre 2023

AERMC – Surveillance de la qualité des plans d'eau – Suivi 2022 – Retenue de Cize-Bolozon (Ain)

Propriétaire du rapport :

Agence de l'eau Rhône Méditerranée & Corse 2-4 Allée de Lodz 69 363 LYON Cedex 07

Interlocuteur :	IMBERT Loïc
Titre :	Surveillance de la qualité des plans d'eau des bassins Rhône Méditerranée Corse – Suivi 2022 – Rapport de données et d'interprétation – Retenue de Cize-Bolozon (Ain).
Mots-Clés :	Agence de l'eau Rhône Méditerranée Corse, Programme de Surveillance, DCE, suivi 2022, plans d'eau, Ain, retenue de Cize-Bolozon.
Travail de laboratoire :	 DUTAUT Mathilde (Phytoplancton) BERTRAND Bertrand & PROMPT Philippe (Macrophytes) MILLAN Fanny (Diatomées)
Rédacteurs :	OLIVETTO ArnaudPROMPT Philippe (§ Macrophytes)
Relectrice :	CAMPIONE Louise
Version :	Version définitive
Date :	Décembre 2023
Nombre de pages (+annexes) :	41 (+75)
Réalisation :	Groupe de Recherche et d'Etudes Biologie et Environnement 23 rue Saint-Michel - 69007 LYON Tel: 04 72 71 03 79 - Fax: 04 72 72 06 12 contact@grebe.fr

contact@grebe.fr www.grebe.fr

Sommaire

P	RÉAM	BULE	6
1	IN ⁻	TRODUCTION	7
	1.1	Organisation du rapport	7
	1.2	Typologie naturelle des plans d'eau	7
2	Pr	otocoles de prélèvement et d'analyse	
	2.1	Physico-chimie des eaux et du sédiment	
	2.1	.1 Campagnes de mesures	8
	2.1	.2 Prélèvements	
		1.2.2 Prélèvements de sédiments	
	2.1		
		1.3.1 Paramètres de pleine eau	9 10
	2.2	Compartiments biologiques	
	2.2		
	2.2		
	2.2		
	2.3	Calendrier du suivi 2022	.13
3	Co	ontexte général et caractéristiques du plan d'eau	14
4	Ph	ysico-chimie des eaux et des sédiments	18
	4.1	Physico-chimie des eaux	
	4.1		
	4.1		
	4.1 4.1		
	4.1		
	4.2	Physico-chimie des sédiments	
	4.2	.1 Paramètres physico-chimiques généraux (hors micropolluants)	. 24
	4.2		
	4.2		
5	Co	ompartiments biologiques	28
	5.1	Phytoplancton	.28
	5.2	Macrophytes	.31
	5.2		
		2.1.1 Flore observée en UO1 (type 2)	32 32
		2.1.3 Flore observée en UO3 (type 2)	33
	5.2		
		2.2.1 Végétaux d'intérêt patrimonial	
	5.2		
		au sur la base de l'écologie des végétaux aquatiques en place	
	5.3	Phytobenthos (diatomées benthiques)	.37
6	Ar	préciation globale de la gualité du plan d'eau	41

LISTE DES TABLEAUX

Tableau 1 – Calendrier des interventions sur la retenue de Cize-Bolozon en 2022	13
Tableau 2 : Résultats pour les paramètres de minéralisation quantifiés sur la retenue de Cize-Bolozon en 2022	20
Tableau 3 – Résultats des analyses physico-chimiques (hors micropolluants) quantifiés sur la retenue de Cize-Bolo	ozon
en 2022	21
Tableau 4 – Résultats d'analyses de métaux sur eau filtrée sur la retenue de Cize-Bolozon en 2022	22
Tableau 5 – Résultats d'analyses des micropolluants organiques sur eau brute sur la retenue de Cize-Bolozon en 2	
Tableau 6 – Physico-chimie et granulométrie des sédiments de la retenue de Cize-Bolozon, le 20/09/22	
Tableau 7 – Micropolluants minéraux quantifiés dans les sédiments de la retenue de Cize-Bolozon (le 20/09/22)	
Tableau 8 – Micropolluants minéraux quantifiés dans les sédiments de la retenue de Cize-Bolozon (20/09/22)	
Tableau 9 – Liste floristique du phytoplancton échantillonné au cours des 4 campagnes 2022 sur la retenue de Cizo	
Bolozon. Les taxons sont présentés en concentrations (cell./mL) et biovolumes (mm3/L)	
Tableau 10 – Synthèse générale de l'IBML réalisé sur la retenue de Cize-Bolozon en 2022	
Tableau 11 – Listes floristiques des différents taxons diatomiques identifiés (et codes associés) au niveau des 3 UC	
la retenue de Cize-Bolozon le 09/08/22 sur les substrats minéraux. Les taxons sont présentés en nombre d'individu	
niveau du comptage. Les espèces dominantes sont surlignées (>5%)	
Throad ad complage. Los capaciós dominantes som sumignoca (2070)	
LISTE DES FIGURES	
Figure 1 - Formes théoriques de la cuvette lacustre. La ligne pointillée indique la limite théorique de profondeur	
maximale de la thermocline en été (figure issue de la circulaire 2005/11)	7
Figure 2 - Carte de localisation de la retenue de Cize-Bolozon (base carte IGN 1 :100000)	14
Figure 3 – Carte de localisation des retenues de la chaîne de l'Ain – Source : energie.edf.com	
Figure 4 – Données météorologiques de l'année 2022 sur la commune d'Ambérieu-en-Bugey (Ain). Source des	
données : Infoclimat.fr). (a) Évolution des températures (°C) en 2022 ; (b) Évolution des précipitations en 2022 ; (c))
Diagramme ombrothermique de 2022	16
Figure 5 - Débits journaliers moyens de la rivière d'Ain à Pont-d'Ain (01) en 2022 (Source Banque Hydro – station	
V2712010)	17
Figure 6 - Profils physico-chimiques de la campagne 2022 sur la retenue de Cize-Bolozon (Ain)	
Figure 7 – Graphique de l'évolution conjointe des concentrations pigmentaires (chlorophylle a + phéopigments) de	la
transparence et des matières en suspension (MES) au cours des campagnes 2022 sur la retenue de Cize-Bolozon	121
Figure 8 - Sédiments de la retenue de Cize-Bolozon prélevés au niveau du point profond le 20/09/22	25
Figure 9 - Évolution de la structure des populations phytoplanctoniques de la retenue de Cize-Bolozon des 4	
campagnes de prélèvements 2022 (regroupées selon leurs embranchements). (a) Évolution en termes de concenti	ration
(exprimée en nombre de cellules par mL d'eau) ; (b) Évolution en termes de biovolume algal (exprimé en mm3/L)	29
Figure 10 – Carte de localisation des unités d'observation.	31
Figure 11 – Unité d'observation 1 sur la retenue de Cize-Bolozon, le 09/08/2022	
Figure 12 – Unité d'observation 2 sur la retenue de Cize-Bolozon, le 09/08/2022	
Figure 13 – Unité d'observation 3 sur la retenue de Cize-Bolozon, le 09/08/2022	
Figure 14 – Représentativité des différents taxons diatomiques benthiques au niveau des 3 unités d'observation de	
retenue de Cize-Bolozon le 09/08/22	
Figure 15 – Histogramme global des taxons les plus représentés en 2022 (les 15 premiers taxons dominants) au ni	
des 3 LIO de la retenue de Ciza-Bolozon la 09/08/22	30

PRÉAMBULE

Cette étude de diagnostic écologique de plans d'eau a été réalisée dans le cadre du programme de surveillance établi lors de la mise en œuvre de la directive cadre européenne sur l'eau (DCE)¹, prescrivant une atteinte des objectifs environnementaux tendant vers un « bon état » écologique des masses d'eau en 2027. En application de cette dernière, il est demandé à chaque état membre d'évaluer l'état écologique des masses d'eau d'origine naturelle ou le potentiel écologique des masses d'eau fortement modifiées et artificielles. Le dernier diagnostic écologique sur la retenue de Cize-Bolozon a été réalisé en 2019.

L'agence de l'eau Rhône Méditerranée Corse a mandaté le bureau d'études GREBE pour l'acquisition de données écologiques sur un certain nombre de masses d'eau de plans d'eau (MEPE) de plus de 50 hectares du nord du bassin Rhône-Méditerranée. Les prestations ont été réalisées en application de l'arrêté du 17 octobre 2018², modifiant l'arrêté du 25 janvier 2010 établissant le programme de surveillance de l'état des eaux.

Retenue de Cize-Bolozon, le 08/06/2022

¹ DCE. Cadre pour une politique communautaire dans le domaine de l'eau. Directive 2000/60/CE.

² Ministre d'Etat, ministre de la transition écologique et solidaire, et ministre des solidarités et de la santé. Arrêté du 17 octobre 2018 modifiant l'arrêté du 25 janvier 2010 établissant le programme de surveillance de l'état des eaux en application de l'article R.212-22 du code de l'environnement.

1 INTRODUCTION

1.1 Organisation du rapport

Les résultats du suivi de l'année 2022 sont présentés sous la forme d'un dossier par plan d'eau, soit un rapport de données brutes et d'interprétation commentée des résultats, présentant également les méthodologies mises en œuvre et les comptes rendus de campagnes de terrain.

1.2 Typologie naturelle des plans d'eau

La typologie naturelle des plans d'eau utilisée dans le rapport est définie dans l'arrêté du 12 janvier 2010³ relatif aux méthodes et aux critères à mettre en œuvre pour délimiter et classer les masses d'eau. La typologie est basée sur l'origine des plans d'eau (naturelle ou anthropique), leur hydro-écorégion⁴, la forme de leur cuvette et leur fonctionnement hydraulique. Les formes théoriques de cuvettes lacustres sont présentées *Figure 1*, et sont définies comme suit :

- Forme L : lac peu profond, zone littorale largement prépondérante, stratification thermique peu étendue et/ou instable (lac polymictique).
- Forme P: lac profond, stratification thermique stable (lac monomictique ou dimictique) et une zone littorale réduite, la cuvette pouvant être symétrique ou asymétrique.
- Forme LP: lac ayant à la fois une zone profonde stratifiée stable (monomictique ou dimictique) et une zone littorale étendue, la cuvette pouvant être symétrique ou asymétrique.

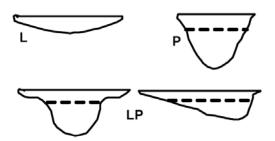


Figure 1 - Formes théoriques de la cuvette lacustre. La ligne pointillée indique la limite théorique de profondeur maximale de la thermocline en été (figure issue de la circulaire 2005/11)

³ Ministère de l'écologie, de l'énergie, du développement durable et de la mer, en charge des technologies vertes et des négociations sur le climat. *Arrêté du 12 janvier 2010 relatif aux méthodes et aux critères à mettre en œuvre pour délimiter et classer les masses d'eau et dresser l'état des lieux prévu à l'article R. 212-3 du code de l'environnement.* Journal Officiel de la République Française.

⁴ Wasson, J. G., Chandesris, A., Pella, H., & Blanc, L. (Juin 2002). Les hydro-écorégions de France métropolitaine, approche régionale de la typologie des eaux courantes et éléments pour la définition des peuplements de référence d'invertébrés. Cemagref.

2 Protocoles de prélèvement et d'analyse

2.1 Physico-chimie des eaux et du sédiment

2.1.1 Campagnes de mesures

Quatre campagnes de mesures sont réalisées au cours de l'année :

- campagne 1 : le 24/03/22, correspondant à la période de brassage et d'homothermie des eaux ;
- campagne 2 : le 08/06/22, correspondant au début de période de stratification thermique ;
- campagne 3 : le 02/08/22, correspondant à la période estivale ;
- campagne 4: le 20/09/22, correspondant à la fin de la période de production végétale et à la période de stratification maximale du plan d'eau, avant le refroidissement de la masse d'eau.

2.1.2 Prélèvements

2.1.2.1 Prélèvement d'eau

Le prélèvement d'eau est réalisé au niveau du point de plus grande profondeur du plan d'eau. Dans le cas de retenues artificielles, une zone de sécurité interdite à la navigation, généralement matérialisée par une ligne de bouées, peut être présente à proximité des ouvrages. La zone de prospection se limite alors à l'extérieur de cette dernière.

La **zone euphotique** prélevée correspond à 2,5 fois la transparence de l'eau. Cette dernière est mesurée à l'aide d'un disque de Secchi de 20 cm de diamètre, à quarts alternativement blancs ou noirs.

- Un premier échantillonnage est destiné aux dosages de micropolluants. Il est réalisé avec une bouteille à prélèvement verticale de type Kemmerer de 1,2 L en téflon. Les prélèvements unitaires sont répartis de manière équidistante sur l'ensemble de la zone euphotique puis homogénéisés dans un seau de 17 L en polyéthylène haute densité (PEHD). Cette opération peut être répétée si besoin jusqu'à obtention du volume nécessaire aux analyses. Le contenu est ensuite versé directement dans les différents flaconnages ou à l'aide d'un entonnoir en PEHD dans le cas de contenants à col étroit.
- Un second échantillonnage est destiné aux analyses phytoplanctoniques, aux analyses physico-chimiques classiques et à la quantification de la chlorophylle a. Si la zone euphotique est supérieure à 7 m, alors le prélèvement est réalisé au tuyau. Sinon, il est effectué à l'aide de la même bouteille à prélèvement verticale de type Kemmerer de 1,2 L en téflon.

La **zone profonde** est échantillonnée à profondeur fixe, entre 1 et 2 m du sédiment. L'opération est répétée jusqu'à l'obtention du volume nécessaire aux analyses. Dans le cas d'un échantillonnage à profondeur fixe et d'un grand volume d'eau souhaité, une bouteille téflonisée de type Niskin de 8 L peut être utilisée.

2.1.2.2 Prélèvements de sédiments

Les sédiments sont échantillonnés lors de la campagne 4 (septembre/octobre) à la benne Ekman, 15 cm x 15 cm. Les premiers centimètres de l'échantillon de la benne sont prélevés directement à l'aide d'une petite pelle en PEHD et transvasés dans les flaconnages fournis par le laboratoire d'analyse. Le prélèvement est répété un nombre de fois suffisant pour l'obtention du volume souhaité.

2.1.3 Paramètres mesurés

Les analyses physico-chimiques de pleine eau ont été confiées au Laboratoire Santé Environnement Hygiène de Lyon (CARSO-LSEHL), et les analyses sur sédiments au Laboratoire Départemental de la Drôme (LDA 26).

2.1.3.1 Paramètres de pleine eau

Deux types de paramètres de pleine eau ont été pris en considération :

- les paramètres mesurés in situ à chaque campagne :
 - température (°C), oxygène dissous (concentration en mg/L et taux de saturation en %), pH, conductivité à 25°C (μS/cm) et concentration en pigments chlorophylliens (μg/L). Ces paramètres sont mesurés sur l'ensemble de la colonne d'eau à l'aide d'une sonde multi paramètres munie d'un câble ;
 - o transparence (m) mesurée au disque de Secchi de 20 cm de diamètre, à quarts alternativement blancs ou noirs.
- les paramètres analysés en laboratoire sur prélèvements intégrés au niveau de la zone trophogène :
 - o paramètres généraux : azote Kjeldahl, ammonium, nitrates, nitrites, orthophosphates, phosphore total, carbone organique total, matières en suspension, turbidité, chlorophylle a et phéopigments, silice dissoute, demande biologique en oxygène (DBO), demande chimique en oxygène (DCO);
 - o paramètres de minéralisation : chlorures, sulfates, bicarbonates, calcium, magnésium, sodium, potassium, dureté totale, titre alcalimétrique complet (TAC) ;

o micropolluants : substances prioritaires, autres substances et pesticides en référence à l'arrêté du 17 octobre 2018 établissant le programme de surveillance de l'état des eaux. Les micropolluants organiques ont été mesurés sur les échantillons d'eau brute et les micropolluants minéraux sur l'eau filtrée du même prélèvement.

2.1.3.2 Paramètres du sédiment

Sur les sédiments, les échantillonnages ont été réalisés au cours de la quatrième campagne au niveau du point de plus grande profondeur, et prennent en compte les deux compartiments et les paramètres suivants :

- I'eau interstitielle : orthophosphates, phosphore total et ammonium ;
- la phase solide : carbone organique, azote Kjeldahl, phosphore total, matières organiques volatiles, granulométrie inférieure à 2 mm (argiles, limons fins et grossiers et sables fins et grossiers), et micropolluants suivant l'arrêté du 17 octobre 2018 établissant le programme de surveillance de l'état des eaux.

2.2 Compartiments biologiques

2.2.1 Phytoplancton

Le suivi du phytoplancton est effectué lors des mêmes campagnes que pour la physico-chimie des eaux et selon la norme d'échantillonnage du phytoplancton dans les eaux intérieures (XP T 90-719)⁵. Un prélèvement intégré est réalisé sur l'ensemble de la zone euphotique à l'aide d'un tuyau ou d'une bouteille à prélèvement (cf. §2.1.2.1) au droit du point le plus profond du plan d'eau (il s'agit du même prélèvement que celui réalisé pour l'analyse des paramètres physico-chimiques). Les échantillons de phytoplancton sont fixés au lugol, puis stockés au réfrigérateur avant détermination et comptage des objets algaux⁶ au sein du laboratoire du GREBE, selon la méthode Utermöhl⁷. L'inventaire et le dénombrement du phytoplancton sont réalisés, après passage en chambre de sédimentation, sous microscope inversé. En cas de difficulté d'identification ou de fortes abondances, une vérification des diatomées (algues microscopiques siliceuses) est réalisée en parallèle, entre lame et lamelle sous microscope droit, selon le mode préparatoire décrit par la norme NF T90-354⁸.

GREBE eau.sol.environnement

⁵ AFNOR. (2017). Qualité de l'eau - Échantillonnage du phytoplancton dans les eaux intérieures. XP T90-719 Septembre 2017.

⁶ Laplace-Treyture, C.; Barbe, J.; Dutartre, A.; Druart, J.-C.; Rimet, F.; Anneville, O.; *et al.* (Septembre 2009). *Protocole Standardisé d'échantillonnage, de conservation et d'observation du phytoplancton en plan d'eau*, v3.3.1. INRA, Cemagref.

⁷ AFNOR. (2006). Norme guide pour le dénombrement du phytoplancton par microscopie inversée (méthode Uthermöhl). NF EN 15204.

⁸ AFNOR. (2016). Échantillonnage, traitement et analyse de diatomées benthiques en cours d'eau et canaux. NF T90-354.

Les résultats sont présentés sous forme d'inventaires taxinomiques précisant pour chaque taxon le nombre de cellules dénombrées par mL et le biovolume total du taxon (mm³/L), accompagnés d'une représentation de l'évolution du peuplement algal en termes d'abondance relative des différents groupes algaux. L'Indice Phytoplanctonique Lacustre (IPLAC)⁹ est calculé à l'aide de l'outil SEEE (version 1.1.0 de l'indicateur).

2.2.2 Macrophytes

Le protocole mis en œuvre correspond à celui décrit dans la norme XP T 90-328 de décembre 2010 et intitulée « Echantillonnage des communautés de macrophytes en plans d'eau ». Cette norme s'applique à l'ensemble des plans d'eau douce naturels ou artificiels d'une superficie minimum de 5 hectares et dont le marnage n'excède pas 2 mètres. La retenue de Cize-Bolozon répond à ces critères et entre donc dans le champ de la norme.

Les investigations ont été menées dans le courant du mois d'août.

L'ensemble de la végétation macrophytique a fait l'objet d'une caractérisation à l'espèce tandis que les algues filamenteuses ont été déterminées au niveau générique. L'analyse porte sur la végétation aquatique (cf. transects en pleine eau) mais également sur la végétation de la zone humide rivulaire (exploration de la zone littorale potentielle de rive jusqu'à la limite des plus hautes eaux). Le protocole correspond à la démarche suivante :

- A Identification des différents types de rives présents sur le plan d'eau (4 modalités notées 1 à 4) sur la base de la carte IGN au 1/25000, de photos aériennes, de la bathymétrie disponible et d'un repérage de terrain.
- B Détermination de la distribution générale des unités d'observation sur les rives du plan d'eau en appliquant le protocole de Jensen. Le nombre de transects de base minimal (NTBM) varie entre 1 et 9 en fonction de la superficie du plan d'eau. Le nombre de transects de base (NTB) est par la suite calculé en tenant compte de la superficie exacte du plan d'eau. En dernier lieu, le nombre de transects retenu correspond au nombre de transects de base pondéré par le niveau de développement des rives du plan d'eau (cf. annexe B de la norme XP T 90-328).
- C Sélection des unités d'observations à retenir en fonction de leur représentativité par rapport à la typologie des rives. Le protocole prévoit un nombre d'unité d'observation

_

⁹ Laplace-Treyture, C.; Feret, T. (2016) *Performance of the Phytoplankton Index for Lakes (IPLAC): A multimetric phytoplankton index to assess the ecological status of water bodies in France.* Irstea UR EABX.

compris entre un minimum de 3 (plans d'eau compris entre 0,5 et 2,5 km²) et 8 (plans d'eau dépassant 10 km²).

Une unité d'observation comprend :

- la réalisation d'un relevé de la zone littorale d'au maximum 100 m comprenant notamment un relevé de la zone humide rivulaire jusqu'à la limite des plus hautes eaux ;
- la réalisation de 3 transects perpendiculaires à la rive d'environ 2 m de large. Chaque transect nécessite la réalisation de 30 prélèvements (points contact). A chaque point est relevée, outre la liste floristique des espèces présentes, la profondeur en eau (à l'échosondeur), ainsi que la nature du substrat lorsque celle-ci peut être déterminée. L'indice d'abondance des taxons observés est défini sur une échelle allant de 1 à 5.

L'Indice Biologique Macrophytes Lacustre (IBML) a été calculé à l'aide du SEEE (version 1.0.1 de l'indicateur). Cet indice n'est constitué pour l'instant que d'une seule métrique : la note de trophie. Il renseigne donc sur le niveau trophique du plan d'eau et sur les apports en éléments nutritifs au plan d'eau.

2.2.3 Phytobenthos

L'analyse du phytobenthos concerne l'échantillonnage des diatomées benthiques présentes sur la base immergée des hélophytes et sur des supports minéraux durs tel que décrit le protocole d'échantillonnage du phytobenthos en plans d'eau de l'Irstea (2013)¹⁰.

Les prélèvements sont réalisés au niveau des unités d'observation choisies avec l'échantillonnage des macrophytes, positionnées telles que décrites dans la norme XP T90-328 de décembre 2010.

L'échantillonnage doit se faire si possible sur 5 supports différents et sur les 2 types de substrat, puis sont conditionnés séparément dans de l'alcool.

Les phases de préparation des lames, d'inventaire des taxons et d'archivage des données sont détaillées dans le paragraphe 8 de la norme NF T90-354 de décembre 2007 pour la détermination de l'Indice Biologique Diatomique (IBD).

_

¹⁰ Echantillonnage des communautés de phytobenthos en plans d'eau. Irstea REBX – Version1.2 – Février 2013.

2.3 Calendrier du suivi 2022

Le *Tableau 1* présente les dates et types d'interventions réalisées sur la retenue de Cize-Bolozon au cours du suivi 2022. Ce plan d'eau appartient au contrôle opérationnel (CO), mis en place pour répondre aux exigences de la Directive cadre sur l'Eau en matière de surveillance des milieux. L'objectif de ce contrôle est d'évaluer spécifiquement les plans d'eau de plus de 50 ha qui risquent de ne pas atteindre leurs objectifs environnementaux. Les pressions suivantes sont à l'origine du risque de non atteinte du bon état sur ce plan d'eau : les pollutions par les nutriments agricoles, les pollutions par les nutriments urbains et industriels, l'altération de la continuité écologique et l'altération du régime hydrologique.

Tableau 1 – Calendrier des interventions sur la retenue de Cize-Bolozon en 2022

		Phys	sico-chimie	Compartiment biologique					
		Eau	Sédiments	Phytoplancton	Macrophytes	Phytobenthos			
C1	24/03/2022	Χ		X					
C2	08/06/2022	Χ		X					
Ca	02/08/2022	X		X					
C3	09/08/2022				X	X			
C4	20/09/2022	Χ	X	X					

Retenue de Cize-Bolozon (01), le 24/03/2022

3 Contexte général et caractéristiques du plan d'eau

La retenue de Cize-Bolozon se trouve dans les gorges de la rivière d'Ain, à 283 m d'altitude. D'une superficie totale de 238 ha pour une profondeur maximale théorique de 16 m, ce plan d'eau s'étend entre les départements de l'Ain (01), sur la commune de Matafelon-Granges, et du Jura (39), sur les communes de Thoirette et Corveissiat. C'est sur cette dernière que le barrage mobile de Cize-Bolozon a été construit entre 1928 et 1930. Ce type de barrage confère à l'eau un temps de séjour très court (2 jours). La Figure 2 permet de situer géographiquement le plan d'eau.

La retenue de Cize-Bolozon est principalement alimentée par la rivière d'Ain, en aval des retenues de Coiselet et de Vouglans. Le cours d'eau reçoit en amont du plan d'eau les eaux de la Valouse, en rive droite, et de l'Oignin en rive gauche, exutoire de la retenue de Charmine-Moux. Grâce à ses différents apports, le bassin versant drainé au niveau de la retenue de Cize-Bolozon est d'environ 2 560 km².

Mise en eau en 1931, la retenue de Cize-Bolozon est la plus ancienne retenue sur l'Ain du secteur. Elle fut ultérieurement incluse dans la « chaîne des retenues de l'Ain » dont la construction, plus tardive, date des années 1960. La *Figure 3* permet d'illustrer ce réseau de retenues.

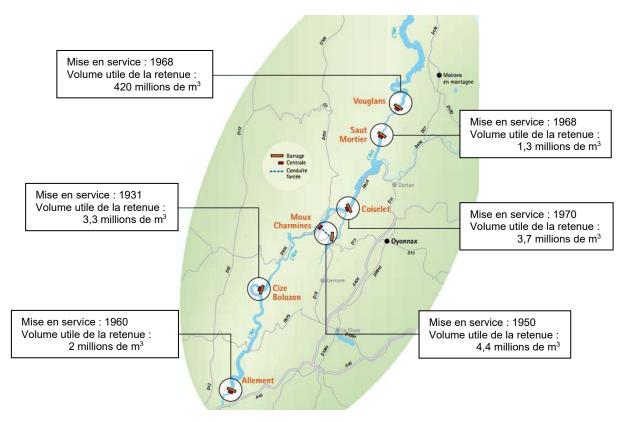


Figure 3 - Carte de localisation des retenues de la chaîne de l'Ain - Source : energie.edf.com.

Créé pour la production hydro-électrique, le plan d'eau, géré par EDF, est classé comme une masse d'eau fortement modifiée (MEFM), et une retenue de moyennes montagnes calcaires, peu profonde (A2) selon la typologie nationale. Il participe également au soutien d'étiage et à l'écrêtage des crues de l'Ain. Nautisme et motonautisme sont autorisés sur la retenue, un camping installé en rive droite, à Thoirette, complète le panel d'activités de loisirs.

La *Figure 4* présente le diagramme ombrothermique de l'année 2022 au niveau de la commune d'Ambérieu-en-Bugey. Le premier semestre de l'année est relativement sec, notamment les mois de mars, mai et juillet (0 mm de précipitations cumulées sur ce dernier mois). A l'opposé, durant cette même période, le mois de juin présente une forte pluviométrie (152 mm cumulés). Du mois d'août à la fin de l'année, le temps est plus humide, avec des cumuls mensuels de pluviométrie autour de 100 mm (sauf en octobre, 5 mm). Le cumul annuel de précipitations n'atteint qu'environ 900 mm en 2022, pour une normale de 1134 mm (période 1981-2010), soit un déficit de précipitation de 20 %. L'année a également était plus chaude que la chronique d'environ 2,1 °C en moyenne annuelle. Les plus grands écarts par rapport aux moyennes journalières ont eu lieu en février, mai et juin, puis en octobre.

L'hydrogramme 2022 de l'Ain à Pont-d'Ain figurant les dates d'interventions est présenté *Figure 5*. Il intègre à la fois la climatologie et le fonctionnement des retenues de la chaîne de l'Ain situées en

amont. Le premier semestre présente une hydrologie relativement peu élevée, avec un mois de mars relativement sec. Après un épisode hydrologique marqué en avril, l'Ain entre dans une période d'étiage relativement longue, de mi-mai à fin septembre, le lac de Vouglans déstockant habituellement avant la mi-septembre. Les quatre campagnes ont été réalisées pendant des périodes de débits de l'Ain stables.

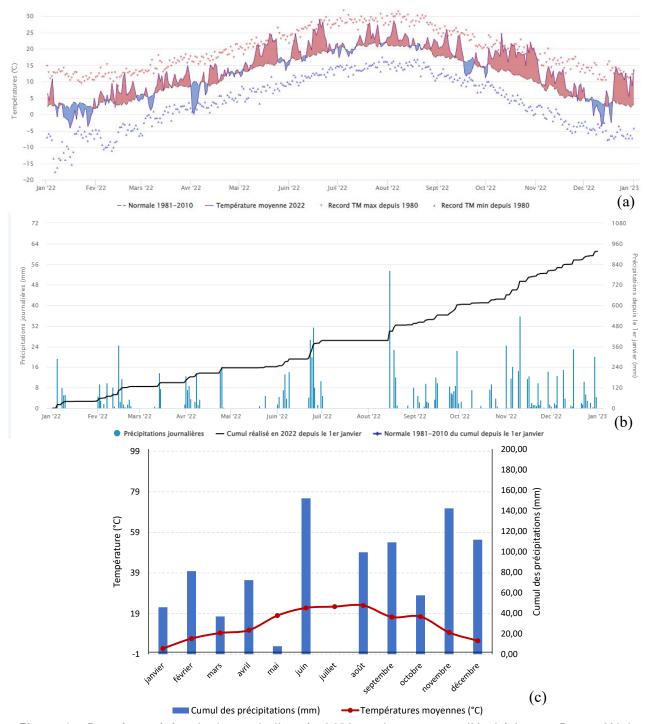


Figure 4 – Données météorologiques de l'année 2022 sur la commune d'Ambérieu-en-Bugey (Ain). Source des données : Infoclimat.fr). (a) Évolution des températures (°C) en 2022 ; (b) Évolution des précipitations en 2022 ; (c) Diagramme ombrothermique de 2022

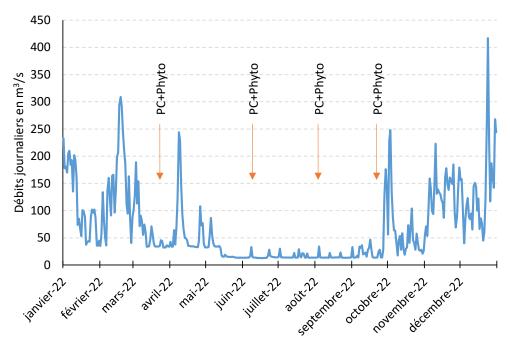
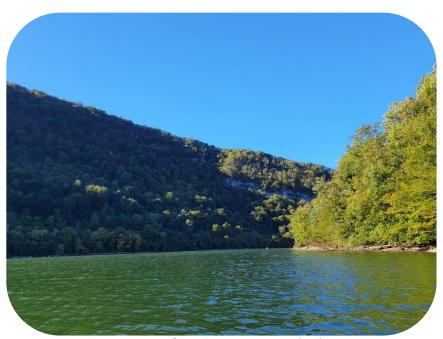



Figure 5 - Débits journaliers moyens de la rivière d'Ain à Pont-d'Ain (01) en 2022 (Source Banque Hydro – station V2712010).

Retenue de Cize-Bolozon, le 20/09/2022

4 Physico-chimie des eaux et des sédiments

4.1 Physico-chimie des eaux

4.1.1 Profils verticaux

Les profils des paramètres mesurés *in situ* (température, oxygène dissous, pH, conductivité et teneurs en pigments chlorophylliens) au cours des 4 campagnes de prélèvements du suivi 2022 sur la retenue de Cize-Bolozon sont présentés Figure 6.

Après la phase d'homothermie des eaux hivernales, une stratification thermique est observable en C2 et C3 avec un hypolimnion à 15°C séparé des couches supérieures (les 2-3 premiers mètres) dépassant les 20°C. Lors de la C4, la colonne d'eau est à nouveau homogène autour de 16°C. Cette stratification n'empêche pas l'hypolimnion de rester relativement oxygéné – 84% de saturation en oxygène en C2 et 68% dans le fond en C3. Les eaux chaudes de l'épilimnion où se concentre la production phytoplanctonique présentent de légère sursaturations, 120% en juin et 130% en août. Le pH varie peu, aussi bien dans le temps qu'au sein de la colonne d'eau. À 8,4 lors de la première campagne, il évolue autour de 8 en C2 et C4. Au plus fort de la stratification thermique, il baissera à 7,5 au sein l'hypolimnion, l'épilimnion se maintenant à un pH de 8.

La conductivité montre quant à elle des évolutions assez classiques et plus marquées. À sa plus haute valeur du suivi en C1, 370 μ S/cm, elle diminue dans les épilimnions des campagnes suivantes. Le phytoplancton s'y développant en consommant les sels minéraux, la conductivité passe à 330 μ S/cm puis à 290 μ S/cm. Étant restée à 370 μ S/cm dans l'hypolimnion, lorsque les couches se mélangent à nouveau en C4, elle s'homogénéise à 320 μ S/cm au sein de la colonne d'eau.

En début de production, les niveaux de chlorophylle a mesurés dans la colonne d'eau sont relativement moyens à peu élevés, évoluant globalement entre 2 et 5 µg/l en C1 et C2. Au sein de l'épilimnion de la C3, la concentration en chlorophylle atteint 8,7 µg/L traduisant une augmentation de la production phytoplanctonique en lien avec la sursaturation en oxygène de 130% qui y est observée. L'évolution de la chlorophylle en C4 est plus compliquée. Dans une masse d'eau brassée, on observe un fort pic à 5 m, 21,4 µg/L, puis des valeurs proches de 10 µg/L jusqu'à 10 m. La zone euphotique où peut se dérouler la photosynthèse s'étend lors de cette campagne sur 7 m. Du phytoplancton capable de migration peut ainsi se placer en limite de zone euphotique pour certaines raisons, comme par exemple une meilleure disponibilité en nutriments ou encore éviter la prédation. Les mesures à 10 et 12 µg/l et 9 et 10 m restent surprenantes.

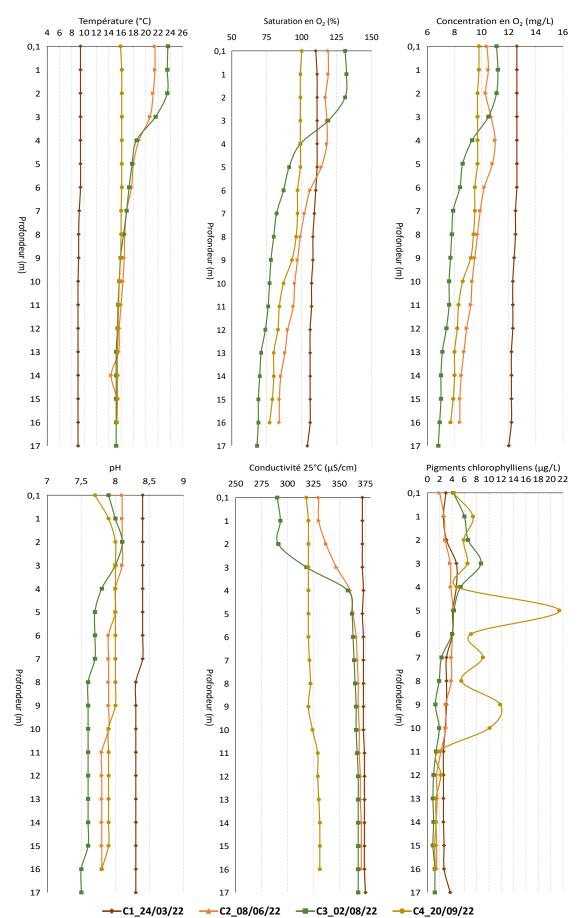


Figure 6 - Profils physico-chimiques de la campagne 2022 sur la retenue de Cize-Bolozon (Ain).

Il est à noter que la stratification assez franche observée pour certains paramètres et sur certaines campagnes est assez rare sur ce plan d'eau au temps de séjour réduit. Les conditions hydro-climatiques de l'année 2022, année exceptionnellement chaude, ensoleillée et peu arrosée, expliquent la situation observée (cf §3).

4.1.2 Paramètres de minéralisation

Le *Tableau* 2 liste les paramètres de minéralisation et leurs valeurs mesurées au sein de la retenue de Cize-Bolozon lors du suivi 2022. Les ions bicarbonates et calcium sont en fortes concentrations en lien avec la géologie du bassin de la retenue. Elles diminuent au fil des campagnes 1 à 3 sous l'influence du développement phytoplanctonique dans les couches supérieures avant de se stabiliser lors du brassage de la masse d'eau en C4.

Tableau 2 : Résultats pour les paramètres de minéralisation quantifiés sur la retenue de Cize-Bolozon en 2022.

			Limite de	C	1	C	2	C	:3	C	4
Code sandr	e Paramètre	Unité	quantification	Intégré	Fond	Intégré	Fond	Intégré	Fond	Intégré	Fond
1327	Bicarbonates*	mg(HCO3)/L	6,1	234	243	211	230	175	218	194	199
1337	Chlorures*	mg(CI)/L	0,1	5,8	5,7	5,5	5,8	6,6	5,6	8,3	7,5
1338	Sulfates*	mg(SO4)/L	0,2	4,4	4,4	4,7	4,4	4,5	4	5,2	5
1345	Dureté*	°F	0,5	18	19,4	17,4	18,3	13,6	17,5	15,1	16
1347	TAC*	°F	0,5	19,2	19,9	17,3	18,9	14,4	17,9	15,9	16,3
1367	Potassium*	mg(K)/L	0,1	0,7	0,7	0,8	0,8	0,8	0,8	0,8	0,7
1372	Magnésium*	mg(Mg)/L	0,05	3,3	3,5	3,5	3,6	3,6	3,6	4	4
1374	Calcium*	mg(Ca)/L	0,1	66,7	71,9	63,7	67,4	48,4	64,2	53,8	57,5
1375	Sodium*	mg(Na)/L	0,2	4,3	3,5	3,3	3,4	3,8	4,1	5,1	4,4

^{*} paramètres analysés sur eau filtrée

4.1.3 Paramètres physico-chimiques généraux (hors micropolluants)

Les résultats analytiques des paramètres physico-chimiques hors micropolluants de la retenue de Cize-Bolozon en 2022 sont disponibles dans le *Tableau 3*. La *Figure 7* représente plus spécifiquement les évolutions conjointes des concentrations en chlorophylle a et phéopigments reflétant la dynamique phytoplanctonique, des matières en suspensions totales en surface et de la transparence au sein de la zone trophogène.

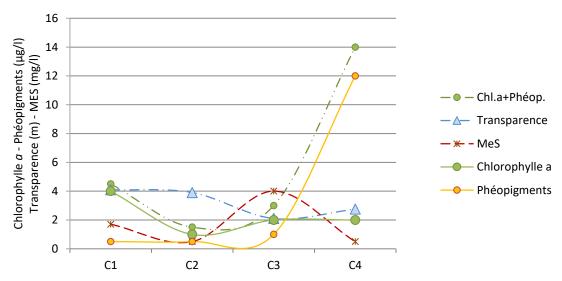


Figure 7 – Graphique de l'évolution conjointe des concentrations pigmentaires (chlorophylle a + phéopigments) de la transparence et des matières en suspension (MES) au cours des campagnes 2022 sur la retenue de Cize-Bolozon.

Tableau 3 – Résultats des analyses physico-chimiques (hors micropolluants) quantifiés sur la retenue de Cize-Bolozon en 2022.

			Limite de	С	1	С	2	C	3	С	4
Code sandre	Paramètre	Unité	quantification	Intégré	Fond	Intégré	Fond	Intégré	Fond	Intégré	Fond
1436	Phéopigments	μg/L	1	<lq< td=""><td>-</td><td><lq< td=""><td>-</td><td>1</td><td>-</td><td>12</td><td>-</td></lq<></td></lq<>	-	<lq< td=""><td>-</td><td>1</td><td>-</td><td>12</td><td>-</td></lq<>	-	1	-	12	-
1439	Chlorophylle a	μg/L	1	4	-	1	-	2	-	2	-
1332	Transparence	m	0,01	4,1	-	3,9	-	2,1	-	2,75	-
1295	Turbidité (Formazine Néphélométrique)	NFU	0,1	1,7	1,5	1,9	1,5	2	2,5	3,4	2,6
1305	MeS	mg/L	1	1,7	2,1	<lq< td=""><td><lq< td=""><td>4</td><td>2</td><td><lq< td=""><td>3,3</td></lq<></td></lq<></td></lq<>	<lq< td=""><td>4</td><td>2</td><td><lq< td=""><td>3,3</td></lq<></td></lq<>	4	2	<lq< td=""><td>3,3</td></lq<>	3,3
6048	Matières Minérales en Suspension	mg/L	100	<lq< td=""><td>-</td><td><lq< td=""><td>-</td><td><lq< td=""><td>-</td><td><lq< td=""><td>-</td></lq<></td></lq<></td></lq<></td></lq<>	-	<lq< td=""><td>-</td><td><lq< td=""><td>-</td><td><lq< td=""><td>-</td></lq<></td></lq<></td></lq<>	-	<lq< td=""><td>-</td><td><lq< td=""><td>-</td></lq<></td></lq<>	-	<lq< td=""><td>-</td></lq<>	-
1313	DBO	mg(O2)/L	0,5	1,2	0,9	0,9	1,1	0,9	0,5	1,3	0,8
1314	DCO	mg(O2)/L	20	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
1841	Carbone organique*	mg(C)/L	0,2	1,9	1,7	1,9	2,3	0,83	1,9	2,8	2,2
1342	Silicates*	mg(SiO2)/L	0,05	1,9	2	2	2,7	1,6	2,1	1,8	1,9
1319	Azote Kjeldahl	mg(N)/L	0,5	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
1335	Ammonium*	mg(NH4)/L	0,01	0,01	0,01	0,05	0,05	0,13	0,04	0,02	0,04
1339	Nitrites*	mg(NO2)/L	0,01	0,01	0,01	0,03	0,03	0,02	0,02	0,02	0,02
1340	Nitrates*	mg(NO3)/L	0,5	2,9	3,3	2,9	2,3	0,98	2,3	2,9	3,2
1350	Phosphore total	mg(P)/L	0,005	<lq< td=""><td><lq< td=""><td>0,01</td><td>0,014</td><td>0,012</td><td><lq< td=""><td>0,012</td><td>0,012</td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,01</td><td>0,014</td><td>0,012</td><td><lq< td=""><td>0,012</td><td>0,012</td></lq<></td></lq<>	0,01	0,014	0,012	<lq< td=""><td>0,012</td><td>0,012</td></lq<>	0,012	0,012
1433	Phosphates*	mg(PO4)/L	0,01	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,02</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,01</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,02</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,01</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,02</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,01</td></lq<></td></lq<></td></lq<></td></lq<>	0,02	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,01</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,01</td></lq<></td></lq<>	<lq< td=""><td>0,01</td></lq<>	0,01

^{*} paramètres analysés sur eau filtrée

La concentration en chlorophylle *a* lors de la C1 est plutôt légèrement élevée pour un début de production. Elle baisse ensuite et devient assez faible en C2 et C3 alors que le pic de production est généralement observé lors de cette troisième campagne. La dernière campagne se démarque par une très forte concentration en phéopigments, 12 µg/L, qui reflète un état dégradé du phytoplancton en C4.

Les concentrations en nutriments ammonium, nitrites, nitrates, azote Kjeldahl, phosphates et phosphore totale sont relativement faibles tout au long du suivi. En C2, le stock de nitrates n'a pas évolué traduisant une faible production printanière confirmée par la faible concentration en chlorophylle *a* (1 µg/L). Ils sont ensuite consommés en C3, leur concentration est alors divisée par

3, passant de 2,9 à 0,98 mg(NO₃-)/L. L'ammonium connait au contraire une nette augmentation de sa concentration qui évolue graduellement de 0,01 à 0,05 puis 0,13 mg(NH₄+)/L dans l'épilimnion au fil des campagnes 1 à 3. En phase d'homothermie automnale, elle redescend à 0,02 mg(NH₄+)/L. Toutes ces valeurs restent toutefois relativement peu élevées.

4.1.4 Micropolluants minéraux

Le *Tableau 4* contient les concentrations en micropolluants métalliques ayant été quantifiés au moins une fois dans les prélèvements intégrés et de fond réalisés en 2022 sur la retenue de Cize-Bolozon. La liste exhaustive des micropolluants recherchés dans les prélèvements d'eau est présentée en annexe 1.

Quinze métaux ont ainsi été quantifiés en 2022, notamment l'arsenic, le cuivre, le nickel et le zinc, tous en concentrations peu élevées.

Tableau 4 – Résultats d'analyses de métaux sur eau filtrée sur la retenue de Cize-Bolozon en 2022.

	Code		C	1	C	2	C	:3	C	24
Paramètre	sandre	Unité	<u>Intégré</u>	Fond	<u>Intégré</u>	Fond	<u>Intégré</u>	Fond	<u>Intégré</u>	Fond
Aluminium	1370	μg(AI)/L	4	4	3,8	2,3	<2	<2	<2	2,1
Arsenic	1369	μg(As)/L	0,25	0,24	0,42	0,36	0,45	0,34	0,4	0,37
Baryum	1396	μg(Ba)/L	3,6	3,6	4,5	4,2	3,6	3,6	3,5	3,4
Cobalt	1379	μg(Co)/L	<0,05	<0,05	0,06	0,06	<0,05	<0,05	<0,05	<0,05
Cuivre	1392	μg(Cu)/L	0,46	0,56	0,47	0,5	0,4	0,54	0,54	0,58
Fer	1393	μg(Fe)/L	11,9	12,4	18,1	13,6	11,5	10,2	13,7	13,4
Lithium	1364	μg(Li)/L	<0,5	<0,5	0,5	<0,5	<0,5	<0,5	0,5	<0,5
Manganèse	1394	μg(Mn)/L	1,3	1,2	<0,5	<0,5	<0,5	<0,5	<0,5	0,6
Nickel	1386	μg(Ni)/L	<0,5	0,5	0,6	0,6	<0,5	<0,5	0,5	0,6
Plomb	1382	μg(Pb)/L	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	0,06
Sélénium	1385	μg(Se)/L	0,24	0,16	0,14	<0,1	0,14	0,18	0,11	0,11
Thallium	2555	μg(TI)/L	<0,01	<0,01	<0,01	0,012	<0,01	<0,01	<0,01	<0,01
Uranium	1361	μg(U)/L	0,3	0,28	0,31	0,3	0,25	0,25	0,23	0,23
Vanadium	1384	μg(V)/L	0,23	0,24	0,17	0,16	0,16	0,15	0,2	0,21
Zinc	1383	μg(Zn)/L	<1	<1	1,31	<1	<1	<1	<1	<1

4.1.5 Micropolluants organiques

Le *Tableau 5* recense tous les micropolluants organiques quantifiés au moins une fois dans les prélèvements réalisés en 2022 sur la retenue de Cize-Bolozon. L'annexe 1 présente la liste exhaustive des micropolluants recherchés sur eau.

La campagne 4 se démarque avec 24 substances quantifiées dans le prélèvement de zone euphotique. Toutefois, la majorité des micropolluants organiques ne sont quantifiés que de manière sporadique, seuls un antidiabétique, la metformine, et un anti-corrosif, le tolytriazole, sont quantifiés à chaque campagne dans les deux prélèvements. Il est à souligner que la C1 est la seule campagne où la caféine n'est pas quantifiée, et ce en raison d'une limite de quantification nettement plus

élevée, 0,079 μg/L au lieu de 0,01 μg/L dans les autres campagnes. Il en est de même pour la nicotine.

Un plastifiant, le DEHP, est mesuré en concentration moyenne (0,45 µg/L) dans le prélèvement de fond de la C1. Son évolution ne peut être cernée car s'il n'est pas quantifié en C3 et C4, cela peut être dû à la forte augmentation de la limite de quantification pour ces deux campagnes, passant de 0,2 µg/L en C1 et C2 à environ 1 en C3 et 0,5 µg/L en C4.

Un tensioactif fluoré, l'acide perfluorooctanesulfonique (PFOS), a été quantifié sur 3 échantillons en campagnes 3 et 4, en des valeurs assez proches de sa limite de quantification (LQ). Il s'agit d'un imperméabilisant très persistant dans l'environnement. Selon les règles de l'arrêté « Évaluation » du 27/07/2018¹¹, la limite de quantification étant supérieure à la norme de qualité environnementale (NQE en moyenne annuelle) définie pour ce paramètre et la valeur moyenne calculée sur les 8 échantillons analysés restant inférieure à la LQ, la substance n'est pas prise en compte dans l'évaluation de l'état chimique de la masse d'eau. Cette substance est également ponctuellement quantifiée sur les retenues voisines de Charmines-Moux et Coiselet.

En résumé, sont quantifiés au moins une fois dans la retenue de Cize-Bolozon en 2022 :

- 18 produits de l'industrie dont six plastifiants, avec le DEHP mentionné plus haut pour sa concentration hivernale, un HAP, le naphtalène, en faible concentration et le PFOS discuté ci-dessus;
- 2 pesticides, le dichlorvos et le tétraphénylétain, quantifiés uniquement en C4;
- 6 médicaments, le 2-hydroxy-ibuprofen, la carbamazepine, la gabapentine, l'irbesartan, la metformine, l'oxazepam et le tramadol ;
- Et enfin la nicotine, la caféine et leurs produits de dégradation, cotinine et 1,7dimethylxanthine.

_

¹¹ Ministre d'Etat, ministre de la transition écologique et solidaire, et ministre des solidarités et de la santé. Arrêté du 27 juillet 2018 modifiant l'arrêté du 25 janvier 2010 relatif aux méthodes et critères d'évaluation de l'état écologique, de l'état chimique et du potentiel écologique des eaux de surface pris en application des articles R. 212-10, R. 212-11 et R. 212-18 du code de l'environnement

Tableau 5 – Résultats d'analyses des micropolluants organiques sur eau brute sur la retenue de Cize-Bolozon en 2022

				C	1	C	2	C	3	(24
Paramètre	Code sandre	Famille	Unité	Intégré	Fond	Intégré	Fond	Intégré	Fond	Intégré	Fond
1,7-Dimethylxanthine	6751	Psychotropes	μg/L	<0,05	<0,048	<0,02	0,054	0,039	0,079	<0,02	<0,02
2-Hydroxy Ibuprofen	7012	-	μg/L	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	0,016	<0,01
4-tert-butylphénol	2610	Phénols	μg/L	<0,01	<0,01	<0,01	0,011	<0,01	<0,01	<0,06	<0,07
Acide perfluorooctanesulfonique (PFOS)	6560	Tensioactif fluoré	μg/L	<0,002	<0,002	<0,002	<0,002	0,0022	<0,002	0,0027	0,0022
BDE209	1815	Diphényléthers bromés	μg/L	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	0,013	<0,005
Benzotriazole	7543	Triazoles et imidazoles	μg/L	<0,02	<0,02	0,032	<0,02	0,04	<0,02	0,059	0,025
Cafeine	6519	-	μg/L	<0,079	<0,079	0,027	0,067	0,086	0,183	0,043	<0,01
Carbamazepine	5296	-	μg/L	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	0,005	<0,005
Cotinine	6520	-	μg/L	<0,016	<0,014	0,006	0,008	0,074	0,007	0,007	<0,005
Cyanures libres	1084	-	μg(CN)/L	<0,2	<0,2	0,5	0,42	1,67	1,2	0,2	<0,2
DEHP	6616	Phtalates	μg/L	<0,2	0,45	0,23	<0,2	<0,88	<1,2	<0,5	<0,4
Dibutyletain cation	7074	Organo étains	μg/L	<0,00039	<0,00039	<0,00039	0,00064	<0,00039	<0,00039	0,00042	<0,00039
Dichlorvos	1170	Organo phosphorés	μg/L	<0,0002	<0,0002	<0,0002	<0,0002	<0,0002	<0,0002	0,00023	0,00052
Diphenyletain cation	7495	Organo étains	μg/L	<0,00046	<0,00046	<0,00046	<0,00046	<0,00046	<0,00046	0,015	<0,00046
Formaldéhyde	1702	Aldéhydes	μg/L	1	<1	<1	<1	<1	<1	<1	<1
Gabapentine	7602	Antiépileptique	μg/L	0,014	<0,01	0,014	<0,01	0,013	<0,01	0,013	<0,01
Irbesartan	6535	Antihypertenseur	μg/L	0,014	0,012	0,005	0,006	<0,005	<0,005	0,016	0,014
Metformine	6755	Antidiabétiques	μg/L	0,0851	0,102	0,065	0,0639	0,0808	0,0605	0,0732	0,0602
Monobutyletain cation	2542	Organo étains	μg/L	<0,0025	<0,0025	0,04	0,21	<0,0025	<0,0025	0,039	<0,0025
Monooctyletain cation	7496	Organo étains	μg/L	<0,00039	<0,00039	<0,00039	<0,00039	<0,00039	<0,00039	0,0086	<0,00039
Monophenyletain cation	7497	Organo étains	μg/L	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	0,0054	<0,001
Naphtalène	1517	HAP	μg/L	<0,005	0,00521	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
n-Butyl Phtalate	1462	Phtalates	μg/L	<0,05	<0,05	0,11	<0,07	<0,38	<0,16	<0,05	<0,05
N-Butylbenzenesulfonamide	5299	Benzènes	μg/L	<0,1	<0,1	<0,1	<1	0,27	0,348	0,147	0,111
Nicotine	5657	-	μg/L	<0,487	<0,217	0,108	<0,115	0,515	<0,096	0,076	0,111
Nitrophénol-2	1637	Phénols	μg/L	<0,02	<0,02	<0,02	<0,02	<0,02	0,031	<0,02	<0,02
Oxazepam	5375	-	μg/L	<0,005	<0,005	<0,005	0,005	<0,005	<0,005	0,008	0,006
Tétraphénylétain	5249	Organo étains	μg/L	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	0,005	<0,005
Tolyltriazole	6660	-	μg/L	0,008	0,008	0,016	0,02	0,012	0,011	0,02	0,014
Tramadol	6720	-	μg/L	<0,005	<0,005	<0,005	<0,005	0,006	<0,005	0,007	<0,005

Il s'agit d'une présentatio des résultats bruts, certaines valeurs pouvant être qualifiées d'incertaines suite à la validation finale des résultats (cas par exemple des valeurs mesurées en BTEX, DEHP, formaldéhyde, dont une contamination via la chaîne de prélèvement et/ou d'analyse de laboratoire est parfois privilégiée).

4.2 Physico-chimie des sédiments

4.2.1 Paramètres physico-chimiques généraux (hors micropolluants)

Le *Tableau 6* fournit les éléments de granulométrie et de physico-chimie générale des sédiments de la retenue de Cize-Bolozon prélevés en C4, le 20/09/22.

Les sédiments apparaissent sur la *Figure 8* compacts, argilo-limoneux, avec 84,5% d'argiles et de limons fins, homogènes bruns avec présence de litière (débris organiques). Ils contiennent peu de carbone organique, d'azote et de phosphore mais une part notable de matière organique (7%).

Figure 8 - Sédiments de la retenue de Cize-Bolozon prélevés au niveau du point profond le 20/09/22.

L'eau interstitielle est assez peu chargée en phosphore et pauvre en ammonium, reflétant un potentiel de relargage faible pour ces éléments. Les phosphates quant à eux n'étant pas quantifiés et compte tenu de leur limite de quantification correspondant à une charge déjà importante (1,5 mg(PO₄³⁻), il est impossible de conclure sur leur concentration.

Tableau 6 – Physico-chimie et granulométrie des sédiments de la retenue de Cize-Bolozon, le 20/09/22.

				Limite de	
Fraction	Code sandre	Paramètre	Unité	quantification	Valeur
Particule inf. 2 mm	1307	Matière sèche à 105°C	%	0,1	53,5
Particule inf. 2 mm	5539	Matière Sèche Minérale (M.S.M)	% MS	-	92,8
Particule inf. 2 mm	6578	Perte au feu à 550°C	% MS	0,1	7,2
Particule inf. 2 mm	1841	Carbone organique	mg/(kg MS)	1000	10800
Eau intersticielle filtré	1433	Phosphates	mg(PO4)/L	1,5	<lq< td=""></lq<>
Eau intersticielle brute	1350	Phosphore total	mg(P)/L	0,1	0,4
Eau intersticielle filtré	1335	Ammonium	mg(NH4)/L	0,5	1,3
Particule inf. 2 mm	1319	Azote Kjeldahl	mg/(kg MS)	200	1610
Particule inf. 2 mm	1350	Phosphore total	mg/(kg MS)	2	422
Particule inf. 2 mm	6228	Teneur en fraction inférieure à 20 µm	% MS	-	65,6
Particule inf. 2 mm	3054	Teneur en fraction de 20 à 63 µm	% MS	-	18,9
Particule inf. 2 mm	7042	Teneur en fraction de 63 à 150 μm	% MS	-	11,5
Particule inf. 2 mm	7043	Teneur en fraction de 150 à 200 μm	% MS	-	2,7
Particule inf. 2 mm	7044	Teneur en fraction supérieure à 200 μm	% MS	-	1,4

4.2.2 Micropolluants minéraux

Les 25 micropolluants minéraux recherchés dans les sédiments ont été quantifiés en 2022. Le *Tableau 7* donne les concentrations mesurées pour chacun d'entre eux.

Tableau 7 – Micropolluants minéraux quantifiés dans les sédiments de la retenue de Cize-Bolozon (le 20/09/22)

			Limite de	
Paramètre	Code sandre	Unité	quantification	Valeur
Aluminium	1370	mg/(kg MS)	5	6950
Antimoine	1376	mg/(kg MS)	0,2	0,4
Argent	1368	mg/(kg MS)	0,1	0,1
Arsenic	1369	mg/(kg MS)	0,2	5,7
Baryum	1396	mg/(kg MS)	0,4	20,9
Beryllium	1377	mg/(kg MS)	0,2	0,3
Bore	1362	mg/(kg MS)	1	18,8
Cadmium	1388	mg/(kg MS)	0,1	0,4
Chrome	1389	mg/(kg MS)	0,2	21,5
Cobalt	1379	mg/(kg MS)	0,1	2,8
Cuivre	1392	mg/(kg MS)	0,2	13,2
Etain	1380	mg/(kg MS)	0,2	2,8
Fer	1393	mg/(kg MS)	5	7190
Lithium	1364	mg/(kg MS)	0,2	10,9
Manganèse	1394	mg/(kg MS)	0,4	184
Mercure	1387	mg/(kg MS)	0,01	0,04
Molybdène	1395	mg/(kg MS)	0,2	0,5
Nickel	1386	mg/(kg MS)	0,2	2,8
Plomb	1382	mg/(kg MS)	0,1	18,2
Sélénium	1385	mg/(kg MS)	0,2	0,5
Thallium	2555	mg/(kg MS)	0,1	0,1
Titane	1373	mg/(kg MS)	1	777
Uranium	1361	mg/(kg MS)	0,2	1,1
Vanadium	1384	mg/(kg MS)	0,2	27,3
Zinc	1383	mg/(kg MS)	0,4	67,5

Aluminium et fer ont des concentrations importantes, autour de 7 000 mg/(kg MS) chacun, toutefois ces deux métaux sont naturellement abondants dans les sédiments. Les autres, notamment l'arsenic, le cadmium, le chrome, le cuivre, le mercure, le nickel, le plomb et le zinc, sont mesurés en faibles concentrations.

4.2.3 Micropolluants organiques

Le *Tableau 8* liste les 35 micropolluants organiques quantifiés dans les sédiments de la retenue de Cize-Bolozon prélevé le 20/09/2022. La liste exhaustive des substances recherchées dans les sédiments est consultable en annexe.

Parmi les molécules quantifiées, nous retrouvons :

23 HAP représentant une concentration totale relativement moyenne de 2 414,5 μg/(kg MS).
 Parmi eux, on notera principalement l'anthracène, le benzo (a) anthracène, le benzo (a) pyrène, le benzo (b) fluoranthène, le benzo (ghi) pérylène, le benzo (k) fluoranthène, le

chrysène, le dibenzo (ah) anthracène, le fluoranthène, l'indéno (1,2,3-cd) pyrène, le pérylène, le phénanthrène et le pyrène ;

- 8 PCB pour une concentration totale peu élevée de 11 μg/(kgMS);
- 2 substances issues de productions industrielles, un plastifiant, le DEHP, également quantifié dans l'eau (cf. § 4.1.5), et un retardateur de flamme, le BDE209.

Tableau 8 — Micropolluants minéraux quantifiés dans les sédiments de la retenue de Cize-Bolozon (20/09/22)

Paramètre	Code sandre	Familla	Unité	Limite de quantification	Valaur
Acénaphtylène	1622	HAP	μg/(kg MS)	10	Valeur 24
Anthanthrene	7102	HAP	μg/(kg MS)	10	50,1
Anthracène	1458	HAP	μg/(kg MS)	10	55
Anthraguinone	2013	HAP	μg/(kg MS)	4	20
BDE209	1815	Diphényléthers bromés		5	7
Benzo (a) Anthracène	1082	HAP		10	171
, ,	1115	НАР	μg/(kg MS)	10	191
Benzo (a) Pyrène		НАР	μg/(kg MS)	10	257
Benzo (b) Fluoranthène	1116		μg/(kg MS)		
Benzo (ghi) Pérylène	1118	HAP	μg/(kg MS)	10	116
Benzo (k) Fluoranthène	1117	HAP	μg/(kg MS)	10	104
Benzo(c)fluorène	7279	HAP	μg/(kg MS)	10	21,5
Benzo(e)pyrène	1460	HAP	μg/(kg MS)	10	138
Chrysène	1476	HAP	μg/(kg MS)	10	156
Dibenzo (ah) Anthracène	1621	HAP	μg/(kg MS)	10	21
Dibenzo(a,c)anthracene	7105	HAP	μg/(kg MS)	10	20,2
Dibenzofuran	2763	Furanes	μg/(kg MS)	5	7,4
Fluoranthène	1191	HAP	μg/(kg MS)	10	331
Fluorène	1623	HAP	μg/(kg MS)	10	12
Indéno(1,2,3-cd)pyrène	1204	HAP	μg/(kg MS)	10	109
Méthyl-2-Fluoranthène	1619	HAP	μg/(kg MS)	10	31
Naphtalène	1517	HAP	μg/(kg MS)	10	14
n-Butyl Phtalate	1462	Phtalates	μg/(kg MS)	50	63
PCB 101	1242	PCB	μg/(kg MS)	1	1
PCB 118	1243	PCB	μg/(kg MS)	1	1
PCB 132	6463	PCB	μg/(kg MS)	1	1
PCB 138	1244	PCB	μg/(kg MS)	1	2
PCB 149	1885	PCB	μg/(kg MS)	1	1
PCB 153	1245	PCB	μg/(kg MS)	1	2
PCB 170	1626	PCB	μg/(kg MS)	1	1
PCB 180	1246	PCB	μg/(kg MS)	1	1
PCB 52	1241	PCB	μg/(kg MS)	1	1
Pérylène	1620	HAP	μg/(kg MS)	10	139
Phénanthrène	1524	HAP	μg/(kg MS)	10	122
Pyrène	1537	HAP	μg/(kg MS)	10	271
Triphenylene	7124	HAP	μg/(kg MS)	10	40,7

La concentration en HAP dans les sédiments augmente à chaque suivi de près de $600 \,\mu\text{g/(kg MS)}$. De $605 \,\mu\text{g/kg MS}$ en 2010, elle est passée à $1.025 \,\mu\text{g/kg MS}$ puis à $1.546 \,\mu\text{g/(kg MS)}$ en $2016 \,\text{et}$ 2 $414,5 \,\mu\text{g/(kg MS)}$ cette année. Leur nombre a presque doublé depuis 2016. Cependant, le nombre de molécules recherchées augmentant également tous les ans, il est possible que certaines molécules quantifiées en 2022 étaient déjà présentes lors des suivis précédents mais non recherchées.

5 Compartiments biologiques

5.1 Phytoplancton

Le peuplement phytoplanctonique de la retenue de Cize-Bolozon a été échantillonné lors des 4 campagnes du suivi 2022. Son évolution aussi bien en termes de concentration que de biovolume est représentée *Figure 9*. Les taxons représentant plus de 2% du biovolume global sont donnés par campagne *Tableau* 9. Le rapport d'analyses fourni en annexe comprend les listes exhaustives.

Le phytoplancton de Cize-Bolozon montre une augmentation croissante de sa concentration totale au fil des campagnes, passant de 3 255 cell./mL en C1 à plus de 25 000 cell./mL. Lors des deux campagnes suivantes, elle devient très importante, autour de 70 000 cell./mL suite au développement estival des cyanophycées. En termes de biovolume, il est faible en C1, soit 0,65 mm³/mL puis double lors des campagnes 2 et 3 atteignant autour de 1,3 mm³/mL. Il double encore une fois entre C3 et C4 mais reste relativement peu important.

Rhodomonas lens est une grande cryptophycée flagellée, donc mobile au sein de la colonne d'eau, au développement précoce. Ainsi, en C1, elle représente à elle seule 41% de la concentration totale et 47% du biovolume global du peuplement. Avec le réchauffement printanier des eaux de surface, elle est rapidement concurrencée par la chlorophycée *Choricystis minor* qui compte pour 78% des cellules dénombrées. Avec *Cryptomonas curvata* et des individus du genre *Mallomonas*, ils représentent 37 % du biovolume du peuplement. La première est une grande cryptophyte flagellée printanière assez courante. Les algues unicellulaires du genre *Mallomonas* sont également flagellées mais sont munies de plaques voire de cornes siliceuses pour se protéger de la prédation. Les espèces de ce genre prolifèrent souvent lorsqu'un nutriment vient à manguer.

À partir de la C3, les cyanophycées vont très fortement faire augmenter la concentration algale et en représenter environ 80% en C3 et C4. En août, il s'agit surtout de deux très petites espèces du genre *Cyanogranis*, *C. irregularis* et *C. libera*. En septembre, la moitié des cyanophycées appartient à l'espèce *Aphanocapsa incerta*, taxon bénin appréciant les milieux riches en nutriments. Ces trois taxons dominant les concentrations algales estivales traduisent en général plutôt des milieux riches en nutriments.

En termes de biovolume, les choses ne sont pas aussi tranchées. En effet, en C3 les algues du genre *Cryptomonas* sont les plus contributives au biovolume global, représentant environ 30% de celui-ci. En C4, c'est *Uroglenopsis americana* compte pour un tiers du biovolume global. Cette chrysophycée mobile peut être dominante en été dans les masses d'eau oligo-mésotrophes, donc peu riches en nutriments, mais peut également être capable de mixotrophie en cas de pénurie nutritionnelle.

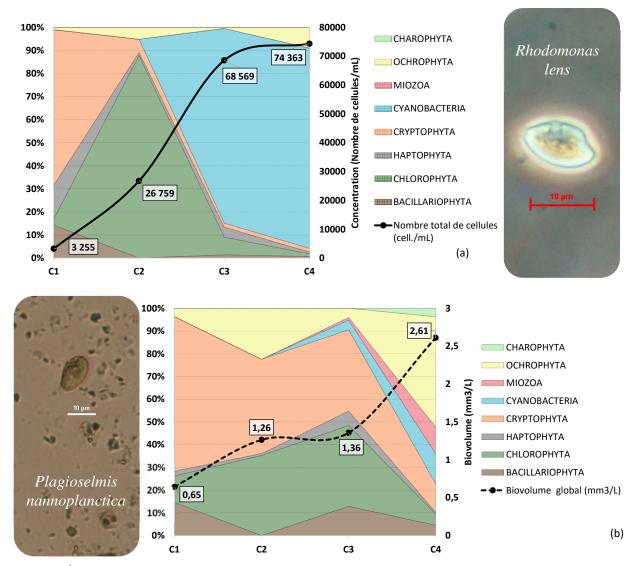


Figure 9 - Évolution de la structure des populations phytoplanctoniques de la retenue de Cize-Bolozon des 4 campagnes de prélèvements 2022 (regroupées selon leurs embranchements). (a) Évolution en termes de concentration (exprimée en nombre de cellules par mL d'eau) ; (b) Évolution en termes de biovolume algal (exprimé en mm3/L).

L'indice phytoplancton lacustre (**IPLAC**) est calculé sur les trois campagnes estivales de production. De **0,86**, il traduit un « très bon état » à l'aune de cet indice. La sous-métrique de biomasse algale (**MBA**) est très élevée (**1,065**) grâce aux concentrations en chlorophylle *a* peu élevées (cf. § 4.1.3). La métrique de composition spécifique (**MCS**), reposant à la fois sur une liste de référence et sur les biovolumes des taxons présents, est moins favorable (**0,772**). Ces résultats sont cependant à considérer avec précaution. En effet près de 60% des taxons identifiés ne sont pas pris en compte dans le calcul de l'IPLAC, dont certains taxons abondants dans les peuplements de 2022, tels que les genres *Mallomonas* et *Cryptomonas*, *C. irregularis*, *C. libera*, *U. americana*, et *A. incerta*.

Tableau 9 – Liste floristique du phytoplancton échantillonné au cours des 4 campagnes 2022 sur la retenue de Cize-Bolozon. Les taxons sont présentés en concentrations (cell./mL) et biovolumes (mm3/L)

						CAMPAGNE					
				(C1	C	2	C	:3	C	4
EMBRANCHEMENT	CLASSE	TAXON	Code Sandre	Conc.	Biovol.	Conc.	Biovol.	Conc.	Biovol.	Conc.	Biovol.
Ϋ́Α	MEDIOPHYCEAE	Diatomées centriques indéterminées < 10 μm	6598	161	0,02			819	0,09		
BACILLARIOPHYTA	WEDIOTTICEAE	Diatomées centriques (5 μm)	6598	226	0,02						
ILLAR	BACILLARIOPHYCEAE	Gomphonema	8781	8	0,02			29	0,06		
ВАС		Cocconeis	9361	32	0,02						
		Phacotus lenticularis	6048			105	0,04				
		Scenedesmus ellipticus	5826					351	0,08		
⋖	CHLOROPHYCEAE	Chlorophycées indéterminées 5 - 10 µm	3332					176	0,04		
СНLО КОРНУТА	CHLOROPHICEAE	Sphaerocystis	5878					322	0,10		
40		Tetraedron minimum	5888					88	0,03		
) R		Choricystis minor	10245			20 963	0,19				
Ŧ		Lemmermannia tetrapedia	46582					351	0,05		
O	TREBOUXIOPHYCEAE	Stichococcus bacillaris	6004					819	0,05		
		Dictyosphaerium	5645			1 159	0,03				
	CHLORODENDROPHYCEAE	Tetraselmis cordiformis	5981	32	0,06	53	0,10				
		Cryptomonas	6269	16	0,03	53	0,09	176	0,31	73	0,13
≤		Cryptomonas ovata	6274	8	0,02	53	0,11	29	0,06	49	0,10
₹	CRYPTOPHYCEAE	Plagioselmis nannoplanctica	9634	717	0,05	1 211	0,08	907	0,06	802	0,06
СКҮРТОРНҮТА		Cryptomonas marssonii	6273		•		,	29	0,04		
Ϋ́		Cryptomonas pyrenoidifera	20115			105	0,09				
Æ		Cryptomonas curvata	6270	8	0,02	53	0,14				
		Rhodomonas lens	24459	1 330			,				
MIOZOA	DINOPHYCEAE	Peridiniopsis	6571							24	0,30
	SYNUROPHYCEAE	Mallomonas	6209	8	0,02	53	0,14				
∢	311101101111102712	Uroglenopsis americana	34752		0,02	- 55	0,1.			4 959	0,89
ОСНКОРНҮТА		Chrysophycées indéterminées	1160			263	0,03			. 555	0,03
<u> 1</u>	CHRYSOPHYCEAE	Dinobryon sociale var. americanum	6137			200	0,00			827	0,30
H	C11110011110E71E	Dinobryon sociale	6136							705	0,07
OO		Bitrichia chodatii	6111					117	0,03	703	0,07
	DICTYOCHOPHYCEAE	Pseudopedinella	4764			158	0,07	/	0,00		
<	DICTIOCHOTHICEAL	Тэсааореатена	4704			130	0,07				
СНАКОРНУТА	ZYGNEMATOPHYCEAE	Mougeotia	1146							36	0,09
		Aphanocapsa incerta	6313							33 183	0,23
CYANOBACTERIA	CYANOPHYCEAE	Dolichospermum planctonicum	31959							201	0,06
		Cyanogranis irregularis	39253					27 243	0,03		
НАРТОРНУТА	COCCOLITHOPHYCEAE	Chrysochromulina parva	31903	476	0,01			2 985	0,09		

Lors du précédent suivi en 2019, le phytoplancton de la retenue de Cize-Bolozon est nettement plus faible, ne dépassant pas les 2 500 nb. cell./ml ni 0,6 mm³/l. Les successions pigmentaires sont également assez différentes entre 2019 et 2022. Si le début de production est bien dominé par les cryptophycées lors des deux suivis, les diatomées et les ochrophytes dominent alors le peuplement en C2 et non les chlorophycées (2022). La C3 de 2019 voit bien l'apparition de cyanophycées du genre *Cyanogranis* mais celles-ci ne présentent pas le pic des C3 et 4 de 2022. La dernière campagne de 2019 est d'ailleurs marquée par le recul des cyanophycées. Cette dernière campagne a eu lieu notamment après une crue de l'Ain en 2019 expliquant le peuplement très faible alors observé. L'IPLAC de 2019 était de 0,901, soit supérieur à celui de 2022 et correspond également à un très bon état. L'indice est notamment favorisé par sa MCS nettement supérieur (0,935).

5.2 Macrophytes

5.2.1 Flore aquatique et supra-aquatique recensée par unité d'observation

La retenue de Cize-Bolozon se caractérise par un linéaire important (17 km) avec un plan d'eau qui s'insère au sein d'un vallon étroit, encaissé et largement boisé. Il en résulte une typologie de rive relativement monospécifique (type 2 = 98,2%, type 1 = 1%, type 3 = 0,8%) avec toutefois quelques variantes telles que l'absence de hauts-fonds en UO1 et UO2 mais la présence d'une route en lacets en surplomb de la rive de l'UO1 et d'une petite plaine agricole pratiquement au niveau de la ligne d'eau en UO2. A contrario, l'UO3 se caractérise par la présence de hauts-fonds en contrebas d'un versant encaissé et boisé entrecoupé par quelques axes routiers de desserte. Les zones artificialisées (rives de type 4) n'ont pas été prises en compte dans le choix des UO compte-tenu de leur très faible linéaire (*Figure 10*).

Le détail des relevés et listes floristiques est disponible en annexe 5.

Figure 10 – Carte de localisation des unités d'observation.

5.2.1.1 Flore observée en UO1 (type 2)

Figure 11 - Unité d'observation 1 sur la retenue de Cize-Bolozon, le 09/08/2022.

Cette UO est positionnée en rive droite mais, compte-tenu de la largeur de la retenue proche de 100 m à ce niveau, les profils recouvrent pratiquement l'ensemble de la largeur de la retenue. La berge immédiate de la retenue présente une pente qui permet localement le maintien d'un substrat fin en recouvrement d'un substratum calcaire rocheux sous-jacent. L'ombre portée des arbres limite les développements végétaux qui restent relativement ponctuels. On notera toutefois le développement notable d'une prêle (*Equisetum hiemale*) ainsi que la présence ponctuelle de bryophytes (*Cinclidotus fontinaloides*, *Fontinalis antipyretica*, *Hygrohypnum luridum*, *Rhynchostegium riparioides*).

Au niveau de la zone de pleine eau, les feutrages algaux (*Spirogyra sp.*) sur les cailloux du lit de la retenue, sont significatifs jusqu'à une profondeur de 2 m. En dehors des algues filamenteuses, les hydrophytes présentes sont relativement clairsemées à l'exception de quelques taches en rive gauche d'*Hippuris vulgaris* et d'*Elodea canadensis*.

5.2.1.2 Flore observée en UO2 (type 2)

Figure 12 – Unité d'observation 2 sur la retenue de Cize-Bolozon, le 09/08/2022.

La zone rivulaire de l'UO2 correspond à une zone de marnage au niveau de laquelle la roche-mère calcaire affleure. Elle est colonisée par quelques rares bryophytes (*Cratoneuron filicinum*,

Eurhynchium sp., Fissidens osmundoides) complétées par quelques développements de ronce bleuâtre (*Rubus caesius*). Le milieu aquatique devient très rapidement profond puisque, en l'espace de 15 m, on atteint une profondeur de 6 m. Il se caractérise par une absence totale de végétation aquatique à l'exception, en rive, de la présence très ponctuelle d'une algue de type cyanobactérie (*Phormidium sp.*).

5.2.1.3 Flore observée en UO3 (type 2)

Figure 13 - Unité d'observation 3 sur la retenue de Cize-Bolozon, le 09/08/2022.

La berge de l'unité UO3 correspond à un déblai routier renaturalisé avec la présence d'une végétation arbustive et arborescente bien développée. La végétation éparse est dominée par des bryophytes (*Cinclidotus fontinaloides*, *Eurhynchium sp.*, *Fissidens osmundoides*, *Fontinalis antipyretica*, *Leptodictyum riparium*, *Neckera crispa*, *Rhynchostegium riparioides*, *Thuidium tamariscinum*).

Le haut fond présent au niveau de l'unité d'observation UO3 correspond à une ancienne terrasse agricole qui a été submergée lors de la mise en eau de la retenue. Cette terrasse d'une largeur d'environ 60 m est soutenue par un muret en pierres appareillés. Lors de l'intervention, la profondeur en eau au niveau de l'ancienne terrasse agricole variait entre 0,2 et 2 m de profondeur. À ce niveau, la végétation aquatique était constituée par un herbier quasi continu à characées (*Chara contraria, Chara globularis*). Au milieu de ces Characées, et plus ou moins ponctuellement, 5 hydrophytes ont été détectées (*Elodea nuttalii, Groendlandia densa, Myriophyllum spicatum, Potamogeton pectinatus, Potamogeton pusillus*). On notera par ailleurs que les herbiers n'étaient pas épiphytés (absence de développement d'algues filamenteuses observables à l'œil nu au niveau des herbiers).

5.2.2 Végétaux d'intérêt patrimonial et espèces végétales potentiellement envahissantes

N.B.: Les espèces citées concernent uniquement les taxons observés sur le terrain dans le cadre de la mise en œuvre du protocole IBML.

L'analyse repose pour l'essentiel sur (i) la liste rouge INPN de la flore vasculaire de France métropolitaine (2019), (ii) la compilation par le CBN Massif Central des listes rouges des bryophytes de la région Auvergne-Rhône-Alpes et (iii) le guide illustré des Characées du nord-est de la France¹².

5.2.2.1 Végétaux d'intérêt patrimonial

Hippuris vulgaris est une espèce au port caractéristique qui prospère plutôt sur des substrats fins et organiques. Elle se développe préférentiellement au niveau de milieux moyennement riches en nutriments (mésotrophes). Elle est observable localement au niveau de certains plans d'eau de Franche-Comté mais n'est pas très courante au plan national d'où son classement en espèce quasi menacée. Les autres espèces inventoriées sont courantes à assez courantes y compris les 2 espèces de characées détectées.

5.2.2.2 Espèces végétales potentiellement envahissantes

Il est intéressant de noter au sein de la retenue de Cize-Bolozon la présence de 2 espèces allochtones d'Elodée : l'Élodée du Canada et l'Élodée de Nuttall. L'Élodée du Canada, également appelée peste d'eau, a commencé à proliférer au plan national dans les années 1970. Elle était capable d'asphyxier totalement un cours d'eau avec un recouvrement dense de 100%. Depuis cette période, l'espèce a peu à peu régressé pour devenir au final peu commune et confinée localement à des eaux plutôt fraiches et calcaires alors qu'auparavant il était possible de la détecter au niveau de cours d'eau pouvant s'élever fortement en température (la Reyssouze dans l'Ain par exemple). Son positionnement en tête de la retenue est cohérent en ce sens avec des eaux plus fraiches qu'au sein de la masse d'eau elle-même. Elle est actuellement considérée comme naturalisée, c'est-à-dire qu'elle s'est intégrée dans les écosystèmes aquatiques.

L'Élodée de Nuttall a succédé à l'Élodée du Canada en termes de prolifération à partir des années 2000 avec localement l'observation de grands herbiers monospécifiques, dans la retenue de Coiselet ou le fleuve Rhône par exemple. Au niveau de la retenue de Cize-Bolozon, cette espèce n'est jamais proliférante ce qui traduirait un faible niveau trophique à l'image de ce qu'indique la métrique « Niveau trophique de l'IBML ». Toutefois, ce raisonnement doit tenir compte des

_

¹² G. Bailly, O. Schaefer, 2010. Guide illustré des Characées du nord-est de la France. 96 p.

conditions écologiques rencontrées. Ainsi, au niveau du site de Cize-Bolozon, la vallée est étroite ce qui limite d'autant l'ensoleillement et donc la production de biomasse végétale en liaison avec l'activité photosynthétique.

5.2.3 Évolution de la végétation aquatique et supra-aquatique et niveau trophique actuel du plan d'eau sur la base de l'écologie des végétaux aquatiques en place

Des relevés effectués en 2010 sont disponibles (STE, 2011). Ils ont porté sur un unique profil perpendiculaire à la rive ainsi que sur un relevé de rive de 100 m conformément au protocole de relevé pour les plans d'eau marnants qui était appliqué à l'époque. Le relevé effectué en 2010 a été réalisé en rive droite de la retenue entre les unités UO1 et UO2 mises en œuvre en 2022. Le relevé met en évidence un peuplement quasi-monospécifique d'Élodée de Nuttall jusqu'à 4 m de profondeur ce qui pourrait témoigner d'un niveau trophique nettement plus élevé par rapport aux observations de 2022 où les niveaux trophiques apparaissent faibles. Il convient toutefois d'être prudent par rapport à cette comparaison dans la mesure où les suivis ne concernent pas les mêmes sites. Par ailleurs, dans le cadre du protocole suivi en 2010, il était recherché les zones propices au développement de macrophytes. Cette démarche ne correspond pas aux objectifs de l'IBML qui vise à obtenir une représentation moyenne des développements végétaux en excluant les points singuliers.

En 2022, le calcul de la note de trophie qui s'appuie sur la méthode de calcul de l'indice IBMR¹³ indique un faible niveau trophique. Cela correspond aux observations effectuées avec une absence de prolifération d'herbiers monospécifiques. On notera toutefois que, en tête de plan d'eau, l'abondance de l'algue spirogyre traduit une charge trophique certaine mais que le milieu lacustre semble absorber cette charge en aval (disparition des développements algaux et absence de prolifération d'herbiers en UO2 et UO3). L'état du plan d'eau au sens de l'IBML est qualifié de très bon. Cela est apparemment dû à une espèce, *Chara contraria*, bien représentée en UO3 et dont la cote spécifique est de 18/20 alors que les autres taxons strictement aquatiques ont des cotes qui oscillent entre 8 et 13. D'après G. Bailly et O. Schaefer (2010) « Chara contraria peuple préférentiellement les grandes pièces d'eaux carbonatées à caractère méso-eutrophe » 14. Cette description convient tout à fait à la retenue de Cize-Bolozon et cette espèce est par ailleurs assez commune au niveau de ce type de milieu. Dans ce contexte, une cote spécifique sensiblement plus basse semblerait plus adaptée par rapport au contexte observé localement ce qui permettrait d'aboutir à un constat d'un plan d'eau en **bon état**.

_

¹³ S. Boutry, V. Bertrin et A. Dutartre - novembre 2015. Indice Biologique Macrophytique Lac (IBML). Notice de calcul. IRSTEA de Bordeaux.

¹⁴ G. Bailly, O. Schaefer – 2010 – Guide illustré des Characées du nord-est de la France. Conservatoire Botanique national de Franche-comté .

Tableau 10 – Synthèse générale de l'IBML réalisé sur la retenue de Cize-Bolozon en 2022.

Macrophytes - Plan d'eau LISTE FLORISTIQUE GLOBALE

V2--3023 Cize-Bolozon 2022

Informations sur la station

Code plan d'eau : V2--3023 Date d'intervention : 09/08/202
Nom plan d'eau : Cize-Bolozon Opérateurs : B, BERTI

Date d'intervention : 09/08/2022 Opérateurs : B. BERTRAND (GREBE) / P. PROMPT (GREBE)

Métatype du plan d'eau*: B-Alc - Plans d'eau de basse altitude (inférieure à 300 m) et à caractère alcalin

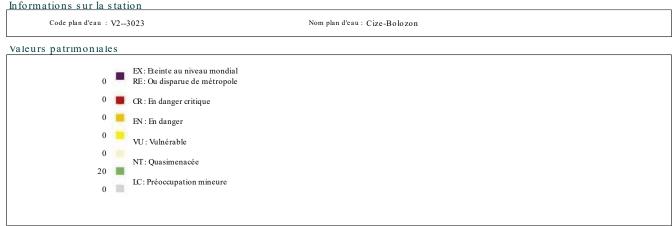
Relevé de rive (Classe recou.) Occurrence (Classe recou.) Moyenne (profils) (Classe recou.) Occurrence (profils) Relevé de rive (Classe recou.) Algues vertes Cladophora sp. Indigè ne 0,43 Spirogyra sp. Indigè ne Zygnema sp. Indigène Chara contraria Indigène 1,50 Chara globularis Indigène Cyanobactéries Phormidium sp. Indigè ne Hépathiques Chiloscyphus sp. Indigè ne Mousses Cinclidotus fontinaloides Indigè ne LC Cratone uron filic inum Indigène Eurhynchium sp. Indigè ne Fissidens osmundoides LC Indigè ne Fontinalis antipyretica Indigè ne LC 0,02 0,02 Hygrohypnum luridum Leptodictyum riparium Indigè ne LC LC Indigè ne Neckera crispa Indigè ne LC Rhynchostegium riparioides Indigè ne LC Thuidium tamaris cinum Indigène Equisetum hyemale Indigène LC Hélophytes Carex elata Indigè ne Lycopus europaeus Indigè ne LCPhalaris arundinacea Indigè ne LC Hydrophytes Elodea canadensis Introduit envahissan 0,11 Elodea nuttallii Introduit envahissant NA0,01 0,83 Groenlandia densa 0.17 Hippuris vulgaris Indigè ne NTHydrophytes à feuilles flottantes 0,01 rganium emersum except. fo. brevifo Indigène Hydrophytes fixées Myriophyllum spicatum 0,01 Indigè ne 0,09 Potamogeton pectinatus Indigè ne LC 0,03 $Potamogeton\ pusillus$ Indigène LC0,42 Hygrophytes Brachypodium sylvaticum Indigè ne LC Carex flacca LCIndigè ne Deschampsia cespitosa LC Indigè ne Indigè ne Filipendula ulmaria LC 2 Lythrum salicaria LCIndigè ne Valeriana officinalis Indigè ne Autre Bidens sp. Indigène 1 Carex sp. Indigè ne Galium mollugo Indigè ne Rubus caesius Indigène

Richesse taxonomique :	
**Statuts géographiques d'après TAXREF v15.0 (16/12/2021) (Sour	ce: INPN)

^{***} Liste rouge de la flore vasculaire de France métropolitaine (2019) (Source: NPN)

Compilation des listes rouges des bryophytes de la région Auwergne-Rhône-Alpes (2022)

(Source: CBN Massif-Central et CBN Alpin)



Macrophytes - Plan d'eau INDICES ET MÉTRIQUES ECOLOGIQUES

V2--3023 Cize-Bolozon 2022

DESCRIPTION GENERALE

UICN France, FCBN, AFB & amp; MNHN (2018). La Liste rouge des espèces menacées en France – Chapitre Flore vasculaire de France métropolitaine. Paris, France

5.3 Phytobenthos (diatomées benthiques)

Le phytobenthos de la retenue de Cize-Bolozon a été prélevé parallèlement au relevé macrophytique du 09/08/2022 sur les trois mêmes unités d'observation ou UO (cf. §5.2 Figure 10). Sur la retenue de Cize-Bolozon, seuls des substrats minéraux grossiers de type pierres/galets étaient présents sur les UO et sont donc les seuls à avoir été prélevés en 2022 (pas de prélèvement d'hélophytes). La méthode d'échantillonnage n'offrant pas d'indice à l'heure actuelle, cette campagne de prélèvements 2022 vise donc à acquérir des données afin de développer un indice diatomées qui soit adapté aux peuplements de plans d'eau.

La Figure 14 illustre la représentativité des différents taxons diatomiques benthiques échantillonnés par UO. La Figure 15 quant à elles classent les 15 taxons les plus dominants dans le peuplement global (toutes UO confondues) en termes de nombre d'individus dénombrés. Enfin, le Tableau 11 fournit la liste floristique complète et les codes associés des taxons représentant plus de 2% du peuplement global. Les listes floristiques sont exprimées en nombres d'individus dénombrés par

UO. Les taxons surlignés représentent au moins 5% du peuplement global. Les listes floristiques complètes et les rapports d'échantillonnage sont fournis en annexe 6.

Deux taxons codominent le peuplement, représentant chacun 17% du dénombrement total. *Encyonema bonapartei* (EBNA) a été décrite pour la première fois il y a une dizaine d'année dans le canal de l'Est. Son écologie n'a pas encore été bien précisée mais elle semble sensible aux concentrations en nutriments et en matière organique. Comme c'est le cas ici, elle codomine souvent avec *Achnanthidium minutissimum* (ADMI). Ce taxon extrêmement commun est en fait un complexe d'espèces, le plus grand de la flore diatomique d'eau douce, et peut donc être retrouvé dans des milieux aussi bien oligotrophes qu'eutrophes.

Un seul autre taxon dépasse les 5% du peuplement total, *Punctastriata ovalis* (POVA). Son écologie est toutefois encore mal connue. Elle est surtout présente au niveau de l'UO3 où l'on retrouve également *Staurosirella ovata* (STOV – 4%) préférant les eaux faiblement chargées en nutriments. Au niveau de l'UO2, on retrouve accompagnant EBNA et ADMI, *Achnanthidium druartii* (ADRU – 4,5%). Cette espèce considérée comme invasive depuis 2004 apprécie les milieux bien minéralisés et relativement pauvres en matière organique et nutriments.

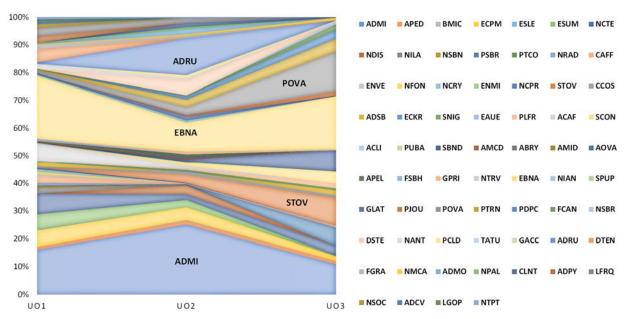


Figure 14 – Représentativité des différents taxons diatomiques benthiques au niveau des 3 unités d'observation de la retenue de Cize-Bolozon le 09/08/22.

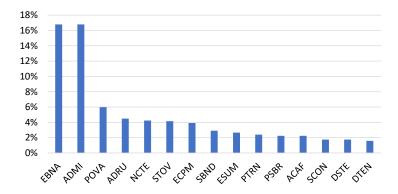


Figure 15 – Histogramme global des taxons les plus représentés en 2022 (les 15 premiers taxons dominants) au niveau des 3 UO de la retenue de Cize-Bolozon le 09/08/22.

Tableau 11 – Listes floristiques des différents taxons diatomiques identifiés (et codes associés) au niveau des 3 UO sur la retenue de Cize-Bolozon le 09/08/22 sur les substrats minéraux. Les taxons sont présentés en nombre d'individus au niveau du comptage. Les espèces dominantes sont surlignées (>5%)

1		UNITÉS D'OB	SERVATION SUBST	RAT MINÉRAI
Taxons	Codes	UO1	UO2	UO3
Achnanthidium affine (Grun) Czarnecki	ACAF	23	4	
Achnanthidium caravelense Novais et Ector	ADCV	4		
Achnanthidium delmontii Peres, Le Cohu et Barthes	ADMO	1	7	
Achnanthidium druartii Rimet & Couté in Rimet & al.	ADRU	2	52	
Achnanthidium eutrophilum (Lange-Bertalot)Lange-Bertalot	ADEU		1	
Achnanthidium exile (Kützing) Heiberg	ADEX	2		
Achnanthidium lineare W.Smith	ACLI	2		
Achnanthidium minutissimum (Kützing) Czarnecki var. minutissimum	ADMI	62	97	43
Achnanthidium pyrenaicum (Hustedt) Kobayasi	ADPY	9		
Achnanthidium straubianum (Lange-Bertalot)Lange-Bertalot	ADSB	6		7
Adlafia bryophila (Petersen) Lange-Bertalot in Moser & al.	ABRY	1	2	
Amphipleura pellucida Kützing	APEL		3	
Amphora indistincta Levkov	AMID	1		
Amphora macedoniensis Nagumo	AMCD	1	1	
Amphora ovalis (Kützing) Kützing	AOVA		1	
Amphora pediculus (Kützing) Grunow var. pediculus	APED	4	5	5
Brachysira microcephala (Grunow) Compère	BMIC		1	
Cocconeis euglypta Ehrenberg	CEUG	2	1	
Cocconeis lineata Ehrenberg	CLNT		6	1
Cyclotella costei Druart & Straub	ccos	2	4	4
Cymbella affinis Kützing var. affinis	CAFF	9	1	2
Denticula tenuis Kützing var. tenuis	DTEN	18		1
Diadesmis biceps G.A. Arnott	DBIC		4	
Discostella stelligera (Cleve et Grun.) Houk et Klee var. stelligera	DSTE		21	
Encyonema auerswaldii Rabenhorst	EAUE	1		
Encyonema bonapartei HeudrE. C.E. Wetzel & Ector	EBNA	87	40	75
Encyonema minutum (Hilse in Rabh.) D.G. Mann in Round Crawford et	ENIN 41	1		
Mann var. minutum	ENMI	1		
Encyonema silesiacum (Bleisch in Rabh.) D.G. Mann var. silesiacum	ESLE	1		
Encyonema ventricosum (Kützing) Grunow in Schmidt et al. var.	ENVE	3		
Encyonopsis cesatii (Rabenhorst) Krammer var. cesatii	ECES		1	
Encyonopsis krammeri Reichardt	ECKR		1	
Encyonopsis minuta Krammer & Reichardt	ECPM	23	18	6
Encyonopsis subminuta Krammer & Reichardt	ESUM	21	10	1
Fallacia subhamulata (Grunow in Van Heurck) D.G. Mann	FSBH	3		
			0 1 11	

Suite du tableau page suivante

			Suite o	lu Tableau 11
Fragilaria canariensis Lange-Bertalot	FCAN	1	1	8
Fragilaria gracilis Østrup	FGRA	6	3	Ö
Fragilaria perminuta (Grunow) Lange-Bertalot	FPEM	2	3	
Frustulia vulgaris (Thwaites) De Toni var. vulgaris	FVUL	2		
Geissleria acceptata (Hust.) Lange-Bertalot & Metzeltin	GACC	2		1
Gomphonema acuminatum Ehrenberg var. acuminatum	GACU	1		1
Gomphonema lateripunctatum Reichardt & Lange-Bertalot	GLAT	2	6	1
Gomphonema pumilum var. rigidum Reichardt & Lange-Bertalot	GPRI	2	3	1
Humidophila contenta (Grunow) Lowe, Kociolek, Johansen, Van de Vijver,	GFNI		3	1
Lange-Bertalot et Kopalo	HUCO		7	
Luticola frequentissima Levkov, Metzeltin & Pavlov	LFRQ	12	7	
Luticola goeppertiana (Bleisch) D.G.Mann ex J.Rarick, S.Wu, S.S.Lee &	LGOP	3	•	
Navicula antonii Lange-Bertalot	NANT	6	3	
Navicula capitatoradiata Germain	NCPR	2	1	
Navicula cryptocephala Kützing var. cryptocephala	NCRY	3	-	1
Navicula cryptotenella Lange-Bertalot var. cryptotenella	NCTE	29	8	14
Navicula metareichardtiana Lange-Bertalot & Kusber nom.nov.	NMTA	2	O	2
Navicula microcari Lange-Bertalot	NMCA	1	2	3
Navicula radiosa Kützing var. radiosa	NRAD	4	2	3
Navicula subalpina Reichardt	NSBN	2		
Navicula subrotundata Hustedt	NSBR	2		4
Navicula subrotantata (O.F.Müller) Bory var. tripunctata	NTPT	3	1	4
Navicula trivialis Lange-Bertalot var. trivialis	NTRV	3	1	1
Nitzschia angustata (W.Smith) Grunow var. angustata	NIAN	1	2	•
Nitzschia communis Rabenhorst	NCOM	1	2	
Nitzschia dissipata subsp. dissipata (Kützing) Grunow var. dissipata	NDIS	-	12	
Nitzschia fonticola Grunow in Cleve et Möller var. fonticola	NFON	3	12	
Nitzschia hantzschiana Rabenhorst var. hantzschiana	NHAN	1		
Nitzschia lacuum Lange-Bertalot	NILA	8	1	
Nitzschia palea (Kützing) W.Smith var. palea	NPAL	1	3	
Nitzschia sociabilis Hustedt var. sociabilis	NSOC	5	J	
Placoneis clementioides (Hustedt) Cox	PCLD	,	4	
Planothidium frequentissimum (Lange-Bertalot)Lange-Bertalot var.	PLFR		2	7
Planothidium joursacense (Héribaud) Lange-Bertalot	PJOU		2	6
Platessa conspicua (A.Mayer) Lange-Bertalot	PTCO	1	-	Ü
Pseudostaurosira brevistriata (Grun.in Van Heurck) Williams et Round var.		-	1	26
Pseudostaurosira trainorii Morales	PTRN	1	10	18
Pseudostaurosiropsis connecticutensis Morales	PDPC	-	5	13
Punctastriata ovalis Williams & Round	POVA	4	11	57
Puncticulata balatonis (Pantocsek) Wojtla et Budzynska	PUBA	·	1	
Sellaphora atomoides (Grunow) Wetzel et Van de Vijver	SEAT		1	1
Sellaphora nigri (De Not.) C.E. Wetzel et Ector comb. nov. emend.	SNIG	1	2	3
Sellaphora pupula (Kützing) Mereschkowksy var. pupula	SPUP	1	1	
Simonsenia delognei Lange-Bertalot	SIDE	1		
Staurosira binodis (Ehrenberg) Lange-Bertalot in Hofmann Werum et	SBND		4	31
Staurosira construens Ehrenberg var. construens	SCON		4	17
Staurosira lapponica (Grunow) Lange-Bertalot	SLPP		-	2
Staurosira oldenburgiana (Hustedt)Lange-Bertalot	SODB			1
Staurosirella ovata Morales	STOV		11	39
Tryblionella angustatula (Lange-Bertalot) Cantonati & Lange-Bertalot in				
Kusber et al. comb. nov	TATU	1		

6 Appréciation globale de la qualité du plan d'eau

En 2022, la retenue de Cize-Bolozon présente une stratification thermique lors des campagnes de juin et d'août. La colonne d'eau reste toutefois relativement bien oxygénée même en C3, 68% de saturation en oxygène dans les couches profondes. C'est durant cette même campagne que se développe le phytoplancton provoquant une sursaturation au sein de l'épilimnion et consommant le stock de nitrates déjà peu important dès la première campagne. L'ensemble des nutriments, azotés et phosphorés, sont d'ailleurs quantifiés en faibles concentrations limitant le développement phytoplanctonique, ce que traduisent notamment les faibles valeurs en chlorophylle a. Des cyanophycées bénignes et de très petites tailles dominent alors le peuplement et occasionnent une forte hausse de la concentration algale durant les deux dernières campagnes sans influencer sur le biovolume. Celui-ci est plus impacté par le développement de cryptophytes et de chrysophytes, notamment en C4. Lors de cette campagne, Uroglenopsis americana, grande chrysophycée appréciant les milieux oligo-mésotrophes et capable de mixotrophie, domine alors le phytoplancton dont le biovolume augmente significativement tout en restant mesuré. La colonne est ainsi à nouveau homogène et présente une augmentation de la concentration en nitrates qui reviennent à leur niveau hivernal (3 mg(NO₃-)/L). Le cortège macrophytique en place traduit un milieu avec un faible potentiel trophique ainsi que le peuplement phytobenthique, dominé globalement par Achnanthidium minutissimum et Encyonema bonapartei. La première espèce est cosmopolite mais la deuxième, bien que récente en France (décrite pour la première fois il y a une dizaine d'année), semble préférer les concentrations en nutriments et en matière organique plutôt faibles.

Vingt-quatre micropolluants organiques sont quantifiés dans la colonne d'eau en 2022, dont des résidus pharmaceutiques, des traceurs de rejets domestiques (caféine, cotinine, nicotine) et divers produits issus de l'industrie (plastifiant, anti-corrosif, imperméabilisant,...).

Les sédiments ont une charge organique moyenne mais nutritionnelle basse. Ils sont chargés en HAP dont la concentration totale atteint 2 312 µg/(kg MS). Celle-ci augmente à chaque suivi depuis 2010. Toutefois, l'ajout régulier de nouvelles substances dans le menu analytique pourrait expliquer en partie cette hausse.

Annexe 1 : Liste des micropolluants analysés sur eau.

Code	Paramètre	Unité	Type	Code	Paramètre	Unité	Type
1370	Auminium	Hg(Al)/L	polluants	2007		hg/L	Insecticides
1376	Antimoine	hg(Sb)/L		6456		hg/L	Micropolluants organiques
1369	Arsenio	Hg(Ag)/L	Micropolluants métalliques	1622	Acenaphiene	ug/L	HAP
1396	Baryum	µg(Ba)/L		1100		ng/L	Pesticides
1377	Beryllium	µg(Be)∕L		1454	yde	µg/L	Micropolluants organiques
1362	Bore	hg(B)/L		5219		hg/L	Pesticides
1388	Cadmium	hg(Cd)/L		7136		hg/L	Micropolluants organiques
1389	Chrome	µg(Cr)∕L		6856		ug/L	Pesticides
13/9	Codall	hg(Co)/L		7000	***	Hg/L	resticions
1392	Culve	hg(Cu)/L	Micropolluants metalliques	5584	Aciborator & Mathy	Hg/L	Micropollipate organizate
1393	Fer	hg(Sil)/L		5352	ulnha-méthvi-2-nanhtalène	10/1	Micropolitants organiques
1364	a ithin	NG DOL		6735	Acide acetylcalicylique	100	Micropolliants organiques
1394	Mandanèse	ua(Mn)/L		5408		no/L	Micropolluants organiques
1387	Mercure	ua(Ha)/L		6701	63	nav	Micropolluants organiques
1395	Molybdène	µg(Mo)/L		5369		ug/L	Micropolluants organiques
1386	Nickel	µg(Ni)/L		6538	ē	Hg/L	Micropolluants organiques
1382	Plomb	µg(Pb)/L	Micropolluants métalliques	1465	étique	µg/L	
1385	Sélénium	hg(Se)/L		1521	Acide nitrilotriacétique (NTA)	µg/L	
2559	Tellure	µg(Te)/L	Micropolluants métalliques	6249	Acide pentacosafluorotridecanoique (PFTrDA)	µg∕L	Micropolluants organiques
2555	Thallium	µg(∏)∕L	Micropolluants métalliques	6550	FDS)	µg/L	Micropolluants organiques
1373	Titane	µg(Ti)∕L	Micropolluants métalliques	6209		µg∕L	Micropolluants organiques
1361	Uranium	µg(U)∕L		8741		hg/L	Micropolluants organiques
1384	Vanadium	hg(V)/L	Micropolluants métalliques	6507		µg∕L	Micropolluants organiques
1383	Zinc	μg(Zn)/L	Micropolluants métalliques	6542	€	µg∕L	Micropolluants organiques
2934	1-(3-chloro-4-methylphenyl)uree	µg/L	Micropolluants organiques	6830	HxS)	µg/L	Micropolluants organiques
6751	1.7-Dimethylxanthine	иgЛ	Micropolluants organiques	5980		µg∕L	Micropolluants organiques
7041	14-Hydroxyclarithromycin	µg/L	Micropolluants organiques	2265	~	µg∕L	Micropolluants organiques
5399	17alpha-Estradiol	µg/L	Micropolluants organiques	8269	_	hg/L	Micropolluants organiques
7011	1-Hydroxy Ibuprofen	µg/L	Micropolluants organiques	6208		hg/L	Micropolluants organiques
1264	245T	µg/L	Pesticides	8739		hg/L	Micropolluants organiques
1141	24D	µg/L	Pesticides	6510	(Y	hg/L	Micropolluants organiques
	2.4 D isopropyl ester	µg/L		0999	-OS)	µg/L	Micropolluants organiques
	2 4 D methyl ester	µg/L	1	5347		µg/L	Micropolluants organiques
	2 4 DB	µg/L	Pesticides	8738	PFPeS)	hg/L	Micropolluants organiques
	2 4 MCPA	иgЛ	Pesticides	8742		hg/L	Micropolluants organiques
1213	2.4 MCPB	µg/L	Pesticides	8740	decane sulfonique	µg/L	Micropolluants organiques
2011	2 6 Ulchlorobenzamide	µg/L	Pesticides	5355		µg/L	Micropolluants organiques
6870	2-(3-trifluoromethylphenoxy)nicotinamide	µg/L	Pesticides	6025	vidue de perfluorobutane (PFBS)	µg∕L	Micropolluants organiques
6649	2.4.7.9-1 etramethyl-5-decyne-4,7-diol	µg/L	Micropolluants organiques	1970		ng/L	Pesticides
6187	2.5-di-tert-butyl-4-metnylphenol	µg/L	Micropoliuants organiques	1000		Hg/L	Pesticides
2709	2.4+2.3-dicnioroaniines	µg/L	Micropoliuants organiques	1310		Hg/L	resticioes
832/	Z-etnylnexyl suitate	µg/L	Micropolluants organiques	9800		ng/L	Micropolluants organiques
2107	Z-Hydroxy Ibuprofen	µg/L ∷=″	Micropoliuants organiques	0000	JXA	hg/L	Pesticides
8015	Z-nydroxy-desetnyl-Arazine	µg/L	Micropoliuants organiques	1101		Hg/L	Pesticides
8324	Z-laureth suitate	µg/L	Micropoliuants organiques	0440	ole ole	hg/L	Blocides
2613	Z-nitrotoluene	µg/L	Micropoliuants organiques	7001		hg/L	Pesticides
2692	3,4,5-Trimethacarb	µg/L ∷≘″	Micropolluants organiques	1807		hg/L	Pesticides
2020	4 F dishlore 2 and 4 2 this and 200 to an	µg/L	Micropolluarits organiques	1400	Autoria Salloxyde	Hg/L	resticions
5367	4.0-diction-z-octyl-1.z-tillazol-3(zm)-one	Hg/L	Micropolitaris organiques	1607	9	Hg/L	Desticites
7816	4-méthoxycinnamate de 2-éthylhesyle	7/21	Micropolliants organiques	7501	4	101	Micronolliants organiques
6536	4-Methylbenzylidene camphor	rg/L ng/L	Micropolluants organiques	6651	bromocyclododecane	ng/L	Micropolluants organiques
5474	4-n-nonylphénol	pg/L pg/L	Micropolluants organiques	1812		ng/L	Pesticides
1958	4-nonylphénols ramifiés	Hg/L	Micropolluants organiques	5370		hg/L	Micropolluants organiques
2610	4-tert-butylphénol	иgЛ	Micropolluants organiques	7842	Ametoctradine	µg∕L	Micropolluants organiques
1959	4-tert-octylphenol	μg/L	Micropolluants organiques	1104		hg/L	Pesticides

Type	Pesticides	Micropolluants organiques	Pesticides	Micropolluants organiques	HAP	HAP	HAP	HAP	HAP	Micropolluants organiques	Micropoliuants organiques	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Pesticides	Missonlinet	Micropoliuants organiques Desticides	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Micropolluants organiques	Pesticides	Micropolluants organiques	Pesticides	Micropolluants organiques	Pesticides	Pesticides	Micropolluants organiques	Micropoliuants organiques	Micropolinants organiques	Micropolitarits organiques	Microsoft cards organization	Micropolluants organiques	Pesticides	Microsoft adaption
Unité	hg/L	hgv	hg/L	10/1	hgy	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	101	no/L	ng/L	hg/L	hg/L	hg/L	hg/L	µg/L	hg/L	µg∕L	hg/L	hg/L	Hg/L	1001	ng/L	hg/L	hgv	hg/L	hg/L	hg/L	hg/L	100	no/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	Hg/L	Hg/L	Hg/L	101	Hg/L	101	100
Paramètre	Bentazone	Benthiavalicarbe-isopropyl	Benthiocarbe	Benzisothiazolinone	Benzo (a) Anthracène	Benzo (a) Pyrėne	Benzo (b) Fluoranthène	Benzo (ghi) Pérylène	Benzo (k) Fluoranthene	Benzotnazole	Bets cylintrine	heta-Hexahromocyclododecane	Betaxolo	Bezafibrate	Bifénox	Bifenthrine	Bioresméthrine	Biphényle	Bisoprolol	Bisphenol S	Bisphenol-A	Bitertano	Birden	Boscalid	Brodifacoum	Bromacil	Bromadiolone	Bromazepam	Bromochlorométhane	Bromoforme	Bromophos ethyl	Bromopros metnyl	Bromownil	Bromoxynil octanoate	Bromuconazole	Bromure de méthyle	Bufencarbe	Buflomedil	Bupirimate	Bupivacaine	Buprofezine	Butamifos	Butraline	Buturon	Butylate	Butylbenzene n	Duty Denzene sec	Cadusates	Cadusaios	Cartafol	Captane	Captago
Code	1113	7460	1764	8306	1082	1115	1116	1118	1117	7543	3209	6652	6457	5366	1119	1120	1502	1584	6453	7594	2766	1529	7245	5526	5546	1686	1859	5371	1121	1122	1123	1724	1125	1941	1860	1530	7502	6742	1861	6518	1862	5710	1126	1531	1038	1000	1010	1862	6540	1127	1128	8000
Type	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Pesticides	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Missonalliante organizarias	Micropolitants organiques	HAP	HAP	Pesticides	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Pesticides	Desticion	Micropolluants organiques	Pesticides	Micropolluants organiques	Pesticides		1			<u></u>	- 10		1					1		1			Pesticides	Pesticides	Destinides	Posticidos	Destinides	Pesticides	Microsoft and a second
Unité	hg√	нgЛ	hg/L	Hg/L	Hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	107	ng/L	ng/L	hg/L	hg/L	hg/L	hg/L	µg/L	hg/L	hg/L	hg/L	hg/L	Hg/L	107	ng/L	hg/L	hg/L	hg/L	hg/L	hg/L	Hg/L	107	ng/L	hg/L	hg/L	hg/L	hg/L	hg/L	μg/L	hg/L	hg/L	hg/L	hg/L	hg/L	pg/L	Hg/L	Hg/L	אפער היים	Hg/L	ויסין	1 2
		-														_	4		pyl		<u> </u>	ethyl-2-hydroxy							_	_						4		_		_									-			
Code SANDRE Paramètre	Amidithion	Amidosulfuron	Aminocarbe	Aminonyralid	Aminotriazole	Amiprofos-methyl	Amitraze	Amitriptyline	Amlodipine	Amoxicilline	Androctenedione	Anilofos	Anthracène	Anthraquinone	Asulame	Atenolol	Atrazine	Atrazine 2 hydroxy	Atrazine déisopropyl	Atrazine déséthyl	Atrazine de	Atrazine-d	Azaconazole	Azimemphos	Azinohos éthyl	Azinphos méthy	Azithromycine	Azoxystrobine	BDE 181	BDE 203	BDE 205	BDE100	BDF153	BDE154	BDE17	BDE183	BDE190	BDE209	BDE28	BDE47	BDE66	BDE71	BDE77	BDE85	BDE89	Benubutamide Dénolosed	Denalaxyl M	Bendiocarbe	Dending Den	Benfinagarhe	Renovacor	Deneulfiron methyl

Type	Pesticides	Pesticides	Micropolluants organiques	Pesticides	Micropolluants organiques		Micropolluants organiques		HAP	Pesticides	Micropolluants organiques	Micropolliants organiques	Micropolluants organiques	Microbolidains organiques	Micropoliuants organiques	Micropolluants organiques	Pesticides	Micropolluants organiques	Pesticides	Micropolluants organiques	Desticides	Desticides	Disciples	Proportion	Micropolitable organization	Micropolidants organiques	Micropolluants organiques	Micropoliuants organiques	Pesticides	Pesticides	Pesticides	Pesticides	Micropoliuants organiques	Micropolluants organiques	Micropolluants organiques	Micropoliuants organiques	Pesticides	Micropolluants organiques	Micropolluants organiques	Micropollusots orospiones	Micropolliants organiques	Destinides	Posticidos	Pesticiaes	Porgiciaes	Missional	Micropoliuants organiques	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	restrictes	Micropolluarits organiques	Pesticides	Micropolluants organiques	Régulateurs de croissance	Micropolluants organiques	Pesticides
Unité	Von	hg/L	µg/L	hg/L	hg/L	иgЛ	hg/L	иgЛ	hg/L	hg/L	nav	Voll	100	HOVE.	hg/L	hg/L	µg/L	ng/L	na/L	nav	Voll	L'OIL	100	700	100	HOLE TO	hg/L	Hg/L	Hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	pg/L	Pg/L	hg/L	hg/L	hg(CN)/L	100	100	700	700	HOVE.	Hg/L	H9/L	Hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	POL.	Hg/L	101	na/L	ng/L	µg/L	µg∕L
Paramètre	Chlorthal dimethyl	Chlorthiamide	Chlorthiophos	Chlortoluran	Chlorure de Benzylidène	CHLORURE DE CHOLINE	Chlorure de didecyl dimethyl ammonium	Chlorure de vinyle	Chrysène	Cinosulfuron	Ciprofloxacine	Clarithromycine	Clanting	Celibate	Clethodim	Clindamycine	Clodinafop-propargyl	Clofentézine	Clomazone	Clopidol	Cloowalide	Cloquiptocet mexyd	Cosmoo		Communication	Cioniliazore	Countie	Countaiene	Cournaphios	Coumatetraly	Cresol-ormo	Cresol-para	Crotamiton	Crotoxyphos	Cruiomate	Cumyluron	Cyanazine	Cyanorenphos	Cyanures libres	Cycloste	Cyclophosphamide	Cyclopinaline		Cyclus of the second of the se	Commendamine	Cylindinine Cytologos but d	Cynalolop-buryl	Cynalothrine	Cymoxanil	Cypermethrine	Cyproconazole	Cyprodini	Cyprosurating	Cyloniazine	Daimiron	Dalabon	Daminozide	Danofloxacine	DCPMU (métabolite du Diuron)
Code	2966	1813	5723	1136	2715	2977	6636	1753	1476	5481	6540	6537	6968	0000	2978	6792	2095	1868	2017	8743	1810	2018	6778	6280	5360	0000	0700	7167	7001	2018	1640	1638	3283	47/0	07/0	4427	113/	97/0	1084	5568	6733	2720	1606	7740	4004	1001	6000	1138	1139	1140	1680	1208	1007	7503	5930	2094	5597	2299	1929
Tyne	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Micropolluants organiques	Pesticides	Micropolluants organiques	Pesticides	Micropolliants organiques	Destinides	500000000000000000000000000000000000000	Pesticides	Pesticides	Micropolluants organiques	Micropolluants organiques	Pesticides	Pesticides	Pasticidas	Micropolliants organiques	Microsoft and a second and a second	Micropollusote organiques	Destinides	Lesiones	Pesticides	Micropolinants organiques		Micropolluants organiques	Micropoliuants organiques	Micropolluants organiques	Micropolitiants organiques	Pesticides	Micropoliuants organiques	Micropolluants organiques	Micropolluants organiques	Micropoliuants organiques	Micropolluants organiques	Desticides	Micropolliants organicies	Micropollusate organiques	Micropollusts organiques	Profition of garinques	Missionalizate	Micropolium o galliques	Micropoliuants organiques	Micropoliuants organiques	Micropolluants organiques	Micropolluants organiques	Pesticides	BIEX	2	Dacticidas	Pesticides	Pesticides	Pesticides	Pesticides	Micropolluants organiques
Unité	na/	Hg/L	hg/L	hg/L	µg∕L	µg/L	hg√	µg/L	hg/L	hg/L	na/L	101	100	Hg/L	hg/L	hg/L	hg/L	ng/L	ng/L	na/L	101	1/01	100	700	1/51	PIG/L	hg/L	pg/L	hg/L	hg/L	pg/L	hg/L	hg/L	hg/L	hg/L	hg/L	Hg/L	Hg/L	hg/L	787	1/01	100	700	Hg/L	pg/L	Hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	Hg/L	Hg/L	Hg/L	10/L	na/L	ng/L	рgЛ	µg∕L
Paramètre	Carbary	Carbendazime	Carbétamide	Carbofuran	Carbofuran 3 hydroxy	Carbophénothion	Carboxine	Carboxyibuprofen	Carfentrazone-ethyl	Cétylpyridium	Chinométhionate	Chlorantraniliprole	Chlorhufame	Orleans	Chlordane alpha	Chlordane beta	Chlorefenizon	Chlorfenapyr	Chlorfenvinphos	Chlorifuazuron	Chloridazone	Chlorim rop-ethy	Circumodipone	Chlomodipopopopoto	Chlomenhos	Cilculation	Chlomequat	Chigh equal chlorure	Cilidioalicanes CIO-CIS	Chioroaniline-2	Culoroanillees	Chlorogniine-4	Chigopenzene	Chloropromuron	Chigoethane	Chiororme (Trichloromethane)	Chlorometrane	Chiorometrylaniline-4,2	Chlorentylphenol-4,3	Chloronitroaniine-4 2	Chloronitrohenzène-1	Chicamitrobenzene 13	C. I - and and an analysis of the	Chicago de la composito de la	Chloration	C C C C C C C C C C C C C C C C C C C	Ciliotophenol-3	Chlorophenol-4	Chloroprene	Chloropropene-3	Chlorothalonil	Chigadaliene-2	Selection of the select	Chloridaene-4	Chlorinophame	Chlorovriphos éthy	Chlorpyriphos méthyl	Chlorsulfuron	Chlortetracycline
Code	463	129	1333	130	805	131	2975	6842	2976	8310	1865	500	338	2 5	010	1757	5553	2861	1464	2950	1133	5522	KAOK	200	1424	5 3	5000	1607	000	283	760	591	146/	9107	200	130	1/30	1797	1974	200	469	760	1 0	004	1004		100	0091	2611	2065	14/3	7091	5 8	1000	474	1083	540	1353	6743

Type	Micropolluants organiques	Pesticides	Pesticides	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Insecticides	Pesticides	Pesticides	Micropolluants organiques	Pesticides	Micropolluants organiques		Micropolluants organiques	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Pesticides	Micropollipate proprietos	Micropollusate organiques	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Pesticides	Micropolluants organiques	Pesticides	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Pesticides	Pesticides		Micropolluants organiques	Desticited	Micropollipate organizate	Pesticides	BTEX		Pesticides	Micropolluants organiques Pesticides						
Unité	ng/L	hgv	hg/L	µg/L	hg/L	hg/L	hg/L	µg/L	µg∕L	µg/L	µg/L	hg/L	hg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	hg/L	µg∕L	hg/L	hg/L	hg/L	µg/L	µg/L	µg/L	hg/L	hg/L	hg/L	107	ומין	lou/	T/Sid	hg/L	µg/L	µg/L	hg/L	hg/L	hg/L	hg/L	µg/L	hg/L	hg/L	µg/L	hg/L	µg/L	hg/L	700	100	no/L	ng/L	ng/L	hg/L	hg/L	1 50
Paramètre	Dichlorophénol-2,5	Dichlorophénol-3,4	Dichloropropane-1,2	Dichloropropane-1,3	Dichloropropane-2,2	Dichloropropene-1,1	Dichloropropylene-1,3 Cis	Dichloropropylene-1,3 Trans	Dichloropropylene-2,3	Dichlorprop	Dichlorprop-P	Dichlorvos	Diclofenac	Diclofop méthyl	Dicofol	Dicrotophos	Dicyclanil	Didéméthylisoproturon	Dieldrine	Dienestrol	Diéthofencarbe	Diéthyl phtalate	Diethylamine	Diethylstilbestrol	Difenacoum	Difénoconazole	Direnoxuron	Difethialone	Diffusenzuron	Dilurenicanii	Dibudroodeine	Dijsobutyl obthalate	Disodecyl phthalate	Diltiazem	Diméfuron	Dimepiperate	Dimétachlore	Diméthachlore CGA 369873	Dimethachlore-ESA	Dimethametryn	Dimethenamid ESA	Dimethenamide	Dimethenamide OXA	Dimethenamid-P	Dimethoate	Dimethomorphe	Dimethylamine	Dimethylphenol-2,4	Dimetiles	disconstration	Diniconazole	Dinitrotoluène-2,4	Dinitrotoluène-2,6	Dinocap	Di-n-octyl phthalate Dinosèbe	
Code	1649	1647	1655	1654	2081	2082	1834	1835	1653	1169	2544	1170	5349	1171	1172	5525	9699	2847	1173	7507	1402	1527	2826	2628	2982	1905	5524	2983	1488	2539	6647	5325	6658	6729	1870	7142	2546	7727	6381	5737	6865	1678	1735	5617	1175	1403	2773	1641	1608	5748	1871	1578	1577	5619	3342	2
Type	Pesticides	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Pesticides	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Pesticides	Micropolluants organiques	Pesticides	HAP	Pesticides	Micropolluants organiques	Micropoliuants organiques	Pesticides	Micropoliuants organiques	Destinates	Doction	Pesticides	Pesticides	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Micropollusate organiques	Micropolluante organiques	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Pesticides	Micropolluants organiques Micropolluants organiques	MINISTER AND																
Unité	ng/L	нgЛ	иgЛ	иgЛ	hgЛ	иgЛ	hg/L	µg/L	µg/L	нgЛ	hg/L	hg/L	hg/L	иgЛ	hg/L	иgЛ	hg/L	hg/L	иgЛ	hg/L	hg/L	иgЛ	нgЛ	иgЛ	иg/L	нgЛ	hg/L	hg/L	µg/L ∷a/l	Hg/L	767	107	1,01	ng/L	нgЛ	иgЛ	иgЛ	иgЛ	иgЛ	hg/L	иgЛ	иgЛ	hg/L	hg/L	иgЛ	иgЛ	µg/L	hg/L	7,01	761	ng/L	ng/L	hg/L	нgЛ	µg/L ug/L	1 20
	Г												2 Déméton-S	1 Déséthyl-terbuméthon	Desmediphame	Besméthylisoproturon	5 Desmétryne	5 Desvenlafaxine	4 Dexamethasone		5 Diallate									4 Dibutyletalin cation						Dichlorethylene-1,1												Dichloradifluoromethane							5 Dichlorophénol-2,3 Dichlorophénol-2,4	
Code	1930	1143	1144	1145	1146	1147	1148	6616	1149	1153	1154	1150	1152	2051	2980	2738	1155	6785	6574	2538	1156	5372	1157	1621	1479	1738	1158	1498	1513	1480	1679	1159	1360	1160	1161	1162	1456	1727	2929	1589	1588	1586	1585	1165	1164	1166	1167	1485	1617	1616	1615	1614	1613	2981	1645	

764 T 764	Micropolliants organiques	1000	Fenhandazola	hg/L	Pesticides
	Micropolluants organiques	1906	Fenbuconazole	rg/L	Pesticides
	Pesticides Micropolliants organizaes	7513	Fenchlorazole-ethyl Fenchlombos	ng/L	Micropolluants organiques
	Pesticides	2743	Fenhexamid	ng/L	
	Pesticides Micropolluants organiques	1187	Fenitrothion	ng/L	Pesticides Micropolluants organiques
	Pesticides	5763	Fenobucarb	ng/L	Micropolluants organiques
	Pesticides	5368	Fenofibrate	µg/L	Micropolluants organiques
	Pesticides Micropolluants organiques	0/69	Fenoproten Fenothiocarbe	ug/L	Micropolluants organiques Pesticides
		1973	Fénoxaprop éthyl	ngv	Pesticides
	Micropolluants organiques	1967	Fénoxycarbe	µg/L	Pesticides
	Micropolluants organiques	1188	Fenpropathrine	ng/L	Pesticides
	Micropolluants organiques	1189	Fenpropimorphe	19/L	Pesticides
	Micropolluants organiques	1190	Fenthion	µg/L	Pesticides
		1500	Fénuron	hg/L	Pesticides
	Desticides	2009	Fenvalerate	ng/L	Micropolidants organiques
	Pesticides	6260	Fipronii sulfone	na/L	Micropolluants organiques
	Pesticides	1840	Flamprop-isopropyl	иgЛ	Pesticides
	Pesticides	6239	Flamprop-methyl	hg/L	Pesticides
	Micropolluants organiques	1939	Flazasulfuron	µg/L	Pesticides Missocollipate accomismos
	Micropolluants organiques	6393	Floricamid	761	Pesticides
		2810	Florasulam	ng/L	Pesticides
	Micropolluants organiques	6764	Florfenicol	hg/L	Micropolluants organiques
	Pesticides	6545	Fluazifop Fluazifos butd	hg/L	Micropolluants organiques
	Micropolluants organiques	1404	Fluazifop-Putyl	No.	Pesticides
_	Micropolluants organiques	2984	Fluazinam	hgv	Micropolluants organiques
	Pesticides	8564	Fluconazole	пgЛ	Micropolluants organiques
	Micropolluants organiques	2022	Fludioxonil	µg/L	Pesticides
	Micropolluants organiques	6863	Flufenacet oxalate	ng/L	Pesticides
	Micropolluants organiques	1676	Flufénoxuron	7 7	Pesticides
	Pesticides	5635	Flumequine	hgv	Bactéricides
	Pesticides	2023	Flumioxazine	µg/L	Pesticides
	Pesticides	1501	Fluométuron	hg/L	Pesticides
	Pesticides	7499	Fluopicolide	hg/L	Fongicides
	Pesticides	7648	Fluopyram	µg/L	Fongicides
	Pesticides	181	Fluoranmene	hg/L	
_	Desticides	5373	Flooration	101	Micropollusate organicuse
	Micropollisate organiques	2565	Flinwrentfiron methyde	101	Desticides
_	Micropolliants organiques	2056	Flicingoodole	5	Desticides
	BTEX	1974	Fluridone	761	Pesticides
	Pesticides	1675	Flurochloridone	rg/L	Pesticides
	Pesticides	1765	Fluroxypyr	hg/L	Pesticides
	Micropolluants organiques	2547	Fluroxypyr-meptyl	hgv	Pesticides
	Micropolluants organiques	2024	Flurprimidol	µg/L	Pesticides
	Micropolluants organiques	2008	Flurtamone	µg/L	Pesticides
	Pesticides	1194	Flusilazole	µg/L	Pesticides
	Micropolluants organiques	2985	Flutolani	µg/L	Pesticides

Type	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	resticides	Micropolliants organiques	Pesticides		Pesticides	Micropolluants organiques	Micropolluants organiques	Pesticides	Pesticides	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Pesticides	Pesticides	Micropolluants organiques	втех	Micropolluants organiques	Micropolluants organiques	Pesticides	Micropolluants organiques	Pesticides	Pesticides	Micropolluants organiques	Pesticides	Micropoliuants organiques	Micropolluants organiques	Micropoliuants organiques	Micropolluants organiques	Destrodes	Micropolluants organiques	Micropolluants organiques	Pesticides	Biocides	Micropolluants organiques	Micropolluants organiques	Pesticides	Micropolluants organiques	Pesticides	Micropolluants organiques	Pesticides	Pesticides	Micropolluants organiques	Micropolluants organiques	Pesticides	Pesticides			Misson flooring	Pesticides	Pesticides		
Unité	hg/L	µg/L	hg/L	hg/L	701	lou/	ra/L	na/L	ng/L	ng/L	ng/L	hg/L	na/L	ng/L	ng/L	ng/L	hg/L	hg/L	µg/L	µg/L	µg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	Hg/L	Hg/L	761	761	na/L	nav	ng/L	µg/L	hg/L	µg/L	hg/L	µg/L	hg/L	hg/L	J. 0.1	101	ng/L	ngv	hg/L							
Paramètre	Indoxacarbe	lobitridol	lodocarbe	logorenpinos	loncomide	loxvnil	loxynil methyl ester	loxynil octanoate	Ipoconazole	Iprobenfos	Iprodione	Iprovalicarbe	Irbesartan	Irgarol (Cybutryne)	Isobutylbenzène	Isodrine	Isofenphos	Isoprocarb	Isopropylbenzène	Isopropyltoluène o	Isopropyltoluène p	Isoproturon	Isoquinoline	Isothiocyanate de methyle	Isoxaben	Isoxadifen-éthyle	Isoxaflutol	Isoxatnion	Karbutilate	Neiopioiene	Ketorolac Kraeowim mathyd	Nesoxiii ileulyi	Larinda Oyrialoxiiiilo	Lauryloyridinium	Lénacile	Levamisole	Levonorgestrel	Lincomycine	Linuron	Lorazepam	Malathion	Malathion-o-analog	Mancozebe	Mandipropamid	Manebe	Marbofloxacine	MCPA-1-butyl ester	MCPA-2-ethylhexyl ester	MCPA-butoxyetnyl ester	MCPA-ethyl-ester	Mood and a second	Mécoron	Mecoprop n isobutyl ester	Mecoprop-1-octyl ester	Mecoprop-2,4,4-trimethylphenyl ester
Code	5483	9029	2741	2707	5377	1205	2871	1942	7508	5777	1206	2951	6535	1935	1836	1207	1829	5781	1633	2681	1856	1208	6643	2722	1672	2807	1945	2000	5353	2000	1050	1094	5282	8330	1406	6711	6770	7843	1209	5374	1210	5787	1211	6399	1705	0029	2745	2746	74/7	27.48	2417	1214	2870	2750	2751
Type	Micropolluants organiques	Fongicides	Pesticides	Pesticides	Micropolluants organiques	Micropolluants organiques	Pesticides	Pesticides	Fongicides	Micropolluants organiques	Pesticides	Pesticides	Micropolluants organiques	Micropolluants organiques	Pesticides	Pesticides	Micropolluants organiques	Pesticides	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pasticidas	Micropolliants organiques	Micropolluants organiques	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Régulateurs de croissance	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Pesticides	Micropolluants organiques	Pesticides	Micropoliuants organiques	Micropolluants organiques	Missonollinotto	Pesticides	Micropolluants organiques	HAP	Micropolluants organiques				
Unité	hg/L	μg/L	hg/L	hg/L	Hg/L	na/L	ng/L	ng/L	hg/L	µg/L	µg/L	hg/L	ug/L	hg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	hg∕L	μg/L	hg/L	hg/L	hg/L	µgЛ	hg/L	hg/L	hg/L	µg/∟ ∵a″	hg/L	Hg/L	10/L	na/L	na/L	ng/L	µg/L	hg/L	hg/L	hg/L	μg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	µg∕L ,	µg/L	hg/L	Hg/L	Hg/L	ng/L	ng/L	Hg/L
Paramètre	Fluvoxamine	fluxapyroxade	Fope	Foresalen	Foramsulfilton		_	_	Fosetyl	Fosthiazate	Furalaxyl	Furathiocarbe	Furilazole	_	Gabapentine	Galaxolide	gamma-Hexabromocyclododecane	Gemfibrozil	Glufosinate	Glyphosate	Halosulfuron-methyl	Haloxyfop	Haloxyfop-éthoxyéthyl	Haloxyfop-R	HCH alpha	HCH beta	HCH delta	HCH epsilon			Heptachlore epoxyde cls	Heptenonhos	Hexachlorobenzène	Hexachlorobutadiène	Hexachloroethane		Hexaconazole	Hexaflumuron	Hexazinone	Hexythiazox	Hydrazide maleique	Hydrochlorothiazide	Hydroxy-metronidazole	Ibuprofene	Ifosfamide	Imazalil	Imazamethabenz	Imazamethabenz methyl	Imazamox	Imazapyr	IMPLACOINE Imitographical	Imidaclouide		3-cd)pyrène	
Code	6239	7342	1192	6707	2806	5969	1702	1975	1816	2744	1908	2567	7441	5364	7602	6618	6653	5365	1526	1506	5508	2047	1833	1909	1200	1201	1202	2046	1203	1740	1740	1910	1199	1652	1656	2612	1405	1875	1673	1876	5645	6746	6730	5350	6727	1704	1695	1911	2986	2080	2540	1877	6971	1204	6794

Type	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Misropollusate organismos	- Choireants Organiques	Pesticides	Micropolluants organiques	Insecticides	Micropolluants organiques	Micropolluants organiques	Pesticides	Desticides	Micropolluants organiques	Pesticides	Micropolluants organiques	Micropolluants organiques	Pesticides	Micropolluants organiques	Micropolluants organiques	Pesticides	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Pesticides	Pesticides	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Pesticides	Pesticides	Fongicides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Micropolluants organiques	Biocides	Micropolluants organiques	Desticited	Micropolluants organiques	Pesticides
Unité	na/L	hg/L	µg/L	hg/L	µg/L	no/	hg/L	µg∕L	hg∕L	µg∕L	µg/L	101 101	ng/L	na/L	hg/L	µg∕L	µg/L	hg/L	µg/L	hg/L	ng/L	µg/L	hg/L	µg/L	µg/L	na/L	µg/L	µg/L	µg/L	no/L	hg/L	hg/L	µg/L	101	lou.	ng/L	hg/L	µg/L	hg/L	hg/L	hg/L	hg/L	µg∕L	µg/L	hg/L	µg∕L	hg/L	µg/L	Hg/L	rg/L	μg/L
Paramètre	Mexacarbate	Miconazole	Midazolam	Mirex	Molinate	Monocrotophos	Monolinuron	Monooctyletain cation	Monophenyletain cation	Monuron	Morphine	Morning	Musc xylene	Myclobutanil	N-(2,6-dimethylphenyl)-N-(2-methoxyethyl	N.N-Diethyl-m-toluamide	N.N-Dimethylsulfamide	Nadolo	Naled	Napropamide	Naproxene	Naptalame	n-Butyl Phtalate	N-Butylbenzenesulfonamide	Neburon	Nicotine	Nitrobenzène	Nitrofène	Nitrophenol-2	Norfloxacine	Norfluoxetine	Norflurazon	Norflurazon desméthyl	Octolisothiazolinone	O-Demethyltramadol	Offoxacine	Ofurace	Ométhoate	Orthophénylphénol	Oryzalin	Oxadiargyl	Oxadiazon	Oxadixyl	Oxamyl	Oxasulfuron	Oxazepam	Oxyclozanide	Oxycodone	Oxydemeton metnyi	Oxytetracycline	Paclobutrazole
Code	7143	7130	7140	5438	1707	1880	1227	7496	7497	1228	7475	447	6342	1881	6380	2629	6384	6443	1516	1519	5351	1937	1462	5299	1520	5657	2614	1229	1637	6761	6772	1669	2737	8302	6767	6533	2027	1230	2781	1668	2068	1667	1666	1850	5510	5375	7107	6682	1057	6532	2545
						ordanidues		Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	of minimum of	Micropollusts organiques	is organiques	Micropolluants organiques		Micropolluants organiques									organicines		Micropolluants organiques			Micropolluants organiques				Micropolliants organiques	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques		Micropolluants organiques				Micropolluants organiques	Micropolluants organiques	Micropolluants organiques				Micropollipate Arabicine	5	les
Type				, 1	Pesticides	Micropolliants organiques	Pesticides	Micropolluant	Micropolluan	Micropolluar	Pesticides	Micropollus	Pesticides	Micropolluan	Pesticides	Micropolluant	Pesticides		Insecticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides Micropollipants organizates	Pesticides	Micropolluan	Pesticides	Pesticides	Micropollua	Pesticides	Insecticides	HAP	Micronollian	Micropolluar	Micropolluar	Micropolluan	Pesticides	Micropolluan	Pesticides	Pesticides	Pesticides	Micropolluant	Micropolluan	Micropolluan	Pesticides	Pesticides	Pesticides	Micropollus	Pesticides	Pesticides
		ng/L -	ug/L -			Micronolliants	_	_	_																		_			ua/l Micropollua	_	_				_			_			_									Ī
Unité	2-butoxvethyl ester	Mecoprop-2-ethylhexyl ester	Mecoprop-2-octyl ester	Mecoprop-methyl ester	hg/L	Melenace pg/L	Mefluidide µg/L	Méfonoxam µg/L	Mepanipyrim µg/L	Mephosfolan		Meningoning Half	Meronil La/L	Meptydinocap Light	Mercaptodiméthur µg/L	Mercaptodiméthur sulfoxyde	Mesosulfuron methyle	Mesotrione µg/L	metaffumizone µg/L	1706 Métaldáyi Pesticides	Métamitrone µg/L		Metazachlor sulfonic acid	Metazachlore µg/L		Methabenzthiazuron ug/L	Methacrifos	Methamidophos µg/L	on µg/L	Methorrexate Lud/	Methoxychlore µg/L	Methoxyfenoside µg/L		Méthylchloroisothiazolinone	Methylisothiazolinone	Methylparaben µg/L	Metiram µg/L	Métobromuron µg/L	Métofluthrine µg/L	Metolachlor ESA	Metolachlor OXA	Métolachlore µg/L	Metolachlore NOA 413173 µg/L	Metolcarb µg/L	Metoprolol µg/L	Metosulame µg/L	Metoxuron	Metrafenone µg/L	1223 Internousing pg/L Presidues 6234 Marropidazala Micropallia	Metsuffuron methyl µg/L	Mévinphos µg/L

Tvpe	Pesticides	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Pesticides	Micropolluants organiques	Pesticides	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Pesticides	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Pesticides	Micropolluants organiques	Pesticides	Pesticides	Micropolluants organiques	Pesticides	Pesticides	Pesticides	resticions	Desticides	Pesticides	Pesticides	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Pesticides	Micropolluants organiques	Micropolluants organiques	Pesticides	Micropolluants organiques	Pesticides	Pesticides	resticides	Micropoliuants organiques Desticides	Micropolluants organiques	Pesticides	Micropolluants organiques	Pesticides	Micropolluants organiques
Unité	naA	ng/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	ng/L	na/L	na/L	no/	nav	na/L	nav	ng/L	ng/L	nav	na/L	na/L	µg/L	µg/L	µg/L	µg/L	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L	hg/L	Hg/L	101	ng/L	ng/L	µg/L	µg/L	hg/L	µg/L	hg/L	hg/L	µg/L	µg/L	µg/L	hg/L	pg/L	Hg/L	101	ng/L	hg/L	µg/L	µg/L
Paramètre	Phoxime	Phtalate de diméthyle	Piclorame	Picolinafen	Picoxystrobine	Pinoxaden	Piperonil butoxide	Piperophos	Pirimicarbe	Pirimicarbe Desmethyl	Pirimicarbe Formamido Desmethyl	Piroxicam	p-Nitrotoluene	Pravastatine	Prednisolone	Pretilachlore	Prilocaine	Primidone	Pristinamycine IIA	Prochloraze	Procymidone	Profénofos	Progesterone	Promécarbe	Prométon	Prométryne	Propachlor ethane sulfonic acid	Propachlore	Propachlore OXA	Propamocarb	Propanil	Propaphos	Propaquizafop	Propargite	Propazine	Propazine z-hydroxy	Prophame	Propiconazole	Propoxur	Propoxycarbazone-sodium	Propranolol	Propylbenzène	Propylene thiouree	Propylparaben	Propyphenazone	Propyzamide	Proquinazid	Prosultocarbe	Prosulturon	Promisconazore	Proximpulant	Pyraclofos	Pyraclostropine	Pyraflufen-ethyl	Pyrazophos	Pyrazosulfuron-ethyl
Code	1665	1489	1708	5995	2669	7057	1709	5819	1528	5531	5532	7668	5821	6771	6734	1949	6531	7961	6847	1253	1664	1889	5402	1710	1711	1254	6887	1712	7736	6398	1532	6964	1972	1255	9071	1622	1534	1257	1535	5602	5363	1837	6214	6693	5421	1414	7422	1092	2534	2002	5416	6611	2576	5509	1258	6386
Type	Micropolluants organiques	Micropolluants organiques	Pesticides	Pesticides	Fongicides	PCB	PCB	PCB	PCB	PCB	PCB	PCB	E G	PCB	PCB	PCB	PCB	BCB BCB	PCB	PCB	PCB	PCB	PCB	PCB	PCB	PCB	PCB	PCB	PCB	PCB	PCB	PCB	PCB	PCB	PCB	Pesticides	Desticides	Pesticides	Micropolluants organiques	Pesticides	Pesticides	Micropolluants organiques	Pesticides	HAP	Micropolluants organiques	Micropolliants organizates	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Pesticides					
 Unite	na/	ng/L	hg/L	hg/L	µg/L	иgЛ	hg/L	µg/L	hg/L	hg/L	µg/L	na/L	ng/L	na/	na/L	na/L	na/L	ng/L	ng/L	na/L	na/L	na/	иgЛ	µg/L	иgЛ	hg/L	µg/L	hg/L	иgЛ	hg/L	hg/L	hg/L	иgЛ	hg/L	hg/L	Hg/L	10/L	ng/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	Hg/L	hg/L	10/	ng/L	нgЛ	рgЛ	hg/L
Paramètre	_	Paraoxon	Parathion éthyl	Parathion méthyl	Parconazole	PCB 101	PCB 105	PCB 114	PCB 118	PCB 123	PCB 125	PCB 126	PCB 128	PCB 138	PCB 149	PCB 153	PCB 156	PCB 157	PCB 167	PCB 169	PCB 170	PCB 180	PCB 189	PCB 194	PCB 209	PCB 28	PCB 31	PCB 35	PCB 37	PCB 44	PCB 52	PCB 54	PCB 66	PCB 77	PCB 81	Penconazole	Pencyculon	Penoxsulam	Pentachlorobenzène	Pentachloroethane	Pentachlorophénol	Pentoxifylline	Perchlorate	Perfluorooctanesulfonamide (PFOSA)	Permethrine	Pethoxamide	Pethoxamide ESA	Phenamiphos	Phenanthrene	Phenazone	Phenineuphane	Phenytain	Phorate	Phosalone	Phosmet	Phosphamidon
SANDRE	5354	5806	1232	1233	6753	1242	1627	5433	1243	5434	2943	1089	1884	1244	1885	1245	2032	5435	5436	1090	1626	1246	5437	1625	1624	1239	1886	1240	2031	1628	1241	2048	5803	1091	5432	1,007	1234	6394	1888	5924	1235	7670	6219	6548	1523	7519	8590	1499	1524	02420	5813	7708	1525	1237	1971	1238

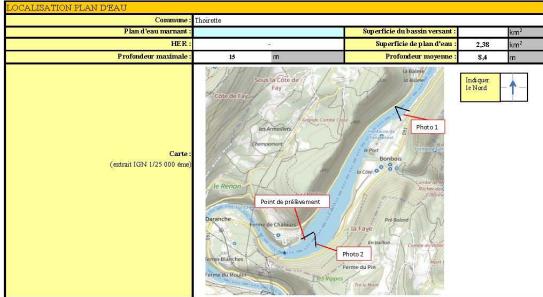
Type	Pesticides	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Pesticides	Micropolluants organiques	Micropolluants organiques	Pesticides	Micropolluants organiques	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Pesticides	Pesticides	Micropoliuants organiques	Pesticides	Micropolliants organizates	Micropolitants organiques	Micropolliants organiques	Micropolluants organiques	Micropolluants organiques	Pesticides	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Pesticides	Micropolliants organizates	Micropolluants organiques	Pesticides	Pesticides	Micropolluants organiques	Pesticides	Micropolluants organiques	Pesticides	Pesticides	Micropolluants organiques	Pesticides	Pesticides	Micropolluants organiques	Pesticides	Pesticides	Pesticides	- Apriliance	Micropolliants organiques	Micropolluants organiques		Micropolluants organiques
Unité	J/6ri	µ9/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	J/6rl	hg/L	J/6rl	hg/L	Hg/L	hg/L	hg/L	hg/L	hg/L	ng/	197	2 2	9 5	no/L	rg/L	hg/L	µg/L	hg/L	µg/L	hg/L	76 :	John John John John John John John John	no.	hg/L	µg/L	hg/L	hg/L	100	100	ng/L	hg/L	µg/L	µg/L	hg/	hg/L	hg/L	ng/L	100	200	no/L	/01	1
Paramètre	_	TCMTB	Tébuconazole	Tébufén ozide	Tébufenpyrad	Tébupirimfos	Tébutame	Tébuthiuron	Tecnazène	Téflubenzuron	Téfluthrine	Tembotrione	Téméphos	Terbacile	Terbuméton	Terbuphos	Terbutaline	Terbuthylazine	Terbuthylazine désethyl	Terbuthylazine desethyl-2-hydroxy	Terbuthylazine hydroxy	Testosterone	Tetrahutyletain	Tétrachloréthane-1112	Tétrachloréthane-1,1,2,2	Tétrachloréthylène	Tétrachlorobenzène	Tétrachlorobenzène-1,2,3,4	Tétrachlorobenzène-1,2,3,5	Tétrachlorobenzène-1,2,4,5	Tétrachlorure de C	Tétrococcalo	Tetracoliazore	Tétradécyl diméthyl benzyl ammonium	Tétradifon	Tétraphénylétain	Tetrasul	This bendazole	Thisflumide	Thiamethoxam	Thiazasulfuron	Thidiazuron	Thiencarbazone-methyl	Thifensulfuron méthyl	Thiocyclam hydrogen oxalate	Thiodicarbe	Thiofanox	Thiofanox sulfone	Thiometon	Thionazin	Thiophanate-ethyl	Thionbapate-methyl	
Code	1193	5834	1694	1895	1896	7511	1661	1542	5413	1897	1953	7086	1898	1659	1266	1267	6963	1268	2045	/150	1954	5384	1936	1270	1271	1272	2735	2010	2536	1631	1276	1771	6750	8298	1900	5249	5837	1713	1940	6390	1714	5934	7517	1913	7512	1093	1715	5476	2071	5838	7514	4747	/ / /
Type		НАР	Micropolluants organiques	Pesticides	Micropolluants organiques	Pesticides	Pesticides	Pesticides		Pesticides	_	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Pesticides			Micropolluants organiques	Pesticides	Pesticides	Micropolluants organiques	Pesticides	Micronolliants organiques	Pesticides	Micropolluants organiques	Micropolluants organiques	Pesticides	Fongicides	Micropolluants organiques			Micropoliuants organiques	Pesticides	Pesticides				Micropoliuants organiques			1	Micropolluants organiques	Pesticides					Micropolluants organiques	Micropolinants organiques	Micropolluants organiques		Pesticides
Unité	J/bri	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	J/Br	µg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	100	9 0	9 5	ng/L	J/gr	rig/L	hg/L	hg/L	hg/L	hg/L	Jg/L	100	ng/L	hg/L			hg/L	100	1/01	ng/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	197	9 0	ng/L)	J/Br
Paramètre	-	Pyrène	Pyributicarb	Pyridabène	Pyridaphenthion	Pyridate	Pyrifenox	Pyrimethanil	Pyrimiphos éthyl	Pyrimiphos méthyl	Pyriproxyfène	Pyroxsulam	Quinalphos	Quinmerac	Quinoxyfen	Quintozène	Quizalofop	Quizalofop éthyl	Ranitidine	Rimsulturon	Kotenone	Noxyunomycine B/Plonemidal	S Métolachlore	Sahitamol	Sébuthylazine	Sebuthylazine 2-hydroxy	Sebutylazine desethyl	Secbumeton	Sedaxane	Sertraline	Sethoxydime	Sightishes	Silvey	Simazine	Simazine hydroxy	Simétryne	Somme de Méthylphénol-3 et de Méthylphén	Sotalol	Spinosau Spinosupe A	Spinosyne	Spirotetramat	Spiroxamine	Styrène	Sulcotrione	Sulfadiazine	Sulfamethazine	Sulfamethizole	Suffamethoxazole	Sulfathiazole	Suffomethings—methy	Sulfonate de perfluorooctane (PFOS anion)		Sullosururon
Code	6530	1537	5826	1890	5606	1259	1663	1432	1260	1261	5499	7340	1891	2087	2028	1538	2069	2070	6259	1892	2029	2452	2974	5527	1923	6101	5981	1262	7724	6929	1808	1893	1539	1263	1831	5477	5855	5424	7438	7439	7506	2664	1541	1662	6758	6525	6795	5356	6572	5507	6561	1	2085

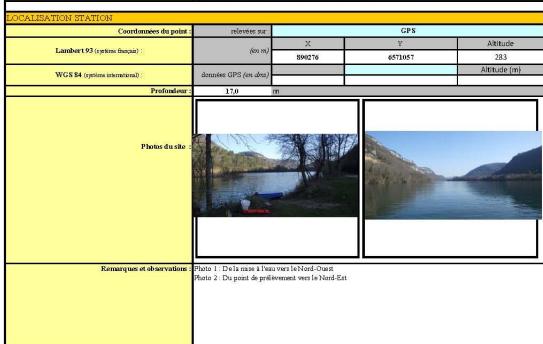
Type	Pesticides																																																								
Unité	hg/L																																																								
Paramètre	Zoxamide																																																								_
Code	2858																																																								
Type	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	BTEX	Pesticides	Micropolluants organiques	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Pesticides	Micropolluants organiques	Desticides	Micropolluants organiques	Biocides	Pesticides	Pesticides	Micropolluants organiques	Pesticides	Pesticides	Pesticides	1	Pesticides	Pesticides	Micropolluants organiques	Pesticides	Micropolluants organiques	Pesticides	Micropolluants organiques	Pesticides		Micropolluants organiques		Micropolluants organiques	Pesticides	- BTEX	BTEX	Micropolluants organiques												
Unité	hg/L	hg/L	µg/L	hg/L	µg/L	hg/L	hg/L	hg/L	hg/L	hg/L	µg/L	ug/L	ug/L	na/L	na/L	lou/	na/L	µg/L	J/Br/	ua/L	na/L	na/L	ng/L	na/L	l'on	l/on	l/on	1/01	no/L	ng/L	1/01	ng/L	ng/L	hg/L	µg/L	Hg/L	µg/L	hg/L	hg/L	hg/L	lg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	hg/L	µg/L	µg/L	hg/L	hg/L	hg/L	hg/L	hg/L	ng/L	hg/L
Paramètre	Timolol	Tiocarbazil	Tolclofos-methyl	Toluène		ole			Triadiménol	Triallate	Triasulfuron	Triazamate		Methyle	ithioite			Trichlopyr	nane-1,1,1	Trichloréthane-1.1.2		e-1,2,3		5				~	-1.12			e e	Metain cation		2-hydroxy	Trietazine desethyl	ine			uron-methyl					Triméthylbenzène-1,2,4			Trioctyletain cation	Triphenyletain cation	Triticonazole					Xylene-meta Note or the Note of the Note o		
Code	7965	5922	5675	1278	1719	0999	6720	1544	1280	1281	1914	1901	1657	2064	5840	2879	1847	1288	1284	1285	1286	1630	1283	1629	1195	1548	1549	1854	1196	6889	5430	2898	2885	5842	6102	5971	2678	1902	1289	2991	1802	6732	5357	1857	1609	1509	2096	2886	6372	2992	7482	1290	7611	1291	1292	1294	5376

Annexe 2 : Liste des micropolluants analysés sur sédiments.

Type			Micropollusate organiques					_							BIEX) Micropolluants organiques					Micropolluants organiques Desticides				_	Desticion									Pesticides) Pesticides		_		Lesignes
Unité	hg/(kg MS)	hg/(kg MS)	DG/(kg MS)	ua/(ka MS)	ug/(kg MS)	ug/(kg MS)	pg/(kg MS)	hg/(kg MS)	pg/(kg MS)	pg/(kg MS)	hg/(kg MS)	µg/(kg MS)	pg/(kg MS)	pg/(kg MS)	pg/(kg ms)	DB/(Kg MS)	Day(kg MS)	OW DANGE	ua/(ka MS)	ua/(ka MS)	ua/(kg MS)	ug/(kg MS)	pg/(kg MS)	hg/(kg MS)	pg/(kg MS)	pg/(kg MS)	pg/(kg MS)	ug/(kg MS)	ua/(ka MS)	ug/(kg MS)	µg/(kg MS)	pg/(kg MS)	LIG/(Kg MS)	ua/(ka MS)	ug/(kg MS)	µg/(kg MS)	pg/(kg MS)	pg/(kg MS)	hg/(kg MS)	pg/(kg MS)	pg/(kg MS)	LIGWING MS)	(SIM DA)/Br	ug/(kg MS)	ua/(ka MS)	ug/(kg MS)	ug/(kg MS)	hg/(kg MS)	hg/(kg MS)	ua/(ka MS)	0
_	Chloroalcanes C10-C13	Chloroaniline-2	Chlorogniine-5	Chlorobenzene	Chlorobromuron	Chloroforme (Trichlorométhane)	Chloronèbe	Chloronitroaniline-4,2	Chloronitrobenzene-1,2	Chlorontrobenzene-1,3	Chloronitrobenzene-1,4	Chloroprène	Chloropropane-2	Chloropropene-3	Chlorocoluene-2	Chloropius 4	Chlorovinga	Chlorocohame	Chlorovriphos ethyl	Chlorovriphos méthyl	Chlorthal dimethyl	Chlortoluron	Chlorure de Benzyle	Chlorure de vinyle	Chrysene	cinidon-éthyl	Clodinatop-propargyl	Clorentezine	Clotrimazole	Coumaphos	Crésol-méta	Crésol-ortho	Cresor-para Cyanazine	Cvazofamid	Cyclohexane	Cycluron	Cyfluthrine	Cyperméthrine	Cyproconazole	Cyprodinil	DCPMU (metabolite du Diuron)	DCPU (metabolite Diuron)	4.000	, d = 000	DDE-p.p.	DDT-o.p.	'q.'P_TOO	Décane (C10)	DEHP	Deltamethrine	
Code	1955	1593	1597	1467	2016	1135	1341	1594	1469	1468	14/0	2611	2692	2065	1602	1001	1683	1474	1083	1540	2966	1136	1579	1753	1476	2938	2095	2017	5360	1682	1639	1640	1137	5567	1583	1696	1681	1140	1680	1359	1929	1143	2 4 4	1145	1146	1147	1148	2665	9199	1110	2
Туре	Pesticides	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Pesticides	BTEX	Micropolluants organiques	HAP	HAP	НАР	HAP	HAP	HAP	HAP	Micropoliums organiques	Destrides	Destroides	Pesticides	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Pesticides	Pesticides	Destinides	Pesticides	Micropolluants organiques	Pesticides	Insecticides	Micropolluants organiques	Pesticides	Destinides	במחומומים
Unité	pg/(kg MS)	pg/(kg MS)	DOV(Kg MS)	ua/(ka MS)	ug/(kg MS)	µg/(kg MS)	pg/(kg MS)	µg/(kg MS)	µg/(kg MS)	pg/(kg MS)	pg/(kg MS)	µg/(kg MS)	pg/(kg MS)	pg/(kg MS)	hg/(kg MS)	Hg/(kg MS)	Hay (Rg MS)	(Ko MS)	ua/(ka MS)	ua/(ka MS)	ua/(kg MS)	ug/(kg MS)	pg/(kg MS)	µg/(kg MS)	µg/(kg MS)	ug/(kg MS)	pg/(kg MS)	pg/(kg MS)	ua/(ka MS)	ug/(kg MS)	µg/(kg MS)	ug/(kg MS)	pg/(kg MS)	ua/(ka MS)	ug/(kg MS)	µg/(kg MS)	µg/(kg MS)	ug/(kg MS)	pg/(kg MS)	ug/(kg MS)	pg/(kg MS)	pg/(kg MS)	DOWNER MES	ug/(kg MS)	ua/(ka MS)	ug/(kg MS)	ug/(kg MS)	µg/(kg MS)	µg/(kg MS)	(SW SW)	CIM BUILDING
Paramètre	mide		Bendiocarde		icarbe-isopropyl			ethyl	ène		Je		ithene	0			Defa-nexable medy coordecate	4	rine						methane			Bromononylate	hyle				Butylbenzene sec			nide		thion	_			Chichigane	0			Chlordécone	-5b-hydro		SC	Chlorifuazuron	
Code	7522	1687	1329	2074	7460	1764	1114	2717	1082	1115	1116	1118	1117	7279	1460	4761	1119	1120	1502	1584	1529	5526	1686	1632	1121	1122	1123	1124	1530	1861	1126	1855	1611	1863	1463	1333	1130	1131	1864	2975	29/62	1336	7040	1757	7527	1866	6577	5553	1464	2050	200

1150 Demeton-O 1152 Demeton-S 2980 Desmedph 1155 Desmetryir 1156 Diallate 1157 Diallon 1157 Diallon 1157 Dibenzo (at 1105 Dibenzo(at 1158 Dibenzotur 1158 Dibenzotur 1158 Dibenzotur 1158 Dibenzotur		7	1300			2	1
		ug/(kg MS)	Pesticides Pesticides	1870	Diméfuron Dimétachlore	ug/(kg MS)	Pesticides
	ame	_	Micropolluants organiques	1678	Diméthénamide	ug/(kg MS)	Pesticides
	oproturon		Micropolluants organiques	1175	Diméthoate	ug/(kg MS)	Pesticides
	ryne	ug/(kg MS)	Pesticides	1403	Diméthomorphe	ug/(kg MS)	Pesticides
		-	Pesticides	1698	Dimétilan Dimétilan	uo/(kg MS)	Pesticides
	(ah) Anthracène	_	НАР	5748	dimoxystrobine	ug/(kg MS)	Micropolluants organiques
	nthracene	_	НАР	1871	Diniconazole	ug/(kg MS)	Pesticides
		_	Micropolluants organiques	1578	Dinitrotoluene-2,4	ug/(kg MS)	втех
	ane		Micropolluants organiques	1577	Dintrotoluene-2,6	ug/(kg MS)	- copioidos
	Dibromoethane-1,2 µg/(kg	hg/(kg MS)	Missopollipato proprieto	1494	Dioctyletain cation	ug/(kg MS)	Missopolinosto organizado
			Micropoliuants organiques Pesticides	5478	Dioxane-1,4	ua/(kg MS)	Micropolluants organiques
		_	Pesticides	7495	Diphenyletain cation	ug/(kg MS)	Pesticides
1159 Dichlo	Dichlofenthion µg/(kg		Pesticides	1177	Diuron	ug/(kg MS)	Pesticides
		_	Micropolluants organiques	1554	Dodécane (C12)	ug/(kg MS)	Micropolluants organiques
		_	Micropolluants organiques	2688	Durene	ug/(kg MS)	Micropolluants organiques
		_	Micropolluants organiques	1178	Endosulfan alpha	ug/(kg MS)	Pesticides
		_	Micropolluants organiques	1179	Endosulfan beta	ug/(kg MS)	Pesticides
1/2/ Dichio	Dichlorethylene-1,2 trans	hg/(kg MS)	Micropolitiants organiques	7471	Endosultan sultate	Jg/(kg MS)	Pesticides
			Missocollipate organismos	1744	Endine	ug/(kg MS)	Pesticides
			Pesticides	1182	FPTC	In/(kg MS)	Pesticides
	. 9	_	Pesticides	1809	Esfenvalérate	uq/(kg MS)	Pesticides
586 Dichlo			Pesticides	1745	Ethanol	ug/(kg MS)	Micropolluants organiques
		_	Pesticides	1763	Ethidimuron	ug/(kg MS)	Pesticides
		_	Micropolluants organiques	1183	Ethion	ug/(kg MS)	Pesticides
			Micropolluants organiques	1184	Ethofumésate	ug/(kg MS)	Pesticides
1166 Dichlo			Micropolluants organiques	1495	Ethoprophos Ethol for high other	ug/(kg MS)	Misropollipate arguings
	Dichloromothers pg/(kg	hg/(kg MS)	Micropolluants organiques	1407	Emyl tert-butyl emer Ethylbaszása	JOY(Kg MS)	Micropoliuants organiques
			Micropolluants organiques	2635	Ethylburyl-cetone	ug/(kg MS)	Micropolliants organizates
	0 4		Micropolluants organiques	5760	Etrimfos	ua/(ka MS)	Micropolluants organiques
	. 2	_	Micropolluants organiques	2020	Famoxadone	ua/(ka MS)	Pesticides
	9 4		Micropolluants organiques	2057	Fénamidone	ug/(kg MS)	Pesticides
1613 Dichlo	Dichloronitrobenzène-3,5	_	Micropolluants organiques	1185	Fénarimol	ug/(kg MS)	Pesticides
		_	Micropolluants organiques	2742	Fénazaquin	ug/(kg MS)	Pesticides
			Micropolluants organiques	1906	Fenbuconazole	ug/(kg MS)	Pesticides
			Micropolluants organiques	1186	Fenchlorphos	ug/(kg MS)	Pesticides
		_	Micropolluants organiques	1843	Fenturame	ug/(kg MS)	Fongicides
2082 Dichlo			Micropolitiants organiques	7000	Fenitrothion	Jg/(kg MS)	Pesticides
	Dichloroprophere-1,5 cis	hg/(kg MS)	Pesticides	1072	Cénocoprop éthol	JOWER MS)	Desticides
			Micropolluants organiques	1967	Fenoxycarbe	ua/(ka MS)	Pesticides
			Pesticides	1188	Fenoropathrine	ua/(ka MS)	Pesticides
			Pesticides	5630	Fentyroximate	ug/(kg MS)	Insecticides
1000			Pesticides	1190	Fenthion	ug/(kg MS)	Pesticides
			Pesticides	1500	Fénuron	ug/(kg MS)	Pesticides
	e.		Micropolluants organiques	2009	Fipronil	ug/(kg MS)	Pesticides
			Micropolluants organiques	1840	Flamprop-isopropyl	ug/(kg MS)	Pesticides
1488 Diffurb	Diffuhenzuron	Hg/(kg MS)	Destinides	2984	Fluazinop-F-butyi	ug/(kg MS)	Missopolitante organizates
			Pesticides	2022	Fludioxonil	ua/(ka MS)	Pesticides
	thalate		Micropolluants organiques	1676	Flufénoxuron	ug/(kg MS)	Pesticides
1.00	•		Micropolluants organiques	1501	Fluométuron	ug/(kg MS)	Pesticides
6215 Diison	Diisononyl phtalate	_	Micropolluants organiques	1191	Fluoranthène	ug/(kg MS)	HAP


SANDRE Paramètre	Unité	Type	SANDRE	Paramètre	Unité	Type
Fluridone	µg/(kg MS)	Pesticides	2807	Isoxadifen-éthyle	ug/(kg MS)	Micropolluants organiques
Flurochloridone	µg/(kg MS)	Pesticides	1945	Isoxaflutol	ug/(kg MS)	Pesticides
Fluroxypyr-meptyl	µg/(kg MS)	Pesticides	1950	Kresoxim methyl	ug/(kg MS)	Pesticides
Flurprimidol	µg/(kg MS)	Pesticides	1094	Lambda Cyhalothrine	ug/(kg MS)	Pesticides
Flurtamone	µg/(kg MS)	Pesticides	1406	Lénacile	ug/(kg MS)	Pesticides
Flusilazole	hg/(kg MS)	Pesticides	1209	Linuron	ug/(kg MS)	Pesticides
Flutnatol	hg/(kg MS)	Pesticides	2026	Lufenuron	ug/(kg MS)	Pesticides
Control	LIGWING MC)	Misropollipate proprieto	0171	Moodes	(SM BA)/Br	Missocollinate erapsimo
Fostmazate	Ligy(kg MS)	Micropoliuants organiques	2000	Mecarbam	LIGY(KG IMIS)	Micropoliuants organiques
Furalkiootha	LIGARG MS)	Pesticides	2030	Metenacet Metenacet	JOY(KG MS)	Missocollisate organismes
Colored	Light May	resultings	2930	Melenyy demy	DOVER MIS)	Micropolluants organiques
Galaxolide	Ligy(kg MS)	Micropoliuants organiques	2000	Mepanipyrim	LIGY(Kg MIS)	Micropoliuants organiques
gamma-hexabromocyclododecane	LIGAKE MS)	Micropoliuants organiques	15/0	Mercentodiméthur	Jg/(kg MS)	Pesticides
HOU hoto	Lighted MS)	Pesticides	1206	Méricapionimetriui	DOV(KG MS)	Pesticides
non della	DB/(RB MS)	Doctiones	1246	Métanitan	USW (KIS MIS)	resticides
HOLI GEITS	Light (Kg MS)	Pesticines	0171	Metallillone	DOV(KG MIS)	resticiones
HCH epsilon	LIGY(KG MS)	Pesticides	16/0	Metazachiore	ugy(kg MS)	Pesticides
	Light MO	Pesticines	10/0	Melconazole	DOV(RG MIS)	Pesticides
Heptachlore	hg/(kg MS)	Pesticides	1216	Methabenzthiazuron	ugy(kg MIS)	Festicides
Heptachlore epoxyde cis	ug/(kg MS)	Pesticides	5/92	Methacritos	ug/(kg MS)	Micropoliuants organiques
Heptachlore epoxyde trans	hg/(kg MS)	Pesticides	27.23	Methacrylate de methyle	ug/(kg MS)	Micropolluants organiques
Heptane (C/)	hg/(kg MS)	Micropoliuants organiques	7007	Methanol	LIGN(KG INIS)	Micropoliuants organiques
Heptenophos	hg/(kg MS)	Pesticides	1217	Methidathion	ug/(kg MS)	Pesticides
Hexachlorobenzene	hg/(kg MS)	Micropolluants organiques	1511	Methoxychlore	ug/(kg MS)	Pesticides
Hexachlorobutadiene	hg/(kg MS)	Micropolluants organiques	2506	Methyl cyclohexane	ug/(kg MS)	Micropolluants organiques
Hexachloroethane	µg/(kg MS)	Micropolluants organiques	1514	Methyl ethyl cetone	ug/(kg MS)	Micropolluants organiques
Hexachloropentadiene	hg/(kg MS)	Pesticides	1508	Methyl Isobutyl cetone	ug/(kg MS)	Micropolluants organiques
Hexaconazole	µg/(kg MS)	Pesticides	6664	Methyl triclosan	ug/(kg MS)	Biocides
Hexaflumuron	µg/(kg MS)	Pesticides	1619	Methyl-2-Fluoranthene	ug/(kg MS)	HAP
Hexazinone	µg/(kg MS)	Pesticides	1618	Methyl-2-Naphtalene	ug/(kg MS)	HAP
Hexythiazox	hg/(kg MS)	Pesticides	2639	Metnyl-4 cyclonexanone-1	ugy(kg MS)	Micropoliuants organiques
Imazamethabenz methyl	hg/(kg MS)	Pesticides	1515	Metobromuron	ug/(kg MS)	Pesticides
Indane	µg/(kg MS)	Micropolluants organiques	1221	Metolachlore	ug/(kg MS)	Pesticides
Indène	µg/(kg MS)	Micropolluants organiques	1222	Metoxuron	ug/(kg MS)	Pesticides
Indeno(1,2,3-cd)pyrene	µg/(kg MS)	HAP	5654	Metrafenone	ug/(kg MS)	Pesticides
Indoxacarbe	µg/(kg MS)	Micropolluants organiques	1225	Metribuzine	ug/(kg MS)	Pesticides
lodofenphos	hg/(kg MS)	Pesticides	1226	Mevinphos	ug/(kg MS)	Pesticides
Iprodione	µg/(kg MS)	Pesticides	5438	Mirex	ug/(kg MS)	Pesticides
Iprovalicarbe	hg/(kg MS)	Pesticides	1/0/1	Molnate	ug/(kg MS)	Pesticides
Irganox 1076	hg/(kg MS)	Micropoliuants organiques	2542	Monobutyletain cation	ug/(kg MS)	Micropoliuants organiques
Irgarol (Cybutryne)	Light MS)	Micropoliuants organiques	77706	Monolinuron	LIGY(KG MIS)	Pesticides
Isazolos Isabitta elecel	(SM SW)/fird	Missonallianta arganismo	7407	Monotherali callon	(SM BA)/GH	Pesticides
Isobuty alcool	LIGWING MC)	Miscopolius organiques	1947	Monitor delain caucil	DOV(KG MS)	resticides
Isobutyibelizerie	DB/(RG MG)	micropolitains organiques	1520	Molinion	(SIM BY) OF	Pesticides
Isodille	Light (Kig MS)	Pesticides	2101	MIBE	LIGN(RIG INIS)	Micropoliuants organiques
Sodurene	LIGATED MOS	Micropoliuarits organiques	7007	Music Aylene	LIGWING MIS)	100
Isolembilos	LIGHT BANG	resultines	1001	Myclobutanii	DOV(RG MIS)	Pesticides
Isoocialie	LIGWING MC)	Miscopolinate organiques	1510	Nepperside	DOV(Kg MS)	
Isopental alood	CM DA//CH	Micropolluante organiques	2713	napiopalline	(King MS)	Missonollinente organizate
Isoprany along I ISANI	(OM DA)/DI	Micropolitants organiques	1462	n Dutyl aci ylate	(SM BA)/Pri	Micropollusate organiques
Isopropyl alcool [Oshiv]	HOWKO MS)	Micropolitatins organiques	1520	n-butyi rinalate Néhiron	un/(kg MS)	Pesticides
Isopropyltoluène m	ua/(ka MS)	Micropolluants organiques	2675	n-Hexane	ua/(ka MS)	Micropolluants organiques
Isopropyltoluène o	ua/(ka MS)	Micropolluants organiques	2709	Nitrile acrylique	ua/(ka MS)	Micropolluants organiques
Isopropyltoluène p	ua/(ka MS)	Micropolluants organiques	1229	Nitrofène	ua/(ka MS)	Pesticides
Isoproturon	ua/(ka MS)	Pesticides	2684	Nonane (C9)	In/(kg MS)	Missons of a party of
			2			/


96	Pesticides	HAP	Pesticides Micropolluants organiques	Pesticides	Insecticides	Pesticides	Pesticides	Micropolluants organiques	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Pesticides	Micropolluants organiques	Pesticides	Micropolluants organiques	Q.	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Micropolluants organiques	and the same of th
Unité			ua/(kg MS) Mic	-		ug/(kg MS) Per	1020	_		10.00	12.0			LIGW(KG IMS) Per	271 12	0 02	100		(CD)	_		UG/(Kg MS) Per		-			ug/(kg MS) Mis				ug/(kg MS) Mic		-		ug/(kg MS) Pe	20 00	-				loggo.	100		22 0	LIGY(Kg MS) Per			
Paramètre	Phénamiphos	Phénanthrène	Phenthoate	Phorate	Phorate sulfone	Phosalone Phosphamidon	Phoxime	Phtalate de diméthyle	Phtalimide	Picoxystrobine	Piperonil butoxide	Pirimicarbe	Pretilachlore	Procnioraze	Profériores	Promécarbe	Prométon	Prométryne	Propachlore	Propanil	Propaguizatop	Propazine	Propétamphos	Prophame	Propiconazole	Propoxur	Propylbenzene	Prosulfocarbe	Prothiofos	Pyraclostrobine	Pyrafluten-ethyl Dyrazonhos	Pyrene	Pyridabène	Pyridate	Pyritenox	Puriminhos Athyl	Pyrimiphos methyl	Pyriproxyfene	Quinalphos	Quinoxyfen	Quintozène	Quizalofop ethyl	Resmethrine	Rotenone	Sebuthylazine	Sidiron	Sithiopham	
Code SANDRE F	Г	1524 F				1237								1233								1256					7422				1258				1663										1923			
Type	Pesticides	Pesticides	Pesticides		Micropolluants organiques	Micropolluants organiques Pesticides	Fongicides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Pesticidae	Pesticides	Pesticides	PCB	PCB	PCB	PCB	PCB	0.00	PCB	PCB	PCB	PCB	82.6	PCB BCB	PCB	PCB	PCB	PCB	PCB	PCB	PCB	808	PCB	PCB	PCB	PCB	Pesticides	Pesticides	Micropolluants organiques	Wilding of the state of the sta				
Unité	hg/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	µg/(kg MS)	ug/(kg MS)	pg/(kg MS)	ug/(kg MS)	pg/(kg MS)	ug/(kg MS)	ua/(ka MS)	ug/(kg MS)	µg/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ng/(kg MS)	ua/(ka MS)	ua/(ka MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	hg/(kg MS)	ug/(kg MS)	Hg/(kg MS)	hg/(kg MS)	ua/(ka MS)	
Paramètre		desméthyl	Nuarimol	liphénylether		Octocrylene p Offurace	énylphénol			Oxadixyl			henyle	Oxymorene		2	•				PCB 123						PCB 15/				PCB 189		6		PCB 31			52	77	PCB 81	Penconazole		lyl éther (congénère 119)		Ď	Pentachiorophenol		
Par	ž	ž	Ž	ő	ő (őő	6	ő	õ	õ	õ	õ	ő	5 6	2 6	Par	5	8	8	8 8	2 8	5 6	2	8	8	8 8	5 8	5 5	S	8 8	2 6	0	8	8	2 6	5 6	S	PCB	8	8	Per	Pe .	Pe	Pe G	e d	D 0	Pe	

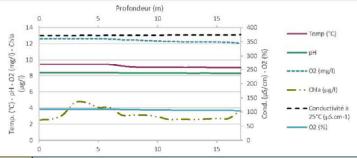
Туре	Micropolluants organiques	Fongicides	Pesticides	Pesticides	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	HAP	Pesticides	Micropolluants organiques	Pesticides) 	BIEA		college																																			
Unité		ug/(kg MS)			1000			200							(SM SW)																																				
Paramètre	Tricyclohexyletain cation	Trifloxystrobine Triflumizole	Triflumuron	Trifluraline	Triméthylbenzène-1,2,3	Trimethylbenzene-1,2,4	Trimethylbenzene-1,3,5	Inoctyletain cation	Inphenylene	Inpnenyletain cation	Undecane (C11)	Vinciozoline	Aylene-meta	Aylene-ormo	Aylerie-para	Covaringe																																			
Code	_	2678	1902	1289	1857	1609	1509	2886	7124	6572	2690	1291	1292	7507	2050	2007																																			
Type	Micropolluants organiques	Micropolluants organiques Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Pesticides	Micropollipate organization	Miscopolitisate organiques	Micropolitants organiques	Micropolitants organiques	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Pesticides	Pesticides	Pesticides	Micropoliuants organiques	Pesticides	Micropolluants organiques	Micropolluants organiques	Pesticides	Pesticides	Di EX Pesticides	Micropolluants organiques	Pesticides	Pesticides	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Micropolluants organiques	Micropoliuants organiques	Micropolluants organiques	Micropolluants organiques	Micropolitants organiques	Micropolluants organiques	Micropolluants organiques	Pesticides	Micropolluants organiques	Biocides Pesticides
	µg/(kg MS)	ug/(kg MS)	ug/(kg MS)	µg/(kg MS)	hg/(kg MS)	hg/(kg MS)	hg/(kg MS)	hg/(kg MS)	hg/(kg MS)	hg/(kg MS)	hg/(kg MS)	hg/(kg MS)	hg/(kg MS)	hg/(kg MS)	HOW (KIG MIS)	HOW (KIG MIC)	ng//kg MS)	CM CAWCI	ug/(kg MS)	ua/(ka MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	ug/(kg MS)	µg/(kg MS)	pg/(kg MS)	hg/(kg MS)	hg/(kg MS)	hg/(kg MS)	ua/(ka MS)	ug/(kg MS)	µg/(kg MS)	hg/(kg MS)	hg/(kg MS)	ua/(ka MS)	ua/(ka MS)	µg/(kg MS)	µg/(kg MS)	pg/(kg MS)	hg/(kg MS)	Hay (kg MS)	LIG/(Kg MS)	ug/(kg MS)	µg/(kg MS)	µg/(kg MS)	µg/(kg MS) µg/(kg MS)					
Paramètre	Styrène	Sulfonate de perfluorooctane (PFOS anion) Sulfoten	Taufluvalinate	Tébuconazole	Tébufénozide	Tebufenpyrad	Tebutame	lecnazene	letlubenzuron	Temphos	Frbacile	Terbumeton	Terbuphos	Lerbumylazine	Tel Duty along	Tetrobut detain	Tetrachlorethane-1112	Tétrachloréthane-1100	Tétrachloréthylène	Tétrachlorobenzène-1,2,3,4	Tétrachlorobenzène-1,2,3,5	Tétrachlorobenzène-1,2,4,5	Tétrachloropropane-1,1,1,2	Tétrachloropropane-1,1,1,3	Tétrachlorure de C	Tétrachlorvinphos	Tétraconazole	T tto build of the state of the	Tetramathrin	Tétraohénvlétain	Tetrasul	Thiafluamide	Thiazasulfuron	niometon	Tralométhrine	trans-Nonachlor	Triadiméfon	Triallate	Tributyletain cation	Tributylphosphate	l richlorethane-1,1,1	Fichlorethane-1,1,2	lichlorethylene	Trichloroaniline-2,4,5	Tricklorobenzère 1 2 3	Tricklorobenzene-1,2,3	Trichlorobenzène-1,2,4		Trichloropropane-1,2,3	Trichlorotrifluoroethane	Triclocarban Triclosan
Code	1541	6561 1894	193	1694	895	968	1661	5413	/69/	888	628	997	/97	207	207	9000	270	1274	272	2010	2536	1631	2704	2705	1276	1277	1660	1900	2001	5249	5837	1940	1714	1707	658	7097	1544	1281	2879	1847	1284	282	987	2732	080	200	629	195	1854	9099	6989 5430

Annexe 3 : Comptes rendus des campagnes de prélèvements physico-chimiques et phytoplanctoniques.

Plan d'eau :	CIZE-BOL OZ ON	Date:	24/03/2022
Nom station :	Cize-Bolozon	Code station :	V23023_C1
Organisme / opérateur :	S. PONCHON (GREBEYL. CAMPLONE (GREBE)	Réf. dossier :	AERM C_PE

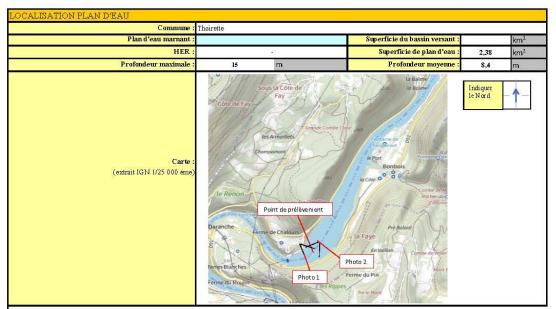
Plan d'eau :	CIZE-BOLOZON	Date :	24/03/2022
Station ou n° d'échantillon :	Cize-Bolozon	Code lac :	V2-3023_C1
Organisme / opérateur :	S. PONCHON (GREBE)/L. CAMPIONE (GREBE)	Réf. dossier :	AERMC PE

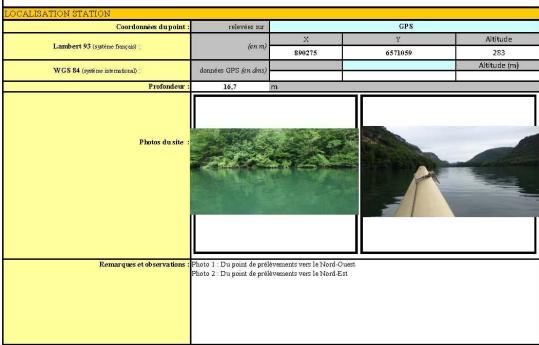
Coordonnées de la station	relevées sur :		GPS		
Lambert 93 (système français)	(en m)	X	Y	Altitude	283
Lambert 93 (systeme français)	(en m)	890276	6571057	(m):	203
WCC 94	données GPS (en dms)	N		Altitude	
WGS 84 (système international)	doillees Gr 5 (en ams)			(m):	
Profondeur (m):			17		
	Instensité du vent :		1-Nul		
	météo :		1-temps sec ensoleillé		
Conditions d'observation :	Surface de l'eau :		1-Lisse		
	Hauteur des vagues:		0	I	n
	Bloom algal :		Non		
			niveau des eaux par rapport à la		
Marnage :	Non		végétation de ceinture (pour le	s o r	n
			plans d'eau marnant)	4	


PRELEVEMENTS			
Heure début de relevé :	9:40	Heure de fin de relevé :	11:45
	☑ phytoplancton☐ chlorophylle☑ eau	Matériel employé :	□ bouteille Niskin téflonisée ☑ bouteille Kemmerer téflon ☑ Tuyau
Prélèvements réalisés :	sédiment macrophytes oligochètes	Volume filtré pour la chlorophylle (ml) :	0
	autres, préciser :	Volume de Lugol ajouté pour le phytoplancton (ml) :	1
Remarques, observations :	Dépôt des échantillons d'eau le 24/03/2022 au TNT C Prélèvement de fond réalisé à la bouteille téflonnée ty Echantillon intégré phytoplancton, chlorophylle et m Echantillon intégré pour micropolluants réalisé à la l Température de l'air : 5°C Pression atmosphérique : 1000hPa	pe Kemmerer, 20 bouteilles soit 2 acropolluants réalisé au tuyau sur	10m (3 tuyaux soit 6L).

Relevé phytoplanctonique en plan d'eau DONNEES PHYSICO-CHIMIQUES

v.3.3.2


Plan d'eau :	CIZE-BOLOZON	Date:	24/03/2022
Station ou nº d'échantillon :	Cize-Bolozon	Code lac :	V2-3023_C1
Organisme / opérateur :	S. PONCHON (GREBE)/L. CAMPIONE (GREBE)	Réf. dossier :	AERMC

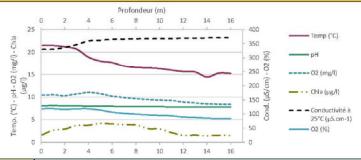

TRANSPARENCE	, , , , , , , , , , , , , , , , , , , ,	e	
Secchi en m :	4,1	Zone euphotique (2,5 x Secchi) en m :	10,25
PROFIL VERTICAL		2 Allert Control	

Moyen utilisé :				mesures in-situ à c	haque prof.			
Echantillon phytoplancton ?	Prof (m)	Temp (°C)	pН	Conductivité à	O _{2 (%)}	O _{2 (mg/l)}	MODF	Chla (µg/l)
zenandnon prijeopranceon :				25°C (μS.cm ⁻¹)			ppb ESQ	
	Intégré de 0 à							
	10,25	0.4	0.4	272	***	10.6		1 25
	0,1	9,4	8,4	372	110	12,6		2,5
	1	9,4	8,4	372	111	12,6		2,6
	2	9,4	8,4	372	111	12,6		3,1
	3	9,4	8,4	372	111	12,6		4,7
	5	9,4	8,4	373 372	111	12,6		4,7
		9,4	8,4		111	12,6		4,1
	7	9,4 9,2	8,4 8,4	373 373	110 109	12,6 12,5		4,1 3,1
	9	9,1 9,1	8,3 8,3	373 373	108 108	12,5 12,4		3,1 3,1
	10	9,1	8,3	373	108	12,4		2,9
	11	9,0	8,3	374	107	12,3		2,9
	12	9,0	8,3	374	106	12,3		2,6
	13	9,0	8,3	374	106	12,3		2,6
	14	9,0	8,3	374	106	12,2		2,6
	15	9,0	8,3	374	106	12,2		2,7
	16	9,0	8,3	374	106	12,2		2,7
	17	9,0	8,3	375	104	12,2		3,7
	18	9,0	0,3	3/3	104	12,0		3,7
	19							─
	20							+
	21							─
	22							+
	23							
	24							+
	25							-
	26							
	27							
	28							-
	29							+
	30							+
	31							+
	32							-
	33							+
	34							-
	35							+
	36							+
	37							-
	38							+
	39							-
	40							-
	41							+
	41							

Plan d'eau :	CIZE-BOL OZ ON	Date :	08/06/2022
Nom station :	Cize-Bolozon	Code station :	V2-3023_C2
Organisme / opérateur :	L. CAMPIONE (GREBE)/F. MILLAN (GREBE)	Réf. dossier :	AERM C_PE

Plan d'eau :	CIZE-BOLOZON	Date :	08/06/2022
Station ou no d'échantillon :	Cize-Bolozon	Code lac :	V2-3023_C2
Organisme / opérateur :	L. CAMPIONE (GREBE)/F. MILLAN (GREBE)	Réf. dossier :	AERMC_PE

Coordonnées de la station	relevées sur :		GPS			
Lambort 93 ((en m)	X	Y	Altitude	283	
Lambert 93 (système français)	(en m)	890275	6571059	(m):	203	
WGS 84 (système international)	données GPS (en dms)	N		Altitude		
WGS 84 (systeme international)	doiniees GF3 (en ams)			(m):		
Profondeur (m):	16,7					
	Instensité du vent :	: 1-Nul				
18	météo :	météo : 2-temps sec couvert				
Conditions d'observation :	Surface de l'eau :	au : 1-Lisse				
	Hauteur des vagues:	0			m	
	Bloom algal :		Non	Non		
			niveau des eaux par rapport a			
Marnage :	Non		végétation de ceinture (pour	les 0	m	
-			plans d'eau marnan	t):		
			•			
Cote à l'échelle :	282,08 m (NGF)					

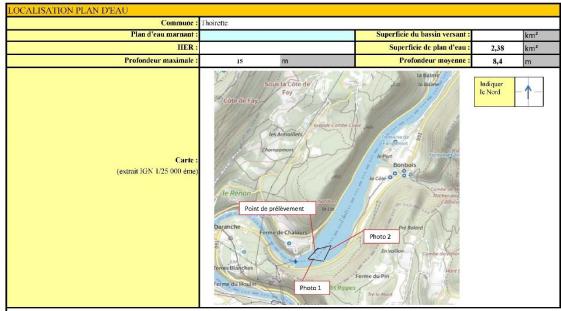

PRELEVEMENTS			
Heure début de relevé :	9:20	Heure de fin de relevé :	11:45
	✓ phytopiancton☐ chlorophylle✓ eau	Matériel employé :	☐ bouteille Niskin téflonisée ☑ bouteille Kemmerer téflon ☑ Tuyau
Prélèvements réalisés :	sédiment macrophytes oligochètes	Volume filtré pour la chlorophylle (ml) :	0
	autres, préciser :	Volume de Lugol ajouté pour le phytoplancton (ml) :	
Remarques, observations :	Dépôt des échantillons d'eau le 08/06/22 à 16:45 à Ch Prélèvement de fond réalisé à la bouteille Niskin téfic Echantillon intégré phytoplancton, ADNe et macrope Echantillon intégré micropolluants réalisé à la boutei intégrés = 24L). Température de l'air : 20,3°C Pression atmosphérique : 985hPa	misée à 15m, 2 bouteilles soit 16L. olluants réalisé au tuyau sur 9,5m	(4 tuyaux soit 7L).

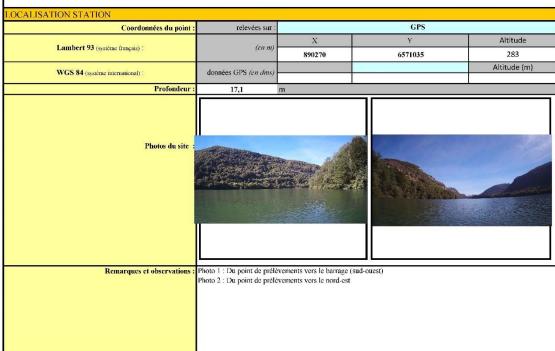
Relevé phytoplanctonique en plan d'eau DONNEES PHYSICO-CHIMIQUES

v.3.3.2

Plan d'eau :	CIZE-BOLOZON	Date:	08/06/2022
Station ou n° d'échantillon :	Cize-Bolozon	Code lac :	V2-3023_C2
Organisme / opérateur :	L. CAMPIONE (GREBE)/F. MILLAN (GREBE)	Réf. dossier :	AERMC

TRANSPARENCE	· · · · · · · · · · · · · · · · · · ·	- <u>-</u>	·	
Secchi en m :	3,9	Zone euphotique (2,5 x Secchi) en m :	9,75	
PROFIL VERTICAL.				

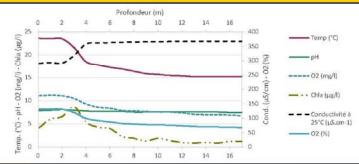



Moyen utilisé :				mesures in-situ à c	haque prof.			
Echantillon phytoplancton ?	Prof (m)	Temp (°C)	pН	Conductivité à	O _{2 (%)}	O _{2 (mg/l)}	MODF	Chla (µg/l)
Echanton on phytopraneton :				25°C (μS.cm ⁻¹)			ppb ESQ	
	Intégré de 0 à							
	9,75							
	0,1	21,5	8,1	330	119	10,4		1,6
	1	21,5	8,1	330	119	10,5		2,7
	2	21,2	8,1	337	117	10,3		2,9
	3	20,7	8,1	347	118	10,7		3,7
	4	18,9	8,0	360	118	11,0		3,8
	5	18,0	8,0	363	114	10,8		4,2
	6 7	17,7	7,9 7,9	366 367	106 102	10,2		4,1
		16,9		17.7		9,9		3,9
	8	16,6	7,9 7,9	368	99 97	9,7		3,9
	10	16,5		368		9,5		3,0
	11	16,3 16,0	7,9 7,8	369 369	95 94	9,3 9,2		3,0 2,2
					90			
	12 13	15,7 15,6	7,8 7,8	370 370	88	8,9 8,7		1,5
	14	15,6	7,8	370	85	8,5		1,6
	15			371	84			1,4
	16	15,3	7,8			8,4		1,5
		15,3	7,8	371	84	8,4		1,5
	17							
	18 19							
	20 21							
	22							
	23							
<u> </u>	24							
	25 26							
	27							
	28							
	28							
	30							
H	31							
	32							
	33							
	34							
	35							
	36							
H	37							
	38							
	39							
H	40							
H	40							
	41						l	

DONNEES GENERALES PLAN D'EAU - STATION

Septembre 2009

Plan d'eau :	Cize-Bolozon	Date :	02/08/2022
Nom station :	Cize-Bolozon	Code station :	V23023
Organisme / opérateur :	L, CAMPIONE (GREBE) / F, MILLAN (GREBE)	Réf. dossier :	AERMC_PE

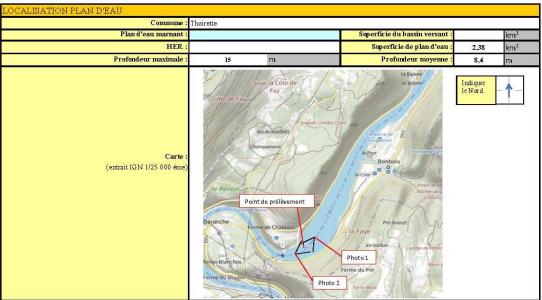

Plan d'eau :	Cize-Bolozon	Date :	02/08/2022
Station ou nº d'échantillon :	Cize-Bolozon	Code lac:	V2-3023
Organisme / opérateur :	L. CAMPIONE (GREBE) / F. MILLAN (GREBE)	Réf. dossier :	AERMC PE

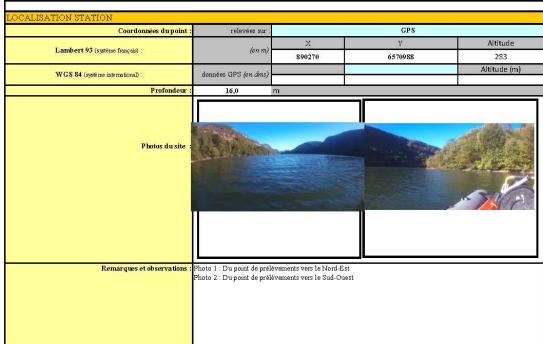
relevées sur :		GPS				
(en m)	X	X Y		283		
	890270	6571035	:	283		
1 / cma / /)	N		Altitude (m)			
données GPS (en dms)						
	17,1					
Instensité du vent :	du vent : 1-Nul					
météo :	1-temps sec ensoleillé					
Surface de l'eau :	1-Lisse					
Hauteur des vagues:		1	m			
Bloom algal :						
		niveau des eaux par rapport à l	a			
Non		végétation de ceinture (pour le	s o	m		

		•				
telle: 282.45m (NGF)						
	Instensité du vent : météo : Surface de l'eau : Hauteur des vagues: Bloom algal :	(en m) X 890270 données GPS (en dms) Instensité du vent : météo : Surface de l'eau : Hauteur des vagues: Bloom algal :	X	X		

PRELEVEMENTS			
Heure début de relevé :	8:58	Heure de fin de relevé :	11:47
	✓ phytoplancton ☐ chlorophylle ✓ eau	Matériel employé :	✓ bouteille Niskin téflonisée ✓ bouteille Kemmerer téflon Tuyau
Prélèvements réalisés :	sédiment macrophytes oligochètes	Volume filtré pour la chlorophylle (ml) :	0
	autres, préciser :	Volume de Lugol ajouté pour le phytoplancton (ml) :	
Remarques, observations :	Dépôt des échantillons d'eau le 02/08/2022 au TNT C Prélèvement de fond réalisé à la bouteille téflonnée N Echantillon intégré pour micropolluants, macropollu téflon (2 x 10 bouteilles tous les 0,5m sur 5m soit 24L/ Température de l'air : 26,5° C Pression atmosphérique : 995hPa	iskin à 16m (2 bouteilles soit 16L). ants, ADne et phytoplancton réali:	

Plan d'eau :	Cize Bolozon	Date:	02/08/2022
Station ou no d'échantillon :	Cize-Bolozon	Code lac :	V2-3023
Organisme / opérateur :	L. CAMPIONE (GREBE) / F. MILLAN (GREBE)	Réf. dossier :	AERMC_PE


TRANSPARENCE				
Secchi en m :	2,1	Zone euphotique (2,5 x Secchi) en m :	5,25	
PROFIL VERTICAL				



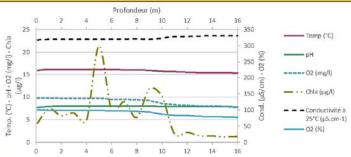
Moyen utilisé :								
Echantillon phytoplaneton ?	Prof (m)	Temp (°C)	pН	Conductivité à 25°C (µS.cm ⁻¹)	O _{2 (%)}	O _{2 (mg/l)}	MODF ppb ESQ	Chla (µg/l)
	Intégré de 0 à 5,25			,				
	0,1	23,6	7,9	290	131	11,1		4,2
	1	23,5	8	293	132	11,2		6
	2	23,5	8,1	291	131	11,1		6,6
	3	21,6	8	318	119	10,5		8,7
	4	18,5	7,8	358	99	9,3		5,4
	5	17,8	7,7	362	91	8,6		4,3
	6	17,3	7,7	363	87	8,4		4
	7	16,9	7,7	364	82	7,9		2,3
	8	16,4	7,6	365	80	7,8		1,9
	9	15,9	7,6	366	78	7,7		1,3
	10	15,7	7,6	366	77	7,6		1,9
	11	15,5	7,6	367	76	7,6		1,4
	12	15,4	7,6	368	74	7,4		1
	13	15,2	7,6	368	71	7,1		0,9
	14	15,2	7,6	368	70	7		1
	15	15,2	7,6	368	69	7		0,9
	16	15,2	7,5	368	69	6,9		1,2
	17	15,2	7,5	368	68	6,8		1,2
	18							
	19							
	20							
	21							
	22							
	23							
\Box	24							
	25							
	26							
	27							
	28							
	29							
	30							
	31							
	32							
	33							
	34							
	35							
	36							
	37							
	38							
	39							
	40							

Sontombro 2009

1/4				
	Plan d'eau :	Cize-Bolozon	Date :	20/09/2022
	Nom station :	Cize-Bolozon	Code station :	V23023
	Organisme / opérateur :	L. CAMPIONE (GREBE) / F. MILLAN (GREBE)	Réf. dossier :	AERM C_PE

ſ	Plan d'eau :	Cize-Bolozon	Date :	20/09/2022
[Station ou nº d'échantillon :	Cize-Bolozon	Code lac :	V23023
ſ	Organisme / opérateur :	L. CAMPIONE (GREBE) / F. MILLAN (GREBE)	Réf. dossier :	AERMC PE

Coordonnées de la station	relevées sur :	GPS				
Lambert 93 (système français)	(en m)	X	Y	Altitude	283	
Lambert 93 (systeme français)	(en m)	890270	6570988	(m):	263	
WGS 84 (système international)	données GPS (en dms)	N		Altitude		
WGS 84 (systeme international)	dointees OF 5 (en ams)			(m):		
Profondeur (m):		16				
	Instensité du vent :	1-Nul				
	météo :	1-temps sec ensoleillé				
Conditions d'observation :	Surface de l'eau :	: 1-Lisse				
	Hauteur des vagues:				m	
	Bloom algal :	Non				
			niveau des eaux par rapport à la			
Marnage :	Oui		végétation de ceinture (pour les		m	
0			plans d'eau marnant) :	1		
Cote à l'échelle :	281,61m (NGF)					


PRELEVEMENTS								
Heure début de relevé :	9:13	Heure de fin de relevé :	11:43					
	☑ phytoplancton☐ chlorophylle☑ eau	Matériel employé :	 ✓ bouteille Niskin téflonisée ✓ bouteille Kemmerer téflon ☐ Tuyau 					
Prélèvements réalisés :	✓ sédiment ☐ macrophytes ☐ oligochètes	Volume filtré pour la chlorophylle (ml) :	0					
	autres, préciser :	Volume de Lugol ajouté pour le phytoplancton (ml) :	1					
Remarques, observations :	Dépôt des échantillons d'eau le 20/09/2022 au TNT C Prélèvement de fond réalisé à la bouteille téflonnée N Echantillon intégré pour micropolluants, macropollu téflon (3 x 7 bouteilles tous les 0,5m sur 7m soit 33,61 sédiments : homogène, brun, compact, argilo-limoner Température de l'air : 10,8°C Pression atmosphérique : 1000hPa	ilskin à 15m (2 bouteilles soit 16L) ants, ADne et phytoplancton réali .).						

Relevé phytoplanctonique en plan d'eau DONNEES PHYSICO-CHIMIQUES

v.3.3.2

Plan d'eau :	Cize-Bolozon	Date:	20/09/2022
Station ou n° d'échantillon :	Cize-Bolozon	Code lac :	V2-3023
Organisme / opérateur :	L. CAMPIONE (GREBE) / F. MILLAN (GREBE)	Réf. dossier :	AERMC_PE

TRANSPARENCE	,	- <u>-</u>	
Secchi en m :	2,75	Zone euphotique (2,5 x Secchi) en m :	6,875
PROFIL VERTICAL		2 Alson and a	

Moyen utilisé :			10	mesures in-situ à c	haque prof.			
	Prof (m)	Temp (°C)	pН	Conductivité à	O _{2 (%)}	O _{2 (mg/l)}	MODF	Chla (µg/l)
Echantillon phytoplancton ?	**	181 11 1	_ 3	25°C (μS.cm ⁻¹)	-702	-(ppb ESQ	2.40
	Intégré de 0 à							
	6,875							
	0,1	15,9	7,7	318	100	9,8		4,2
	1	16,1	7,9	320	99	9,8		7,4
	2	16,1	8,0	320	99	9,7		5,9
	3	16,1	8,0 8,0	320 320	99	9,7 9,7		6,5
	5	16,1	8,0	320	99 99			4,8
	6	16,1 16,1	8,0	320	97	9,7 9,5		21,4 7,1
	7	16,1	8,0	321	97	9,5		9,0
	8	16,0	8,0	322	96	9,4		5,5
	9	15,9	8,0	320	93	9,2		11,8
	10	15,7	7,9	324	87	8,6		10,1
	11	15,6	7,9	329	84	8,3		1,8
	12	15,5	7,9	329	83	8,2		2,2
	13	15,4	7,9	330	80	8,0		1,4
	14	15,4	7,9	331	80	8,0		1,4
	15	15,4	7,9	331	79	7,9		1,2
	16	15,3	7,8	331	77	7,7		1,3
	17							
	18							
	19							
	20							
	21							
	22							
	23							
	24							
	25							-
	26 27					_		
	28							
	29							
	30							
	31							
	32							
	33							
	34							
	35							
	36							
	37							
	38							
	39							
	40							
	41							

PE RMC lot 1- PRELEVEMENTS DE SEDIMENTS 2022

PLAN D'EAU : Nom : Code	Lac de l'Abaye V2415023	Lac de Chaillexon U2115003	Lac de Chalain V2205003	Retenue du Châtelot U2115023
Date:	19/09/2022	14/09/2022	13/09/2022	14/09/2022
Appareil de prélèvement :	Carottier Benne Ekman v	Carottier Benne Ekman 🔻	Carottier ☐ Benne Ekman √	Carottier ☐ Benne Ekman √
Point de prélèvement :	Point profond	Point profond	Point profond	Point profond
Coordonnées GPS (Lambert 93 en m) :	x= 923089	x= 981175	x= 913578	x= 984022
Profondeur (m):	y= 6607196 17	y= 6671350 20	y= 6622699 24	y= 6673333 36
Aspect et nature des sédiments (couleur, odeur, texture (sableuse, fine), charge en débris organiques))	argilo-limoneux fins noirs	argilo-limoneux bruns/noirs avec débris organiques (litière)	argilo-limoneux, bicolores gris/noirs	argilo-limoneux, bicolores bruns clairs/noirs avec débris organiques (litière)
		X	X	
PLAN D'EAU : Nom	Retenue de Coiselet	Retenue de Montaubry	Lac du Val	Retenue de Cize-Bolozon
Date:	V2-3003 21/09/2022	U3005023 15/09/2022	V2205083 13/09/2022	V2-3023 20/09/2022
Appareil de prélèvement :	Carottier Benne Ekman	Carottier Benne Ekman	Carottier ☐ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑ ☑	Carottier Benne Ekman v
Point de prélèvement :	Point profond	Point profond	Point profond	Point profond
Coordonnées GPS (Lambert 93 en m) :	x= 899709	x= 817442	x= 915300	x= 890270
87 126	y= 6580572	y= 6632448	y= 6617704	y= 6570988
Profondeur (m):	20	9	24	
Aspect of nature des sédiments (couleur, odeur, texture (sableuse, fine), charge en débris organiques))	limono-argileux, homogénes bruns avec débris organiques (végétaux, coquilles)	argilo-limoneux, bicolores gris/noirs avec débris organiques (litière)	argilo-limoneux, bicolores gris/noirs	argilo-limoneux, homogènes bruns, compacts avec débris organiques (litière)
PLAN D'EAU : Nom : Code :	Retenue de Charmines-Moux V2525003 20/09/2022	Retenue d'Allement V2705003 21/09/2022		
Appareil de prélèvement :	Carottier Benne Ekman v	Carottier Benne Ekman		
Point de prélèvement :	Point profond	Point profond		
Coordonnées GPS (Lambert 93 en m) :	x= 897690	x= 887101		
Profondeur (m):	y= 6576990	y= 6560059		
Troisiasa (ii)				
Aspect et nature des sédiments (couleur, odeur, texture (sableuse, fine), charge en débris organiques))	limoneux, homogènes bruns avec quelques débris de végétaux	limono-sableux, bicolores bruns/gris		

Annexe 4: Rapport d'analyses phytoplancton.

RAPPORT D'ANALYSE PHYTOPLANCTON

- Définitif -

Edité le: 03/03/2023 Page 1/8

> Agence de l'Eau Rhône-Méditerranée Corse M. Loïc IMBERT 2-4 allée de Lodz 69363 LYON Cedex 07

RAPPORT nº: PHYTO.10/03-2022

Dossier: AERMC-PE 2022

Point de prélèvement : V2-3023 - Cize-bolozon

Prélèvements: Effectué(s) par GREBE [S. PONCHON, L. CAMPIONE, F. MILLAN]

24/03/2022, 08/06/2022, 02/08/2022, 20/09/2022 Dates des prélèvements :

Déterminations réalisées par : Mathilde Dutaut

Dates des analyses : 29/04/2022, 01/07/2022, 11/01/2023, 19/01/2023

Analyses Chlorophylle A et phéopigments : Laboratoire CARSO

Objet soumis à l'analyse : Phytoplancton

Prélévement(s) Phytoplancton	-	Protocole standardisé grand cours d'eau, Irstea, V2, dec 2010 ou Protocole standardisé plan d'eau, Irstea, V3.3.1, sept 2009 XP T90-719	¥
Analyses Phytoplancton (listes floristiques)		Utermöhl NF EN 15204*	✓
Commentaire	-		

Seuls les paramètres cochés dans la dernière colonne sont couverts par l'accréditation

*Les résultats concernant les taxons de cyanobactéries potentiellement flottants ne sont pas rendus sous accréditation

(liste fournie en deuxième page du rapport le cas échéant). Les données physico-chimiques figurent à titre informatif dans un souci de cohésion des résultats. Elles font par ailleurs l'objet d'un rapport spécifique.

Les données concernant les incertitudes sur le phytoplancton peuvent être communiquées sur demande.

Résultats: Inventaires réalisés sous Phytobs dans la version en vigueur

- Le rapport établi ne concerne que les échantillons soumis à l'essai.
 L'utilisation de la marque COFRAC est interdite en-dehors de la reproduction du présent rapport d'analyse L'unisation et la marque COPRAC est merdite el ruerios de la reproduction du présent rapport d'analysis sous sa forme intégrale.
 Le présent rapport d'essai peut être diffusé sous forme papier ou par transfert électronique de données.
 Le présent rapport est conforme aux exigences de la norme NF EN ISO/IEC 17025.
 Les analyses phytoplancton sont réalisées 21 rue Sébastien Gryphe 69007 Lyon.

Cofrac Accréditation Cofrac N° 1-1313

ESSAIS Portée disponible sur www.cofrac.fr

Signataire des rapports d'analyse phytoplancton :

Mathilde Dutaut

(Partout)

ENR.78 - version 14 - Date d'application : 26/10/2021

.....

Les taxons apparaissant sans abondance ni biovolume dans les listes floristiques sont des individus observés hors champs de comptage lors du balayage de la lame. Ils ne sont pas pris en compte pour le calcul des indices, le cas échéant, mais participent à la richesse taxonomique du milieu.

Liste des taxons de cyanobactéries pouvant potentiellement former des amas flottants non rendus sous accréditation :

- C4 (20/09/2022): Dolichospermum planctonicum

V2--3023_C1 - Cize-Bolozon - 2022

Prélèveur(s): Simon PONCHON (GREBE) / Louise CAMPIONE (GREBE)
Date de prélèvement: 24/03/2022

Déterminateur(s): Mathilde DUTAUT (GREBE)
Date d'analyse: 29/04/2022

Remarque

NOM TAXON	CODE SANDRE	CODE TAXON	CLASSE	Nb cell/ml	Nb ind/ml	Biovolume (mm3/L)	Nb cpt	Type	Cf.
Rhodomonas lens	24459	RHDLEN	CRYPTOPHYCEAE	1330,10		0,30592	165	Cel.	
Plagioselmis nannoplanctica	9634	PLGNAN	CRYPTOPHYCEAE	717,45		0,05022	89	Cel.	
Chrysochromulina parva	31903	CCHPAR	COCCOLITHOPHYCEAE	475,61		0.01379	59	Cel.	
Diatomées centriques (5 µm)	6598	NEW011	MEDIOPHYCEAE	225,71		0,01512	28	Cel.	
Diatomées centriques indéterminées < 10 µm	6598	INDCE5	MEDIOPHYCEAE	161,22		0,01773	20	Cel.	
Goniomonas truncata	35416	GOITRU	GONIOMONADEAE	72,55		0,00907	9	Cel.	
Chlorophycées indéterminées 5 - 10 µm	3332	INDCH5	CHLOROPHYCEAE	48,37		0,01069	6	Cel.	
Tetraselmis cordiformis	5981	TESCOR	CHLORODENDROPHYCEAE	32,24		0,06410	4	Cel.	Cf.
Cocconeis	9361	COCSPX	BACILLARIOPHYCEAE	32,24		0,02418	4	Cel.	
Plagioselmis lacustris	9633	PLGLAC	CRYPTOPHYCEAE	32,24		0,00645	4	Cel.	Cf.
Chrysococcus	9570	CHSSPX	CHRYSOPHYCEAE	24.18		0.00206	3	Cel.	
Cryptomonas	6269	CRYSPX	CRYPTOPHYCEAE	16,12		0,02857	2	Cel.	
Nitzschia	9804	NIZSPX	BACILLARIOPHYCEAE	8,06		0,00645	1	Cel.	
Gomphonema	8781	GOMSPX	BACILLARIOPHYCEAE	8.06		0.01568	1	Cel.	
Mallomonas	6209	MALSPX	SYNUROPHYCEAE	8,06		0,02154	1	Cel.	
Diatomées pennées indéterminées 10 - 30 µm	6598	INDPE2	BACILLARIOPHYCEAE	8,06		0,00253	1	Cel.	
Chroomonas	6260	CHMSPX	CRYPTOPHYCEAE	8.06		0.00048	1	Cel.	
Cryptomonas curvata	6270	CRYCUR	CRYPTOPHYCEAE	8.06		0.02160	1	Cel.	
Cryptomonas ovata	6274	CRYOVA	CRYPTOPHYCEAE	8,06		0,01688	1	Cel.	
Navicula	9430	NAVSPX	BACILLARIOPHYCEAE	8.06		0.00959	1	Cel.	
Fragilaria sp. >100µm	9533	NEW001	FRAGILARIOPHYCEAE	8.06		0.00156	1	Cel.	
Chlamydomonas < 10 µm	6016	CHLSP5	CHLOROPHYCEAE	8.06		0.00019	1	Cel.	
Asterionella formosa	4860	ASTFOR	FRAGILARIOPHYCEAE	4.38		0.00114	110	Cel.	
Fragilaria crotonensis	6666	FRACRO	FRAGILARIOPHYCEAE	1.83		0.00055	46	Cel.	Cf.
Aphanizomenon	1103	APHSPX	CYANOPHYCEAE					Cel.	
Pseudopedinella	4764	PDPSPX	DICTYOCHOPHYCEAE					Cel.	
Nephrodiella lunaris	9616	NEHLUN	XANTHOPHYCEAE					Cel.	
Closterium	4751	CLOSPX	ZYGNEMATOPHYCEAE					Cel.	

V2--3023_C2 - Cize-Bolozon - 2022

Préleveur(s): Louise CAMPIONE (GREBE) / Fanny MILLAN (GREBE)
Date de prélevement : 08/06/2022

Déterminateur(s): Mathilde DUTAUT (GREBE)
Date d'analyse: 01.07/2022

Remarque

Consultation du Dr. K.KISS (Danube Research Institute) pour le taxon Choricystis cf. minor.

NOM TAXON	CODE SANDRE	CODE TAXON	CLASSE	Nb cell/ml	Nb ind/ml	Biovolume (mm3/L)	Nb cpt	Type	Cf.
Choricystis minor	10245	CCTMIN	CHLOROPHYCEAE	20963,31		0,18867	398	Cel.	Cf.
Plagioselmis nannoplanctica	9634	PLGNAN	CRYPTOPHYCEAE	1211,45		0,08480	23	Cel.	
Dictyosphaerium	5645	DICSPX	TREBOUXIOPHYCEAE	1158,78		0,03013	22	Cel.	
Ochromonas < 5 µm	6158	OCHSP5	CHRYSOPHYCEAE	632,06		0,01201	12	Cel.	
Chlorophycées indéterminées 2 - 5 µm	3332	INDCH2	CHLOROPHYCEAE	368,70		0,01844	7	Cel.	
Dictyosphaerium (2µm environ)	5645	NEW062	TREBOUXIOPHYCEAE	368,70		0,00147	7	Cel.	
Chrysochromulina parva	31903	CCHPAR	COCCOLITHOPHYCEAE	368,70		0,01069	7	Cel.	
Chrysophycées indéterminées	1160	INDCHR	CHRYSOPHYCEAE	263,36		0,02765	5	Cel.	
Pseudopedinella	4764	PDPSPX	DICTYOCHOPHYCEAE	158,01		0.06700	3	Cel.	
Monoraphidium circinale	5730	MONCIR	CHLOROPHYCEAE	105,34		0,00263	2	Cel.	
Chlorophycées indéterminées 5 - 10 µm	3332	INDCH5	CHLOROPHYCEAE	105,34		0.02328	2	Cel.	
Ankyra judayi	5596	ANYJUD	CHLOROPHYCEAE	105,34		0.01106	2	Cel.	
Cryptomonas pyrenoidifera	20115	CRYPYR	CRYPTOPHYCEAE	105,34		0,08796	2	Cel.	Cf.
Phacotus lenticularis	6048	PHTLEN	CHLOROPHYCEAE	105,34		0.04319	2	Cel.	
Chrysococcus	9570	CHSSPX	CHRYSOPHYCEAE	105,34		0,00895	2	Cel.	
Sphaerocystis	5878	SPESPX	CHLOROPHYCEAE	52,67		0,01670	1	Cel.	
Ochromonas	6158	OCHSPX	CHRYSOPHYCEAE	52,67		0.00527	1	Cel.	
Tetraselmis cordiformis	5981	TESCOR	CHLORODENDROPHYCEAE	52,67		0.10471	1	Cel.	
Cryptomonas	6269	CRYSPX	CRYPTOPHYCEAE	52,67		0,09333	1	Cel.	
Stichococcus bacillaris	6004	STCBAC	TREBOUXIOPHYCEAE	52,67		0,00311	1	Cel.	
Dinobryon sociale var. americanum	6137	DINAME	CHRYSOPHYCEAE	52,67		0,01901	1	Cel.	
Dinobryon korshikovii	64126	DINKOR	CHRYSOPHYCEAE	52,67		0.00284	1	Cel.	
Mallomonas	6209	MALSPX	SYNUROPHYCEAE	52.67		0.14074	1	Cel.	
Chlamydomonas < 10 µm	6016	CHLSP5	CHLOROPHYCEAE	52,67		0.00126	1	Cel.	
Goniomonas truncata	35416	GOITRU	GONIOMONADEAE	52,67		0.00658	1	Cel.	Cf.
Cryptomonas curvata	6270	CRYCUR	CRYPTOPHYCEAE	52.67		0.14116	1	Cel.	
Cryptomonas ovata	6274	CRYOVA	CRYPTOPHYCEAE	52.67		0.11029	1	Cel.	
Fragilaria crotonensis	6666	FRACRO	FRAGILARIOPHYCEAE	1.81		0.00054	19	Cel.	Cf.
Diatomées centriques indéterminées < 10 µm	6598	INDCE5	MEDIOPHYCEAE	0.000			2.5	Cel.	
Dinobryon sertularia	6134	DINSER	CHRYSOPHYCEAE					Col.	
Dinobryon divergens	6130	DINDIV	CHRYSOPHYCEAE					Col.	

V2--3023_C3 - Cize-Bolozon - 2022

Préleveur(s): Louise CAMPIONE (GREBE) / Fanny MILLAN (GREBE)
Date de prélevement : 02/08/2022

Déterminateur(s) : Date d'analyse : Mathilde DUTAUT (GREBE) 11/01/2023

Remarque

NOM TAXON	CODE SANDRE	CODE TAXON	CLASSE	Nb cell/ml	Nb ind/ml	Biovolume (mm3/L)	Nb cpt	Type	Cf.
Cyanogranis irregularis	39253	CYGIRR	CYANOPHYCEAE	27242,93		0,02724	931	Cel.	
Cyanogranis libera	10184	CYGLIB	CYANOPHYCEAE	26511,39		0,02651	906	Cel.	
Aphanocapsa delicatissima	6308	APADEL	CYANOPHYCEAE	4096,68		0,00410	140	Cel.	
Chrysochromulina parva	31903	CCHPAR	COCCOLITHOPHYCEAE	2984,73		0,08656	102	Cel.	
Dictyosphaerium (2µm environ)	5645	NEW062	TREBOUXIOPHYCEAE	1814,24		0,00726	62	Cel.	
Plagioselmis nannoplanctica	9634	PLGNAN	CRYPTOPHYCEAE	907,12		0,06350	31	Cel.	
Diatomées centriques indéterminées < 10 µm	6598	INDCE5	MEDIOPHYCEAE	819,34		0,09013	28	Cel.	
Stichococcus bacillaris	6004	STCBAC	TREBOUXIOPHYCEAE	819,34		0,04834	28	Cel.	
Lemmermannia tetrapedia	46582	LMMTET	TREBOUXIOPHYCEAE	351,14		0.04740	12	Cel.	
Scenedesmus ellipticus	5826	SCEELI	CHLOROPHYCEAE	351,14		0,08217	12	Cel.	
Sphaerocystis	5878	SPESPX	CHLOROPHYCEAE	321.88		0.10204	11	Cel.	
Chlorella	5929	CLLSPX	TREBOUXIOPHYCEAE	292,62		0.02048	10	Cel.	
Pseudodidymocystis fina	32028	PSDFIN	CHLOROPHYCEAE	234,10		0,00328	8	Cel.	
Cryptomonas	6269	CRYSPX	CRYPTOPHYCEAE	175,57		0,31111	6	Cel.	
Chlorophycées indéterminées 5 - 10 µm	3332	INDCH5	CHLOROPHYCEAE	175,57		0,03880	6	Cel.	
Mucidosphaerium pulchellum	34196	MUCPUL	TREBOUXIOPHYCEAE	175,57		0,02528	6	Cel.	
Monoraphidium circinale	5730	MONCIR	CHLOROPHYCEAE	146,31		0.00366	5	Cel.	
Lemmermannia triangularis	46583	LMMTRI	TREBOUXIOPHYCEAE	117,05		0,00761	4	Cel.	
Bitrichia chodatii	6111	ВІТСНО	CHRYSOPHYCEAE	117,05		0,03113	4	Cel.	
Chlamydomonas < 10 µm	6016	CHLSP5	CHLOROPHYCEAE	117,05		0,00281	4	Cel.	
Tetraedron minimum	5888	TEAMIN	CHLOROPHYCEAE	87,79		0,03073	3	Cel.	
Golenkiniopsis chlorelloides	9210	GOKCHL	TREBOUXIOPHYCEAE	58,52		0,01051	2	Cel.	Cf.
Dinobryon korshikovii	64126	DINKOR	CHRYSOPHYCEAE	58,52		0,00316	2	Cel.	
Goniomonas truncata	35416	NEW149	GONIOMONADEAE	58,52		0.01211	2	Cel.	Cf.
Fragilaria sp.<100µm	9533	NEW002	FRAGILARIOPHYCEAE	29,26		0,00682	1	Cel.	
Diatomées centriques (5 µm)	6598	NEW011	MEDIOPHYCEAE	29,26		0.00196	1	Cel.	
Cryptomonas ovata	6274	CRYOVA	CRYPTOPHYCEAE	29,26		0.06127	1	Cel.	
Monoraphidium komarkovae	5735	MONKOM	CHLOROPHYCEAE	29.26		0.00468	1	Cel.	
Gomphonema	8781	GOMSPX	BACILLARIOPHYCEAE	29,26		0,05691	1	Cel.	
Chroomonas	6260	CHMSPX	CRYPTOPHYCEAE	29,26		0,00176	1	Cel.	
Cryptomonas marssonii	6273	CRYMAR	CRYPTOPHYCEAE	29,26		0,03511	1	Cel.	
Achnanthidium	9356	ACDSPX	BACILLARIOPHYCEAE	29,26		0,00275	1	Cel.	
Monoraphidium tortile	5741	MONTOR	CHLOROPHYCEAE	29,26		0,00067	1	Cel.	
Dinobryon divergens	6130	DINDIV	CHRYSOPHYCEAE	29,26		0,00612	1	Cel.	
Ochromonas petite taille <5µm	6158	NEW142	CHRYSOPHYCEAE	29.26		0.00056	1	Cel.	
Mallomonas akrokomos	6211	MALAKR	SYNUROPHYCEAE	29,26		0.00919	1	Cel.	
Oocystis	5752	OOCSPX	TREBOUXIOPHYCEAE	29,26		0,00702	1	Cel.	
Kephyrian	6150	KEPSPX	CHRYSOPHYCEAE	29,26		0.00184	1	Cel	
Phacotus lenticularis	6048	PHTLEN	CHLOROPHYCEAE	29.26		0.01200	1	Cel	
Chrysophycées indéterminées	1160	INDCHR	CHRYSOPHYCEAE	29.26		0.00307	1	Cel.	
Monactinus simplex	32004	MOTSIM	CHLOROPHYCEAE	18.29		0.01144	192	Cel.	
Fragilaria crotonensis	6666	FRACRO	FRAGILARIOPHYCEAE	14.86		0.00446	156	Cel.	
Asterionella formosa	4860	ASTFOR	FRAGILARIOPHYCEAE	9.43		0.00245	99	Cel.	
Pseudopediastrum boryanum	42835	PPEBOR	CHLOROPHYCEAE	9.14		0.00702	96	Cel.	
Pediastrum duplex	5772	PEDDUP	CHLOROPHYCEAE	7,62		0,00617	80	Cel.	
Fragilaria	9533	FRASPX	FRAGILARIOPHYCEAE	4.00		0.00968	42	Cel.	
Pseudopediastrum boryanum var. longicorne	42847	PPEBLO	CHLOROPHYCEAE	3,05		0,00234	32	Cel.	
Pseudopediastrum boryanum var. longicome Ceratium hirundinella	6553	CERHIR	DINOPHYCEAE	0.38		0.01524	4	Cel.	
Cerapum niruhdinella				0,50		0,01524	4		
Microcoleus	6405	MIRSPX	CYANOPHYCEAE					Cel.	

V2--3023_C3 - Cize-Bolozon - 2022

Préleveur(s) : Louise CAMPIONE (GREBE) / Fanny MILLAN (GREBE)
Date de prélévement : 02/08/2022

Déterminateur(s) : Date d'analyse :

Mathilde DUTAUT (GREBE) 11/01/2023

Remarque:

NOM TAXON	CODE SANDRE	CODE TAXON	CLASSE	Nb cell/ml	Nb ind/ml	Biovolume (mm3/L)	Nb cpt	Type Cf
Fragilaria sp. >100µm	9533	NEW001	FRAGILARIOPHYCEAE					Cel.
Staurastrum	1128	STASPX	ZYGNEMATOPHYCEAE					Cel.
Navicula	9430	NAVSPX	BACILLARIOPHYCEAE					Cel.
Coelastrum astroideum	5608	COEAST	CHLOROPHYCEAE					Cel.
Cryptomonas curvata	6270	CRYCUR	CRYPTOPHYCEAE					Cel.
Plagioselmis lacustris	9633	PLGLAC	CRYPTOPHYCEAE					Cel.
Peridinium	6577	PERSPX	DINOPHYCEAE					Cel.
Gymnodinium	4925	GYMSPX	DINOPHYCEAE					Cel.
Cosmarium	1127	COSSPX	ZYGNEMATOPHYCEAE					Cel.

V2--3023_C4 - Cize-Bolozon - 2022

Préleveur(s): Louise CAMPIONE (GREBE) / Fanny MILLAN (GREBE)
Date de prélevement : 20/09/2022

Déterminateur(s) : Date d'analyse : Mathilde DUTAUT (GREBE) 19/01/2023

Remarque

NOM TAXON	CODE SANDRE	CODE TAXON	CLASSE	Nb cell/ml	Nb ind/ml	Biovolume (mm3/L)	Nb cpt	Type	Cf.
Aphanocapsa incerta	6313	APAINC	CYANOPHYCEAE	33183,12		0,23228	1365	Cel.	
Anathece smithii	39077	ANTSMI	CYANOPHYCEAE	19982,81		0,03997	822	Cel.	
Uroglenopsis americana	34752	URGAME	CHRYSOPHYCEAE	4959,24		0,89266	204	Cel.	
Cyanogranis ferruginea	33848	CYGFER	CYANOPHYCEAE	4132,70		0,00413	170	Cel.	
Aphanocapsa elachista	6310	APAELA	CYANOPHYCEAE	2479,62		0,00496	102	Cel.	
Cyanogranis libera	10184	CYGLIB	CYANOPHYCEAE	1896,18		0,00190	78	Cel.	
Cyanogranis irregularis	39253	CYGIRR	CYANOPHYCEAE	1361,36		0,00136	56	Cel.	
Planktolyngbya limnetica	6467	PLLLIM	CYANOPHYCEAE	875,16		0,00263	36	Cel.	
Dinobryon sociale var. americanum	6137	DINAME	CHRYSOPHYCEAE	826,54		0,29838	34	Cel.	
Plagioselmis nannoplanctica	9634	PLGNAN	CRYPTOPHYCEAE	802,23		0,05616	33	Cel.	
Dinobryon sociale	6136	DINSOC	CHRYSOPHYCEAE	704.99		0.06627	29	Cel.	
Chrysochromulina parva	31903	CCHPAR	COCCOLITHOPHYCEAE	607,75		0.01762	25	Cel.	
Aphanocapsa delicatissima	6308	APADEL	CYANOPHYCEAE	486,20		0,00049	20	Cel.	
Dolichospermum planctonicum	31959	DOLPLA	CYANOPHYCEAE	201,14		0.06155	2112	Cel.	
Chlorophycées filamenteuses indéterminées	3332	NEW245	CHLOROPHYCEAE	194,48		0.03948	8	Cel.	
Goniomonas truncata	35416	NEW149	GONIOMONADEAE	145,86		0,03019	6	Cel.	Cf.
Raphidocelis danubiana	31999	RDODAN	CHLOROPHYCEAE	145,86		0.01152	6	Cel.	
Fragilaria sp.<100µm	9533	NEW002	FRAGILARIOPHYCEAE	121,55		0.02832	5	Cel.	
Chlamydomonas < 10 µm	6016	CHLSP5	CHLOROPHYCEAE	121,55		0,00292	5	Cel.	
Ochromonas	6158	OCHSPX	CHRYSOPHYCEAE	97.24		0.00972	4	Cel.	
Cryptomonas	6269	CRYSPX	CRYPTOPHYCEAE	72,93		0,12923	3	Cel.	
Monoraphidium minutum	5736	MONMIN	CHLOROPHYCEAE	72,93		0.00678	3	Cel.	
Diatomées centriques indéterminées < 10 µm	6598	INDCE5	MEDIOPHYCEAE	72,93		0.00802	3	Cel.	
Diatomées centriques (5 µm)	6598	NEW011	MEDIOPHYCEAE	72,93		0.00489	3	Cel.	
Aulacoseira	9476	AULSPX	COSCINODISCOPHYCEAE	60,95		0,00610	640	Cel.	Cf.
Fragilaria crotonensis	6666	FRACRO	FRAGILARIOPHYCEAE	48.62		0.01459	2	Cel.	
Stichococcus bacillaris	6004	STCBAC	TREBOUXIOPHYCEAE	48.62		0.00287	2	Cel.	
Monoraphidium circinale	5730	MONCIR	CHLOROPHYCEAE	48.62		0.00122	2	Cel.	
Lemmermannia tetrapedia	46582	LMMTET	TREBOUXIOPHYCEAE	48.62		0.00656	2	Cel.	
Chlorophycées indéterminées 5 - 10 µm	3332	INDCH5	CHLOROPHYCEAE	48.62		0.01075	2	Cel.	
Nitzschia	9804	NIZSPX	BACILLARIOPHYCEAE	48.62		0.03890	2	Cel.	
Cryptomonas ovata	6274	CRYOVA	CRYPTOPHYCEAE	48.62		0.10181	2	Cel.	
Monoraphidium komarkovae	5735	MONKOM	CHLOROPHYCEAE	48.62		0.00778	2	Cel.	
Phacotus lenticularis	6048	PHTLEN	CHLOROPHYCEAE	48,62		0,01993	2	Cel.	
Mougeotia	1146	MOUSPX	ZYGNEMATOPHYCEAE	36.38		0.09241	382	Cel.	
Peridiniopsis	6571	PEPSPX	DINOPHYCEAE	24,31		0.30067	1	Cel.	
Carteria	6013	CARSPX	CHLOROPHYCEAE	24,31		0,01580	1	Cel.	
Monoraphidium griffithii	5734	MONGRI	CHLOROPHYCEAE	24,31		0,00566	1	Cel.	
Encyonopsis	9450	ENYSPX	BACILLARIOPHYCEAE	24,31		0,00972	1	Cel.	
Rhodomonas lens	24459	RHDLEN	CRYPTOPHYCEAE	24,31		0,00572	1	Cel.	
	9356	ACDSPX				0.00229	1	Cel.	
Achnanthidium	5664		BACILLARIOPHYCEAE	24,31			1		
Elakatothrix gelatinosa		ELAGEL	KLEBSORMIDIOPHYCEAE	24,31		0,00464		Cel.	
Chroomonas coerulea	9625	CHMCOE	CRYPTOPHYCEAE	24,31		0,00316	1	Cel.	
Fragilaria crotonensis	6666	FRACRO	FRAGILARIOPHYCEAE	9,43		0,00283	99	Cel.	
Asterionella formosa	4860	ASTFOR	FRAGILARIOPHYCEAE	4,00		0,00104	42	Cel.	
Nitzschia fruticosa	8906	NIZFRU	BACILLARIOPHYCEAE	2,48		0,00070	26	Cel.	
Ceratium hirundinella	6553	CERHIR	DINOPHYCEAE	0,10		0,00381	1	Cel.	
Pseudanabaena	6453	PSESPX	CYANOPHYCEAE					Cel.	
Cryptomonas curvata	6270	CRYCUR	CRYPTOPHYCEAE					Cel.	
Monoraphidium contortum	5731	MONCON	CHLOROPHYCEAE					Cel.	

AERMC 2022 - V2-3023 - Cize-Bolozon

Liste floristique quantifiée

V2--3023_C4 - Cize-Bolozon - 2022

Préleveur(s) Louise CAMPIONE (GREBE) / Fanny MILLAN (GREBE)
Date de prélévement : 20/09/2022

Déterminateur(s) : Date d'analyse :

Mathilde DUTAUT (GREBE) 19/01/2023

Remarque:

NOM TAXON	CODE SANDRE	CODE TAXON	CLASSE	Nb cell/ml	Nb ind/ml	Biovolume (mm3/L)	Nb cpt	Type Cf.
Dinobryon sertularia	6134	DINSER	CHRYSOPHYCEAE					Cel.

Annexe 5: Rapport d'analyses macrophytes.

RAPPORT D'ANALYSE RELEVÉS MACROPHYTES EN PLAN D'EAU

Définitif 🗵

Provisoire

Edité le : 10/03/2022

Page 1/21

Agence de l'Eau Rhône-Méditerranée Corse

A l'attention de M. Loïc IMBERT 2-4 allée de Lodz 69363 LYON CEDEX 07

RAPPORT n°: IBML.07/08-2022

Dossier: IBML AERMC 2022

Point(s) de prélèvement : Lac de Cize-Bolozon (V2--3023)

Prélèvements: Effectué(s) par GREBE (B. BERTRAND et P. PROMPT)

Date(s) des prélèvements: 09/08/2022

Détermination(s) réalisée(s) par : B. BERTRAND et P. PROMPT

Date(s) des analyses : 12/08/2022 et 17-18/08/2022

Objet soumis à l'analyse : Macrophytes en plan d'eau

Paramètre	Unité	Méthode	Accrédité
Macrophytes	-	XP T90-328 (décembre 2010)	✓

Le paramètre est couvert par l'accréditation si la dernière case est cochée

Résultats : Le présent rapport comporte les éléments suivants :

- Fiches précisant les modalités de sélection des unités d'observation Fiches descriptives des points de prélèvement IBML* Relevés floristiques (OFB : formulaire de saisie version XX de MM AAAA) Fiches de synthèse des relevés floristiques par unité d'observation. EQR et état biologique sur le compartiment macrophytes (données foumies hors accréditation, uniquement à titre informatif)

*IBML: Indice Biologique Macrophytique en lac

- Le rapport établi ne concerne que les échantillons soumis à l'essai.
 L'utilisation de la marque COFRAC est interdite en-dehors de la reproduction du présent rapport d'analyse sous sa forme intégrale.
- Un rapport provisoire n'est pas signé et seul l'exemplaire définitif signé a une valeur contractuelle.
 Le présent rapport d'essai peut être diffusé sous forme papier ou par transfert électronique de données.
 Le présent rapport est conforme aux exigences de la norme NF EN ISO/IEC 17025.

- Les analyses macrophytes sont réalisées 23 rue St Michel 09007 Lyon. Une partie des déterminations se fait au laboratoire situé 21 rue Sébastien Gryphe 69007 Lyon.

Groupe de Recherche et d'Etudes ologie et Environneme

23 rue Saint-Michel 69007 LYON FRANCE

cofrac Accréditation Cofrac N° 1-1313 ESSAIS Portée disponible sur www.cofrac.fr

Signataire des rapports d'analyse :

PROMPT Philippe

Rapport °: IBML.07/08-2022

2/21

Macrophytes - Plan d'eau UNITES D'OBSERVATION (UO)

V2--3023 Cize-Bolozon 2022

Informations sur la station

Nom plan d'eau : Cize-Bolozon

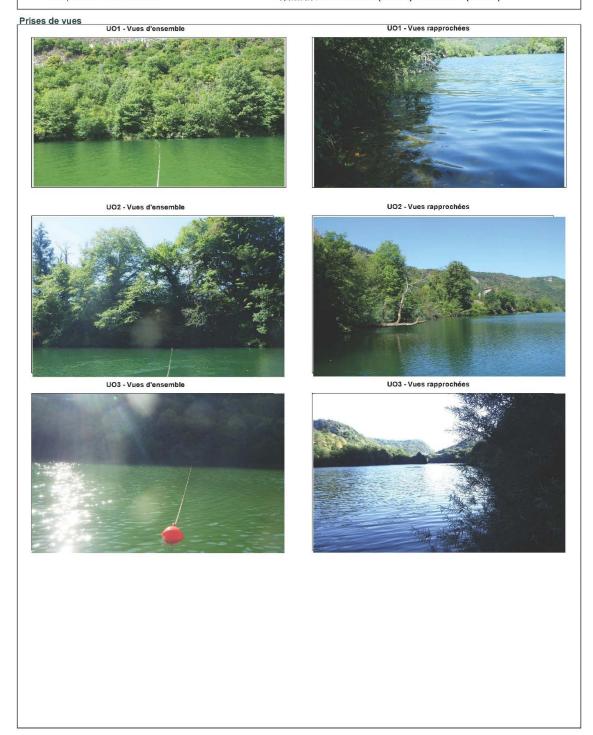
Code plan d'eau : V2-3023 Nb. d'UO retenues : 3

Superficie (km2): 2,4 Nb. de transects : 28 Périmètre (km) : 34 Nb. d'UO potentielles : 58

Date d'intervention : 09/08/2022 Opérateurs : B. BERTRAND (GREBE) / P. PROMPT (GREBE)

Sélection des unités d'observation (UO) % du linéaire par type Type 1: % Type 2: 98,2% Type 3: % Type 4: 0,8% Justification du choix des UO : La retenue de Cize-Bolozon se caractérise par un linéaire important (17 km) avec un plan d'eau qui s'insère au sein d'un vallon étroit, encaissé et largement boisé. Il en résulte une typologie de rive relativement monospécifique (Type 2) avec toutefois quelques variantes telles que l'absence de hauts-fonds en UO1 et UO2 mais la présence d'une route en lacets en surplomb de la rive de l'UO1 et d'une petite plaine agricole pratiquement au niveau de la ligne d'eau en UO2. A contrario, l'UO3 se caractérise par la présence de hauts-fonds en contrebas d'un versant encaissé et boisé entrecoupé par quelques axes routiers de desserte. Les zones artificialisées (rives de type 4) n'ont pas été prises en compte dans le choix des UO compte-tenu de leur très faible linéaire. Nb. d'UO potentielles Types de rive (1-4) UO retenues Nb. d'UO potentielles Types de rive (1-4) UO retenues Nb. d'UO potentielles Types de rive (1-4) UO retenues Nb. d'UO potentielles Types de rive (1-4) UO retenues Nb. d'UO potentielles Types de rive (1-4) UO retenues Type 1 : Zone humide caractéristique Type 2 :Végétation arbustive et arborescente de rive non hygrophile. Type 3 : Absence de végétation arbustive et arborescente de rive non hygrophile. UO1 49 Type 4 : Zone artificialisée 48 UO2 20 36 22 UO X (Lambert 93) Y (Lambert 93) 6578506 896295 893356 6576316 2 891586 6573020

RETENUE DE CIZE-BOLOZON



Macrophytes - Plan d'eau PHOTOS DES UNITÉS D'OBSERVATION V2--3023_Cize-Bolozon_2022

Informations sur la station

Code plan d'eau : V2--3023 Nom plan d'eau : Cize-Bolozon

Date d'intervention : 09/08/2022 Opérateurs : B. BERTRAND (GREBE) / P. PROMPT (GREBE)

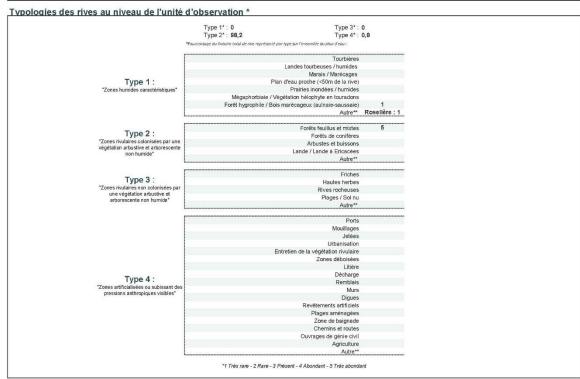
Rapport °: IBML.07/08-2022 4/21

Macrophytes - Plan d'eau DESCRIPTION DU SITE

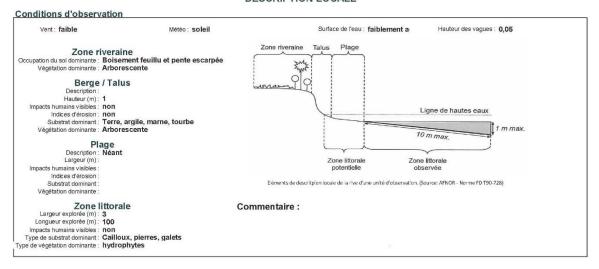
V2--3023_UO1_Cize-Bolozon_2022

DESCRIPTION GENERALE

Informations sur la station


Code plan d'eau : V2--3023 Nom plan d'eau : Cize-Bolozon Unité de relevé : UO1

Date d'intervention : 09/08/2022 Opérateurs : B. BERTRAND (GREBE) / P. PROMPT (GREBE)


Investigation de terrain / Conditions d'observation

Coordonnées X (Lamb. 93): 893295 Transparence (Secchi - m): 4,4 Vent: Sans objet Niveaux des eaux (m)

Coordonnées Y (Lamb. 93): 6578506

DESCRIPTION LOCALE

Macrophytes - Plan d'eau RELEVE DE RIVE

V2--3023_UO1_Cize-Bolozon_2022

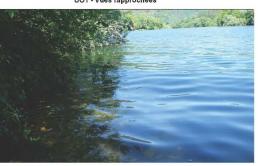
Informations sur la station

Code plan d'eau : V2--3023 Nom plan d'eau : Cize-Bolozon Unité de relevé : UO1 Date d'intervention : 09/08/2022 Opérateurs : B. BERTRAND (GREBE) / P. PROMPT (GREBE)

Information profil

Heure début : 13:00 Heure de fin : 14:00

Commentaire :


Liste floristique

Code taxons	Nom latin taxon	Abondance (1-5)	code_sandre	TAXREF
BRHSYL	Brachypodium sylvaticum	2	29916	86305
CARFLC	Carex flacca	3	19572	88510
CARSPX	Carex sp.	2	1466	190355
CINFON	Cinclidotus fontinaloides	2	1320	5386
DESCES	Deschampsia cespitosa	i	1557	94626
EQUHYE	Equisetum hyemale	4	29991	96523
FILULM	Filipendula ulmaria	2	1919	98717
FONANT	Fontinalis antipyretica	2	1310	5084
GALMOL	Galium mollugo	1	1929	99473
HYGLUR	Hygrohypnum luridum	1	1240	5796
LYTSAL	Lythrum salicaria	i	1823	107117
MOUSPX	Mougeotia sp.	2	1146	194917
PHOSPX	Phormidium sp.	2	6414	196160
RHYRIP	Rhynchostegium riparioides	1	31691	5914
SENAQU	Senecio aquaticus	1	1750	159831
SPISPX	Spirogyra sp.	4	1147	197867
VAEOFF	Valeriana officinalis	2	2003	128419
ZYGSPX	Zygnema sp.	1	1148	199169

UO1 - Vues d'ensemble

UO1 - Vues rapprochées

Macrophytes - Plan d'eau PROFIL GAUCHE

Commentaire :

V2--3023_UO1_Cize-Bolozon_2022

Informations sur la station

Inité d'observation : Code plan d'eau : V2--3023 Nom plan d'eau : Cize-Bolozon Unité de relevé : UO1 Date d'intervention : 09/08/2022 Opérateurs : B. BERTRAND (GREBE) / P. PROMPT (GREBE)

Information profil

Heure de début : 15:00 Heure de fin : 15:45 Matériel utilisé : Râteau

Heure de fin : 15:45

Longueur du profil (20m<L<100m): 100

Distance du début du profil par rapport au point central (>10m) : 50

,							NPN=
		Ta	Substrat 2 Code taxons	To 12:	Terror and		TAXREF
Points contacts	Profendeur (m)	Substrat 1	SUBSTRACT Code taxons SPISPX	Nom latin taxon Spirogyra sp.	Abondance (1-5)	code_sandre	197867
2	2.5	C	ELONUT	Elodea nuttallii	1	1588	95983
2	2,5	C	SPISPX	Spirogyra sp.	2	1147	197867
4	3,5	C	SPISPX	Spirogyra sp. Spirogyra sp.	1	1147	197867
5	3,5	C	CLASPX	Cladenhers en			190875
6	3,6		CLASPX	Cladophora sp.	4	1124	190875
	0,0	C		Cladophora sp.	3	1124	
6	3,6	C	SPISPX	Spirogyra sp.	3	1147	197867 190875
7			CLASPX	Cladophora sp.	4	1124	
			SPISPX	Spirogyra sp.	1	1147	197867
8		С	CLASPX	Cladophora sp.	3	1124	190875
9	3,2				NA NA		
10	3				NA NA		
	3						
12	2.8	C			NA NA		
14	- Aug T	С			NA		
15		C			NA NA		
16	2,2	C			NA NA		
17	6,6	С			NA.		
18		С		01-1-1-	NA	2.25	400075
19	1,8	С	CLASPX	Cladophora sp.	4	1124	190875
20	110	C	SPISPX	Spirogyra sp.	3	1147	197867
21	1,9	С	CLASPX	Cladophora sp.	4	1124	190875
21	1,9	C	SPISPX	Spirogyra sp.	2	1147	197867
22	1,9	С	CLASPX	Cladophora sp.	4	1124	190875
22	1,9	С	SPISPX	Spirogyra sp.	3	1147	197867
23	1,9	С	CLASPX	Cladophora sp.	1	1124	190875
23	1,9	С	SPISPX	Spirogyra sp.	3	1147	197867
24	1,9	С			NA		
25	1,9	С			NA		
26	2	C			NA		
27	2,1	С			NA		
28	1,8	С	SPISPX	Spirogyra sp.	1	1147	197867
29	2,2	C	SPISPX	Spirogyra sp.	1	1147	197867
30	2,3	C	CLASPX	Cladophora sp.			
	2,0			Свацорпота вр.	4	1124	190875
				Сивобряма вр.	4	1124	190875
				Сивобрима вр.	4	1124	190875
				Сивобрима вр.	4	1124	190875
				Сивобряма вр.	4	1124	190875
				Сивориота вр.		1124	190875
				Сиворията вр.		1124	190875
				Сиворима вр.		1124	190875
				Сивориота вр.		1124	190875

Rapport °: IBML.07/08-2022 7/21

Macrophytes - Plan d'eau PROFIL CENTRAL

V2--3023_UO1_Cize-Bolozon_2022

Informations sur la station

Code plan d'eau : V2--3023 Nom plan d'eau : Cize-Bolozon Unité de relevé : UO1 Date d'intervention : 09/08/2022 Opérateurs : B. BERTRAND (GREBE) / P. PROMPT (

Information profil

Heure de début : 14:00 Heure de fin : 14:30 Matériel utilisé : Râteau

Commentaire :

Longueur du profil (20m<L<100m): 100

Distance du début du profil par rapport au point central (>10m): 0

Liste floristique TAXREF 95980 102870 124407 Abondance (1-5) code_sandre 1782 1670 190875 109150 190875 5084 1124 1778 1124 1310 NA Spirogyra sp. Spirogyra sp. Spirogyra sp. Spirogyra sp.

Rapport °: IBML.07/08-2022 8/21

Macrophytes - Plan d'eau PROFIL DROIT

V2-3023_UO1_Cize-Bolozon_2022

Informations sur la station

Date d'intervention : 09/08/2022 Opérateurs : B. BERTRAND (GREBE) / P. PROMPT (

Code plan d'eau : V2--3023 Nom plan d'eau : Cize-Bolozon Unité de relevé : UO1

Information profil

Heure de début : 14:30 Matériel utilisé : Râteau Heure de fin : 15:00 Heure de fin : 15:00

Longueur du profil (20m<L<100m): 100

Distance du début du profil par rapport au point central (>10m) : 50

Commentaire : Le transect atteint la rive d'en face

							11	PN
ints contacts	Profondeur (m)	Substrat 1	Substrat 2 Code t	taxons	Nom latin taxon	Abondance (1-5) co	ode_sandre	TAXREF
1	0,5	В		SPISPX	Spirogyra sp.	4	1147	19786
2	1,8	С		SPISPX	Spirogyra sp.	3	1147	19786
3	2,7	В				NA		10100
4	3.5	C				NA NA		
5	3.7			SPISPX	Colonius as	1	4447	40700
					Spirogyra sp.		1147	19786
6	3,8			SPISPX	Spirogyra sp.	1	1147	197867
7	3,9					NA		
8	3,8	C				NA		
9	3,7	С				NA		
10	3.4					NA		
11	3,2	C				NA		
12	3	C				NA NA		
13	2.8	C				NA NA		
14	2,7	C				NA NA		
15	2,5	С				NA		
16	2,3	C				NA		
17	2,2	C				NA		
18	2.2	C				NA		
19	2	С		SPISPX	Spirogyra sp.	3	1147	197867
20	1,8	c		SPISPX	Spirogyra sp.	3	1147	197867
21	1,6	c		SPISPX	Spirogra en	3	1147	
					Spirogyra sp.		1147	197867
22	1,5	С		SPISPX	Spirogyra sp.	3	1147	197867
23	1,4	С		SPISPX	Spirogyra sp.	3	1147	19786
24	1,1	C		ONANT	Fontinalis antipyretica	1	1310	508
24	1,1	C		SPISPX	Spirogyra sp.	3	1147	197867
25	1	С	1	HIPVUL	Hippuris vulgaris	4	1782	102870
25	1	С		SPISPX	Spirogyra sp.	3	1147	197867
26	1.2	С		HIPVUL	Hippuris vulgaris	5	1782	10287
26	1,2	C		SPISPX	Spirogyra sp.	3	1147	
27	1,1	C		LOCAN	Elodea canadensis	4	1197	197867
	1,1						1586	95980
27	1,1	С		HIPVUL	Hippuris vulgaris	3	1782	102870
28	2,5	С				NA .		
29	2,1	C				NA NA		
30	2/1	C	E	ELOCAN	Elodea canadensis		1586	95980
	2,1		E	ELOCAN	Elodea canadensis		1586	95980
	2/1		E	ELOCAN	Elodea canadensis		1586	95980
	2,1		E	ELOCAN	Elodea canadensis		1586	95980
	2,1		E	ELOCAN	Elodea canadensis		1586	95984
	21 1,1		E	ELOCAN	Elodea canadensis		1586	95984
	21 1,1		E	ELOCAN	Elodea canadensis		1586	95984
	21 1,1		E	ELOCAN	Elodea canadensis		1586	95984
	21 1,1		E	ELOCAN	Elodea canadensis		1586	9598
	21 1,1		E	ELOCAN	Elodea canadensis		1586	9598
	21 1,1		E	ELOCAN	Elodea canadensis		1586	9598/
	21 1,1		E	ELOCAN	Elodea canadensis		1586	9598
	21 1,1		E	ELOCAN	Elodea canadensis		1586	95984
	21 1,1		E	ELOCAN	Elodea canadensis		1586	9598
	21 1,1		E	ELOCAN	Elodea canadensis		1586	9598

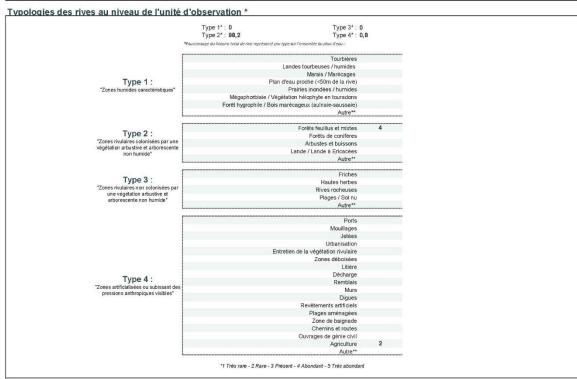
Rapport °: IBML.07/08-2022 9/21

Macrophytes - Plan d'eau DESCRIPTION DU SITE

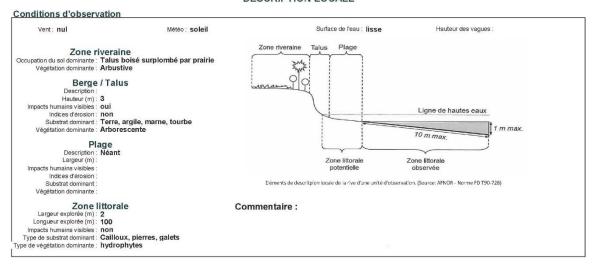
V2--3023_UO2_Cize-Bolozon_2022

DESCRIPTION GENERALE

Informations sur la station


Code plan d'eau : V2-3023 Nom plan d'eau : Cize-Bolozon

Date d'intervention : 09/08/2022 Opérateurs : B. BERTRAND (GREBE) / P. PROMPT (GREBE) Unité de relevé : UO2


Investigation de terrain / Conditions d'observation

Coordonnées X (Lamb. 93): 893356 Transparence (Secchi - m): 2 Vent: Sans objet Niveaux des eaux (m)

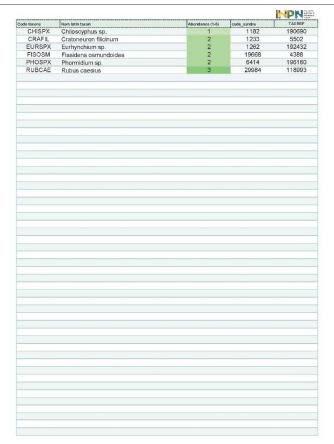
Coordonnées Y (Lamb. 93): 6576316

DESCRIPTION LOCALE

Macrophytes - Plan d'eau RELEVE DE RIVE

V2-3023_UO2_Cize-Bolozon_2022

Informations sur la station


Code plan d'eau : **V2--3023** Nom plan d'eau : **Cize-Bolozon** Unité de relevé : **UO2** Date d'intervention : 09/08/2022 Opérateurs : B. BERTRAND (GREBE) / P. PROMPT (GREBE)

Information profil

Heure début : 13:15 Heure de fin : 13:30

Commentaire:

Liste floristique

UO2 - Vues d'ensemble

UO2 - Vues rapprochées

Macrophytes - Plan d'eau

PROFIL GAUCHE V2--3023_UO2_Cize-Bolozon_2022

Informations sur la station

Code plan d'eau : V2--3023 Nom plan d'eau : Cize-Bolozon Unité de relevé : UO2 Date d'intervention : 09/08/2022 Opérateurs : B. BERTRAND (GREBE) / P. PROMPT (GREBE)

Information profil

Heure de début : 12:46 Heure de fin : 13:00 Matériel utilisé : Râteau + grappin

Commentaire :

Longueur du profil (20m<L<100m): 15
Distance du début du profil par rapport au point central (>10m): 50

Liste floristique

Points contacts	Profondeur (m)	Substrat 1	Substrat 2	Code taxons	Nom latin taxon	Abondance (1-5) code_sandre	INPN
1	0,4	С				NA NA	
2	0,5	C				NA	
3	0,6	С				NA	
4	0,7	C				NA NA	
5	1,3	C				NA NA	
7	1,6	C				NA NA	
8	1,8	C				NA NA	
9	1,8	C				NA NA	
10	1,9	Č				NA NA	
11	2.2	C				NA NA	
12	2.4	C				NA NA	
13	2,5	C				NA NA	
14	2,5	С				NA NA	
15	2,8	С				NA NA	
16	3,1	С				NA NA	
17 18	3,3	C				NA NA	
19	3,8	C				NA NA	
20	4	C				NA NA	
21	4,2	C				NA NA	
22	4,3	C				NA NA	
23	4,5	C				NA NA	
24	4.7	C				NA NA	
25	4,8	C				NA	
26	5,1	C				NA NA	
27	5,4	С				NA NA	
28	5,5 5,8	C				NA NA	
29 30	6	C				NA NA	
30	-	- 0				NA.	

Rapport °: IBML.07/08-2022 12/21

Macrophytes - Plan d'eau PROFIL CENTRAL

V2-3023_UO2_Cize-Bolozon_2022

Informations sur la station

Date d'intervention : 09/08/2022 Opérateurs : B. BERTRAND (GREBE) / P. PROMPT (

Code plan d'eau : V2--3023 Nom plan d'eau : Cize-Bolozon Unité de relevé : UO2

Information profil Heure de début : 12:37 Heure de fin : 12:45

Matériel utilisé : Râteau + grappin

Commentaire :

Longueur du profil (20m<L<100m): 15
Distance du début du profil par rapport au point central (>10m): 0

								1, 10
Points contacts	Profondeur (m)	Substrat 1	Substrat 2	Code taxons	Nom latin taxon	Abondance (1-5)	code_sandre	INPN
1 2	0,6	C				NA NA		
3	0,7	C				NA NA		
4		C				NA NA		
5	1,3	C				NA NA		
6		č				NA NA		
7	1,8	C				NA NA		
8	2,2	č				NA NA		
9	2,9	C				NA NA		
10	3	C				NA NA		
11	3.1	C				NA NA		
12	3.4	С				NA NA		
13	3.8	C				NA		
14	4.1	C				NA .		
15	4.2	C				NA NA		
16	4,4	C				NA		
17	4,6	C				NA NA		
18	4,7	C				NA		
19	- 5	C				NA		
20	5,1	C				NA		
21	5.3	C				NA		
22	5,4	C				NA		
23	5.5	C				NA		
24	5,6	C				NA.		
25	5,5	C				NA NA		
26	5,8	C				NA		
27	5,9	C				NA		
28	5,9	C				NA		
29	6	C				NA NA		
30	6	C				NA		

Rapport °: IBML.07/08-2022 13/21

Macrophytes - Plan d'eau PROFIL DROIT

Commentaire :

V2-3023_UO2_Cize-Bolozon_2022

Informations sur la station

Date d'intervention : 09/08/2022 Opérateurs : B. BERTRAND (GREBE) / P. PROMPT (

Code plan d'eau : V2--3023 Nom plan d'eau : Cize-Bolozon Unité de relevé : UO2

Information profil

Heure de début : 13:00 Heure de fin : 13:15 Matériel utilisé : Râteau + grappin

Longueur du profil (20m<L<100m): 14
Distance du début du profil par rapport au point central (>10m) : 50

					INPN
Points contacts	Profondeur (m)	Substrat 1	Substrat 2 Code taxons Nom latin taxon	Abondance (1-5)	code_sandre TAXREF
1	0,08	C	PHOSPX Phormidium sp.	2	6414 19616
2	0,08	C		NA	
3	0,3	С		NA NA	
4	0,4	С		NA	
5	0,4	C		NA NA	
6	1,2	С		NA NA	
7	1,2	С		NA NA	
8	2	С		NA	
9	2,2	С		NA NA	
10	2,3 2,5	С		NA	
11	2,5	C		NA NA	
13	2,9	C		NA NA	
14	3	C		NA NA	
15	3,2	C		NA NA	
16	3.3	C		NA NA	
17	3,5	C		NA NA	
18	3,7	C		NA NA	
19	3,9	C		NA NA	
20	4	C		NA	
21	4.2	c		NA NA	
22	4.4	C		NA	
23	4.6	С		NA NA	
24	4.8	C		NA.	
25	5,1	C		NA NA	
26	5,2	C		NA	
27	5,4			NA	
28	5,6	C		NA	
29 30	5,8	C		NA NA	

Rapport °: IBML.07/08-2022 14/21

Macrophytes - Plan d'eau DESCRIPTION DU SITE

V2--3023_UO3_Cize-Bolozon_2022

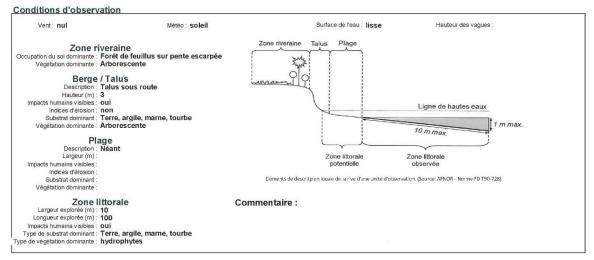
DESCRIPTION GENERALE

Vent: Sans objet

Informations sur la station

Code plan d'eau : V2--3023 Nom plan d'eau : Cize-Bolozon Unité de relevé : UO3

Date d'intervention : 09/08/2022 Opérateurs : B. BERTRAND (GREBE) / P. PROMPT (GREBE)


Investigation de terrain / Conditions d'observation

Transparence (Secchi - m): 1,8 Coordonnées X (Lamb. 93): 891586 Niveaux des eaux (m)

Coordonnées Y (Lamb. 93): 6573020

Typologies des rives au niveau de l'unité d'observation * Type 3*: 0 Type 4*: 0,8 Tourbières
Landes tourbeuses / hurides
Landes tourbeuses / hurides
Marais / Marécages
Plan d'eau protie (<0m de la rive)
Prairies inondées / hurides
Megaphorbiaie / Végétation hélophyte en touradons
Forêt hygrophile / Bois marécageux (aulnale-saussaie)
Autre** Tourbières Type 1 : Forêts feuillus et mixtes Forêts de coniféres Arbustes et buissons Lande / Lande à Ericacées Autre** Type 2: "Zones rivulaires colonisées par une végétation arbustive et arborescente non humide" Type 3 :
"Zones rivulaires non colonisées pa une végétation arbustive et arborescente non humide" Hautes herbes Rives rocheuses Plages / Sol nu Autre** Ports Ports
Mouillages
Jetées
Urbanisation
de la végétation rivulaire
Zones déboisées
Littière
Décharge
Remblais
Murs
Digues
Revétements artificiels
Plages annénagées Type 4: "Zones artificialisées ou subissant de pressions anthropiques visibles" Plages aménagées Zone de baignade Chemins et routes Ouvrages de génie civil Agriculture Autre** *1 Très rare - 2 Rare - 3 Présent - 4 Abondant - 5 Très abondant

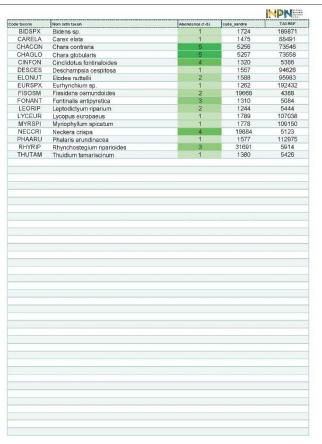
DESCRIPTION LOCALE

Macrophytes - Plan d'eau RELEVE DE RIVE

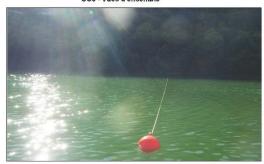
V2--3023_UO3_Cize-Bolozon_2022

Informations sur la station

Code plan d'eau : **V2--3023** Nom plan d'eau : **Cize-Bolozon** Unité de relevé : **UO3**


Date d'intervention : 09/08/2022 Opérateurs : B. BERTRAND (GREBE) / P. PROMPT (GREBE)

Information profil


Heure début : 11:20 Heure de fin : 12:15

Commentaire :

Liste floristique

UO3 - Vues d'ensemble

UO3 - Vues rapprochées

Macrophytes - Plan d'eau PROFIL GAUCHE

V2--3023_UO3_Cize-Bolozon_2022

Informations sur la station

Code plan d'eau : V2--3023 Nom plan d'eau : Cize-Bolozon Unité de relevé : UO3 Date d'intervention : 09/08/2022 Opérateurs : B. BERTRAND (GREBE) / P. PROMPT (GREBE)

Information profil

Heure de début : 10:25 Heure de fin : 10:50 Matériel utilisé : Râteau + grappin

Commentaire :

Longueur du profil (20m<L<100m): 60
Distance du début du profil par rapport au point central (>10m) : 50

	or			

Pointcettets Professive (Price Price P	5084 73558 9598: 73558 9598: 9598: 73546 73558 9598:
2 0,6 T CHAGLO Chara globularis 5 5/25 2 0,6 T ELONUT Elodea nuttaliii 2 158 3 0,6 T CHAGLO Chara globularis 5 525 4 0,7 T CHACON Chara globularis 2 529 4 0,7 T CHAGLO Chara globularis 5 525 4 0,7 T CHAGLO Chara globularis 5 525 4 0,7 T CHAGLO Chara globularis 1 525 5 0,7 T CHAGLO Chara globularis 1 525 5 0,7 T ELONUT Elodea nuttaliii 2 158 6 0,8 T CHAGLO Chara globularis 5 525 7 0,8 T CHACON Chara contraria 5 525 7 0,8 T CHAGLO Char	73558 95983 73558 95983 73546 73568 95983 73568
2 0,6 T CHAGLO Chara globularis 5 5/25 2 0,6 T ELONUT Elodea nuttaliii 2 158 3 0,6 T CHAGLO Chara globularis 5 525 4 0,7 T CHACON Chara globularis 2 529 4 0,7 T CHAGLO Chara globularis 5 525 4 0,7 T CHAGLO Chara globularis 5 525 4 0,7 T CHAGLO Chara globularis 1 525 5 0,7 T CHAGLO Chara globularis 1 525 5 0,7 T ELONUT Elodea nuttaliii 2 158 6 0,8 T CHAGLO Chara globularis 5 525 7 0,8 T CHACON Chara contraria 5 525 7 0,8 T CHAGLO Char	73558 95983 73558 95983 73546 73568 95983 73568
2 0,6 T ELCNUT Elodea nuthaliii 2 158 3 0,6 T CHAGLO Chara globularis 5 5525 3 0,6 T ELCNUT Elodea nuthaliii 2 158 4 0,7 T CHAGLO Chara contraria 2 525 4 0,7 T ELCNUT Elodea nuthaliii 2 158 5 0,7 T ELCNUT Elodea nuthaliii 2 158 6 0,8 T CHAGLO Chara globularis 1 525 5 0,7 T ELCNUT Elodea nuthaliii 2 158 6 0,8 T CHAGLO Chara globularis 5 525 7 0,8 T CHAGCON Chara globularis 5 525 7 0,8 T CHAGLO Chara globularis 2 525 7 0,8 T CHAGLO Cha	95983 73558 95983 73546 73558 95983 73568
3 0,6 T	73558 95983 73546 73558 95983 73558
3	95983 73546 73558 95983 73568
4 0,7 T CHACON Chara globularia 2 529 4 0,7 T CHAGLO Chara globularia 5 525 4 0,7 T ELONUT Elodea nuttallii 2 158 5 0,7 T CHAGLO Chara globularia 1 525 5 0,7 T ELONUT Elodea nuttallii 2 158 6 0,8 T CHAGLO Chara globularia 5 525 7 0,8 T CHAGLO Chara contraria 5 525 7 0,8 T CHAGLO Chara contraria 5 525 8 0,8 T CHAGLO Chara globularia 2 525 8 0,8 T CHAGLO Chara globularia 5 525 8 0,8 T CHAGLO Chara globularia 1 158 8 0,8 T CHAGLO Chara globularia 5 525 8 0,8 T CHAGLO Chara globularia 5 525 10 0,7 T CHAGLO Chara globularia 3 525 10 0,7 T CHAGLO Chara globularia 5 525 10 0,7 T CHAGLO Chara globularia 5 525 10 0,7 T CHAGON Chara globularia 5 525	73546 73558 95983 73568
4 0,7 T CHAGLO Chara globularis 5 525 4 0,7 T ELONUT Elodea nuttallii 2 158, 5 0,7 T ELONUT Elodea nuttallii 2 158, 6 0,7 T ELONUT Elodea nuttallii 2 158, 6 0,8 T CHAGLO Chara globularis 5 525, 7 0,8 T CHAGLO Chara globularis 6 525, 7 0,8 T CHAGLO Chara globularis 5 525, 7 0,8 T CHAGLO Chara globularis 6 525, 7 0,8 T CHAGLO Chara globularis 2 525, 7 0,8 T CHAGLO Chara globularis 2 525, 8 0,8 T ELONUT Elodea nuttallii 1 158, 8 0,8 T CHAGLO Chara globularis 5 525, 8 0,8 T CHAGLO Chara globularis 3 525, 10 0,7 T CHAGLO Chara globularis 3 525, 10 0,7 T CHAGLO Chara globularis 5 525, 10 0,7 T CHAGLO Chara g	73558 95983 73558
4 0,7 T ELONUT Elodea nuttaliii 2 158. 5 0,7 T CHAGLO Chara globularis 1 525 5 0,7 T ELONUT Elodea nuttaliii 2 158. 6 0,8 T CHAGLO Chara globularis 5 555 7 0,8 T CHAGLO Chara globularis 5 555 7 0,8 T CHAGLO Chara globularis 2 555 7 0,8 T CHAGLO Chara globularis 2 555 8 0,8 T CHAGLO Chara contraria 5 555 8 0,8 T CHAGLO Chara globularis 1 158. 9 0,6 T CHAGLO Chara globularis 3 555 10 0,7 T CHAGLO Chara globularis 5 555	95983 73558
4 0,7 T ELONUT Elodea nuttaliii 2 158 5 0,7 T CHAGLO Chara globularis 1 525 5 0,7 T ELONUT Elodea nuttaliii 2 158 6 0,8 T CHAGLO Chara globularis 5 525 7 0,8 T CHAGON Chara globularis 2 525 7 0,8 T CHAGLO Chara globularis 2 525 8 0,8 T CHAGLO Chara contraria 5 525 8 0,8 T CHAGLO Chara globularis 3 525 8 0,8 T ELONUT Elodea nuttaliii 1 158 9 0,6 T CHAGLO Chara globularis 3 525 8 0,8 T ELONUT Elodea nuttaliii 1 158 9 0,6 T CHAGLO Chara	73558
5 0,7 T CHAGLO Chara globularis 1 525 5 0,7 T ELONUT Elodea nuttallii 2 158 6 0,8 T CHAGLO Chara globularis 5 525 7 0,8 T CHAGLO Chara contraria 5 525 7 0,8 T CHAGLO Chara contraria 2 525 7 0,8 T ELONUT Elodea nuttallii 1 158 8 0,8 T CHAGLO Chara contraria 5 525 8 0,8 T ELONUT Elodea nuttallii 1 158 9 0,6 T CHAGLO Chara contraria 5 525 10 0,7 T CHAGLO Chara globularis 5 525 10 0,7 T CHAGLO Chara contraria 5 525 10 0,7 T CHAGON Chara	73558
5 0,7 T ELONUT Elodea nuttaliii 2 159. 6 0,8 T CHAGLO Chara globularis 5 5.25 7 0,8 T CHACON Chara globularis 2 5.25 7 0,8 T CHAGLO Chara globularis 2 5.25 8 0,8 T CHACON Chara contraria 5 5.25 8 0,8 T CHAGLO Chara contraria 3 5.25 8 0,8 T ELONUT Elodea nuttalii 1 1.89 9 0,6 T CHAGLO Chara globularis 3 5.25 10 0,7 T CHAGLO Chara globularis 5 5.25 10 0,7 T CHAGLO Chara globularis 5 5.25 10 0,7 T CHAGLO Chara globularis 5 5.25 10 0,7 T CHAGON	
6 0,8 T CHAGLO Chara globularis 5 525 7 0,8 T CHACON Chara contraria 5 525 7 0,8 T CHACON Chara contraria 5 525 7 0,8 T CHAGLO Chara globularis 2 525 7 0,8 T ELONUT Elodea nuttallii 1 158 8 0,8 T CHACON Chara contraria 5 525 8 0,8 T CHACON Chara contraria 5 525 8 0,8 T CHACON Chara contraria 5 525 10 0,7 T CHAGLO Chara globularis 3 525 10 0,7 T CHAGLO Chara globularis 5 525 10 0,7 T CHACON Chara contraria 5 525 10 0,7 T CHACON Chara globularis 5 525 11 0,7 T CHACON Chara globularis 5 525 12 525 13 525 14 525 15 525 15 525 16 525 17 CHACON Chara globularis 5 525 18 525 19 0,7 T CHACON Chara globularis 5 525 10 0,7 T CHACON Chara globularis 5 525 10 0,7 T CHACON Chara globularis 5 525 10 0,7 T CHACON Chara globularis 5 525	
7 ■ 0,8 T CHACON Chara contraria 5 525 7 ■ 0,8 T CHAGIO Chara globularis 2 525 7 ■ 0,8 T ELONUT Elodea nuttallii 1 188 8 ■ 0,8 T CHACON Chara contraria 5 525 8 ■ 0,8 T CHACON Chara contraria 5 525 8 ■ 0,8 T CHAGIO Chara contraria 1 188 9 ■ 0,6 T CHAGIO Chara globularis 3 525 10 ■ 0,7 T CHAGIO Chara globularis 5 525 10 ■ 0,7 T CHACON Chara globularis 5 525 10 ■ 0,7 T CHACON Chara globularis 5 525 11 ■ 0,7 T CHACON Chara globularis 5 525 12 CHACON Chara globularis 5 525 13 CHACON Chara contraria 5 525 14 CHACON Chara contraria 5 525 15 CHACON Chara contraria 5 525 16 CHACON Chara contraria 5 525	
7 0,8 T CHAGLO Chara globularis 2 525 7 0,8 T ELONUT Elodea nuttallii 1 158 8 0,8 T CHAGLO Chara globularis 5 525 8 0,8 T CHAGLO Chara globularis 3 525 8 0,8 T CHAGLO Chara globularis 3 525 8 0,8 T CHAGLO Chara globularis 1 158 9 0,6 T CHAGLO Chara globularis 5 525 10 0,7 T CHAGLO Chara globularis 5 525 10 0,7 T CHACON Chara contraria 5 525 10 0,7 T CHACON Chara contraria 5 525 11 0,7 T CHACON Chara globularis 5 525 12 525 13 525 14 525 15 525 15 525 16 525 17 CHACON Chara contraria 5 525 18 525 19 525 10 52	
7	
8 0,8 T CHACON Chara contraria 5 525 8 0,8 T CHAGLO Chara globularis 3 525 8 0,8 T ELONUT Elodea nuttallii 1 158 9 0,6 T CHAGLO Chara globularis 5 525 10 0,7 T CHACON Chara contraria 5 525 10 0,7 T MYRSPI Myriophyllum spicatum 1 1777 11 0,7 T CHACON Chara contraria 5 525	
8 0,8 T CHAGLO Chara globularis 3 525 8 0,8 T ELONUT Elodea nuttaliii 1 158 9 0,6 T CHAGLO Chara globularis 5 525 10 0,7 T CHACON Chara contraria 5 529 10 0,7 T MYRSPI Myriophyllum spicatum 1 177 11 0,7 T CHACON Chara contraria 5 525	
8 0,8 T ELONUT Eliodea nuttaliii 1 158 9 0,6 T CHAGLO Chara globularis 5 525 10 0,7 T CHACON Chara contraria 5 525 10 0,7 T MYRSPI Myriophyllum spicatum 1 177 11 0,7 T CHACON Chara contraria 5 525	73546
8 0,8 T ELCNUT Elodea nuttallii 1 158 9 0,6 T CHAGLO Chara globularis 5 525 10 0,7 T CHACON Chara contraria 5 525 10 0,7 T MYRSPI Myriophyllum spicatum 1 177* 11 0,7 T CHACON Chara contraria 5 525	73558
9 0,6 T CHAGLO Chara globularis 5 525 10 0,7 T CHACON Chara contraria 5 525 10 0,7 T MYRSPI Myrophyllum spicatum 1 1777 11 0,7 T CHACON Chara contraria 5 525	
10 0,7 T CHACON Chara contraria 5 525 10 0,7 T MYRSPI Myriophyllum spicatum 1 177* 11 0,7 T CHACON Chara contraria 5 525	
10 0,7 T MYRSPI Myriophyllum spicatum 1 1777 11 0,7 T CHACON Chara contraria 5 525	
11 0,7 T CHACON Chara contraria 5 525	
12 0.6 T CHACON Chara contraria 5 525	
12 0,6 T MYRSPI Myriophyllum spicatum 2 1776	10915
13 0,5 T CHACON Chara contraria 5 525	
14 0.5 T CHACON Chara contraria 5 525	
14 0,5 T POTPUS Potamogeton pusillus 3 165	
14 = 0,0 1 100 100 100 100	
15 0,4 T MYRSPI Myriophyllum spicatum 2 1776	
15 0,4 T POTPUS Potamogeton pusillus 2 1650	11530
16 0,4 T CHACON Chara contraria 2 525	73546
16 0,4 T CHAGLO Chara globularis 525	
16 0,4 T ELONUT Elodea nuttallii 2 158	
10 0,4 1 1011 00 1 0011 pooling	
17 = 0,5 1 POTPOS Polarinogetori pusitida	
TO U.O. TO THE OTHER SETTING THE TOP OF THE	
18 0,3 T POTPUS Potamogeton pusillus 3 165	
19 0,3 T POTPUS Potamogeton pusillus 3 165	
20 0,3 T POTPUS Potamogeton pusillus 65 165	11530
21 0,3 T POTPUS Potamogeton pusillus 5 165	11530
22 0,3 T MYRSPI Myriophyllium spicatum 1 177:	
22 I 0,3 T POTPUS Potamogeton pusillus 3 165	
22 - 0,0 1 101100 Tournogotor passings	
Lo 1,0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
24 0,3 T CHACON Chara contraria 5 525	
25 0,7 T CHACON Chara contraria 5 525	
25 0,7 T ELONUT Elodea nuttallii 3 158	95983
26 0,8 B ELONUT Elodea nuttallii 5 158	95983
27 1,3 T ELONUT Elodea nuttallii 5 158	
27 1,5 T ELONUT Elodes nuttaliii 5 168	
	95983
30 5,2 T NA	

Rapport °: IBML.07/08-2022 17/21

Macrophytes - Plan d'eau PROFIL CENTRAL

V2-3023_UO3_Cize-Bolozon_2022

Informations sur la station

Code plan d'eau : V2--3023 Nom plan d'eau : Cize-Bolozon Unité de relevé : UO3 Date d'intervention : 09/08/2022 Opérateurs : B. BERTRAND (GREBE) / P. PROMPT (

Information profil

Heure de début : 09:44 Heure de fin : 10:22

Matériel utilisé : Râteau + grappin

Commentaire :

Longueur du profil (20m<L<100m): 56
Distance du début du profil par rapport au point central (>10m): 0

oints contacts								INPIN
	Profes	ndeur (m)	Substrat 1 Substrat	2 Code taxons Nom	latin taxon	Abondance (1-5)	code_sandre	TAXREF
1	AND BURN	0,2	C			NA	Later Control	7.0000000000000000000000000000000000000
2	15	0,3	T	CHACON	Chara contraria	1	5256	73546
2	- 1	0,3	T	CHAGLO	Chara globularis	3	5257	73558
3		0,4	T	CHAGLO	Chara globularis	5	5257	73558
4	- 10	0,4	T	CHAGLO	Chara globularis	5	5257	73558
4		0,4	T	ELONUT	Elodea nuttallii	2	1588	95983
5	100	0,5	T	CHAGLO	Chara globularis	5	5257	73558
6	101	0.5	T	CHAGLO	Chara globularis	5	5257	73558
6	10.	0,5	T	ELONUT	Elodea nuttallii	2	1588	95983
7	101	0,6	Т	CHACON	Chara contraria	5	5256	73546
7	101	0.6	Т	ELONUT	Elodea nuttallii	4	1588	95983
8	101	0,6	Т	CHACON	Chara contraria	5	5256	73546
9	101	0.6	T	CHAGLO	Chara globularis	5	5257	73558
10	101	0,6	T	CHAGLO	Chara globularis	5	5257	73558
11	-	0,6	Ť	CHACON	Chara contraria	5	5256	73546
11	-	0.6	Ť	ELONUT	Elodea nuttallii	1	1588	95983
12	- 11	0,5	T	CHACON	Chara contraria	4	5256	73546
12	-	0,5	Ť	CHAGLO	Chara globularis	4	5257	73558
	-		T			4		
13	-	0,5	T	CHACON	Chara contraria		5256	73546
13		0,5		CHAGLO	Chara globularis	4 7	5257	73558
13	10	0,5	Ţ	MYRSPI	Myriophyllum spicatum	1	1778	109150
14	- 11	0,5	Т	CHACON	Chara contraria	5	5256	73546
14	10	0,5	T	CHAGLO	Chara globularis	2	5257	73558
15	- 10	0,4	T	CHACON	Chara contraria	5	5256	73546
15		0,4	Т	CHAGLO	Chara globularis	2	5257	73558
15		0,4	Т	ELONUT	Elodea nuttallii	1	1588	95983
15	- 1	0,4	T	GRODEN	Groenlandia densa	4	1638	100584
15		0.4	Т	MYRSPI	Myriophyllum spicatum	1	1778	109150
16	- 11	0,4	Т	CHACON	Chara contraria	4	5256	73546
16	- 11	0.4	T	CHAGLO	Chara globularis	1	5257	73558
16	15	0.4	T	GRODEN	Groenlandia densa	1	1638	100584
16	-	0,4	T	POTPUS	Potamogeton pusillus	1	1659	115305
17	-	0,4	T	CHACON	Chara contraria	5	5256	73546
17	- 11	0.4	T	CHAGLO	Chara globularis	2	5257	73558
18	-	0,4	T	CHACON	Chara contraria	4	5256	73546
18	-	0,4	T	CHAGLO	Chara globularis	1	5257	73558
18	- 10	0,4	T	POTPUS	Potamogeton pusillus	1	1659	115305
19	- 10	0,4	Ť	CHACON	Chara pastraria	4	5256	73546
19	- 11	0.4	T	GRODEN	Chara contraria	3	1638	100584
19			Ť		Groenlandia densa		1655	115296
	-	0,4	T	POTPEC	Potamogeton pectinatus	1		
20	-	0,4		CHACON	Chara contraria	5	5256	73546
20		0,4	T	POTPUS	Potamogeton pusillus	1	1659	115305
21	10)	0,5	Т	CHAGLO	Chara globularis	5	5257	73558
21	100	0,5	T	ELONUT	Elodea nuttallii	2	1588	95983
22	80	0,5	T	CHACON	Chara contraria	4	5256	73546
22	- 11	0,5	T	POTPUS	Potamogeton pusillus	2	1659	115306
23	101	0,5	T	CHACON	Chara contraria	5	5256	73546
23	15	0,5	Т	ELONUT	Elodea nuttallii	1	1588	95983
24	101	0,7	Ť	CHACON	Chara contraria	5	5256	73546
25	100	0,8	Ť	77.17 - 7.12 - 7.12		NA		
26	150	1.1	Т	ELONUT	Elodea nuttallii	5	1588	95983
27		1,8	T			NA		
28		2	Ť	ELONUT	Elodea nuttallii	5	1588	95983
29		2.9	Ť	ELONO	Liocea Huttailii	NA	1000	30300
30			T			NA NA		
		5,4				TVA		

Rapport °: IBML.07/08-2022 18/21

Macrophytes - Plan d'eau PROFIL DROIT

V2-3023_UO3_Cize-Bolozon_2022

Informations sur la station

Code plan d'eau : V2--3023 Nom plan d'eau : Cize-Bolozon Unité de relevé : UO3 Date d'intervention : 09/08/2022 Opérateurs : B. BERTRAND (GREBE) / P. PROMPT (

Information profil

Heure de début : 10:50 Heure de fin : 11:20

Matériel utilisé : Râteau + grappin

Commentaire :

Longueur du profil (20m<L<100m): 50
Distance du début du profil par rapport au point central (>10m): 50

ints contacts				· · · · · · · · · · · · · · · · · · ·			INPN
	Profondeur (m)	Substrat 1	Substrat 2 Code taxons	Nom latin taxon	Abondance (1-5)	code_sandre	TAXREF
1 2	0,3	B T	CHACON	Chara santonia	NA 2	5256	73546
2	- 0,0	T	CHAGLO	Chara contraria	2	5257	73558
3	0,5	T	CHACON	Chara globularis	0	5257	7354
		T		Chara contraria			
3			CHAGLO	Chara globularis	1	5257	7355
4	0,0	T	CHACON	Chara contraria		5256	7354
4	0,6	T	CHAGLO	Chara globularis	1	5257	7355
5	0,7	T	CHACON	Chara contraria	5	5256	7354
5	0,7	T	CHAGLO	Chara globularis	1	5257	7355
6	0,7	T	CHACON	Chara contraria	5	5256	7354
6	0,7	T	CHAGLO	Chara globularis	1	5257	7355
7	= 0,7	Т	CHACON	Chara contraria	5	5256	73546
7	0,7	Т	CHAGLO	Chara globularis	1	5257	7355
8	0,7	Т	CHACON	Chara contraria	5	5256	7354
8	0,7	Т	CHAGLO	Chara globularis	1	5257	7355
9	0,7	T	CHACON	Chara contraria	5	5256	7354
9	0,7	T	CHAGLO	Chara globularis	1	5257	7355
10	0,6	T	CHACON	Chara contraria	5	5256	7354
10	0,6	T	POTPEC	Potamogeton pectinatus	1	1655	11529
11	0,7	Ť	CHACON	Chara contraria	2	5256	73546
11	0,7	T	CHAGLO	Chara globularis	, L	5257	73558
12	0,7	T	CHACON	Chara contraria	2	5256	7354
12	0,7	T	CHACON		2	5257	7355
13	0,7	T	CHACON	Chara globularis Chara contraria	2	5256	73546
		T			2	5257	
13	0,7		CHAGLO	Chara globularis	0	5256	7355i
14		T		Chara contraria	2		
14	0,0	T	CHAGLO	Chara globularis	5	5257	7355
15	0,0		CHACON	Chara contraria	5	5256	7354
15	0,9	Т	POTPEC	Potamogeton pectinatus	1	1655	11529
16	1	Т	CHACON	Chara contraria	5	5256	73546
16	1	T	CHAGLO	Chara globularis	1	5257	7355
17	1	Т	CHACON	Chara contraria		5256	7354
18	1	T	CHACON	Chara contraria	5	5256	7354
19	1	T	CHACON	Chara contraria	5	5256	7354
20	1	T	CHACON	Chara contraria	5	5256	7354
21	1	Т	CHACON	Chara contraria	5	5256	73546
21	1	Т	FLONUT	Elodea nuttallii	4	1588	9598
22	1,2	T	CHACON	Chara contraria	5	5256	7354
22	1,2	Т	CHAGLO	Chara globularis	1	5257	7355
22	1,2	Ť	ELONUT	Elodea nuttallii	3	1588	9598
23	1,1	Т	CHAGLO	Chara globularis	5	5257	7355
23	1.1	Ť	ELONUT	Elodea nuttallii	3	1588	9598
24	1,1	Т	CHAGLO	Chara globularis		5257	73558
24		T	ELONUT		2	1588	95983
	- 14.1			Elodea nuttallii	-		73546
25		T	CHACON	Chara contraria	-	5256	
25		T	CHAGLO	Chara globularis	1	5257	73558
25	1,40	Т	ELONUT	Elodea nuttallii	3	1588	95983
26	1,2		CHACON	Chara contraria	5	5256	7354
26	1,2	T	CHAGLO	Chara globularis	1	5257	7355
26	1,2	T	ELONUT	Elodea nuttallii	4	1588	9598
27	1,2	В			NA NA		
28	2	T			NA		
29	3,8	Т			NA NA		
30	5,4	т т			NA		

Rapport °: IBML.07/08-2022 19/21

Macrophytes - Plan d'eau LISTE FLORISTIQUE GLOBALE V2--3023_Cize-Bolozon_2022

Informations sur la station

Code plan d'eau : V2--3023 Nom plan d'eau : Cize-Bolozon

Date d'intervention :: 09/08/2022 Opérateurs :: B. BERTRAND (GREBE) / P. PROMPT (GREBE)

Métatype du plan d'eau* : B-Alc - Plans d'eau de basse altitude (inférieure à 300 m) et à caractère alcalin

	<u></u>			U	91	U	O 2	U	01
	Norn latin taxon	Statut géographique**	Valeur patrimoniale^***	Relevé de rive (Classe recou.)	Occurrence moyenne (profils)	Relevé de rive (Classe recou.)	Occurrence moyenne (profils)	Relevé de rive (Classe recou.)	Occurrence moyenne (profils)
		V							
Algues vertes									
	Cladophara sp.	Indigène			0,43				
	Mougeotia sp.	indigène		2					
	Spirogyra sp.	Indigène		4	1,07				
	Zygnema sp.	Indigêne		1					
Characées									
	Chara contraria	Indigène							2.52
y	Chara globularis	Indigène						5	1,50
Cyanobactéries									
	Phormidium sp.	Indigène		2		2	0,02		
s									
Hépathiques	T. Market Control of the Control of								
	Chiloscyphus sp.	Indigène		l,		1			
Mousses	To the second second second second								
	Cinclidatus fontinalaides	Indigéne	LC	2				6	
	Cratoneuron filicinum	Indigène	LC			2			
	Eurhynchium sp.	Indigène				2		1	
	Fissidens osmundoides	Indigène	LC			2		2	
	Fontinalis antipyretica	Indigêne	LC	2	0,02			3	0,02
	Hygrohypnum lundum	Indigène	LC	1					
	Leptodictyum riparium	Indigène	LC					2	
	Neckera crispa	Indigêne	LC					4	
	Rhynchostegium ripanoides	Indigène	LC	1				3	
50%	Thuidium tamariscinum	Indigêne	LC					1	
les	T FOR THE STATE OF	6.6.1	LC	4					
108	Equisetum hyemale	Indigène	LU	*					0
Hélophytes									
riciopriyida	Carex elata	Indigêne	LC				1	- 1	Т
	Lycopus europaeus	Indigêne	LC					1	
	Phalaris arundinacea	Indigêne	LC					1	
	1 Harana arananaaa	inagene						-	
Hydronhytes									
Hydrophytes	E/odea cenadensis	Introduit envahissant	NA	1	0.11				
Hydrophytes	Elodea canadensis Elodea nuttallii	Introduit envahissant Introduit envahissant	NA NA		0,11			2	0.83
Hydrophyles	Elodea nuttallii	Introduit envahissant	NA		0,11			2	0,83
Hydrophytes	Elodea nuttallii Groenlandia densa	Introduit envahissant Indigène			0,01			2	0,83 0,13
	Elodea nuttallii Groenlandia densa Hippuris vulgaris	Introduit envahissant	NA LC					2	
Hydrophytes Hydrophytes à feuilles flottante	Elodea nuttallii Groenlandia densa Hippuris vulgaris	introduit envahissant Indigène Indigène	NA LC		0,01			2	
	Elodea nuttallii Groenlandia densa Hippuris vulgaris es	introduit envahissant Indigène Indigène	NA LC NT		0,01			2	
Hydrophytes à feuilles flottante	Elodea nuttallii Groenlandia densa Hippuris vulgaris es	introduit envahissant Indigène Indigène	NA LC NT		0,01			2	
Hydrophytes à feuilles flottante	Elodea nutrallii Graenlandia densa Hippuris vulgaris es rganium emersum except fo. brevifo	Introduit envahissant Indigène Indigène Indigène	NA LC NT		0,01				0,13
Hydrophytes à feuilles flottante	Elodea nuffalki Groenlandia densa Hippuris vulgaris es (ganium emersum except fo brevifo Myriophyllum spicatum	Introduit envahissant Indigène Indigène Indigène Indigène	NA LC NT LC		0,01				0,13
Hydrophytes à feuilles flottante	Elodea nutraliii Graenlandia densa Hippunis vulgaris es Irganium emeraum except. fo. brevifo Myriophyllum spicatum Potamogeton pectinatus	Introduit envehissent Indigène Indigène Indigène Indigène Indigène Indigène	NA LC NT LC LC LC		0,01				0,13
Hydrophytes à feuilles flottante Hydrophytes fixées	Elodea nutraliii Graenlandia densa Hippunis vulgaris es Irganium emeraum except. fo. brevifo Myriophyllum spicatum Potamogeton pectinatus	Introduit envehissent Indigène Indigène Indigène Indigène Indigène Indigène	NA LC NT LC LC LC	2	0,01				0,13
Hydrophytes à fauilles flottante Hydrophytes fixées	Elodea nutfallii Graenlandia densa Hippunis vulgaris ee Irganium emersum except fo. brevifo Myriophyllum spicatum Patamogeton pectinatus Potamogeton pusilius	Introduit envahissant Indigane Indigane Indigane Indigane Indigane Indigane Indigane Indigane Indigane	NA LC NT LC LC LC LC LC LC LC LC	2 3	0,01				0,13
Hydrophytes à feuilles flottente Hydrophytes fixées	Elodea nutfallii Graenhandia denaa Hippuriis vulganis es Irganium emeraum except fo brevifo Myriophyllum spicatum Potamogeton pectinatus Protamogeton pusilius Brachypodium sylvaticum	Introduit envahissant Indigene	NA LC NT LC LC LC LC LC LC LC		0,01				0,13
Hydrophytes à feuilles flottente Hydrophytes fixées	Elodea nutfalili Graentandia denaa Hippunis vulgaris ee Irganium emersum except. fo. brevifo Myriophyllum spicatum Potamogeton pectinatus Potamogeton pusilius Brachypodium sylvaticum Carex flance Deschampisia oespitosa Filipendula ulmania	Introduit envahissant Indigene	LC LC LC LC LC LC LC LC LC	3 1 2	0,01				0,13
Hydrophytes à feuilles flottente Hydrophytes fixées	Elodea nutfaliii Graeniandia denia Hippuris vulgaris es Irganium emeraum except. fo. brevifo. Myriophylkum spicatum Potamogeton pechinatus Portamogeton pesilius Brachypodium sylvaticum Carox flacca Deschampiai oespitosa	Introdut envahissant Indigane Indigane Indigane Indigane Indigane Indigane Indigane Indigane Indigane	NA LC NT LC	3	0,01				0,13
Hydrophytes à fauilles flottante Hydrophytes fixées	Elodea nutfallii Graenhandia denaa Hippunis vulgans 88 Irganium emereum except fo brevifo Myriophyllum spicetum Potamogeton pectinatus Potamogeton pusilius Brachypodium sylvaticum Carax flacos Deschampisi cespitosa Filipendula ulmania Lythrum salioaria Senecio aqualicus	Intodut ervahissant Indigena Indigena Indigena Indigena Indigena Indigena Indigena Indigena Indigena Indigena Indigena Indigena Indigena Indigena Indigena Indigena Indigena	NA LC NT LC	3 1 2 1 1	0,01				0,13
Hydrophytes à feuilles flottante Hydrophytes fixées Hydrophytes	Elodea nutfaliii Graeniandia denia Hippuris vulgaris es Irganium emeraum except. fo. brevifo. Myriophylkum spicatum Potamogeton pechinatus Portamogeton pesilius Brachypodium sylvaticum Carox flacca Deschampiai oespitosa	Introdust ervahissant Indigene	LC LC LC LC LC LC LC LC LC	3 1 2 1	0,01				0,13
Hydrophytes à feuilles flottante Hydrophytes fixées	Elodea nutfallii Graenhandia denaa Hippunie vulganis ee Irganium emersum except fo. brevifo Myriophylium spicatum Potamogeton peclinatus Potamogeton pusilius Brachypodium sylvaticum Carox flacca Deschampisia cespitose Filicendula ulmania Lythrum salcaria Senecio aquaticus Valeriana officinalia	Indigene	NA LC NT LC	3 1 2 1 1	0,01			1	0,13
Hydrophytes à feuilles flottants Hydrophytes fixées Hydrophytes	Elodea nutfalili Graenhandia denaa Hippuris vulgaris ee Irgankim emeraum except fo brevifo Myriophyllum spicatum Potamogeton pectivatus Potamogeton pusilius Brachypodkum sylvaticum Carax flacoa Deschampisia cespitosa Filipendula ulmania Lythrum seloania Senecio aquadicus Valenana officinalis Bidons sp.	Intoque ervahissant Intopera Instigera	NA LC NT LC	3 1 2 1 1 2	0,01				0,13
Hydrophytes à feuilles flottants Hydrophytes fixées Hydrophytes	Elodea nutfalili Graeniandia denaa Hippunis vulgaris es Inganium emereum except. fo. brevifo Myriaphyllum spiraatum Potamogeton pecinatus Potamogeton pusilius Brachypodium sylvaticum Carox flacca Deschampsia oespitose Fillendula uhmaria Lythrum salvaria Senecio aquaticus Valeniana officinalis Bidona sp. Carox sp.	Introduct ervahissant Indigene	NA LC NT LC	3 1 2 1 1 2	0,01			1	0,13
Hydrophytes à feuilles flottants Hydrophytes fixées Hydrophytes	Elodea nutfalili Graenhandia denaa Hippuris vulgaris ee Irgankim emeraum except fo brevifo Myriophyllum spicatum Potamogeton pectivatus Potamogeton pusilius Brachypodkum sylvaticum Carax flacoa Deschampisia cespitosa Filipendula ulmania Lythrum seloania Senecio aquadicus Valenana officinalis Bidons sp.	Intoque ervahissant Intopera Instigera	NA LC NT LC	3 1 2 1 1 2	0,01	3		1	0,13

Richesse taxonomique :	

** Staluts géographiques d'après TAXREF v15.0 (16/12/2021) (Source: INPN)

^{***} Liste rouge de la flore vasculaire de France métropolitaire (2019) (Source: IMPN)

Compiletion des listes rouges des bryophyles de la région Auvergne-Rifiche-Alpes (2022)

(Source: CBN Massif-Cantral et CBN Alpin)

Rapport °: IBML.07/08-2022 20/21

Macrophytes - Plan d'eau INDICES ET MÉTRIQUES ECOLOGIQUES V2-3023 Cize-Bolozon 2022

DESCRIPTION GENERALE Informations sur la station Code plan d'eau : V2-3023 Nom plan d'eau : Cize-Bolozon vaieurs patrimoniaies EX : Eteinte au niveau mondial RE : Ou disparue de métropole 0 CR : En danger critique 0 EN : En danger 0 VU : Vulnérable VU : Vulnérable NT : Quasimenacée 0 LC : Préoccupation mineure

inaice et metrique ecologiques CALCUL SEEE IBML v1.0.1
(S. Boutry, V. Bertrin, A. Dutartre, 2015) (S. Boutry, V. Bertrin, A. Dutartre, 2015) 41 : Nombre de taxons contributifs (Les taxons suivants, representant 0% des taxons du prelevement, n'ont pas ete pris en compte dans le calcut:) Niveau trophique : Faible Note EQR : 1,12 11,82 /20 : Note de Profil PE 13,40 /20: Note de Rive PE 12,61 /20 : IBML - Note de Trophie

Rapport °: IBML.07/08-2022 21/21 **Annexe 6:** Rapport d'analyses phytobenthos.

RAPPORT D'ANALYSE DIATOMÉES

- Définitif -

Edité le : 23/03/2023 Page 1/10

Agence de l'eau Rhône-Mediterranée et Corse

A l'attention de Loïc IMBERT 2-4 Allée de Lodz 69363 LYON

RAPPORT n°: Indice diatomées en plan d'eau DIAT.17/08-2022

Dossier: Plans d'eau AERMC - CIZE-BOLOZON

Point(s) de prélèvement : voir tableau en page suivante

Prélèvements : Effectué(s) par GREBE [tableau page suivante]

Date(s) des prélèvements : 09/08/2022

Détermination(s) réalisée(s) par : voir tableau en page suivante

Date(s) des analyses : 28/02/2023

Objet soumis à l'analyse : Diatomées

Paramètre	Méthode
Echantillonnage	NFT 90-354
Traitement des lames	NFT 90-354
Liste floristique	NFT 90-354
IBD	(informatif)

^{*} Arrêté du Ministère de la Transition écologique et solidaire du 27 juillet 2018

Résultats : Inventaires et calcul de l'indice IBD selon le SEEE, dernière version en vigueur ou selon la demande du client.

- Fiche d'illustration
- Indice IBD, EQR et état biologique sur le compartiment diatomées Présentation des taxons dominants

- Commentaire Liste floristique
- Les résultats s'appliquent à (aux) échantillon(s) tel(s) qu'il a (ont) été reçu(s).
 Le rapport établi ne concerne que les échantillons soumis à l'essai.

- La reproduction de ce rapport d'analyse n'est autorisée que sous sa forme intégrale.
 Le présent rapport d'essai peut être diffusé sous forme papier ou par transfert électronique de données.
 Le présent rapport est conforme aux exigences de la norme NF EN ISO/IEC 17025.
- Les analyses ci-dessus ont été réalisées par le GREBE, laboratoire agréé pour l'échantillonnage, le traitement et l'analyse des diatomées benthiques en cours d'eau et canaux par le ministère en charge de l'environnement suivant les modalités de l'arrêté du 27 octobre 2011.
- Les analyses diatomées sont réalisées au laboratoire situé 21 rue Sébastien Gryphe 69007 Lyon.

Signataire des rapports d'analyse diatomées :

Claire DEPRAZ

ENR.65 - Version 14 - Date d'application: 18/01/2021

<u>Tableau récapitulatif :</u>
Correspondance entre les stations d'échantillonnage et le numéro interne au GREBE ; traçabilité des différents opérateurs

N° GREBE	STATION	DATE	PRELEVEUR	PREPARATEUR	LECTEUR
V23023_UO1_M	CIZE-BOLOZON_UO1_MINERAL	09/08/2022	B.BERTRAND	F. FONT	F. MILLAN
V23023_UO2_M	CIZE-BOLOZON_UO2_MINERAL	09/08/2022	B.BERTRAND	F. FONT	F. MILLAN
V23023_UO3_M	CIZE-BOLOZON_UO3_MINERAL	09/08/2022	B.BERTRAND	F. FONT	F. MILLAN

RAPPORT D'ESSAI - COMPARTIMENT DIATOMEES

3/10

DESCRIPTION

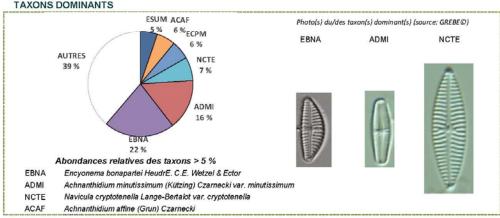
Station: V2-3023_UO1_M Date d'échantillonnage: 09/08/2022

Bassin: Bourgogne-Franche-Comté Date d'analyse au laboratoire : 28/02/2023

Client : AERMC Libellé station : Cize-Bolozon

Cours d'eau : CIZE-BOLOZON Producteur : AgenceEauRMC Préleveur : Blaise BERTRAND Typologie: A2

Préparateur : Flora FONT Déterminateur : Fanny MILLAN


STATISTIQUES

Espèces: 56 400 Population: Diversité : 4,37 5,81 H'max: Equitabilité : 0,75 Nb. Genres: 22

INDICES

IBD*: 47 19.3 Taxons contributifs: *SEEE v1.2.4

TAXONS DOMINANTS

4/10

RAPPORT D'ANALYSE - COMPARTIMENT DIATOMEES

INVENTAIRE

Commentaire analyse : FGRA : Fragilaria of gracilis (Guide identification Diatomées Plans eau 2020 05 08 ARA), EBNA : Encyonema aff bonapartei, côté ventral pardois ondulé et parfois bien capité

CODE	DENOMINATION	SANDRE	Abd.	‰	IBD	IP S	IP V
EBNA	Encyonema bonapartei HeudrE. C.E. Wetzel & Ector	51635	87	217,50		0	0
ADMI	Achnanthidium minutissimum (Kützing) Czarnecki var. minutissimum	7076	62	155,00	OUI	5	1
NCTE	Navicula cryptotenella Lange-Bertalot var. cryptotenella	7881	29	72,50	OUI	4	1
ACAF	Achnanthidium affine (Grun) Czarnecki	20681	23	57,50	OUI	5	1
ECPM	Encyonopsis minuta Krammer & Reichardt	9449	23	57,50	OUI	4	2
ESUM	Encyonopsis subminuta Krammer & Reichardt	13128	21	52,50	OUI	5	1
DTEN	Denticula tenuis Kützing var. tenuis	8794	18	45,00	OUI	5	1
LFRQ	Luticola frequentissima Levkov, Metzeltin & Pavlov	38981	12	30,00	OUI	2	2
ADPY	Achnanthidium pyrenaicum (Hustedt) Kobayasi	10597	9	22,50	OUI	5	1
CAFF	Cymbella affinis Kützing var. affinis	11432	9	22,50	OUI	4	2
NILA	Nitzschia lacuum Lange-Bertalot	8944	8	20,00	OUI	5	2
ADSB	Achnanthidium straubianum (Lange-Bertalot)Lange-Bertalot	7078	6	15,00	OUI	3	2
FGRA	Fragilaria gracilis Østrup	6679	6	15,00	OUI	4,8	1
NANT	Navicula antonii Lange-Bertalot	7803	6	15,00	OUI	4	1
NSOC	Nitzschia sociabilis Hustedt var. sociabilis	9034	5	12,50	OUI	3	3
ADCV	Achnanthidium caravelense Novais et Ector	35851	4	10,00		0	0
APED	Amphora pediculus (Kützing) Grunow var. pediculus	7116	4	10,00	OUI	4	1
NRAD	Navicula radiosa Kützing var. radiosa	8106	4	10,00	OUI	5	2
POVA	Punctastriata ovalis Williams & Round	17604	4	10,00		0	0
ENVE	Encyonema ventricosum (Kützing) Grunow in Schmidt et al. var. ventricosum	13106	3	7,50	OUI	4	1
FSBH	Fallacia subhamulata (Grunow in Van Heurck) D.G. Mann	7588	3	7,50	OUI	4	1
LGOP	Luticola goeppertiana (Bleisch) D.G.Mann ex J.Rarick, S.Wu, S.S.Lee & Edlund	44420	3	7,50	OUI	2	2
NCRY	Navicula cryptocephala Kützing var. cryptocephala	7874	3	7,50	OUI	3.5	2
NFON	Nitzschia fonticola Grunow in Cleve et Möller var. fonticola	8891	3	7,50	OUI	3,5	1
NTPT	Navicula tripunctata (O.F.Müller) Bory var. tripunctata	8190	3	7,50	OUI	4.4	2
ACLI	Achnanthidium lineare W.Smith	10603	2	5,00	OUI	5	1
ADEX	Achnanthidium exile (Kützing) Heiberg	10796	2	5,00	OUI	5	2
ADRU	Achnanthidium druartii Rimet & Couté in Rimet & al.	27445	2	5,00	001	4	1
ccos	Cyclotella costei Druart & Straub	8615	2	5,00	OUI	5	1
CEUG	Cocconeis euglypta Ehrenberg	11785	2	5,00	OUI	3,6	1
FPEM	Fragilaria perminuta (Grunow) Lange-Bertalot	13639	2	5,00	OUI	4	1
FVUL	Frustulia vulgaris (Thwaites) De Toni var. vulgaris	7604	2	5,00	OUI	4	3
GLAT	Gomphonema lateripunctatum Reichardt & Lange-Bertalot	7684	2	5.00	OUI	5	3
NCPR	Navicula capitatoradiata Germain	7843	2	5,00	OUI	3	2
NMTA	Navicula metareichardtiana Lange-Bertalot & Kusber nom.nov.		2	5.00	OUI	3,6	1
NSBN	Navicula subalpina Reichardt	66777 16353	2	5.00	001		1
ABRY		10555	1	2.50	OUI	4,5	2
ADMO	Adlafia bryophila (Petersen) Lange-Bertalot in Moser & al. Achnanthidium delmontii Peres, Le Cohu et Barthes	33829	1	2,50	001	4	1
AMCD		10944	1			0	0
AMID	Amphora indistincts Louise	28635	1	2,50 2,50	OUI	5	1
	Amphora indistincta Levkov		1				2
ENMI	Encyonema minutum (Hilse in Rabh.) D.G. Mann in Round Crawford et Mann var. minutun			2,50	OUI	4	
FCAN	Fragilaria canariensis Lange-Bertalot	13408	1	2,50	~!!!		0
NCOM	Nitzschia communis Rabenhorst	8854	1	0,03	OUI	1	3
NHAN	Nitzschia hantzschiana Rabenhorst var. hantzschiana	8919	1	0,03	OUI	5	2
NIAN	Nitzschia angustata (W.Smith) Grunow var. angustata	8828	1	0,03	OUI	3,8	3
NMCA	Navicula microcari Lange-Bertalot	8018	1	0,03	OUI	4	1
NPAL	Nitzschia palea (Kützing) W.Smith var. palea	8987	1	0,03	OUI	1	3
PTCO	Platessa conspicua (A.Mayer) Lange-Bertalot	8395	1	0,03	OUI	4	1
SIDE	Simonsenia delognei Lange-Bertalot	9079	1	0,03	OUI	3	2
SPUP	Sellaphora pupula (Kützing) Mereschkowksy var. pupula	8444	1	0,03	OUI	2,6	2
TATU	Tryblionella angustatula (Lange-Bertalot) Cantonati & Lange-Bertalot in Kusber et al. comb	44412	1	0,03	OUI	4	1

RAPPORT D'ANALYSE - COMPARTIMENT DIATOMEES

5/10

INVENTAIRE (suite)

CODE	DENOMINATION	SANDRE	Abd.	‰	IBD	IP S	IP V
ESLE	Encyonema silesiacum (Bleisch in Rabh.) D.G. Mann var. silesiacum	7443	1	0,03	OUI	5	5
GACU	Gomphonema acuminatum Ehrenberg var. acuminatum	7618	1	0,03	OUI	4	4
SNIG	Sellaphora nigri (De Not.) C.E. Wetzel et Ector comb. nov. emend.	43146	1	0,03	OUI	2,2	2,2
EAUE	Encyonema auerswaldii Rabenhorst	12650	1	0,03	OUI	4	4
PTRN	Pseudostaurosira trainorii Morales	17918	1	0.03		3	3

RAPPORT D'ESSAI - COMPARTIMENT DIATOMEES

6/10

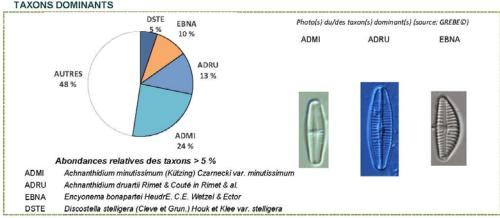
DESCRIPTION

Station: V2-3023_UO2_M Date d'échantillonnage: 09/08/2022 Date d'analyse au laboratoire : 28/02/2023

Bassin : Bourgogne-Franche-Comté Client : AERMC

Libellé station : Cize-Bolozon Cours d'eau : CIZE-BOLOZON Producteur : AgenceEauRMC Préleveur : Blaise BERTRAND Typologie: A2

Préparateur : Flora FONT Déterminateur : Fanny MILLAN


STATISTIQUES

Espèces: 52 401 Population: Diversité : 4,35 5,70 H'max: Equitabilité : 0,76 Nb. Genres: 27

INDICES

IBD*: 18.2 Taxons contributifs: 43

TAXONS DOMINANTS

7/10

RAPPORT D'ANALYSE - COMPARTIMENT DIATOMEES

INVENTAIRE

Commentaire analyse: FGRA = Fragilaria of gracilis (Guide identification Diatomées Plans Eau 2020 05 06 ARA). BMIC = morphotype 3. EBNA = Encyonema aff bonapartei, côté ventral parfois ondulé et parfois bien capité

CODE	DENOMINATION	SANDRE		‰	IBD	IPS	IP V
ADMI	Achnanthidium minutissimum (Kützing) Czarnecki var. minutissimum	7076	97	241,90	OUI	5	1
ADRU	Achnanthidium druartii Rimet & Couté in Rimet & al.	27445	52	129,70		4	1
EBNA	Encyonema bonapartei HeudrE. C.E. Wetzel & Ector	51635	40	99,80		0	0
DSTE	Discostella stelligera (Cleve et Grun.) Houk et Klee var. stelligera	8657	21	52,40	OUI	4,2	1
ECPM	Encyonopsis minuta Krammer & Reichardt	9449	18	44,90	OUI	4	2
NDIS	Nitzschia dissipata subsp. dissipata (Kützing) Grunow var. dissipata	8875	12	29,90	OUI	4	3
POVA	Punctastriata ovalis Williams & Round	17604	11	27,40		0	0
STOV	Staurosirella ovata Morales	18855	11	27,40	OUI	4	1
ESUM	Encyonopsis subminuta Krammer & Reichardt	13128	10	24,90	OUI	5	1
PTRN	Pseudostaurosira trainorii Morales	17918	10	24,90		3	1
NCTE	Navicula cryptotenella Lange-Bertalot var. cryptotenella	7881	8	20,00	OUI	4	1
ADMO	Achnanthidium delmontii Peres, Le Cohu et Barthes	33829	7	17,50		4	1
HUCO	Humidophila contenta (Grunow) Lowe, Kociolek, Johansen, Van de Vijver, Lange-Bertalot	38622	7	17,50	OUI	4	1
LFRQ	Luticola frequentissima Levkov, Metzeltin & Pavlov	38981	7	17,50	OUI	2	2
CLNT	Cocconeis lineata Ehrenberg	30021	6	15,00	OUI	4	1
GLAT	Gomphonema lateripunctatum Reichardt & Lange-Bertalot	7684	6	15,00	OUI	5	3
APED	Amphora pediculus (Kützing) Grunow var. pediculus	7116	5	12,50	OUI	4	1
PDPC	Pseudostaurosiropsis connecticutensis Morales	17149	5	12,50		3	1
ccos	Cyclotella costei Druart & Straub	8615	4	10,00	OUI	5	1
DBIC	Diadesmis biceps G.A. Amott	10616	4	10,00	OUI	4	1
ACAF	Achnanthidium affine (Grun) Czarnecki	20681	4	10,00	OUI	5	1
SBND	Staurosira binodis (Ehrenberg) Lange-Bertalot in Hofmann Werum et Lange-Bertalot	32451	4	10,00	OUI	4	1
SCON	Staurosira construens Ehrenberg var. construens	6761	4	10,00	OUI	4	1
PCLD	Placoneis clementioides (Hustedt) Cox	8384	4	10,00	OUI	4,2	2
APEL	Amphipleura pellucida Kützing	7081	3	7,50	OUI	4	1
FGRA	Fragilaria gracilis Østrup	6679	3	7,50	OUI	4,8	1
GPRI	Gomphonema pumilum var. rigidum Reichardt & Lange-Bertalot	14132	3	7,50	OUI	3,5	1
NANT	Navicula antonii Lange-Bertalot	7803	3	7,50	OUI	4	1
NPAL	Nitzschia palea (Kützing) W.Smith var. palea	8987	3	7,50	OUI	1	3
ABRY	Adlafia bryophila (Petersen) Lange-Bertalot in Moser & al.	10555	2	5,00	OUI	5	2
NIAN	Nitzschia angustata (W.Smith) Grunow var. angustata	8828	2	5,00	OUI	3,8	3
NMCA	Navicula microcari Lange-Bertalot	8018	2	5,00	OUI	4	1
PJOU	Planothidium joursacense (Héribaud) Lange-Bertalot	17370	2	5,00		3	2
PLFR	Planothidium frequentissimum (Lange-Bertalot)Lange-Bertalot var. frequentissimum	8393	2	5,00	OUI	3,4	1
SNIG	Sellaphora nigri (De Not.) C.E. Wetzel et Ector comb. nov. emend.	43146	2	5,00	OUI	2,2	1
ADEU	Achnanthidium eutrophilum (Lange-Bertalot)Lange-Bertalot	10372	1	2,50	OUI	3	1
AMCD	Amphora macedoniensis Nagumo	10944	1	2,50		0	0
BMIC	Brachysira microcephala (Grunow) Compère	7158	1	2,50	OUI	5	1
CAFF	Cymbella affinis Kützing var. affinis	11432	1	2,50	OUI	4	2
CEUG	Cocconeis euglypta Ehrenberg	11785	1	2,50	OUI	3,6	1
ECES	Encyonopsis cesatii (Rabenhorst) Krammer var. cesatii	7447	1	2,50	OUI	5	2
ECKR	Encyonopsis krammeri Reichardt	12683	1	2,50	OUI	5	2
FCAN	Fragilaria canariensis Lange-Bertalot	13408	1	0,03		0	0
NCPR	Navicula capitatoradiata Germain	7843	1	0,03	OUI	3	2
NILA	Nitzschia lacuum Lange-Bertalot	8944	1	0,03	OUI	5	2
NTPT	Navicula tripunctata (O.F.Müller) Bory var. tripunctata	8190	1	0,03	OUI	4,4	2
NTRV	Navicula trivialis Lange-Bertalot var. trivialis	8192	1	0,03	OUI	2	3
PSBR	Pseudostaurosira brevistriata (Grun.in Van Heurck) Williams et Round var. brevistriata	6751	1	0,03	OUI	3	1
PUBA	Puncticulata balatonis (Pantocsek) Wojtla et Budzynska	38652	1	0,03	OUI	0	0
SEAT	Sellaphora atomoides (Grunow) Wetzel et Van de Vijver	43263	1	0,03	OUI	2,2	1
SPUP	Sellaphora pupula (Kützing) Mereschkowksy var. pupula	8444	1	0,03	OUI	2,6	2

RAPPORT D'ANALYSE - COMPARTIMENT DIATOMEES

8/10

INVENTAIRE (suite)

CODE	DENOMINATION	SANDRE	Abd.	‰	IBD	IP S	IP V
AOVA	Amphora ovalis (Kützing) Kützing	7111	1	0,03	OUI	3	3

RAPPORT D'ESSAI - COMPARTIMENT DIATOMEES

9/10

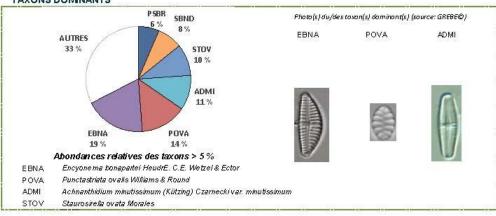
DESCRIPTION

Station: V2--3023_U03_M Date d'échantillonnage: 09/08/2022

Bassin: Bourgogne-Franche-Comté Date d'analyse au laboratoire: 28/02/2023

Client : AERMC
Libellé station : Cize-Bolozon
Cours d'eau : CIZE-BOLOZON Producteur : AgenceEauRMC

Typologie: A2 Préleveur: Blaise BERTRAND
Préparateur: Flora FONT
Déterminateur: Fanny MILLAN


STATISTIQUES

Espèces: 33
Population: 402
Diversité: 3,93
H'max: 5,04
Equitabilité: 0,78
Nb. Genres: 19

INDICES

IBD*: 16.4 Taxons contributifs: 27
*SEEE v1.2.4

TAXONS DOMINANTS

RAPPORT D'ANALYSE - COMPARTIMENT DIATOMEES

INVENTAIRE

Commentaire analyse : EBNA : Encyonema aff bonapartei, côté ventral parfois ondulé et parfois capité. HTHU, PROH

POVA PU ADMI AC STOV St	ncyonema bonapartei HeudrE. C.E. Wetzel & Ector unctastriata ovalis Williams & Round chnanthidium minutissimum (Kützing) Czarnecki var. minutissimum taurosirella ovata Morales taurosira binodis (Ehrenberg) Lange-Bertalot in Hofmann Werum et Lange-Bertalot	51635 17604 7076 18855	75 57 43	186,60 141,80		0	0
ADMI AC	chnanthidium minutissimum (Kützing) Czarnecki var. minutissimum taurosirella ovata Morales taurosira binodis (Ehrenberg) Lange-Bertalot in Hofmann Werum et Lange-Bertalot	7076	43			•	
STOV St	taurosirella ovata Morales taurosira binodis (Ehrenberg) Lange-Bertalot in Hofmann Werum et Lange-Bertalot	1165345	1188			0	0
	taurosira binodis (Ehrenberg) Lange-Bertalot in Hofmann Werum et Lange-Bertalot	18855		107,00	OUI	5	1
SBND St			39	97,00	OUI	4	1
	and the second of the following the property of the second	32451	31	77,10	OUI	4	1
PSBR Ps	seudostaurosira brevistriata (Grun.in Van Heurck) Williams et Round var. brevistriata	6751	26	64,70	OUI	3	1
PTRN PS	seudostaurosira trainorii Morales	17918	18	44,80		3	1
SCON St	taurosira construens Ehrenberg var. construens	6761	17	42,30	OUI	4	1
NCTE N	avicula cryptotenella Lange-Bertalot var. cryptotenella	7881	14	34,80	OUI	4	1
PDPC Ps	seudostaurosiropsis connecticutensis Morales	17149	13	32,30		3	1
FCAN Fr	ragilaria canariensis Lange-Bertalot	13408	8	19,90		0	0
ADSB A	chnanthidium straubianum (Lange-Bertalot)Lange-Bertalot	7078	7	17,40	OUI	3	2
PLFR PI	lanothidium frequentissimum (Lange-Bertalot)Lange-Bertalot var. frequentissimum	8393	7	17,40	OUI	3,4	1
ECPM Er	ncyonopsis minuta Krammer & Reichardt	9449	6	14,90	OUI	4	2
PJOU PI	lanothidium joursacense (Héribaud) Lange-Bertalot	17370	6	14,90		3	2
APED Ar	mphora pediculus (Kützing) Grunow var. pediculus	7116	5	12,40	OUI	4	1
ccos c	yclotella costei Druart & Straub	8615	4	10,00	OUI	5	1
NSBR Na	avicula subrotundata Hustedt	8174	4	10,00	OUI	2,3	1
NMCA Na	avicula microcari Lange-Bertalot	8018	3	7,50	OUI	4	1
SNIG Se	ellaphora nigri (De Not.) C.E. Wetzel et Ector comb. nov. emend.	43146	3	7,50	OUI	2,2	1
CAFF Cy	ymbella affinis Kützing var. affinis	11432	2	5,00	OUI	4	2
NMTA N	avicula metareichardtiana Lange-Bertalot & Kusber nom.nov.	66777	2	5,00	OUI	3,6	1
SLPP St	taurosira lapponica (Grunow) Lange-Bertalot	28504	2	5,00	OUI	5	2
CLNT C	occoneis lineata Ehrenberg	30021	1	2,50	OUI	4	1
DTEN D	enticula tenuis Kützing var. tenuis	8794	1	2,50	OUI	5	1
ESUM Er	ncyonopsis subminuta Krammer & Reichardt	13128	1	2,50	OUI	5	1
GACC G	eissleria acceptata (Hust.) Lange-Bertalot & Metzeltin	9421	1	2,50	OUI	4,5	1
GPRI G	omphonema pumilum var. rigidum Reichardt & Lange-Bertalot	14132	1	2,50	OUI	3,5	1
NCRY No	avicula cryptocephala Kützing var. cryptocephala	7874	1	2,50	OUI	3,5	2
NTRV Na	avicula trivialis Lange-Bertalot var. trivialis	8192	1	2,50	OUI	2	3
SEAT Se	ellaphora atomoides (Grunow) Wetzel et Van de Vijver	43263	1	2,50	OUI	2,2	1
SODB St	taurosira oldenburgiana (Hustedt)Lange-Bertalot	28506	1	2,50	OUI	4,5	2
GLAT G	comphonema lateripunctatum Reichardt & Lange-Bertalot	7684	1	2,50	OUI	5	3