

Agence de l'Eau Rhône Méditerranée Corse

ÉTUDE DES PLANS D'EAU DU PROGRAMME DE SURVEILLANCE DES BASSINS RHONE-MEDITERRANEE ET CORSE LOT N°2 CENTRE DU BASSIN RM

RAPPORT DE DONNEES BRUTES ET INTERPRETATION LAC DE NANTUA SUIVI ANNUEL 2019

Rapport n° 16-707B/2019 – Nantua – janvier 2021

Sciences et Techniques de l'Environnement – B.P. 90374 17, Allée du Lac d'Aiguebelette - Savoie Technolac 73372 Le Bourget du Lac cedex tél.: 04 79 25 08 06; tcp: 04 79 62 13 22

SOMMAIRE

Ţ	CAL	DRE DU PROGRAMME DE SUIVI	<u>9</u>
2	DEF	OULEMENT DES INVESTIGATIONS	10
_	2.1	PRESENTATION DU PLAN D'EAU ET LOCALISATION	
	2.2	CONTENU DU SUIVI 2019	
	2.3	PLANNING DE REALISATION	
	2.4	ÉTAPES DE LA VIE LACUSTRE	
	2.5	BILAN CLIMATIQUE DE L'ANNEE 2019	15
<u>3</u>	RAF	PEL METHODOLOGIQUE	16
	3.1	INVESTIGATIONS PHYSICOCHIMIQUES	
	3.1.1	8	
	3.1.2	Programme analytique	18
	3.2	INVESTIGATIONS HYDROBIOLOGIQUES	
	3.2.1		
	3.2.2		
	3.2.3	Étude des peuplements de phytobenthos	23
<u>4</u>	RES	ULTATS DES INVESTIGATIONS	24
	4.1	INVESTIGATIONS PHYSICOCHIMIQUES	24
	4.1.1	Profils verticaux et évolutions saisonnières	24
	4.1.2		
	4.1.3	Analyses des sédiments	31
	4.2	PHYTOPLANCTON	
	4.2.1	\mathcal{O}	
	4.2.2		
	4.2.3		37
	4.2.4	J 1 1	
	4.2.5	1	
	4.3	MACROPHYTES	
	4.3.1		
		Carte de localisation des unités d'observation	
	4.3.3	\mathcal{E}	
	4.3.4 4.3.5		
	4.3.6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		•	
	4.4	PHYTOBENTHOS – METHODE IBDLACS	
	4.4.1 4.4.2	1	
	4.4.2	1	
<u>5</u>	<u>APP</u>	RECIATION GLOBALE DE LA QUALITE DU PLAN D'EAU	49
<u>- 1</u>	ANNEX	ES -	51

ANNEXE 1. LISTE DES MICROPOLLUANTS ANALYSES SUR EAU		r i r i r i r i r i r i r i r i r i r i			(- /	
ANNEXE 3. COMPTES RENDUS DES CAMPAGNES PHYSICO-CHIMIQUES ET PHYTOPLANCTONIQUES	ANNEXE 1.	LISTE DES MICROPOI	LUANTS ANALY	SES SUR EAU	•••••	53
ANNEXE 4. DONNEES BRUTES POUR L'ETUDE DES MACROPHYTES	ANNEXE 2.	LISTE DES MICROPOI	LUANTS ANALY	SES SUR SEDIMI	ENT	<u>61</u>
ANNEXE 4. DONNEES BRUTES POUR L'ETUDE DES MACROPHYTES	ANNEXE 3.	COMPTES RENDU	S DES CAM	PAGNES PHYSI	CO-CHIMIQUES	ET
ANNEXE 4. DONNEES BRUTES POUR L'ETUDE DES MACROPHYTES						
ANNEXE 6. SYNTHESE PISCICOLE OFB - 2019	ANNEXE 5.	FICHES PRELEVEMEN	TS PHYTOBENT	CHOS - IBDLACS	······	69
	ANNEXE 6.	SYNTHESE PISCICOLI	E OFB - 2019			71

Liste des illustrations

Figure 1 : moyennes mensuelles de température à la station de Saint-Etienne du Bois (<i>Info-climat</i>)	15
Figure 2 : cumuls mensuels de précipitations à la station de Saint-Etienne du Bois (site Info-climat)	
Figure 3 : Représentation schématique des différentes stratégies de comptage	19
Figure 4 : Seuils des classes d'état définis pour chaque métrique et pour l'IPLAC	
Figure 5 : Représentation schématique d'une unité d'observation	
Figure 6 : Profils verticaux de température au point de plus grande profondeur	25
Figure 7 : Profils verticaux de conductivité au point de plus grande profondeur	
Figure 8 : Profils verticaux de pH au point de plus grande profondeur	
Figure 9 : Profils verticaux d'oxygène (mg/l) au point de plus grande profondeur	
Figure 10 : Profils verticaux d'oxygène (% sat.) au point de plus grande profondeur	27
Figure 11 : profils verticaux des matières organiques dissoutes	
Figure 12 : Évolution de la transparence et de la zone euphotique lors des 4 campagnes	34
Figure 13 : Répartition du phytoplancton sur le lac de Nantua à partir des abondances (cellules/ml)	
Figure 14 : Évolution saisonnière des biovolumes des principaux groupes algaux de phytoplancto	n (en
$\mathrm{mm}^3/\mathrm{l})$	37
Figure 15: vue sur le lac de Nantua	42
Figure 16 : UO1 sur le lac de Nantua	43
Figure 17 : UO2 sur le lac de Nantua	43
Figure 18 : UO3 sur le lac de Nantua	44
T-11 1 . C	0
Tableau 1 : Synoptique générique des investigations menées sur une année de suivi d'un plan d'eau	
Tableau 2 : liste des plans d'eau suivis sur le centre du bassin Rhône-Méditerranée	
Tableau 3 : Synoptique des interventions de terrain et de laboratoire sur le plan d'eau	
Tableau 4 : Seuils de classes d'état écologique définies pour l'IBML	23
Tableau 5 : Résultats des paramètres de minéralisation	
Tableau 6 : Résultats des paramètres de physico-chimie classique sur eau	
Tableau 7 : Résultats d'analyses de métaux sur eau	
Tableau 8 : Résultats d'analyses de micropolluants organiques présents sur eau	
Tableau 9 : Synthèse granulométrique sur le sédiment du point de plus grande profondeur	
Tableau 10 : Analyse de sédiments	31

Agence de l'Eau Rhône Méditerranée Corse

			Rhône-Méditerran		

I - G ()	
Tableau 11 : Résultats d'analyses de micropolluants minéraux sur sédiment	32
Tableau 12 : Résultats d'analyses de micropolluants organiques présents sur sédiment	33
Tableau 13: analyses des pigments chlorophylliens	
Tableau 14 : Liste taxonomique du phytoplancton (en nombre de cellules/ml)	
Tableau 15: Liste taxonomique du phytoplancton (en mm ³ /l)	
Tableau 16: évolution des Indices IPLAC depuis 2010	
Tableau 17 : historique des indices IBML	
Carte 1 : localisation du lac de Nantua (Ain)	
Carte 2 : Présentation du point de prélèvement	12
Carte 3 : Localisation des unités d'observation pour l'étude des macrophytes sur le lac de Nantua	41

FICHE QUALITE DU DOCUMENT

	Agence de l'Eau Rhône Méditerranée Corse (AERMC)		
	Direction des Données et Redevances		
	2-4, Allée de Lodz		
Maître d'ouvrage	69363 Lyon Cedex 07		
	Interlocuteur : Mr IMBERT Loïc		
	Coordonnées : loic.imbert@eaurmc.fr		
Titre du projet	Étude des plans d'eau du programme de surveillance des bassins Rhône- Méditerranée et Corse – Rapport de données brutes et interprétation – Lac de Nantua		
Référence du document	Rapport n°16-707B /2019v4 - Nantua		
Date	Octobre 2020		
Auteur(s)	S.T.E. Sciences et Techniques de l'Environnement		

Contrôle qualité

Version	Rédigé par	Date	Visé par	Date
V0	Audrey Péricat, Lionel Bochu	15/10/2020	Éric Bertrand	15/10/2020
V1	Audrey Péricat, Lionel Bochu	10/12/2020	Corrections suite à la demande 04/12/2020 de L. Imbert	par mail du
V2	Audrey Péricat, Lionel Bochu	08/01/2021		
V3	Audrey Péricat, Lionel Bochu	11/01/2021		
V4	Lionel Bochu	12/01/2021		

Thématique

Mots-clés	Géographiques : Bassin Rhône-Méditerranée – Ain (01) – Nantua – Lac de Nantua
Mots-cies	Thématiques : Réseaux de surveillance – État trophique – Plan d'eau
Résumé	Le rapport rend compte de l'ensemble des données collectées sur le lac de Nantua lors des campagnes de suivi 2019. Une présentation du plan d'eau et du cadre d'intervention est menée puis les résultats des investigations sont développés dans la suite du document.

Diffusion

Envoyé à :						
Nom	Organisme	Date	Format(s)	Nombre d'exemplaire(s)		
Loïc IMBERT	AERMC	15/10/2020	Papier et informatique	1		
pour rapport minute à valider	1	1				

Agence de l'Eau Rhône Étude des plans d'eau du programme de surveillance des	Méditerranée Corse	
Étude des plans d'eau du programme de surveillance des	bassins Rhône-Méditerranée et Corse -	- Nantua (01)

1 CADRE DU PROGRAMME DE SUIVI

Dans le cadre de la mise en œuvre de la Directive Cadre européenne sur l'Eau (DCE), adoptée le 23 Octobre 2000 et transposée en droit français le 21 avril 2004, un programme de surveillance a été mis en place au niveau national afin de suivre l'état écologique et l'état chimique des eaux douces de surface (cours d'eau et plans d'eau).

L'Agence de l'Eau Rhône Méditerranée Corse a en charge le suivi des plans d'eau faisant partie du programme de surveillance sur les bassins Rhône-Méditerranée et Corse.

Le suivi comprend la réalisation de prélèvements d'eau et de sédiments répartis sur quatre campagnes dans l'année pour analyse des paramètres physico-chimiques et des micropolluants. Différents compartiments biologiques sont étudiés (phytoplancton, macrophytes, diatomées, faune benthique). Le tableau 1 synthétise les différentes mesures qui sont réalisées dans le cadre du suivi type (selon la nature des plans d'eau et les éléments déjà suivis antérieurement, le contenu du suivi n'englobera pas nécessairement l'ensemble des éléments listés dans le Tableau 1). Un suivi du peuplement piscicole doit également être réalisé dans le cadre du programme de surveillance sur certains types de plans d'eau.

Tableau 1 : Synoptique générique des investigations menées sur une année de suivi d'un plan d'eau

			Paramètres	Type de prélèvements/ Mesures	HIVER	PRINTEMPS	ЕТЕ	AUTOMNE
		Mesures in situ	O2 dis. (mg/l, %sat.), pH, COND (25°C), T°, transparence secchi	Profils verticaux	Х	х	Х	Х
			DBO5, PO4, Ptot, NH4, NKJ, NO3, NO2, Corg, MEST, Turbidité, Si	Intégré	Х	Х	Χ	Х
	D.		dissoute	Ponctuel de fond	Х	Х	Х	Х
	Sur EAU	Physico-chimie classique et	Micropolluants sur eau*	Intégré	Х	Х	Х	Х
	Sur	micropolluants	Micropoliuants sur eau	Ponctuel de fond	Х	Х	Х	Х
			Chlorophylle a + phéopigments	Intégré	Х	Х	Х	Х
			Chlorophylie a i pheopiginents	Ponctuel de fond				
		Paramètres de	Ca ²⁺ , Na ⁺ , Mg ²⁺ , K ⁺ , dureté, TAC,	Intégré	Х			
		Minéralisation	SO ₄ ²⁻ , Cl ⁻ , HCO ₃ ⁻	Ponctuel de fond				
ြွ	Е	au interst.: Physico-chimie	PO4, Ptot, NH4					
Sur SEDIMENTS	Phase solide	Physico-chimie classique	Corg., Ptot, Norg, Granulomètrie, perte au feu	Prélèvement au point de plus grande profondeur				х
Š		Micropolluants	Micropolluants sur sédiments*					
			Phytoplancton	Intégré - Protocole IRSTEA/Utermöhl	Χ	Х	Х	Х
	Н	YDROBIOLOGIE et	Invertébrés	Protocole en cours de développement		Х		
	HYDROMORPHOLOGIE		Diatomées	Protocole IRSTEA			Х	
			Macrophytes	Norme XP T 90-328			Χ	

^{*:}se référer à l'arrêté du 7 août 2015 établissant le programme de surveillance de l'état des eaux

Poissons et hydromorphologie en charge de l'ONEMA (un passage tous les 6 ans)

RCS: un passage par plan de gestion pour le suivi complet (soit une fois tous les six ans / tous les trois ans pour le phytoplacton)

CO: un passage tous les trois ans

Différents réseaux constituent le programme de surveillance. Parmi ceux-ci, deux réseaux sont actuellement mis en œuvre sur les plans d'eau :

- ✓ le réseau de contrôle de surveillance (RCS) vise à donner une image globale de la qualité des eaux. Tous les plans d'eau naturels de superficie supérieure à 50ha ont été pris en compte sur les bassins Rhône-Méditerranée et Corse. Pour les plans d'eau d'origine anthropique, une sélection a été opérée parmi les plans d'eau de superficie supérieure à 50 ha, afin de couvrir au mieux les différents types présents sur les bassins Rhône-Méditerranée et Corse (grandes retenues, plans d'eau de digue, plans d'eau de creusement) ;
- ✓ le contrôle opérationnel (CO) vise à suivre spécifiquement les plans d'eau (naturels ou anthropiques) de superficie supérieure à 50 ha qui risquent de ne pas atteindre leurs objectifs environnementaux (le bon état ou le bon potentiel).

Au total, 79 plans d'eau sont suivis sur les bassins Rhône-Méditerranée et Corse dans le cadre de ces deux réseaux.

La liste des plans d'eau suivis en 2019 sur le centre du bassin Rhône-Méditerranée, précisant pour chaque plan d'eau le réseau qui le concerne, est fournie dans le Tableau 2.

Code_lac	Libellé	Origine	Dept	Code MDO	Type cemagref	Réseaux	Altitude (m)	Type de suivi
V1235003	Annecy	Naturel	74	FRDL66	N4	RCS/CO	447	Suivi spécif. CO
V1335003	Bourget	Naturel	73	FRDL60	N4	RCS/CO	231	Classique
V03-4003	Léman	Naturel	74	FRDL65	N4	RCS/CO	372	Classique
V2515003	Nantua	Naturel	1	FRDL47	N4	RCS/CO	475	Classique
W2405023	Pierre-châtel	Naturel	38	FRDL79	N3	RCS/CO	923	Classique
W2715003	Chambon	MEFM	38	FRDL74	A5	RCS	1044	Classique
W0005083	Chevril	MEFM	73	FRDL55	A1	RCS	1790	Phytoplancton + Séd.
Y6705023	Mont-cenis	MEFM	73	FRDL53	A1	RCS	1974	Classique
W0435023	Roselend	MEFM	73	FRDL54	A1	RCS	1559	Classique
V3005063	Eaux bleues	MEA	69	FRDL50	A16	RCS/CO	170	Classique
V2705003	Allement	MEFM	1	FRDL44	А3	СО	268	Classique
V2525003	Charmines-Moux	MEFM	1	FRDL43	A2	CO	381	Classique
V23023	Cize-Bolozon	MEFM	01	FRDL42	A2	СО	283	Classique

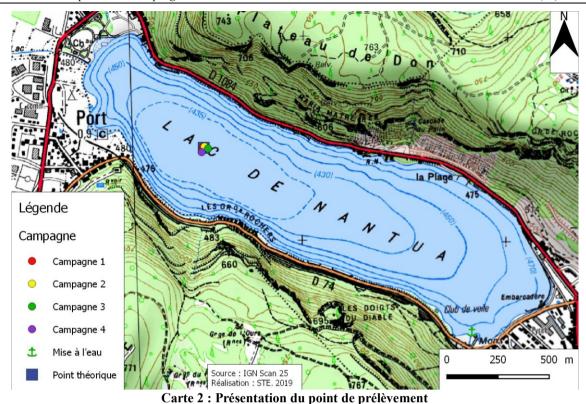
Tableau 2 : liste des plans d'eau suivis sur le centre du bassin Rhône-Méditerranée

2 DÉROULEMENT DES INVESTIGATIONS

2.1 Presentation du plan d'eau et localisation

Le lac de Nantua est un lac naturel d'origine glaciaire situé dans le département de l'Ain (01) sur les communes de Nantua et de Port, à une altitude de 475 m. Ce plan d'eau présente une forme allongée, il est orienté Sud-Est/Nord-Ouest et s'étend sur une superficie de 133 ha. Il est alimenté par les cours d'eau le Merloz et la Doye, ainsi que par plusieurs sources dont "les Grands Rochers". Le Bras du Lac, affluent de

l'Oignin, forme l'exutoire du lac. Des pertes sous-lacustres sont également détectées, dont l'une qui rejoint le lac des Hôpitaux. Le temps de séjour sur le plan d'eau est assez long, il est estimé à 251 jours.



Carte 1 : localisation du lac de Nantua (Ain)

La gestion du lac est assurée par la commune de Nantua. Les berges du lac, côté Nantua, sont aménagées à des fins touristiques avec une base nautique, une place, un port et des zones de détente dont une plage. Un port est aménagé à l'autre extrémité du plan d'eau. Le lac permet la pratique de multiples activités nautiques non motorisées (canoë, voile, pêche,...). Quelques embarcations ont la possibilité de naviguer avec un moteur thermique (autorisation municipale).

Historiquement, la qualité des eaux a été fortement détériorée par les rejets multiples dans le lac, maintenant maîtrisés. Des procédés d'oxygénation hypolimnique ont d'ailleurs été mis en œuvre antérieurement pour restaurer le fonctionnement de l'hydrosystème.

La zone de plus grande profondeur se situe au milieu du plan d'eau. La plus grande profondeur atteint 42 m pour cette année 2019 (Carte 2) comme lors des suivis précédents. Il n'a pas été enregistré de marnage en 2019.

Le lac présente un fonctionnement monomictique, avec une seule phase de stratification annuelle en été.

2.2 CONTENU DU SUIVI 2019

Le lac de Nantua est suivi au titre des Réseaux de Contrôle de Surveillance (RCS) et du Contrôle Opérationnel (CO). Les précédents suivis ont eu lieu en 2013 et 2016.

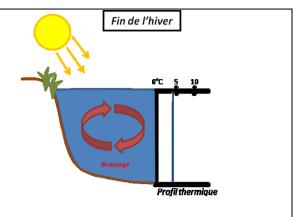
Le plan d'eau présente les pressions suivantes à l'origine du risque de non atteinte des objectifs environnementaux fixés par la DCE :

- ✓ pollutions diffuses et ponctuelles par les nutriments ;
- ✓ altération de la morphologie et de la continuité piscicole.

2.3 PLANNING DE REALISATION

Le tableau ci-dessous indique la répartition des missions aussi bien en phase terrain qu'en phase laboratoire/détermination. S.T.E. a, en outre, eu en charge de coordonner la mission et de collecter l'ensemble des données pour établir les rapports et mener l'exploitation des données.

Tableau 3 : Synoptique des interventions de terrain et de laboratoire sur le plan d'eau

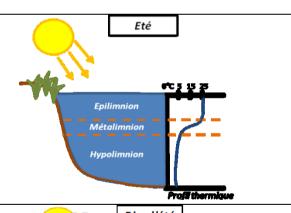

Lac de Nantua			Phase	terrain		Laboratoire - détermination
Campagne	C1	C2	Biologie	C3 + IBML	C4	
Date	21/03/2019	27/05/2019	30/07/2019	13/08 et 14/08/2019	17/10/2019	automne/hiver 2019-2020
Physicochimie des eaux	S.T.E.	S.T.E.		S.T.E.	S.T.E.	CARSO
Physicochimie des sédiments					S.T.E.	LDA26
Phytoplancton	S.T.E.	S.T.E.		S.T.E.	S.T.E.	LEMNA
Macrophytes				S.T.E et Mosaïque Envt		Mosaïque Envt
Phytobenthos			DREAL AURA			DREAL AURA

2.4 ÉTAPES DE LA VIE LACUSTRE

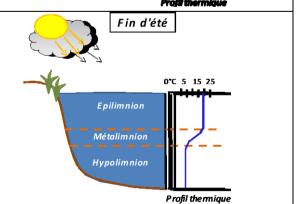
Les investigations physicochimiques ont été réalisées lors de quatre campagnes qui correspondent aux différentes étapes de développement de la vie lacustre.

Campagne 1

La première campagne correspond à la phase d'homothermie du plan d'eau. La masse d'eau est homogène (en température et en oxygène). Sur les lacs monomictiques, cette phase intervient en hiver. La campagne est donc réalisée en fin d'hiver avant que l'activité biologique ne débute (février-mars).


Campagne 2

La seconde campagne correspond à la période de démarrage et de développement de l'activité biologique des lacs. Il s'agit de la période de mise en place de la stratification thermique conditionnée par le réchauffement. Cette phase intervient au printemps et c'est à cette période que l'activité biologique atteint son maximum. La campagne est donc généralement réalisée durant les mois de mai à (exceptionnellement juillet pour les plans d'eau d'altitude).


Campagne 3

La troisième campagne correspond à la période de stratification maximum du plan d'eau avec une thermocline bien installée avec une 2^{ème} phase de croissance du phytoplancton. Cette phase intervient en période estivale. La campagne est donc réalisée durant les mois de juillet à août, lorsque l'activité biologique est maximale.

Campagne 4

La quatrième campagne correspond à la fin de la stratification estivale du plan d'eau. Elle intervient avant la baisse de la température et la disparition de la thermocline. L'épilimnion présente alors son épaisseur maximale. Cette phase intervient en fin d'été : la campagne est donc réalisée durant le mois de septembre voire octobre selon l'altitude du plan d'eau et le climat de l'année.

2.5 BILAN CLIMATIQUE DE L'ANNEE 2019

Les conditions climatiques de l'année 2019 pour le lac de Nantua sont analysées à partir de la station météorologique de Saint-Etienne du Bois (à 243 m d'altitude), située à 30 km à l'ouest du plan d'eau. Cette station dispose d'enregistrements depuis 1973.

L'année 2019 a été globalement chaude par rapport aux moyennes de saison (Figure 1)¹ avec une température moyenne de 12,5°C en 2019 contre 11°C sur la période 1981-2010, soit +1,5°C. En 2019, les températures sont globalement plus élevées tous les mois, et en particulier en février et juin.

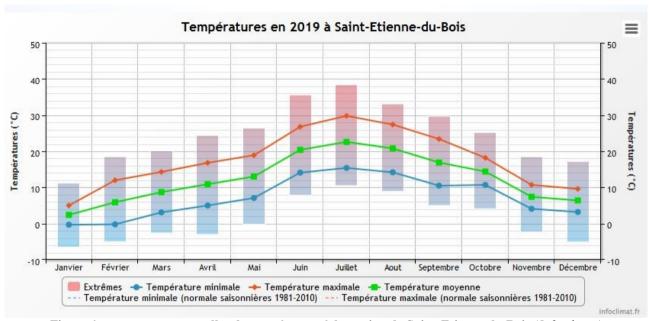


Figure 1 : moyennes mensuelles de température à la station de Saint-Etienne du Bois (Info-climat)

Le cumul de précipitations en 2019 est à peine supérieur à la normale (1211 mm en 2019 contre 1178 mm mesuré en moyenne sur la période 1981-2010), soit +3% de pluviométrie. Ces données sont présentées sur la Figure 2.

Il ressort les éléments suivants :

- ✓ déficits importantes en février et en septembre (-50% par rapport à la période 1981-2010) ;
- ✓ déficits moyens en mai et juillet (-30% par rapport à la période 1981-2010) ;
- ✓ précipitations très importantes en août et octobre 2019 (+50% par rapport à la période 1981-2010);
- ✓ automne bien arrosé.

À noter, que le cumul de précipitations mesuré sur cette station en août 2019 est très élevé : 214 mm. Sur des stations météorologiques proches : Pont d'Ain et Ambérieu en Bugey, les cumuls étaient compris entre 100 et 120 mm, soit des valeurs élevées mais plus proches de la normale.

¹ Pour les figures 1 et 2, les moyennes saisonnières n'apparaissent pas sur les graphiques, elles ne sont pas fournies sur Infoclimat.

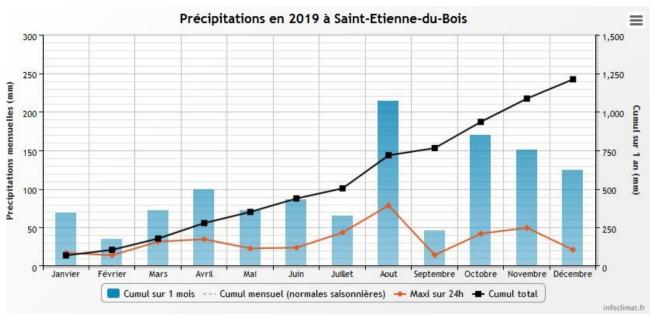


Figure 2 : cumuls mensuels de précipitations à la station de Saint-Etienne du Bois (site Info-climat)

Les conditions climatiques ont été chaudes et bien pluvieuses dans l'Ain pour cette année 2019. On notera la présence d'événements hydrologiques majeurs en août et en octobre sur le secteur étudié.

3 RAPPEL MÉTHODOLOGIQUE

3.1 Investigations physicochimiques

3.1.1 METHODOLOGIE

Le contenu des investigations physicochimiques est similaire sur les quatre campagnes, excepté un point : un échantillon de sédiment est prélevé lors de la dernière campagne.

Le profil vertical et les prélèvements sont réalisés dans le secteur de plus grande profondeur que l'on recherche à partir des données collectées au préalable (bathymétrie, étude, communication avec les gestionnaires). Dans le cas des retenues, cette zone se situe en général à proximité du barrage dans le chenal central. Sur le terrain, la recherche du point de plus grande profondeur est menée à l'aide d'un échosondeur.

Au point de plus grande profondeur, on effectue, dans l'ordre :

- a) une mesure de transparence au disque de Secchi, avec lecture côté "ombre" du bateau pour une parfaite acuité visuelle. Chacun des deux opérateurs fait la lecture en aveugle (1 ère lecture non indiquée au 2 electeur);
- b) un profil vertical de température (°C), conductivité (μS/cm à 25°C), pH (u. pH) et oxygène dissous (% sat. et mg/l). Il est réalisé à l'aide de 2 sondes multiparamètres OTT MS5 qui peuvent effectuer des mesures jusqu'à 200 m de profondeur. Elles disposent d'une mémoire interne pouvant être programmée pour enregistrer les données à une fréquence de temps définie préalablement (5 secondes). Leur capteur de pression intégré permet d'enregistrer la profondeur de la mesure.

Les deux sondes sont descendues en parallèle sur la colonne d'eau pour le recueil du profil vertical ;

c) un profil vertical du paramètre matières organiques dissoutes fdom est également mené lors de toutes les campagnes à l'aide d'une sonde EXO. Cet appareil a également été équipé d'une sonde pH et conductivité en cours d'année 2019 :

d) deux prélèvements pour analyses physicochimiques :

- l'échantillon intégré est en général constitué de prélèvements ponctuels tous les mètres² sur la zone euphotique (soit 2,5 fois la transparence); ces prélèvements unitaires, de même volume, sont réalisés à l'aide d'une bouteille Kemmerer 1,2 L (téflon) et disposés dans une bonbonne en verre pyrex de 20 litres graduée et équipée d'un robinet verre/téflon pour conditionner les échantillons. Pour les analyses physicochimiques (uniquement micropolluants minéraux et organiques), 10 litres sont nécessaires. Une fois l'échantillon finalisé, le conditionnement est réalisé sur le bateau, en respectant l'ensemble des prescriptions du laboratoire;
- l'échantillon ponctuel de fond est prélevé à environ 1 m du fond, pour éviter la mise en suspension des sédiments. Les prélèvements sont réalisés à l'aide d'une bouteille Niskin X *General Oceanics* téflonnée (5,4 L) et disposés dans une bonbonne en verre pyrex de 20 litres graduée et équipée d'un robinet verre/téflon pour conditionner les échantillons. Pour les analyses physicochimiques (physicochimie classique, micropolluants minéraux et organiques), 15 litres sont nécessaires. Une fois l'échantillon finalisé, le conditionnement est réalisé sur le bateau, en respectant l'ensemble des prescriptions du laboratoire.

Pour chaque échantillon, le laboratoire CARSO fournit une glacière avec les flaconnages préalablement étiquetés adaptés aux analyses demandées par l'Agence de l'Eau RM&C.

Les échantillons sont conservés dans une enceinte isolée au contact de blocs réfrigérants et de glace fondante, puis envoyés par transporteur TNT pour un acheminement au laboratoire CARSO dans un délai de 24h, sauf cas particuliers.

e) un prélèvement intégré destiné à l'analyse du phytoplancton et de la chlorophylle et aux analyses de physico-chimie classique :

Les prélèvements doivent être obligatoirement intégrateurs de la colonne d'eau correspondant à la zone euphotique. Pour l'échantillonnage, 7 litres sont nécessaires. Ainsi, selon la profondeur de la zone euphotique, plusieurs matériels peuvent être utilisés, l'objectif étant de limiter les aliquotes, et donc les manipulations afin que l'échantillon soit le plus homogène possible :

- ✓ le tuyau intégrateur (système décrit dans le protocole de l'IRSTEA) est adaptable pour toute profondeur, le volume échantillonné dépend du diamètre du tuyau. S.T.E. a mis au point 2 tuyaux :
 - o l'un de 5 ou 9 m de diamètre élevé (Ø18 mm) pour les zones euphotiques réduites ;
 - o l'autre de 30 m (Ø14 mm) pour les transparences élevées ;
- ✓ la cloche intégratrice « Pelletier » ; dans la pratique, ce type de préleveur est rarement utilisé, au bénéfice du tuyau intégrateur.

Le choix du matériel respecte l'objectif de ne pas multiplier les prélèvements élémentaires.

La filtration de la chlorophylle est effectuée sur le terrain par le préleveur S.T.E. à l'aide d'un kit de filtration de terrain Nalgène.

Pour l'analyse du phytoplancton, 2 échantillons sont réalisés dans des flacons blancs opaques en PP de 500 et 250 ml dûment étiquetés (nom du lac, date, préleveur, campagne). On y ajoute un volume connu de lugol (3 à 5 ml) pour fixation. Les échantillons sont conservés au réfrigérateur. Un des deux échantillons est

² Compte tenu de la transparence Tr. de certains plans d'eau, exprimable en plusieurs mètres, la règle du Tr. x 2,5 a parfois conduit à une valeur calculée supérieure à la profondeur du plan d'eau. Dans ces cas, le prélèvement a été arrêté à 1 m du fond, pour éviter le prélèvement d'eau de contact avec le sédiment, qui peut, selon les cas, présenter des caractéristiques spécifiques. Inversement, lorsque la transparence est très faible, amenant à une épaisseur de zone euphotique d'à peine quelques mètres, les prélèvements peuvent être resserrés à un pas moindre que 1 m (par exemple : tous les 50 cm).

ensuite transmis au bureau d'études LEMNA en charge de la détermination et du comptage du phytoplancton. L'autre échantillon est conservé dans les locaux de S.T.E dans le cadre du contrôle qualité.

Pour les analyses de physico-chimie classique, le laboratoire CARSO fournit une glacière avec les flaconnages préalablement étiquetés adaptés aux analyses demandées par l'Agence de l'Eau RM&C.

Les échantillons sont conservés dans une enceinte isolée au contact de blocs réfrigérants et de glace fondante, puis envoyés par transporteur TNT pour un acheminement au laboratoire CARSO dans un délai de 24h, sauf cas particuliers.

f) un prélèvement de sédiment :

Ce type de prélèvement n'est réalisé que lors d'une seule campagne, celle de fin d'été (septembre), susceptible de représenter la phase la plus critique pour ce compartiment. Le prélèvement de sédiments est réalisé impérativement **après** les prélèvements d'eau afin d'éviter tout risque de mise en suspension de particules du sédiment lors de son échantillonnage, et donc de contamination du prélèvement d'eau (surtout celui du fond).

Il est réalisé par une série de prélèvements à la benne Ekman. Au vu de sa taille et de la fraction ramenée par ce type de benne (en forme de secteur angulaire), on réalise de 2 à 5 prélèvements pour ramener une surface de l'ordre de 1/10 m². On observe sur chacun de ces échantillons la structure du sédiment dans le double but de :

- ✓ description (couleur, odeur, aspect, granulométrie,..);
- ✓ sélection de la seule tranche superficielle (environ 2-3 premiers cm) destinée à l'analyse.

Pour chaque échantillon, le laboratoire LDA26 fournit une glacière avec le flaconnage adapté aux analyses demandées par l'Agence de l'Eau RM&C.

Les échantillons sont conservés dans une enceinte isolée au contact de blocs réfrigérants et de glace fondante, puis envoyés par transporteur Chronopost pour un acheminement au Laboratoire de la Drôme (LDA26) dans un délai de 24h, sauf cas particuliers.

3.1.2 PROGRAMME ANALYTIOUE

Concernant les analyses, les paramètres suivants sont mesurés :

- ✓ sur le prélèvement intégré destiné aux analyses de physico-chimie classique et de la chlorophylle :
 - o turbidité, MES, COD, DBO₅, DCO, PO₄³⁻, Ptot, NH₄⁺, NKJ, NO₃⁻, NO₂⁻, silicates;
 - o chlorophylle a et indice phéopigments ;
 - o dureté, TAC, HCO₃, Ca⁺⁺, Mg⁺⁺, Na⁺, K⁺, Cl⁻, SO₄, F⁻;
- ✓ sur le prélèvement intégré destiné aux analyses de micropolluants minéraux et organiques :
 - o micropolluants minéraux et organiques : liste des substances fournie en annexe 1 ;
- ✓ sur le prélèvement de fond :
 - o turbidité, MES, COD, DBO₅, DCO, PO₄³⁻, Ptot, NH₄⁺, NKJ, NO₃⁻, NO₂⁻, silicates;
 - o micropolluants minéraux et organiques : liste des substances fournie en annexe 1.

Les paramètres analysés sur les **sédiments** prélevés lors de la 4^{ème} campagne sont les suivants :

- ✓ sur la phase solide (fraction < 2 mm) :
 - o granulométrie;
 - o matières sèches minérales, perte au feu, matières sèches totales ;
 - o carbone organique;
 - o phosphore total;
 - o azote Kjeldahl;
 - o ammonium;
 - o micropolluants minéraux et organiques : liste des substances fournie en annexe 2 ;

- ✓ sur l'eau interstitielle :
 - o orthophosphates;
 - o phosphore total;
 - o ammonium.

3.2 Investigations hydrobiologiques

Les investigations hydrobiologiques menées en 2019 sur le lac de Nantua comprennent :

- ✓ l'étude des peuplements phytoplanctoniques à partir de la norme XP T 90-719, « Échantillonnage du phytoplancton dans les eaux intérieures » pour la phase d'échantillonnage. Pour la partie détermination, on se réfère à la Norme guide pour le dénombrement du phytoplancton par microscopie inversée (norme NF EN 15204, décembre 2006), correspondant à la méthode d'Utermöhl, et suivant les spécifications particulières décrites au chapitre 5 du «Protocole standardisé d'échantillonnage, de conservation, d'observation et de dénombrement du phytoplancton en plan pour la mise en œuvre de la DCE » Version 3.3.1, septembre 2009 ;
- ✓ l'étude des peuplements de macrophytes sur le lac s'appuie sur la méthode mise au point par l'IRSTEA et décrite au sein de la norme AFNOR XP T90-328 : « Échantillonnage des communautés de macrophytes en plans d'eau », décembre 2010 ;
- ✓ l'étude des peuplements de phytobenthos à partir du protocole d'échantillonnage des communautés de phytobenthos en plans d'eau (IRSTEA ; version 1.2 de février 2013).

3.2.1 ÉTUDE DES PEUPLEMENTS PHYTOPLANCTONIQUES

Les prélèvements ont été effectués par S.T.E. lors des campagnes de prélèvements pour analyses physicochimiques. La détermination a été réalisée par Sonia Baillot du bureau d'études LEMNA, spécialiste en systématique et écologie des algues d'eau douce.

3.2.1.1 Prélèvement des échantillons

Les prélèvements ont été réalisés selon la méthodologie présentée au point e) du §3.1.1 « Méthodologie » du présent chapitre « Rappel méthodologique ».

3.2.1.2 Détermination des taxons

La détermination est faite au microscope inversé, à l'espèce dans la mesure du possible.

À noter : la systématique du phytoplancton est en perpétuelle évolution, les références bibliographiques se confortent ou se complètent, mais s'opposent quelquefois. Il est donc important de rappeler qu'il vaut mieux une bonne détermination à un niveau taxonomique moindre qu'une mauvaise à un niveau supérieur (Laplace-Treyture et al., 2009).

L'analyse quantitative implique l'identification et le dénombrement des taxons observés dans une surface connue de la chambre de comptage. Selon la concentration en algues décroissante, le comptage peut être réalisé de trois manières différentes (Figure 3).

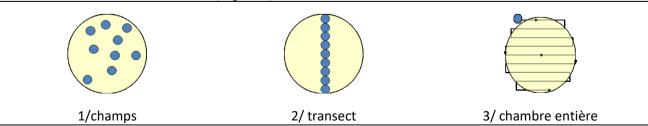


Figure 3 : Représentation schématique des différentes stratégies de comptage

Le comptage est réalisé en balayant des champs strictement aléatoires, ou des transects, ou la chambre entière jusqu'à atteindre 400 individus algaux. La stratégie de comptage utilisée est fonction de la concentration des algues.

Différentes règles de comptage sont appliquées, en respect des échanges inter-opérateurs issus des réunions d'harmonisation phytoplancton INRA 2015-2016. Il est entendu que :

- ✓ tout filament, colonie, ou cœnobe, compte pour un individu algal à X cellules. Le nombre de cellules présentes dans le champ et par individu est dénombré (cellules/individus algaux);
- ✓ seules les cellules contenant un plaste (exceptés pour les cyanobactéries et chrysophycées à logettes) sont comptées. Les cellules vides des colonies, des cœnobes, des filaments ou des diatomées ne sont pas dénombrées ;
- ✓ les logettes des chrysophycées (ex : *Dinobryon, Kephyrion,...*) sont dénombrées même si elles sont vides, les cellules de flagellés isolées ne sont pas dénombrées ;
- ✓ pour les diatomées, en cas de difficulté d'identification et de fortes abondances (supérieures à 20% de l'abondance totale), une préparation entre lame et lamelle selon le mode préparatoire décrit par la norme NF T 90-354 (AFNOR) est effectuée.

3.2.1.3 Traitement des données

Les résultats sont exprimés en nombre de cellules par millilitre. Ils sont également exprimés en biovolume (mm³/l), ce qui reflète l'occupation des différentes espèces. En effet, les espèces de petite taille n'occupent pas un même volume que les espèces de grandes tailles. Les biovolumes sont obtenus de trois manières :

- 1. grâce aux données proposées par le logiciel Phytobs (version 3.1.3), d'aide au dénombrement ;
- 2. si les données sont absentes, les mesures sur 30 individus lors de l'observation au microscope sont employées pour calculer un biovolume robuste ;
- 3. si l'ensemble des dimensions utiles au calcul n'est pas observé, les données complémentaires issues de la bibliographie sont employées.

Le comptage terminé, la liste bancarisée dans l'outil de comptage PHYTOBS est exportée au format .xls ou .csv. Cet outil permet de présenter des résultats complets.

Le calcul de l'indice Phytoplancton lacustre ou IPLAC est réalisé à l'aide du Système d'Évaluation de l'État des Eaux (SEEE). Il s'appuie sur 2 métriques :

- ✓ la Métrique de biomasse algale ou MBA est basée sur la concentration moyenne de la chlorophylle a sur la période de végétation ;
- ✓ la Métrique de Composition Spécifique ou MCS exprime une note en fonction de la présence (exprimée en biovolume) de taxons indicateurs, figurant dans une liste de référence de 165 taxons (SEEE 1.1.0). À chaque taxon correspond une cote spécifique et une note de sténoécie, représentant l'amplitude écologique du taxon. La note finale est obtenue en mesurant l'écart avec la valeur prédite en condition de référence.

La note IPLAC résulte de l'agréation par somme pondérée de ces deux métriques.

Valeurs de limite	Classe
[1 - 0.8]	Très bon
]0.8 - 0.6]	Bon
]0.6 - 0.4]	Moyen
]0.4 - 0.2]	Médiocre
]0.2 - 0]	Mauvais

Figure 4 : Seuils des classes d'état définis pour chaque métrique et pour l'IPLAC

L'interprétation des caractéristiques écologiques du peuplement permet d'établir si une dégradation de la note indicielle peut être expliquée par la présence de taxons polluotolérants ou favorisés par une abondance de nutriments liée à l'eutrophisation du milieu, ou être liée au fonctionnement du milieu (stratification, anoxie....).

L'utilisation de la bibliographie et des groupes morpho-fonctionnels permet d'affiner notre analyse et d'évaluer la robustesse de la note IPLAC obtenue.

3.2.2 ÉTUDE DES PEUPLEMENTS DE MACROPHYTES

La méthodologie s'appuie sur la norme AFNOR XP T90-328 « échantillonnage des communautés de macrophytes en plans d'eau », décembre 2010.

L'étude des peuplements de macrophytes a été réalisée par Éric Boucard et Alexandre Ballaydier du bureau d'études Mosaïque Environnement assisté par un technicien de S.T.E.

3.2.2.1 Choix des unités d'observation

Le positionnement des unités d'observation (UO) est basé sur la méthode de Jensen. À l'issue de cette première phase, on dispose ainsi de la localisation d'un nombre défini de points-pivots d'investigations. Intervient alors une **deuxième phase** qui permet d'effectuer un choix parmi ces points désormais qualifiables de potentiels.

Les linéaires de rives du plan d'eau sont classés selon les formations végétales et les aménagements de rive, en référence à la typologie des rives de la norme XP T 90-328 :

- ✓ type 1 : zones humides caractéristiques ;
- ✓ type 2 : avec végétation arbustive/arborescente non humide ;
- ✓ type 3 : sans végétation arbustive/arborescente non humide ;
- ✓ type 4 : zones artificialisées, avec pressions anthropiques.

La norme AFNOR XP T90-328 indique le nombre d'unités d'observation à réaliser en fonction de la superficie du plan d'eau : au moins 3 UO pour un plan d'eau inférieur à 250 ha, au moins 6 UO pour un plan d'eau de 250 à 1000 ha et au moins 8 UO pour un plan d'eau supérieur à 1000 ha.

Au final, les unités d'observation sont choisies parmi les points contacts définis par la méthode de Jensen, avec comme objectif de représenter tous les types de rives dont le linéaire est égal ou supérieur à 10% du total du linéaire du plan d'eau.

Les unités d'observation ont été reprises du suivi antérieur pour les plans d'eau ayant déjà fait l'objet d'une étude macrophytes afin d'assurer la continuité des suivis de végétation.

3.2.2.2 Description d'une unité d'observation

Schématiquement, chaque unité d'observation comporte :

- ✓ un relevé de la zone littorale L, de part et d'autre du point central, sur une longueur maximale de 100 m;
- ✓ 3 profils P1 à P3, perpendiculaires à la rive (= 3 relevés), espacés au maximum de 50 m et au minimum de 10 m, sur lesquels on effectue les observations.

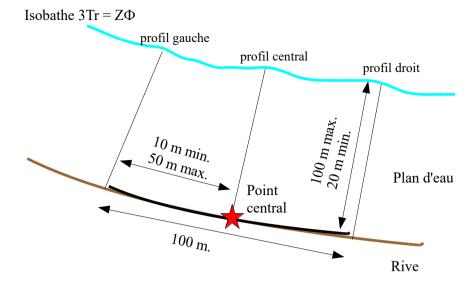


Figure 5 : Représentation schématique d'une unité d'observation

La zone littorale s'étend jusqu'à 1 m de profondeur, la prospection vise à détecter l'ensemble des espèces présentes et leur abondance relative.

Sur chacun des 3 transects perpendiculaires à la rive, 30 points contacts sont répartis de manière homogène, l'échantillonnage est mené à l'aide d'un râteau télescopique ou d'un grappin.

Les espèces déterminables sur place sont déterminées à l'aide d'une loupe de terrain (x10 et x20). L'observation au bathyscope permet de bien contrôler le prélèvement au râteau. Les échantillons sont ensuite prélevés (sauf espèces protégées), numérotés, conservés, puis déterminés au bureau à l'aide d'une loupe binoculaire et/ou d'un microscope (ex : cas des algues et bryophytes).

3.2.2.3 Traitement des données/bancarisation

Toutes les informations descriptives de terrain demandées par la norme, et les listes floristiques par UO/transect et points contacts, ont été saisies dans les formulaires Excel mis à disposition par l'IRSTEA. Ces formulaires sont présentés en annexe de ce document.

Pour toutes précisions sur les modalités de calcul de l'indice, on se reportera à la note de calcul de l'indice établie par l'IRSTEA³.

Une typologie de plans d'eau a été constituée à partir des critères environnementaux disponibles lors du développement de l'indice, critères correspondant à ceux utilisés dans les groupes européens d'intercalibration, c'est à dire l'altitude et l'alcalinité. Les types IBML se déclinent en 4 catégories, et les calculs EQR (Ecological quality ratio = écart à la référence) sont présentés dans le tableau suivant.

Types IBML	Calcul EQR
B-Aci : plans d'eau de basse altitude (< à 300 m) et à	EQR _{B-Aci} = 1.404*(IBML/13.20) - 0.532
caractère acide (inférieur à 1 mEq.l ⁻¹)	EQR _{B-Aci} = 1.404 (IBIVIE/13.20) - 0.332
B-Alc : plans d'eau de basse altitude (< à 300 m) et à	EQR $_{B-Alc} = 1.543*(IBML/10.51) - 0.734$
caractère alcalin (supérieur à 1 mEq.1 ⁻¹)	EQR _{B-Alc} = 1.343 (IBML/10.31) - 0.734
H-Aci : plans d'eau de moyenne et haute altitude (> à 300	EOD - 1 200*(IDMI /14 16) 0 402
m) et à caractère acide (inférieur à 1 mEq.l ⁻¹)	EQR _{H-Aci} = $1.399*(IBML/14.16) - 0.492$

³ S. Boutry, V. Bertrin, A. Dutartre. 2015. Indice Biologique Macrophytique Lac (IBML), Notice de calcul. Rapport technique, IRSTEA. 30p.

H-Alc : plans d'eau de moyenne et haute (> à 300 m) et à caractère alcalin (supérieur à 1 mEq.l ⁻¹)	EQR _{H-Alc} =1.497*(IBML/11.83) - 0.633

Pour chaque type IBML, les seuils de référence sont donnés par la médiane des notes d'IBML obtenues sur les plans d'eau dit « de référence » du type concerné. La limite de classe « Très bon/Bon » est donnée par le 75° percentile déterminé sur les données des sites de référence. Les seuils des classes d'état écologique de l'indice IBML, exprimé en EQR, sont donnés dans le Tableau 4.

Classe d'état écologique Limites de classe

Très bon 0.8 - 1

Bon 0.6 - 0.8

Moyen 0.4 - 0.6

Médiocre 0.2 - 0.4

Mauvais 0 - 0.2

Tableau 4 : Seuils de classes d'état écologique définies pour l'IBML

L'indice IBML est calculé à partir du SEEE version utilisateur V1.0.1. Cet indice n'est constitué pour l'instant que d'une seule métrique : la note de trophie. Il renseigne donc sur le niveau trophique du plan d'eau et sur les apports en éléments nutritifs au plan d'eau.

3.2.3 ÉTUDE DES PEUPLEMENTS DE PHYTOBENTHOS

Les diatomées benthiques, présentes sur les macrophytes (la base immergée des hélophytes) ou sur des supports inertes durs dans les plans d'eau, sont prélevées afin de produire des échantillons représentatifs du peuplement diatomique en place, considéré comme un indicateur de la qualité de l'eau.

La méthode s'appuie sur le document suivant : l'étude des peuplements de phytobenthos à partir du protocole d'échantillonnage des communautés de phytobenthos en plans d'eau (IRSTEA; version 1.2 de février 2013).

Les prélèvements et déterminations ont été effectués par la DREAL AURA (Rémy Chavaux).

3.2.3.1 Prélèvements IBDlacs

Les prélèvements de diatomées benthiques sont réalisés en période estivale sur les unités d'observation choisies pour l'étude des communautés de macrophytes, telles qu'elles sont décrites dans la norme XP T90-328 (décembre 2010).

L'échantillonnage doit se faire si possible sur 2 types de substrat :

- ✓ échantillonnage sur substrat minéral dur : l'échantillonnage se fait de préférence sur des éléments granulométriques de grande taille tels que des blocs rocheux ou des galets. On prélève au minimum sur 5 supports, équivalant à une surface finale de 100 cm², pris au hasard. Les supports choisis doivent être immergés à une profondeur comprise dans la zone euphotique et ne doivent pas être prélevés à plus de 50 cm de profondeur ;
- ✓ échantillonnage sur les tiges de macrophytes (hélophytes): l'échantillonnage se fait sur des macrophytes dont au moins la base est immergée de manière permanente, si possible sur hélophytes (notamment *Phragmites australis*). Pour un plan d'eau donné, l'échantillonnage est fait sur des macrophytes du même type biologique, et, si possible, sur le même taxon. 5 tiges minimum (jeunes pousses avec recouvrement algues filamenteuses <75%) sont prélevées.
 </p>

Les tiges recouvertes par plus de 75% d'algues filamenteuses ne sont pas prélevées. Les échantillons sont conservés à l'alcool à 90°.

3.2.3.2 Phase de détermination et d'interprétation

Le traitement des diatomées benthiques est réalisé selon la norme française NF T 90-354 d'avril 2016 et la norme européenne NF EN 14407 d'avril 2014.

Les diatomées sont identifiées au microscope optique équipé du contraste de phase au grossissement x1000 à immersion. Entre 400 et 430 valves sont comptées afin d'établir une liste floristique diatomées. Si les 400 unités ne sont pas atteintes à l'issue de la première lame, une seconde peut être analysée.

La saisie des listes floristiques est réalisée, sous forme de code à 4 lettres, à l'aide d'OMNIDIA 6.0.8.

Actuellement, l'indice diatomées spécifique des plans d'eau n'est pas disponible. Les deux principaux indices utilisés en France, l'Indice de Polluosensibilité Spécifique, l'IPS (Cemagref, 1982) et l'Indice Biologique Diatomées, l'IBD (Lenoir & Coste, 1996), sont adaptés aux cours d'eau et ne peuvent être utilisés pour les communautés de diatomées benthiques des plans d'eau.

L'interprétation porte donc sur la composition du peuplement en termes de taxons dominants avec un commentaire sur leur écologie. Les classifications de Van Dam et al. (1994) ou d'Hofmann (1994) ainsi que les données bibliographiques des espèces sont utilisées afin de définir les caractéristiques écologiques des communautés de diatomées, notamment l'affinité vis-à-vis de la matière organique (saprobie) et le degré de trophie. Des commentaires sur les affinités écologiques des taxons dominants sont réalisés et permettent d'appréhender les éventuelles pollutions présentes ou dégradations constatées.

4 RÉSULTATS DES INVESTIGATIONS

4.1 INVESTIGATIONS PHYSICOCHIMIQUES

Les comptes rendus des campagnes de prélèvements physicochimiques et phytoplanctoniques sont présentés en annexe 3.

4.1.1 Profils verticaux et evolutions saisonnieres

Le suivi prévoit la réalisation de profils verticaux sur la colonne d'eau à chaque campagne. Quatre paramètres sont mesurés : la température, la conductivité, l'oxygène (en concentration et en % saturation) et le pH. Les graphiques regroupant ces résultats pour chaque paramètre lors des 4 campagnes sont affichés dans ce chapitre.

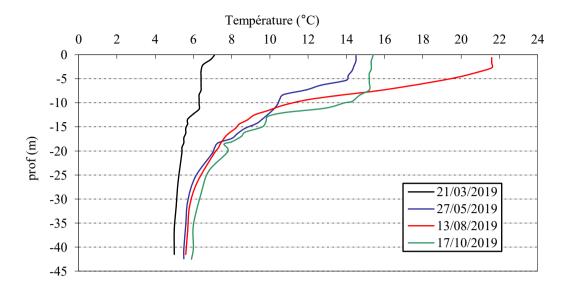


Figure 6 : Profils verticaux de température au point de plus grande profondeur

Lors de la 1^{ère} campagne, la température est quasiment homogène sur la colonne d'eau (5 à 6°C). Les conditions météorologiques favorables de début mars ont néanmoins permis le réchauffement précoce des eaux de surface (7,1°C).

Au printemps, la stratification thermique s'installe : la thermocline se situe entre 6 et 18 m de profondeur. La température de l'eau est de 14,5°C en surface et de 5,5°C au fond.

Lors de la campagne 3, la température atteint 21,6°C en surface. L'épilimnion est peu épais, il s'étend jusqu'à 3 m de profondeur. La thermocline, située entre -3 m et -16 m, présente une forte amplitude, les eaux du fond demeurant proches de 6°C.

Lors de la campagne 4, on observe un refroidissement de l'épilimnion qui est homogène à environ 15,3°C et un léger enfoncement de la thermocline qui se situe alors entre 7 et 17 m de profondeur.

Les profils thermiques sont très proches de ceux de 2016, ils confirment une stratification thermique marquée et stable du lac de Nantua.

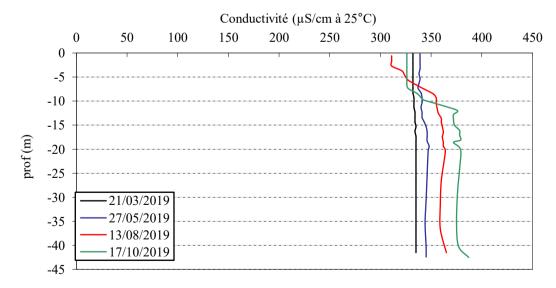


Figure 7 : Profils verticaux de conductivité au point de plus grande profondeur

La conductivité indique une eau bien minéralisée, typiquement en lien avec la nature calcaire des substrats. Elle est comprise entre 310 et 390 µS/cm.

Elle reste homogène entre 330 et 340 μ S/cm lors des campagnes de fin d'hiver et de printemps. Elle diminue progressivement dans l'épilimnion durant les 2 campagnes suivantes en lien avec la consommation des minéraux pour l'activité biologique. La conductivité est minimale dans l'épilimnion en campagne 3 (311 μ S/cm). Au fond, elle augmente au fil de la saison entre 335 et 387 μ S/cm à 25°C, en lien avec la minéralisation de la matière organique.

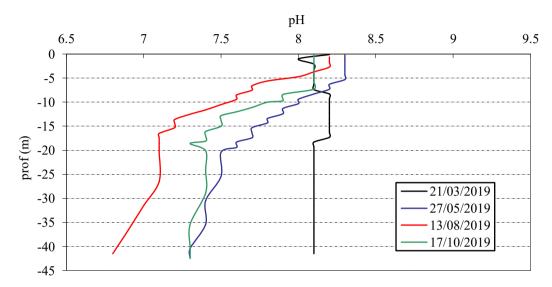


Figure 8 : Profils verticaux de pH au point de plus grande profondeur

Le pH est alcalin dans les eaux de Nantua, il est compris entre 7 et 8,3. En fin d'hiver, il est homogène à 8,1 environ.

Les profils des campagnes 2 et 3 et 4 suivent la même courbe :

- ✓ le pH est un peu plus élevé dans l'épilimnion (8,1 à 8,3 jusqu'à -5 m) où l'activité photosynthétique est à l'origine de cette augmentation du pH;
- ✓ il est plus faible dans l'hypolimnion (7,3 et jusqu'à 6,9 au fond) où les processus de respiration et de décomposition entraînent cette acidification.

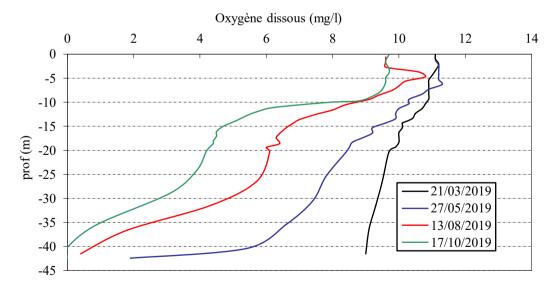


Figure 9 : Profils verticaux d'oxygène (mg/l) au point de plus grande profondeur

En fin d'hiver, l'oxygène dissous n'est pas totalement homogène sur la colonne d'eau. On observe un gradient surface/fond d'amplitude modérée (95% de saturation en surface et 75% au fond), et donc un léger déficit en oxygène dans la couche profonde. Ce qui signifie que le brassage hivernal n'a pas été complet.

Les profils des campagnes 2, 3 et 4 sont assez similaires. Des sursaturations significatives ont été enregistrées dans la couche de surface, signe d'une intense activité photosynthétique avec plus de 115% de saturation jusqu'à 7 m de profondeur lors des campagnes 2 et 3. En parallèle, la consommation en oxygène s'intensifie dans l'hypolimnion, en lien avec les processus de dégradation de la matière organique :

- ✓ à 20 m de profondeur : 74% en C2, 53% en C3 puis 33% seulement en C4 ;
- ✓ au fond : 16% de saturation en campagne 2 puis anoxie lors des campagnes 3 et 4.

Lors de la campagne du 17 octobre, l'épilimnion est bien oxygéné (≈ 100%).

Ces profils mettent en évidence une forte demande en oxygène pour dégrader la matière organique dans l'hypolimnion.

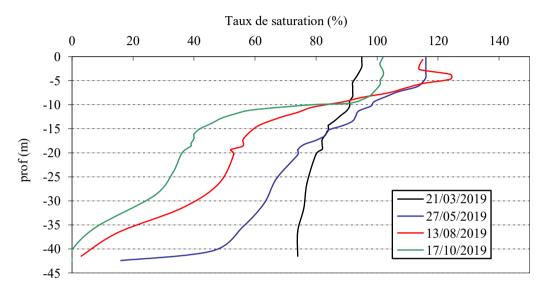


Figure 10 : Profils verticaux d'oxygène (% sat.) au point de plus grande profondeur

La synthèse de ces paramètres pH, conductivité et oxygène, met en évidence les effets classiques de la photosynthèse des couches supérieures et de la dégradation s'exerçant en zone tropholytique, modulés selon les saisons.

Les matières organiques dissoutes sont étudiées à l'aide d'une sonde EXO équipée d'un capteur fdom qui mesure les matières organiques dissoutes en ppb QSU sulfate de quinine. Les profils pour les 3 campagnes sont présentés sur la figure 11.

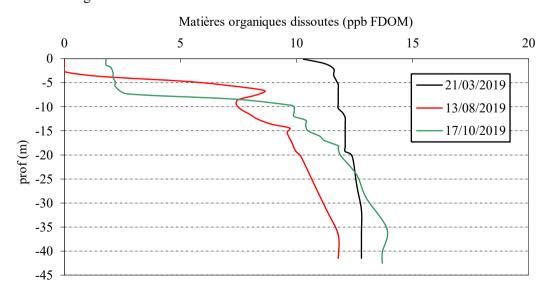


Figure 11 : profils verticaux des matières organiques dissoutes

Le profil de MOD de la campagne 2 n'est pas disponible suite à une panne de sonde.

Les teneurs en matières organiques dissoutes sont moyennes à élevées (10 à 13 ppb QSU) en fin d'hiver. Elles deviennent faibles dans les eaux au cours de l'été en surface (<2 ppb QSU). Lors des campagnes du 13 août et du 17 octobre, les teneurs en MOD sous 15 m sont assez similaires à celles de la 1^{ère} campagne (10 à 15 ppb QSU).

Elles témoignent d'une charge organique modérée dans les eaux du lac de Nantua.

4.1.2 Analyses physico-chimiques sur eau

4.1.2.1 Paramètres de constitution et typologie du lac

N.B. pour tous les tableaux suivants : LQ = limite de quantification.

Les résultats des paramètres de minéralisation des quatre campagnes sont présentés dans le Tableau 5.

Lac de Nantua		Unité	Code sandre	LQ	21/03/2019		27/05/2019		13/08/2019		17/10/2019	
Code pla	n d'eau: V2515003		sanare		intégré	fond	intégré	fond	intégré	fond	intégré	fond
	Bicarbonates	mg(HCO ₃)/L	1327	6,1	198	199	180	184	189	203	191	204
	Calcium	mg(Ca)/L	1374	0,1	60,4	60,3	59,9	61,7	56,1	60,3	55,1	61,3
Minéralisation	Chlorures	mg(Cl)/L	1337	0,1	13,7	14,2	13,2	13,6	12,1	13,6	11,6	13,3
isat	Dureté	°F	1345	0,5	16,7	16,8	16,6	17,2	15,6	16,7	15,5	17,0
rali	Magnésium	mg(Mg)/L	1372	0,05	3,9	4,1	4,0	4,2	3,9	3,9	4,1	4,1
iné	Potassium	mg(K)/L	1367	0,1	0,6	0,6	0,6	0,6	0,6	0,6	0,7	0,7
M	Sodium	mg(Na)/L	1375	0,2	8,0	8,3	8,1	8,4	7,7	8,5	7,4	8,4
	Sulfates	mg(SO ₄)/L	1338	0,2	5,9	5,8	5,4	5,9	5,5	5,5	5,4	4,8
	TAC	°F	1347	0	16,3	16,3	14,8	15,1	15,5	16,7	15,7	16,8

Tableau 5 : Résultats des paramètres de minéralisation

Les résultats indiquent une eau très carbonatée, de dureté assez élevée (16 à 17°F). Le lac de Nantua se trouve sur des terrains calcaires, ce qui explique la concentration importante observée en hydrogénocarbonates et en calcium. Les teneurs en sodium et en chlorures ne sont pas négligeables.

4.1.2.2 Analyses physicochimiques des eaux (hors micropolluants)

Tableau 6 : Résultats des paramètres de physico-chimie classique sur eau

La	ac de Nantua	Unité	Code	LQ	21/03	/2019	27/05	/2019	13/08	/2019	17/10	/2019
Code pla	n d'eau: V2515003	Onite	sandre	LQ	intégré	fond	intégré	fond	intégré	fond	intégré	fond
	Ammonium	mg(NH4)/L	1335	0,01	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Azote Kjeldahl	mg(N)/L	1319	0,5	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Carbone organique	mg(C)/L	1841	0,2	1,6	1,4	1,7	1,6	1,9	1,8	1,8	1,5
	DBO5	mg(O2)/L	1313	0,5	<lq< td=""><td><lq< td=""><td>1</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,9</td><td>0,6</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>1</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,9</td><td>0,6</td></lq<></td></lq<></td></lq<></td></lq<>	1	<lq< td=""><td><lq< td=""><td><lq< td=""><td>1,9</td><td>0,6</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>1,9</td><td>0,6</td></lq<></td></lq<>	<lq< td=""><td>1,9</td><td>0,6</td></lq<>	1,9	0,6
	DCO	mg(O2)/L	1314	20	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
PC eau	MeS	mg/L	1305	1	1,6	<lq< td=""><td>2</td><td><lq< td=""><td>1,4</td><td>1,1</td><td><lq< td=""><td>6</td></lq<></td></lq<></td></lq<>	2	<lq< td=""><td>1,4</td><td>1,1</td><td><lq< td=""><td>6</td></lq<></td></lq<>	1,4	1,1	<lq< td=""><td>6</td></lq<>	6
rc eau	Nitrates	mg(NO3)/L	1340	0,5	2,2	2,3	2	2,4	2,4	2,6	2,2	1,2
	Nitrites	mg(NO2)/L	1339	0,01	0,01	<lq< td=""><td>0,01</td><td><lq< td=""><td>0,02</td><td><lq< td=""><td>0,01</td><td>0,05</td></lq<></td></lq<></td></lq<>	0,01	<lq< td=""><td>0,02</td><td><lq< td=""><td>0,01</td><td>0,05</td></lq<></td></lq<>	0,02	<lq< td=""><td>0,01</td><td>0,05</td></lq<>	0,01	0,05
	Phosphates	mg(PO4)/L	1433	0,01	<lq< td=""><td>0,03</td><td><lq< td=""><td>0,02</td><td><lq< td=""><td>0,02</td><td><lq< td=""><td>0,03</td></lq<></td></lq<></td></lq<></td></lq<>	0,03	<lq< td=""><td>0,02</td><td><lq< td=""><td>0,02</td><td><lq< td=""><td>0,03</td></lq<></td></lq<></td></lq<>	0,02	<lq< td=""><td>0,02</td><td><lq< td=""><td>0,03</td></lq<></td></lq<>	0,02	<lq< td=""><td>0,03</td></lq<>	0,03
	Phosphore total	mg(P)/L	1350	0,005	<lq< td=""><td>0,01</td><td><lq< td=""><td>0,007</td><td>0,01</td><td>0,011</td><td><lq< td=""><td>0,028</td></lq<></td></lq<></td></lq<>	0,01	<lq< td=""><td>0,007</td><td>0,01</td><td>0,011</td><td><lq< td=""><td>0,028</td></lq<></td></lq<>	0,007	0,01	0,011	<lq< td=""><td>0,028</td></lq<>	0,028
	Silicates	mg(SiO2)/L	1342	0,05	2,9	3,6	1,5	4,3	1,7	5,8	1,5	6,9
	Turbidité	NFU	1295	0,1	1,7	0,85	1,24	1,5	1,2	2	2,2	6,7

Les analyses des fractions dissoutes ont été réalisées sur eau filtrée (COD, NH₄, NO₃, NO₂, PO₄, Si).

La charge en matières en suspension et la turbidité sont faibles sur le lac de Nantua, hormis dans le fond lors de la campagne 4 (respectivement 6 mg/l et 6,7 NTU).

La concentration en carbone organique dissous est faible sur les 4 campagnes : elle est comprise entre 1,4 et 1,9 mg/l. La DBO5 est quantifiée uniquement dans les échantillons C2 intégré et C4, à des faibles teneurs. Les autres paramètres organiques, azote Kjeldahl, et DCO et ammonium sont sous les seuils de quantification.

Globalement, les concentrations en nutriments disponibles sont moyennes pour l'azote et faibles pour les orthophosphates, particulièrement en fin d'hiver ($[NO_3]=2,2$ mg/l et $[PO_4^{3-1}] \le 0,01$ mg/l). Le rapport N/P⁴ est donc très élevé (> 100) : le phosphore est limitant par rapport à l'azote. Les nitrates sont disponibles toute l'année en zone euphotique (2 à 2,4 mg/l). Les phosphates sont en revanche absents en zone trophogène. Les matières phosphorées sont quantifiées dans le fond lors des 4 campagnes : 20 à 30 µg/l de PO₄³⁻ et 7 à 28 ug(Ptot)/1. Ces valeurs restent modérées mais suggèrent un phénomène de relargage depuis les sédiments. Les concentrations en nitrites restent faibles sauf dans l'échantillon de fond en C4 (50µg/l), à relier également aux conditions anoxiques au fond du lac de Nantua.

La concentration en silicates est moyenne en fin d'hiver sur l'ensemble de la colonne d'eau (2,9 à 3,6 mg/l). Elle évolue ensuite significativement :

- ✓ elle diminue dans la zone euphotique car les silicates sont consommés par les diatomées (1,5 mg/l);
- elle augmente au fond en rapport avec la dégradation des frustules de diatomées qui décantent dans le fond du lac (4,3 à 6,9 mg/l).

4.1.2.3 Micropolluants minéraux

Tableau 7 : Résultats d'analyses de métaux sur eau

	Lac de Nantua		Code	LQ	21/03	/2019	27/05	27/05/2019		/2019	17/10/2019	
Code plan d'eau: V2515003		Unité	sandre	LQ	intégré	fond	intégré	fond	intégré	fond	intégré	fond
	Aluminium	μg(Al)/L	1370	2	<lq< td=""><td><lq< td=""><td>2,5</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>2,5</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	2,5	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Antimoine	μg(Sb)/L	1376	0,5	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Argent	μg(Ag)/L	1368	0,01	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Arsenic	μg(As)/L	1369	0,05	0,18	0,19	0,19	0,17	0,22	0,3	0,2	0,18
	Baryum	μg(Ba)/L	1396	0,5	4,1	4,3	4,7	5,1	4,5	5	4,2	3,9
	Beryllium	μg(Be)/L	1377	0,01	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Bore	μg(B)/L	1362	10	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Cadmium	μg(Cd)/L	1388	0,01	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Chrome	μg(Cr)/L	1389	0,5	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Cobalt	μg(Co)/L	1379	0,05	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,12</td><td><lq< td=""><td>0,09</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,12</td><td><lq< td=""><td>0,09</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,12</td><td><lq< td=""><td>0,09</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,12</td><td><lq< td=""><td>0,09</td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,12</td><td><lq< td=""><td>0,09</td></lq<></td></lq<>	0,12	<lq< td=""><td>0,09</td></lq<>	0,09
	Cuivre	μg(Cu)/L	1392	0,1	0,36	0,32	0,7	0,33	0,42	0,24	0,36	0,13
<u>_</u>	Etain	μg(Sn)/L	1380	0,5	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Métaux	Fer	μg(Fe)/L	1393	1	2,9	2,7	3,9	2	2,5	15,7	2,7	10,7
1ét	Lithium	μg(Li)/L	1364	0,5	0,7	0,7	0,8	0,8	0,8	0,7	0,7	0,7
	Manganèse	μg(Mn)/L	1394	0,5	<lq< td=""><td>2,2</td><td><lq< td=""><td>8,5</td><td><lq< td=""><td>52,6</td><td><lq< td=""><td>63,1</td></lq<></td></lq<></td></lq<></td></lq<>	2,2	<lq< td=""><td>8,5</td><td><lq< td=""><td>52,6</td><td><lq< td=""><td>63,1</td></lq<></td></lq<></td></lq<>	8,5	<lq< td=""><td>52,6</td><td><lq< td=""><td>63,1</td></lq<></td></lq<>	52,6	<lq< td=""><td>63,1</td></lq<>	63,1
	Mercure	μg(Hg)/L	1387	0,01	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Molybdène	μg(Mo)/L	1395	1	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Nickel	μg(Ni)/L	1386	0,5	<lq< td=""><td><lq< td=""><td>2,1</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>2,1</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	2,1	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Plomb	μg(Pb)/L	1382	0,05	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Sélénium	μg(Se)/L	1385	0,1	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Tellure	μg(Te)/L	2559	0,5	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Thallium	μg(Tl)/L	2555	0,01	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Titane	μg(Ti)/L	1373	0,5	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Uranium	μg(U)/L	1361	0,05	0,2	0,2	0,25	0,24	0,23	0,24	0,21	0,19
	Vanadium	μg(V)/L	1384	0,1	0,13	0,12	0,15	0,11	0,18	<lq< td=""><td>0,15</td><td><lq< td=""></lq<></td></lq<>	0,15	<lq< td=""></lq<>
	Zinc	μg(Zn)/L	1383	1	1,74	1,79	1,02	1,54	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>

Les analyses sur les métaux ont été effectuées sur eau filtrée.

Comme en 2016, les eaux du lac de Nantua sont globalement pauvres en micropolluants minéraux :

⁴ le rapport N/P est calculé à partir de [Nminéral]/ [P-PO₄³⁻] avec N minéral = [N-NO₃⁻]+[N-NO₂⁻]+[N-NH₄⁺] sur la campagne de fin d'hiver.

- ✓ le baryum, l'uranium et le vanadium sont présents à des teneurs généralement faibles ;
- ✓ l'aluminium, le cobalt et le nickel sont ponctuellement quantifiés.

Les concentrations en fer et manganèse augmentent significativement dans les échantillons de fond des campagnes 3 et 4 : 10 à 16 µg/l de fer et 52 à 63 µg/l de manganèse. Cette charge en Fe et Mn atteste ainsi de conditions de désoxygénation entraînant un relargage de ces éléments depuis les sédiments.

Parmi les métaux lourds, on note la présence :

- ✓ d'arsenic dans les 8 échantillons, à des concentrations faibles (0,18 à 0,3 μg/l);
- ✓ de cuivre dans les 8 échantillons, à des concentrations faibles à modérées (0,13 à 0,7 μg/l);
- ✓ de zinc dans les échantillons des campagnes 1 et 2 (1 à 1,8 μg/l).

Ces concentrations ne suggèrent pas de pollution particulière.

4.1.2.4 Micropolluants organiques

Le Tableau 8 indique les micropolluants organiques qui ont été quantifiés lors des campagnes de prélèvements. La liste de l'ensemble des substances analysées est fournie en annexe 1.

Lac de	e Nantua	Unité	Code	de LQ	21/03	21/03/2019		27/05/2019		13/08/2019		/2019
Code plan d'o	nn d'eau: V2515003		sandre	LQ	intégré	fond	intégré	fond	intégré	fond	intégré	fond
fongicide	Propiconazole	μg/l	1257	0,005	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,01</td><td><lq< td=""><td>0,006</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,01</td><td><lq< td=""><td>0,006</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,01</td><td><lq< td=""><td>0,006</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,01</td><td><lq< td=""><td>0,006</td><td><lq< td=""></lq<></td></lq<></td></lq<>	0,01	<lq< td=""><td>0,006</td><td><lq< td=""></lq<></td></lq<>	0,006	<lq< td=""></lq<>
Médicament	Metformine	μg/l	6755	0,005	0,158	0,149	0,171	0,152	0,176	0,151	0,175	0,140
plastifiants	DEHP	μg/l	6616	0,4	0,74	<lq< td=""><td>0,95</td><td><lq< td=""><td>1,45</td><td><lq< td=""><td>0,52</td><td>0,41</td></lq<></td></lq<></td></lq<>	0,95	<lq< td=""><td>1,45</td><td><lq< td=""><td>0,52</td><td>0,41</td></lq<></td></lq<>	1,45	<lq< td=""><td>0,52</td><td>0,41</td></lq<>	0,52	0,41
plastifiants	Diéthyl phtalate	μg/l	1527	0,05	<lq< td=""><td>0,27</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0,27	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
plastifiants	n-Butyl Phtalate	μg/l	1462	0,05	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,07</td><td>0,07</td><td>0,06</td><td>0,09</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,07</td><td>0,07</td><td>0,06</td><td>0,09</td><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,07</td><td>0,07</td><td>0,06</td><td>0,09</td><td><lq< td=""></lq<></td></lq<>	0,07	0,07	0,06	0,09	<lq< td=""></lq<>
Sels	Perchlorate	μg/l	6219	0,1	0,12	0,12	0,11	0,11	0,15	<lq< td=""><td>0,19</td><td><lq< td=""></lq<></td></lq<>	0,19	<lq< td=""></lq<>
stimulants	Cafeine	μg/l	6519	0,01	0,032	0,036	0,036	0,018	0,035	0,013	0,03	<lq< td=""></lq<>
stimulants	Cotinine	ug/l	6520	0.005	0.007	0.007	0.007	0.006	0.01	0.008	0.007	0.007

Tableau 8 : Résultats d'analyses de micropolluants organiques présents sur eau

8 micropolluants organiques ont été détectés dans les eaux du lac de Nantua. Parmi eux, on recense plusieurs substances de manière récurrente :

- ✓ le Metformine est mesuré dans tous les échantillons à des concentrations comprises entre 0,14 et 0,175 μg/l. Il s'agit d'une substance médicamenteuse, analysée dans les eaux depuis 2018. C'est un antidiabétique oral appartenant à la famille des biguanides qui a été retrouvé dans de nombreux plans d'eau des bassins RMC :
- ✓ le perchlorate à des teneurs faibles comprises entre 0,11 et 0,19 dans 6 des 8 échantillons. Il existe divers sels de perchlorates qui sont utilisés dans de nombreuses applications industrielles ;
- ✓ deux stimulants d'origine naturelle végétale (traceurs de pollutions domestiques) : la caféine et la cotinine (métabolite de la nicotine) mesurés à faible teneur dans tous les échantillons.

Trois composés plastifiants sont également régulièrement retrouvés :

- ✓ le Di(2-ethylhexyl)phtalate (DEHP) substance permettant d'augmenter la flexibilité des plastiques, est quantifié en zone euphotique à toutes les campagnes (0,5 à 1,45 μg/l);
- ✓ le Diethylphtalate est mesuré dans l'échantillon de fond du 21 mars ;
- ✓ le n-butylPhtalate dans 4 échantillons (C2 fond, C3, C4 intégré) à faible teneur (0,06 0,09 μg/l);

On rappelle que le lac de Nantua se situe au cœur du secteur de plasturgie d'Oyonnax (la « Plastics Valley »). L'origine de ces composés est très probablement à relier à ces activités industrielles utilisant des plastifiants.

Le Propiconazole est détecté en zone euphotique en C3 et C4 à très faible concentration. Il s'agit d'un fongicide de la famille des triazoles qui a été récemment interdit (cette molécule a été retrouvé dans les plans d'eau voisins de Nantua : Charmines-Moux, Cize-Bolozon).

4.1.3 Analyses des sediments

4.1.3.1 Analyses physicochimiques des sédiments (hors micropolluants)

Le Tableau 9 fournit la synthèse de l'analyse granulométrique menée sur les sédiments prélevés.

Tableau 9 : Synthèse granulométrique sur le sédiment du point de plus grande profondeur

Composition granulométrique du sédiment										
Lac de Nantua	Unité	Code sandre	17/10/2019							
Code plan d'eau: V2515003	Office	Code sanare	1 //10/2019							
fraction inférieure à 20 µm	% MS	6228	76,5							
fraction de 20 à 63 µm	% MS	3054	23,1							
fraction de 63 à 150 µm	% MS	7042	0,4							
fraction de 150 à 200 µm	% MS	7043	0,0							
fraction supérieure à 200 μm	% MS	7044	0,0							

Il s'agit de sédiments très fins ($100\% < 150 \mu m$), de nature limono-vaseuse exempt de débris grossiers.

Les analyses de physico-chimie classique menées sur la fraction solide et sur l'eau interstitielle du sédiment sont rapportées au Tableau 10.

Tableau 10 : Analyse de sédiments

Phys	ico-chimie du séd	iment		
Lac de Nantua	Unité	Code	LQ	17/10/2019
Code plan d'eau: V2515003		sandre	-£	
Matière sèche à 105°C	%	1307		49,3
Matière Sèche Minérale	% MS	5539		92,8
Perte au feu à 550°C	% MS	6578		7,2
Carbone organique	mg(C)/kg MS	1841	1000	24900
Azote Kjeldahl	mg(N)/kg MS	1319	1000	3160
Phosphore total	mg(P)/kg MS	1350	2	1050
Physico-chimi	e du sédiment : E	au interstitie	lle	
Ammonium	mg(NH ₄)/L	1335	0,5	3,53
Phosphates	mg(PO ₄)/L	1433	0,015	0,145
Phosphore total	mg(P)/L	1350	0,01	0,44

Dans les sédiments, la teneur en matière organique est moyenne avec 7,2 % de perte au feu. La concentration en azote organique est également moyenne (environ 3,16 g/kg). Le rapport C/N est de 7,9 : il indique une prédominance de matière algale récemment déposée dont une fraction sera recyclée en tant qu'azote minéral. La concentration en phosphore est considérée comme moyenne, proche de 1,05 g/kg MS. La composition du sédiment est très similaire à celle analysée en 2016.

L'eau interstitielle contient les minéraux facilement mobilisables dans les sédiments. La concentration en ammonium (3,53 mg/l) reste assez faible. En revanche, le phosphore total et les phosphates affichent des teneurs assez élevées dans l'eau interstitielle (respectivement 0,44 et 0,145 mg/l). Cela suggère un relargage de cet élément à l'interface eau/sédiment du fait des conditions anoxiques régnant en profondeur. Cette hypothèse est confirmée par les analyses physico-chimiques des eaux du fond (charge en P, Mn et Fe).

4.1.3.2 Micropolluants minéraux

Ils ont été dosés sur la fraction solide du sédiment.

Tableau 11 : Résultats d'analyses de micropolluants minéraux sur sédiment

Sédiment : micropolluants minéraux						
Lac de Nantua Code plan d'eau: V2515003	Unité	Code sandre	LQ	17/10/2019		
Aluminium	mg(Al)/kg MS	1370	5	17800		
Antimoine	mg(Sb)/kg MS	1376	0,2	0,8		
Argent	mg(Ag)/kg MS	1368	0,1	0,2		
Arsenic	mg(As)/kg MS	1369	0,2	8,4		
Baryum	mg(Ba)/kg MS	1396	0,4	55,7		
Béryllium	mg(Be)/kg MS	1377	0,2	0,7		
Bore	mg(B)/kg MS	1362	1	37,1		
Cadmium	mg(Cd)/kg MS	1388	0,2	0,3		
Chrome	mg(Cr)/kg MS	1389	0,2	35,2		
Cobalt	mg(Co)/kg MS	1379	0,2	4		
Cuivre	mg(Cu)/kg MS	1392	0,2	15,9		
Etain	mg(Sn)/kg MS	1380	0,2	2,1		
Fer	mg(Fe)/kg MS	1393	5	21300		
Lithium	mg(Li)/kg MS	1364	1	19,4		
Manganèse	mg(Mn)/kg MS	1394	0,4	230		
Mercure	mg(Hg)/kg MS	1387	0,01	0,08		
Molybdène	mg(Mo)/kg MS	1395	0,2	0,6		
Nickel	mg(Ni)/kg MS	1386	0,2	16,4		
Plomb	mg(Pb)/kg MS	1382	0,2	16,4		
Sélénium	mg(Se)/kg MS	1385	0,2	1,1		
Tellure	mg(Te)/kg MS	2559	0,2	< LQ		
Thallium	mg(Th)/kg MS	2555	0,2	0,2		
Titane	mg(Ti)/kg MS	1373	1	1100		
Uranium	mg(U)/kg MS	1361	0,2	0,8		
Vanadium	mg(V)/kg MS	1384	0,2	54,2		
Zinc	mg(Zn)/kg MS	1383	0,4	123		

Comme en 2016, les concentrations en micropolluants minéraux sont faibles dans les sédiments du lac de Nantua et ne suggèrent donc pas de pollution particulière de ce compartiment. Parmi les métaux lourds, la concentration observée en zinc est toutefois non négligeable.

4.1.3.3 Micropolluants organiques

Le Tableau 12 indique les micropolluants organiques qui ont été quantifiés dans les sédiments lors de la campagne de prélèvements. La liste de l'ensemble des substances analysées est fournie en annexe 2.

Tableau 12 : Résultats d'analyses de micropolluants organiques présents sur sédiment

Sédiment : micropolluants organiques mis en évidence						
Lac de Nantua Code plan d'eau: V2515003	Unité	Code sandre	LQ	17/10/2019		
4-nonylphenol diethoxylate	μg/ kg MS	6369	15	38		
BDE209	μg/ kg MS	1815	5	6		
DEHP	μg/ kg MS	6616	100	325		
Acénaphtylène	μg/ kg MS	1622	10	19		
Anthanthrene	μg/ kg MS	7102	10	20		
Anthracène	μg/ kg MS	1458	10	26		
Anthraquinone	μg/ kg MS	2013	4	14		
Benzo (a) Anthracène	μg/ kg MS	1082	10	52		
Benzo (a) Pyrène	μg/ kg MS	1115	10	71		
Benzo (b) Fluoranthène	μg/ kg MS	1116	10	113		
Benzo (ghi) Pérylène	μg/ kg MS	1118	10	77		
Benzo (k) Fluoranthène	μg/ kg MS	1117	10	41		
Chrysène	μg/ kg MS	1476	10	55		
Dibenzo (ah) Anthracène	μg/ kg MS	1621	10	11		
Fluoranthène	μg/ kg MS	1191	10	111		
Indéno (123c) Pyrène	μg/ kg MS	1204	10	59		
Méthyl-2-Fluoranthène	μg/ kg MS	1619	10	11		
Phénanthrène	μg/ kg MS	1524	10	45		
Pyrène	μg/ kg MS	1537	10	97		
PCB 118	μg/ kg MS	1243	1	1		
PCB 138	μg/ kg MS	1244	1	1,4		
PCB 153	μg/ kg MS	1245	1	1,4		

Divers hydrocarbures et plusieurs PCB ont été quantifiés dans les sédiments du lac de Nantua :

- ✓ 16 hydrocarbures aromatiques polycycliques (HAP) ont été recensés pour une concentration totale moyenne de 822 µg/kg MS ;
- ✓ 3 substances appartenant aux PCB (polychlorobiphényles) ont été quantifiées pour une concentration totale, faible, de 3,8 μg/kg.

Ces concentrations sont comparables à celles mesurées lors du précédent suivi de 2016 où les concentrations en HAP atteignaient 929 µg/kg MS et 6 µg/kg MS pour les PCB.

On retrouve également 3 autres molécules dans les sédiments :

- ✓ le DEHP, un indicateur plastifiant, à la concentration modérée de 325 μg/kg.;
- ✓ des traces de BDE209, un composé de la famille des polybromodiphényléthers ;
- ✓ le 4-nonylphenol diethoxylate est retrouvé à 38 μg/kg MS. Ce sont des substances synthétisées pour leurs propriétés tensioactives, très largement utilisées dans l'industrie (textile, peintures, production de pâtes et papiers, le traitement des métaux,...).

4.2 PHYTOPLANCTON

4.2.1 Prelevements integres

Les prélèvements intégrés destinés à l'analyse du phytoplancton ont été réalisés en même temps que les prélèvements pour analyses physicochimiques classiques. Sur le lac de Nantua, la zone euphotique et la transparence mesurées sont représentées par le graphique de la Figure 12.

La transparence est moyenne lors de la 1^{ère} campagne (3,2m). Elle augmente au fil de la saison avec 4 m mesuré le 27 mai puis 6,2 m en plein été. La transparence se stabilise à 6 m mi-octobre. On peut considérer qu'il s'agit de transparences élevées qui permettent un développement profond pour le phytoplancton.

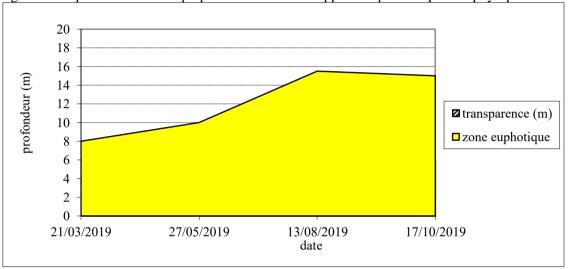


Figure 12 : Évolution de la transparence et de la zone euphotique lors des 4 campagnes

Les échantillons destinés à la détermination du phytoplancton et de la chlorophylle *a* sont constitués d'un prélèvement intégré sur la zone euphotique (équivalant à 2,5 fois la transparence lors de la campagne). Les échantillons de zone euphotique concernent une colonne d'eau moyenne (C1, C2) puis importante (C3 et C4) sur le lac de Nantua (8 à 15,5 m).

Les concentrations en chlorophylle a et en phéopigments sont présentées dans le tableau suivant.

Lac de Nantua Code plan d'eau: V2515003		Unité	Code sandre LQ	10	21/03/2019	27/05/2019	13/08/2019	17/10/2019
		Circ		intégré	intégré	intégré	intégré	
indices	Chlorophylle a	μg/L	1439	1	5	4	2	1
chlorophylliens	ndice phéopigment	μg/L	1436	1	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>

Tableau 13: analyses des pigments chlorophylliens

Si la concentration en chlorophylle ou phéopigments est <LQ, alors la valeur considérée est LQ/2 soit 0,5 μg/l.

Les concentrations en pigments chlorophylliens sont moyennes puis faibles dans le lac de Nantua (5 à 1 μ g/l). Cela traduit une production algale non négligeable en début de saison : fin d'hiver et printemps. L'approfondissement de la zone euphotique lors des campagnes 3 et 4 (15 m) est accompagné d'une diminution de la production chlorophyllienne (1 à 2 μ g/l). La moyenne estivale de concentration en chlorophylle a est évaluée à 2,3 μ g/l.

La concentration en phéopigments reste faible toute l'année, elle est $< 1 \mu g/l$.

L'activité biologique est ainsi globalement faible à modérée dans ce plan d'eau.

N.B.: on peut considérer un certain caractère atypique de l'évolution saisonnière de ces paramètres, avec des transparences maximales et un développement minimal de phytoplancton en août, et une situation rigoureusement inverse en fin d'hiver.

4.2.2 <u>Listes floristiques</u>

Tableau 14 : Liste taxonomique du phytoplancton (en nombre de cellules/ml)

Embranchement	Nom taxon	Code Sandre	21/03/2019	27/05/2019	13/08/2019	17/10/2019
	Asterionella formosa	4860	26,3	5,6	24,7	0,1
BACILLARIOPHYTA	Cyclotella costei	8615		89,1	216,9	
	Diatomées centriques indét < 10 μm	6598	58,4			
	Diatomées centriques indét > 10 μm	6598	5,8	31,6		9,5
	Fragilaria	9533		1,9		
	Fragilaria crotonensis	6666		1,9	49,3	
	Fragilaria tenera	6713			2,5	
	Puncticulata praetermissa	18062		59,4	22,2	1,2
	Stephanodiscus	8760		1,9		
CHARONINE	Cosmarium	1127		0,1	2,5	
CHAROPHYTA	Elakatothrix gelatinosa	5664			2,5	1,2
	Chlorella minutissima	20627	1015,8			
	Chlorella vulgaris	5933	99,2	3,7	64,1	8,3
	Chlorophycées flagellées indét diam 2 - 5 μm	3332	5,8	- ,-	7,4	4,8
	Chlorophycées flagellées indét diam 5 - 10 μm	3332	-,-	7,4	.,.	-,-
	Choricystis minor	10245		,,.	7,4	1,2
	Coenochloris hindakii	20091			8,3	19,0
CHLOROPHYTA	Monoraphidium komarkovae	5735			7,4	2,4
CILOROTIITA	Oocystis naegelii	20656			/, T	9,5
	Phacotus lendneri	19395			27,1	10,7
-	Phacotus lenticularis	6048	2,9		27,1	10,7
-	Stichococcus bacillaris	6004	2,9		2,5	
-	Tetraselmis cordiformis	5981	78,8	1.0	2,3	
		9300	/0,0	1,9	9,9	
CHOANOZOA	Tetrastrum triangulare	6170		1.0	9,9	
CHOANOZOA	Salpingoeca frequentissima		2.0	1,9	12.2	2.4
	Cryptomonas marssonii	6273	2,9	7.4	12,3	2,4
СКУРТОРНУТА	Cryptomonas ovata	6274	52,5	7,4	14,8	1,0
	Cryptophycées indét > 10 μm	4765	2,9	72.4	22.0	105.6
	Plagioselmis nannoplanctica	9634	221,8	72,4	32,0	185,6
	Aphanocapsa delicatissima	6308		1=0.4	276,1	0== 0
CYANOBACTERIA	Aphanocapsa elachista	6310		178,2	276,1	877,0
	Oscillatoriales indét	6391	-0.4		24,7	
	Planktothrix agardhii	6430	70,1	23,8	1883,8	570,4
EUGLENOZOA	Trachelomonas volvocina	6544		1,9		
НАРТОРНҮТА	Chrysochromulina parva	31903	26,3	13,0	4,9	0.7
	Ceratium hirundinella	6553		0,2	0,2	0,3
	Gymnodinium cnecoides	20338	_	1,9	2,5	
MIOZOA	Gymnodinium helveticum	6558	0,2	0,8	0,3	0,5
	Peridinium	6577	5,8			
	Peridinium umbonatum	6587		3,7	4,9	
	Peridinium willei	6589		1,4		0,0
	Chrysophycées indét	1160				1,2
ОСНГОРНУТА	Dinobryon acuminatum	6126		7,4	14,8	
	Dinobryon divergens	6130		33,4	182,4	2,4
	Dinobryon sociale var. americanum	6137	2,9	638,6	61,6	
	Kephyrion	6150		5,6		
	Kephyrion littorale	6151		22,3	2,5	
	Kephyrion ovale	9584		5,6		
	Mallomonas	6209		3,7	2,5	1,2
	Ochromonas	6158	52,5	3,7		
	Pseudopedinella elastica	20753	20,4	1,9	4,9	1,2
non déterminés	Taxons indéterminés	0	14,6	1,9		
	Nombre de taxons		20	33	33	23
	Nombre de cellules/ml		1766,1	1234,8	3255,9	1711,1

Tableau 15: Liste taxonomique du phytoplancton (en mm³/l)

		Code				
Embranchement	Nom taxon	Sandre	21/03/2019	27/05/2019	13/08/2019	17/10/2019
	Asterionella formosa	4860	0,00683	0,00145	0,00641	0,00002
	Cyclotella costei	8615		0,02272	0,05532	
	Diatomées centriques indét < 10 μm	6598	0,00642			
BACILLARIOPHYTA	Diatomées centriques indét > 10 μm	6598	0,00313	0,01695		0,00511
	Fragilaria	9533		0,00449		
	Fragilaria crotonensis	6666		0,00056	0,01479	
	Fragilaria tenera	6713			0,00062	
	Puncticulata praetermissa	18062		0,09552	0,03568	0,00191
	Stephanodiscus	8760		0,00910		
CHAROPHYTA	Cosmarium	1127		0,00056	0,01726	
	Elakatothrix gelatinosa	5664			0,00047	0,00023
	Chlorella minutissima	20627	0,00833		0.00644	
	Chlorella vulgaris	5933	0,00992	0,00037	0,00641	0,00083
	hlorophycées flagellées indét diam 2 - 5 μr	3332	0,00025		0,00031	0,00020
	hlorophycées flagellées indét diam 5 - 10 μ	3332		0,00386	2 2222	0.00004
	Choricystis minor	10245	-		0,00007	0,00001
CHI ODODINA	Coenochloris hindakii	20091	-		0,00072	0,00166
CHLOROPHYTA	Monoraphidium komarkovae	5735			0,00118	0,00038
	Oocystis naegelii	20656			0.01112	0,05224
	Phacotus lendneri	19395	0.00120		0,01112	0,00439
	Phacotus lenticularis	6048	0,00120		0.00015	
	Stichococcus bacillaris	6004	0.15667	0.00260	0,00015	
	Tetraselmis cordiformis	5981	0,15667	0,00369	0.00064	
CHOANOZOA	Tetrastrum triangulare	9300		0.00022	0,00064	
CHOANOZOA	Salpingoeca frequentissima	6170	0.00250	0,00022	0.01470	0.00207
	Cryptomonas marssonii	6273	0,00350	0.01555	0,01479	0,00286
CRYPTOPHYTA	Cryptomonas ovata	6274 4765	0,11002	0,01555	0,03097	0,00217
	Cryptophycées indét > 10 μm Plagioselmis nannoplanctica	9634	0,00153 0,01553	0,00507	0,00224	0,01299
	Aphanocapsa delicatissima	6308	0,01333	0,00307	0,00224	0,01299
	Aphanocapsa delicatissina Aphanocapsa elachista	6310		0,00036	0,00028	0,00175
CYANOBACTERIA	Oscillatoriales indét	6391		0,00030	0,00232	0,00173
	Planktothrix agardhii	6430	0,00421	0,00143	0,00232	0,03422
EUGLENOZOA	Trachelomonas volvocina	6544	0,00421	0,00362	0,11303	0,03422
НАРТОРНУТА	Chrysochromulina parva	31903	0,00076	0,00302	0,00014	
IIII IOIIIIIA	Ceratium hirundinella	6553	0,00070	0,00960	0,00637	0,01154
	Gymnodinium enecoides	20338		0,00900	0,00562	0,01137
	Gymnodinium helveticum	6558	0,00322	0,01364	0,00543	0.00853
MIOZOA	Peridinium	6577	0,05371	0,01201	0,000 10	0,00022
	Peridinium umbonatum	6587	0,00071	0,03287	0,04366	
	Peridinium willei	6589		0,04488	0,0 12 00	0,00064
	Chrysophycées indét	1160		0,01100		0,00013
	Dinobryon acuminatum	6126		0,00048	0,00096	-,00010
ОСНГОРНУТА	Dinobryon divergens	6130		0,00698	0,03813	0,00050
	Dinobryon sociale var. americanum	6137	0,00105	0,23054	0,02225	-,
	Kephyrion	6150	-,	0,00035	-,	
	Kephyrion littorale	6151		0,00214	0,00024	
	Kephyrion ovale	9584		0,00067	, <u>-</u> .	
	Mallomonas	6209		0,00992	0,00659	0,00318
	Ochromonas	6158	0,00525	0,00037	-,	-,
	Pseudopedinella elastica	20753	0,02773	0,00252	0,00669	0,00161
non déterminés	Taxons indéterminés	0	0,03387	0,00431	,	, -
	Nombre de taxons		20	33	33	23
	Biovolume (mm ³ /l)		0,453	0,549	0,451	0,147

4.2.3 ÉOLUTIONS SAISONNIERES DES GROUPEMENTS PHYTOPLANCTONIQUES

Les graphiques suivants présentent la répartition du phytoplancton (relative) par groupe algal à partir des résultats exprimés en cellules/ml d'une part, et à partir des biovolumes (mm³/l) d'autre part. Sur chacun des graphiques, la courbe représente l'abondance totale par échantillon (Figure 13), et le biovolume de l'échantillon (Figure 14).

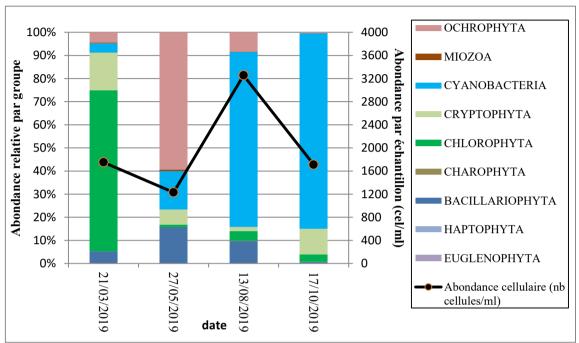


Figure 13 : Répartition du phytoplancton sur le lac de Nantua à partir des abondances (cellules/ml)

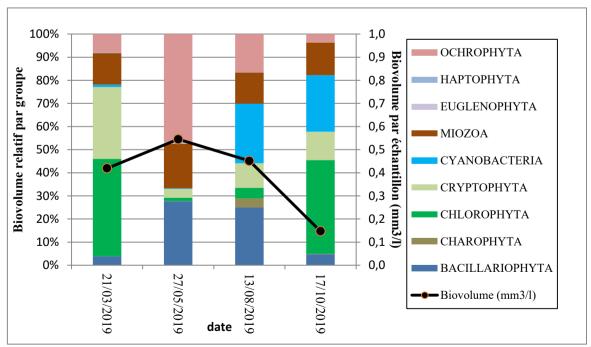


Figure 14 : Evolution saisonnière des biovolumes des principaux groupes algaux de phytoplancton (en mm³/l)

La productivité algale est assez faible lors des trois premières campagnes, aux environs de 0,5 mm³/l, puis elle diminue en dernière campagne (0,15 mm³/l). La diversité taxonomique est faible en début de saison (20 taxons) puis moyenne lors des trois campagnes estivales.

La première campagne est dominée par des chlorophytes (42% du biovolume relatif) : *Tetraselmis cordiformis* et *Chlorella cf. minutissima*⁵, qui affectionnent les milieux enrichis en nutriments. Elles sont accompagnées des cryptophytes flagellés (31% du biovolume relatif) : *Plagioselmis nannoplanctica* et *Cryptomonas ovata*, caractéristiques des milieux brassés.

La seconde campagne est dominée par des ochrophytes notamment *Dinobryon sociale var. americanum* (42% du biovolume relatif). Ce taxon mixotrophe se développe au printemps dans l'épilimnion stratifié lorsque les ressources en nutriments sont limitantes pour les autres embranchements. (Groupe fonctionnel Reynolds : E). Elles sont accompagnées notamment par les diatomées centriques *Puncticulata praetermissa* et *Cyclotella costei*.

Lors des deux dernières campagnes, le peuplement phytoplanctonique est dominé pour près de 25% du biovolume par une cyanobactérie filamenteuse, *Planktothrix agardhii* que l'on retrouve dans les eaux riches en nutriments. Elle est accompagnée par les chlorophytes coloniales *Coenochloris hindakii* en troisième campagne et *Oocystis naegelii* en quatrième campagne.

4.2.4 Indice Phytoplanctonique IPLAC

L'indice phytoplancton lacustre ou IPLAC est calculé à partir du SEEE (v1.1.0 en date du 30/06/2020). Il s'appuie sur la moyenne pondérée de 2 métriques : l'une basée sur les teneurs en chlorophylle a (µg/l) (MBA ou métrique de biomasse algale totale), et l'autre sur la présence d'espèces indicatrices quantifiée en biovolume (mm³/l) (MCS ou métrique de composition spécifique). Plus la valeur d'une métrique tend vers 1, plus la qualité est proche de la valeur prédite en conditions de référence. Les 5 classes d'état sont fournies sur la Figure 4.

Les classes d'état pour les deux métriques et l'IPLAC sont données pour Nantua dans le tableau suivant.

Code Lac	Nom Lac	année	MBA	MCS	IPLAC	Classe IPLAC
V2515003	Nantua	2019	0,737	0,618	0,654	В

En conclusion, les teneurs en chlorophylle a sont faibles à moyennes (entre 1 et 5 μg/l). La Métrique de Biomasse Algale (MBA) atteint la valeur de 0,737, correspondant à une bonne qualité. La Métrique de Composition Spécifique du peuplement (MCS) est plus déclassante, notamment en raison de la présence de *Planktothrix agardhii*. Elle est de 0,618(valeur proche du seuil de 0.6 faisant basculer en état moyen), signe de déséquilibres dans les peuplements phytoplanctoniques.

L'indice IPLAC résultant est de 0,654, il indique un bon état.

L'indice IPLAC du lac de Nantua obtient la valeur de 0,654, ce qui correspond à une bonne classe d'état pour l'élément de qualité phytoplancton.

4.2.5 Comparaison avec les inventaires anterieurs

Le peuplement phytoplanctonique présente des successions assez similaires en 2016 et 2019 sur le lac de Nantua.

En fin d'hiver, il est dominé notamment par les cryptophycées (*Plagioselmis nannoplanctica* et *Cryptomonas ovata*), caractéristiques des milieux brassés. Au printemps, les ochrophytes colonisent traditionnellement le

_

⁵ Taxon vérifié par le professeur émérite K.T.Kiss.

milieu avec les genres *Dinobryon* et *Mallomonas*. Les diatomées se développent en période estivale avec la colonisation par des espèces assez communes dans les lacs alpins (*Cyclotella costei*). Au cours de l'été, les cyanobactéries (*Planktothrix agardhii*) se développent sur les mois d'août-septembre.

La production algale reste faible à modérée sur le lac de Nantua : le biovolume n'excède pas 1 mm³/l.

L'historique des valeurs IPLAC acquises sur le plan d'eau de Nantua est présenté dans le Tableau 16 (valeurs issues du SEEE V1.0.2 base du 07/01/2019).

Nom lac	code_Lac	année	MBA	MCS	IPLAC	Classe IPLAC
Nantua	V2515003	2010	0,838	0,654	0,709	В
Nantua	V2515003	2013	1,000	0,978	0,985	TB
Nantua	V2515003	2016	0,789	0,742	0,756	В
Nantua	V2515003	2019	0,737	0,618	0,654	В

Tableau 16: évolution des Indices IPLAC depuis 2010

Les indices IPLAC depuis 2010 sont assez similaires, ils indiquent une bonne qualité pour le phytoplancton. Seul le suivi 2013 était plus favorable avec des indices constitutifs très bons.

L'étude du cortège floristique de ces dernières années semble mettre en évidence certaines espèces au profil mésotrophe voire eutrophe. La production algale reste cependant modérée dans le lac de Nantua.

Ces éléments tendent à indiquer que le lac de Nantua présente un bon état du compartiment phytoplancton depuis plusieurs années. La présence d'espèces de niveau trophique élevé est cependant à surveiller.

4.3 MACROPHYTES

La campagne d'inventaire macrophytes selon le protocole IBML (selon norme AFNOR XP T90-328 de Décembre 2010) sur le lac de Nantua s'est déroulée les 13 et 14 août 2019 par une météo ensoleillée et ventée. Les 3 unités d'observation ont été inventoriées par Éric Boucard (Mosaïque Environnement) accompagné d'Audrey Péricat et Guillaume Cunillera (S.T.E).

La transparence mesurée au disque de Secchi, était comprise entre 5 m et 6,4 m.

4.3.1 Choix des unites d'observation

Le lac de Nantua a déjà fait l'objet d'un suivi des populations de macrophytes en 2016 par S.T.E. pour l'Agence de l'Eau Rhône-Méditerranée et Corse. En 2019, comme en 2016, le protocole suivi par S.T.E. respecte la norme AFNOR XP T90-328 (Décembre 2010) normalisant le protocole de l'IRSTEA intitulé « Méthodologie d'étude des communautés de macrophytes en plans d'eau ».

Le positionnement des unités d'observation est déterminé avec la méthode de Jensen. Pour le lac de Nantua, 5 profils perpendiculaires à la plus grande longueur du plan d'eau ont été représentés, soit 10 points contacts potentiels auxquels s'ajoutent les 2 points correspondant aux points de départ et d'arrivée de cette ligne de base.

Le protocole d'échantillonnage s'appuie sur :

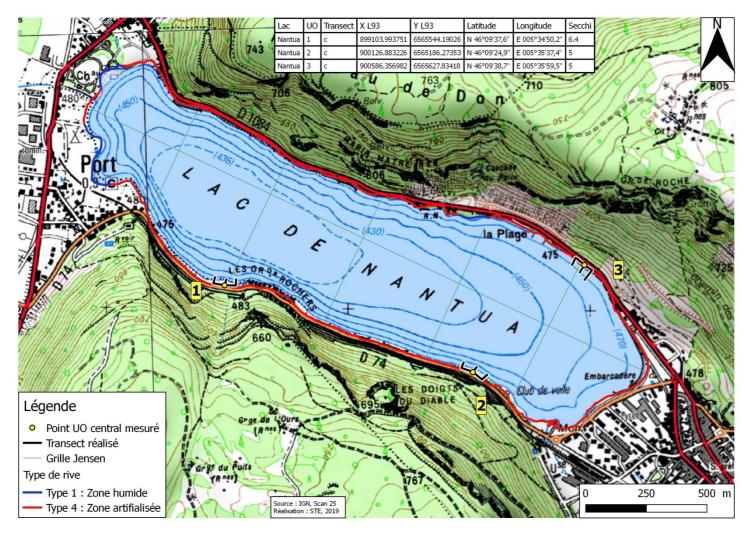
- les différents types de rives recensés sur le plan d'eau pour la sélection des unités d'observation (UO) à prospecter ;
- la pente des fonds et la transparence des eaux pour définir la limite de profondeur des profils perpendiculaires à explorer sur chaque UO (définition de la zone potentiellement colonisée par les végétaux).

Sur le lac de Nantua, 2 types de rives ont été observés. Une appréciation du recouvrement est donnée en % du périmètre total :

- Type 1 : zones humides caractéristiques : 8 %;
- Type 4 : zones artificialisées ou subissant des pressions anthropiques visibles : 92 %.

La superficie du plan d'eau étant de 133 ha, 3 unités d'observation ont été sélectionnées selon leur représentativité d'un type de rive soit : trois unités de type 4. Le type 1 représente moins de 10 % du linéaire total, il est considéré comme anecdotique. De plus, le linéaire concerné est morcelé, il ne peut donc pas être échantillonné conformément à la norme en vigueur.

Les 3 unités d'observation ainsi sélectionnées sont donc de type 4 :


- UO 1 : unité de type 4 située au sud-ouest du lac dans une zone à forte pente ;
- UO 2 : unité de type 4 située au sud du lac à proximité de la base nautique ;
- UO 3 : unité de type 4 située au nord-Est du lac dans un secteur aménagé pour la promenade.

Pour chaque unité d'observation, le choix a porté sur un secteur constitué d'un seul type de rive (sur 100 m minimum), accessible, à l'exclusion des arrivées de tributaires et des singularités. Il a été effectué en respectant les critères de la norme XP T90-328 tout en s'appuyant sur la localisation des unités d'observation ayant déjà fait l'objet d'inventaires lors des précédents suivis (2007, 2010 et 2013) afin de pouvoir suivre l'évolution temporelle des peuplements de macrophytes. L'unité d'observation 1 est identique à celle de ces suivis antérieurs, mais les unités d'observation 2 et 3 avaient été légèrement décalées en 2016 (reconduit en 2019), afin de répondre aux exigences de la norme AFNOR XP T90-328 (Décembre 2010).

Notamment, le point contact Jensen à proximité de l'UO2 se situait au niveau de la base nautique avec pontons flottants : le secteur est inaccessible, et très singulier. Aussi, il a été choisi de se déporter (2016-2019) vers l'Ouest pour avoir un secteur plus représentatif du type de rive.

La localisation des unités d'observation est présentée sur la Carte 3.

4.3.2 Carte de localisation des unites d'observation

Carte 3 : Localisation des unités d'observation pour l'étude des macrophytes sur le lac de Nantua

Étude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Nantua (01)

4.3.3 VEGETATION AQUATIQUE IDENTIFIEE

Globalement orienté nord-ouest/sud-est, le lac de Nantua est fortement marqué par l'urbanisation, accueillant ports, plages et murs de soutènement. L'ensemble des berges est situé à proximité du réseau routier. Le caractère naturel des berges est donc fortement altéré.

Ce lac est peu végétalisé et lorsque la végétation est présente, les formations sont peu denses. On retrouve ainsi quelques phragmitaies éparses et des nupharaies présentes principalement dans les secteurs nord-ouest du lac.

Le pourcentage de végétalisation est très faible (< 1% de recouvrement). Cette faible végétalisation s'explique certainement par les effets conjugués de la pression anthropique, de la nature rocheuse du substrat et des fortes pentes des fonds aquatiques.

Figure 15 : vue sur le lac de Nantua

Les formulaires de relevés de végétation aquatique selon la norme AFNOR XP T90-328 sont fournis en Annexe 4.

L'Unité d'Observation n° 1 est située sur la rive sud, dans la partie ouest du lac au pied des falaises. La zone littorale est caractérisée par la présence d'une route qui est séparée du lac par un talus boisé de 3 m de haut plutôt pentu. La plage est inexistante et les pentes sont fortes, ce qui explique le faible nombre d'espèces relevées en zone littorale. Il s'agit principalement de bryophytes comme Fissidens crassipes, Amblystegium riparium, Cinclidotus fontinaloides, Jungermania atrovirens et Rhynchostegium riparioides. Les algues sont représentées par des colonies incrustantes hémisphériques souvent noirâtres des genres Tolypothrix, Schizothrix, Rivularia et des masses floconneuses vert clair du genre Oedogonium sp. et Spirogyra sp. Quelques espèces d'hélophytes ont été notées : Eupatorium cannabinum, Lycopus europeus, espèce des roselières et des mégaphorbiaies.

Le long des transects, la végétation n'est présente qu'au niveau des premiers points contacts du fait d'une pente très forte et d'un substrat rocheux inadéquat. La profondeur maximale de colonisation est ainsi de 0,7 m pour le transect gauche pour une espèce de bryophyte (Rhynchostegium riparioides).

Figure 16: UO1 sur le lac de Nantua

L'Unité d'Observation n° 2 est située sur la rive sud du lac, à l'est de l'UO1, à côté de la base nautique. Comme pour la première unité d'observation, la rive est caractérisée par la présente d'infrastructures de transport. Un talus boisé d'environ 3 m sépare ces infrastructures du lac. La plage est relictuelle, et les pentes sont fortes, ce qui explique le peu de végétation observé.

Figure 17 : UO2 sur le lac de Nantua

Le relevé de la zone littorale est caractérisé par la présence de quelques phanérogames (*Eupatorium cannabinum*, *Angelica sylvestris*, *Lysimachia vulgaris*, *Lythrum salicaria*, etc.), de bryophytes (*Amblystegium riparium*, *Rhynchostegium riparioides*, *Fissidens adianthoides Bryum pseudotriquetrum*) et d'algues (*Chaetophora sp.*, *Spirogyra sp.*, *Tolypothrix*, *Oedogonium sp.*, *Microspora sp.*, etc.) Sur les transects transversaux, les espèces observées sont très rares du fait essentiellement d'une profondeur importante, de pentes abruptes et d'un substrat rocheux peu favorable à l'implantation des macrophytes (seules quelques algues telles que *Schizothrix* ont été observées).

L'Unité d'Observation n° 3 se situe sur la rive Nord-Est du lac. La rive, caractérisée par la présence d'une route et d'une voie piétonne, est très fréquentée. Les berges sont aménagées en mur de soutènement sur l'ensemble de la zone prospectée. Le talus de 1,5 m sépare ces aménagements du lac. La plage est absente.

Figure 18 : UO3 sur le lac de Nantua

La faible pente des fonds sur les premiers mètres permet l'installation d'une roselière à *Phragmites australis*. Le Roseau commun y est accompagné par un faible cortège d'espèces des roselières et des mégaphorbiaies (*Filipendula ulmaria, Carex elata, Calystegia sepium, Lycopus europaeus, etc.*).

On retrouve sur cette UO une assez bonne diversité de bryophytes aquatiques généralistes (Fissidens crassipes, F. adianthoides, Bryum pseudotriquetrum, Amblystegium riparium, etc.).

Les colonies algales sont représentées par les genres : Tolypothrix, Rivularia, Lyngbya, Phormidium, etc.

Comme sur les autres UO, les transects sont peu colonisés par les macrophytes : *Rivularia sp., Phragmites australis, Lyngbya sp.* jusqu'à 1 m au plus profond.

La phragmitaie quant à elle disparait aussi autour de 1 m de profondeur.

4.3.4 Liste des especes protegees et especes invasives

Aucune espèce exotique envahissante n'a été observée en 2019 au sein des UO.

Aucune espèce protégée n'a également été observée en 2019.

Elodea nuttallii, citée en 2013, n'a pas été ré-observée. De même, la Grande naïade (Najas marina), protégée en région Rhône-Alpes n'a pas été revue cette année.

4.3.5 Indice IBML et niveau trophique du plan d'eau

Le calcul de l'indice IBML a été effectué à l'aide du SEEE version V1.0.1 de l'indicateur. L'indice IBML obtient une note de 9,77 / 20, ce qui indique un faible niveau de dégradation globale des peuplements de macrophytes du plan d'eau. La contribution de 34 taxons peut indiquer une certaine robustesse de la note obtenue.

Le lac de Nantua est classé comme plan d'eau de moyenne à haute altitude à caractère alcalin. Il appartient au métatype H-Alc. L'EQR est calculé de la manière suivante :

$$EQR_{H-Alc} = 1,497 * (IBML/11,83) - 0,633$$

 $EQR (Nantua) = 0,603$

Nombre de taxons contributifs	34	T 11
IBML Note de Profil PE	9,4	Indice EOR
IBML Note de Rive PE	10.14	EQK
IBML Note de Trophie	9,77	0,603

^{=&}gt;Ces éléments tendent à indiquer que le lac de Nantua présente un bon état écologique -EQR = 0,60 pour le compartiment macrophytes. Le peuplement observé qualifie le milieu de mésotrophe.

4.3.6 Comparaison avec les suivis anterieurs

L'historique des valeurs IBML acquises sur le plan d'eau de Nantua est présenté dans le tableau 17 (valeurs issues du SEEE version V1.0.1 de l'indicateur).

Classe ÉTAT VERSION NOM LAC **MÉTATYPE** CODE LAC ANNÉE **IBML IBML INDICATEUR** MOY V2515003 2010 V1.0.1 Nantua H-Alc 0,481 В Nantua V2515003 2013 H-Alc 0,683 V1.0.1 TB 2016 Nantua V2515003 H-Alc 0,896 V1.0.1 В V2515003 2019 0,603 V1.0.1 Nantua H-Alc

Tableau 17: historique des indices IBML

Les indices IBML sont très variables sur le lac de Nantua, les notes oscillent entre 0,48 en 2010 et 0,90 en 2016. L'état du peuplement de macrophytes est donc passé de moyen à très bon sur cette période.

Les communautés macrophytiques ont pourtant peu évolué entre 2016 et 2019 : d'importantes communautés bryophytiques colonisent la zone littorale et une certaine diversité des communautés algales est observée. En revanche, en 2016 comme en 2019, aucune hydrophyte phanérogame n'a été retrouvée sur les profils perpendiculaires, seules quelques algues et bryophytes sont retrouvées à faible profondeur. La présence de *Jungermannia atrovirens* tire la note vers le haut les années où cette espèce a été retrouvée (présence en 2016 sur 2 UO en zone littorale et sur un profil perpendiculaire, présence plus réduite en 2013 et 2019 où elle n'a été retrouvée qu'en zone littorale de l'UO1).

4.4 PHYTOBENTHOS – METHODE IBDLACS

Les prélèvements ont été effectués le 30 juillet 2019 par la DREAL AURA (Rémy Chavaux).

4.4.1 Deroulement des prelevements

Trois unités d'observations définies dans le protocole macrophytes (cf. § « Choix des unités d'observation ») sont concernées par ce suivi phytobenthos. Les prélèvements ont été réalisés à l'intérieur de chacune des unités d'observations du protocole IBML.

4 échantillons ont été réalisés sur le lac de Nantua : les deux substrats (minéral et végétal) ont été échantillonnés sur l'UO3. En revanche, sur les UO1 et UO2, seul le substrat minéral pierre-galets a fait l'objet d'un prélèvement.

Les données de prélèvements des inventaires de phytobenthos réalisés ont été reportées dans le formulaire de saisie soutienbio_diat_pe_v1.0 élaboré par l'IRSTEA, ces fichiers sont fournis en Annexe 5. Les diatomées sont identifiées au microscope optique, entre 400 et 430 valves sont comptées afin d'établir une liste

floristique diatomées. La saisie des listes floristiques est réalisée, sous forme de code à 4 lettres, à l'aide d'OMNIDIA 6.0.8s. C'est la DREAL AURA qui a effectué ce travail.

Les espèces dominantes (> 7% de l'effectif) sont surlignées en jaune dans la liste floristique.

Nº échantillon		20190600000022	20190600000023	20190600000024	20190600000025
Plan d'eau			Naı	ıtua	
Unité d'Observation		UO1	UO2	UO3	UO3
Substrats		Pierres	Pierres	Pierres	Macrophytes
Date de prélèvement		30/07/2019	30/07/2019	30/07/2019	30/07/2019
Es pèces de diatomées	Code (*IBD)	%	%	%	%
Achnanthidium affine (Grunow) Czarnecki	ACAF*	7	4,75	1	
Achnanthidium exile (Kützing) Heiberg	ADEX*	12,25	0,25 1,5	10,25	
ACHNANTHIDIUM F.T. Kützing Achnanthidium minutissimum (Kützing) Czarnecki	ADMI*	16,5	12,25	18,5	5,25
Achnanthidium pyrenaicum (Hustedt) Kobayasi	ADPY*	0,25	0,25		
Achnanthidium straubianum (Lange-Bertalot)Lange-Bertalot	ADSB*	14,5	4,5	8,5	0,5
Achnanthidium zhåkovschikovii M. Potapova Adlafia bry ophila (Petersen) Moser Lange-Bertalot & Metzeltin	AZHA ABRY*	0,25		0,25	
AMPHORA C.G. Ehrenberg ex F.T. Kützing	AMPH	0,25		,,_,	
Amphora indistincta Levkov	AMID*	0,25	1	1	0,5
Amphora pediculus (Kützing) Grunow Cocconeis pseudolineata (Geitler) Lange-Bertalot	APED* COPL*	4,25 0,5	1,25	5,25	1,25
Cymbella affiniformis Krammer	CAFM*	0,5			0,25
Cymbella affinis Kützing	CAFF*		0,5		
CYMBELLA C.Agardh	CYMB	0,25	0,75		
Cymbella neoleptoceros Krammer Cymbella parva (W.Sm.) Kirchner in Cohn	CNLP*	0,23	3	0,25	0,25
Cymbop leura amphicephala Krammer	CBAM*			0,25	.,,,,
Denticula tenuis Kützing	DTEN*	0,75	0.75	0,25	
Ency onema auerswaldii Rabenhorst Ency onema bonapartei HeudrE. C.E. Wetzel & Ector	EAUE* EBNA	0,25 10,75	0,75 5,75	0,5 9,5	4,5
Ency onema silesiacum (Bleisch in Rabh.) D.G. Mann	ESLE*	0,25	3,13	,,,	7,5
Ency onema ventricosum (Agardh) Grunow in Schmidt & al.	ENVE*	·		0,25	
Encyonopsis alpina Krammer & Lange-Bertalot	ECAL ECKR*	4,25 0,25	14,75	7,5 0,5	3,25
Encyonopsis krammeri Reichardt Encyonopsis minuta Krammer & Reichardt	ECKK* ECPM*	6	12,5	9	2,75
Ency onopsis subminuta Krammer & Reichardt	ESUM*	5,75	11	6	21,75
Eucocconeis laevis (Østrup) Lange-Bertalot	EULA*	0,5			
Fallacia subhamulata (Grunow in V. Heurck) D.G. Mann Fragilaria grunowii Lange-Bertalot & Ulrich	FSBH* FGNO*	0,25			1,75
FRAGILARIA H.C. Lyngbye	FRAG	1,5	6	1,25	21,25
Fragilaria microvaucheriae C.E. Wetzel et Ector	FMIV				1,75
Fragilaria neointermedia Tuji et D.M. Williams	FNIN FPEC*		0,25		3,5
Fragilaria pectinalis(O.F.Müller) Lyngbye Fragilaria radians (Kütz.) Williams & Round	FRAD*		0,23	0,25	
Geissleria decussis(Ostrup) Lange-Bertalot & Metzeltin	GDEC*			0,25	
Gomphonema auritum A.Braun ex Kützing	GAUR	0.5	1	0.75	2,75
GOMPHONEMA C.G. Ehrenberg Gomphonema italicum Kützing	GOMP GITA	0,5 0,25	1	0,75	0,5
Gomp honema lateripunctatum Reichardt & Lange-Bertalot	GLAT*	0,25	0,5	0,25	3,75
Gomphonema minusculum Krasske	GMIS				2,5
Gomphonema olivaceum (Hornemann) Brébisson Gomphonema tergestinum (Grunow in Van Heurck) Schmidt in Schmidt & al.	GOLI*	0,25		0,25	0,5
Karayevia clevei (Grunow in Cl. & Grun.) Bukhtiyarova var. clevei	KCLE*	0,23		0,25	
Navicula antonii Lange-Bertalot	NANT*		0,5		
Navicula associata Lange-Bertalot	NXAS*		0,25	0,25	
Navicula cataracta-rheni Lange-Bertalot Navicula cryptotenella Lange-Bertalot	NCTT*	1,25	2	1	0,5
Navicula cryptotenelloides Lange-Bertalot	NCTO*	2,75	5,5	7,25	8,25
Navicula oligotraphenta Lange-Bertalot & Hofmann	NOLI*	0.25		0,75	1
Navicula reichardtiana Lange-Bertalot Navicula subalpina Reichardt	NRCH* NSBN	0,25	0,75		
Navicula veneta Kützing	NVEN*		-,,,,	0,25	
Nitzschia dissipata (Kützing) Grunow ssp.dissipata	NDIS*	0,25		0,25	0.5
Nitzschia draveillensis Coste & Ricard Nitzschia fonticola Grunow in Cleve et Möller	NDRA* NFON*		0,5	0,25	0,5
Nitzschia gessneri Hustedt	NGES*	0,25	۷,5	0,23	
Nitzschia lacuum Lange-Bertalot	NILA*	2,25	2,75	2,25	0,5
Nitzschia palea (Kützing) W.Smith var.debilis(Kützing)Grunow in Cleve & C	PCOS*	3	4,25	2,5	3,5
Pantocsekiella costei (Druart et F. Straub) K.T. Kiss et Acs Planothidium rostratoholarcticum Lange-Bertalot & B?k	PCOS* PROH*	3	0,25	2,3	3,3
Platessa conspicua (A.Mayer) Lange-Bertalot	PTCO*			0,5	
Pseudostaurosira brevistriata (Grun.in Van Heurck) Williams & Round	PSBR*	0,25		0,25	1
Punctastriata ovalis Williams & Round Reimeria sinuata (Gregory) Kociolek & Stoermer	POVA RSIN*	1		1	0,25
Sellaphora stroemii (Hustedt) Kobayasi in Mayama Idei Osada & Nagumo	SSTM*	0,25		0,25	
Sellaphora subrotundata (Hust.) Wetzel, Ector Van De Vijver, Compère & D.				0,25	
Simonsenia delognei Lange-Bertalot Staurosira venter (Ehrenberg) Cleve & Moeller	SIDE* SSVE*	0,25	0,25 0,25	0,5	
STAUROSIRELLA D.M. Williams & F.E. Round emend Morales	STRL		0,25	0,5	3
Try blionella brunoi (Lange-Bertalot) Cantonati et Lange-Bertalot in Kusber &		0,25		,	
Nombre taxons		38	32	40	31

4.4.2 Interpretation <u>des resultats</u>

Le cortège de diatomées benthiques sur le lac de Nantua présente une diversité assez élevée : 71 taxons ont été inventoriés sur les 4 échantillons prélevés. La diversité taxonomique par UO est de 31 à 40 taxons.

On retrouve globalement les mêmes taxons dominants dans les échantillons : *Achnanthidium minutissimum*, *Encyonema bonapartei*, *Encyonopsis minuta*, *Encyonopsis subminuta et Navicula cryptotenelloides*.

4.4.2.1 Unité d'Observation 1 (UO1)

L'échantillon de diatomées benthiques prélevé au niveau de l'UO1 du lac de Nantua sur substrat minéral présente 5 espèces dominantes (abondance >7%):

- ✓ Achnanthidium minutissimum (ADMI 16,5%) est une espèce tolérante vis-à-vis de la charge en nutriments mais indique une eau bien oxygénée et faiblement chargée en matière organique ;
- ✓ Achnanthidium straubianum (ADSB 14,5%) est un taxon moyennement sensible aux pollutions (IPS = 3);
- ✓ le genre *Achnanthidium ACHD (individus non déterminés à l'espèce)* est également bien représenté (12,25%);
- ✓ *Encyonema bonapartei* (EBNA 10,75%) est une espèce dont l'écologie est peu connue, elle ne dispose pas de cote IBD ;
- ✓ Achnanthidium affine (ACAF 7%) est aussi une espèce affectionnant les milieux bien oxygénés, peu à moyennement minéralisés et peu impactés par la pollution organique.

Le cortège floristique affiche une assez bonne qualité, les taxons présents indiquent une faible charge en matière organique. Ils sont en revanche assez tolérants aux apports en nutriments.

4.4.2.2 Unité d'Observation 2 (UO2)

Les diatomées ont été échantillonnées uniquement sur support minéral (cailloux). Le cortège de diatomées benthiques est dominé par 4 espèces :

- ✓ Encyonopsis alpina (ECAL 14,75%) est un taxon retrouvé dans les eaux oligotrophes très oxygénées ;
- ✓ Achnanthidium minutissimum (ADMI 12,25%) déjà cité;
- ✓ Encyonopsis minuta (ECPM 12,5%) est une espèce dont l'écologie reste à définir bien qu'elle semble polluo-sensible ;
- ✓ Encyonopsis subminuta (ESUM 11%), taxon polluo-sensible tolérant des milieux modérément impactés par les nutriments ;

Le peuplement global de diatomées de l'UO2 de Nantua suggère un milieu de bonne qualité biologique. Les diatomées présentes sont sensibles aux pollutions, et se rencontrent dans des milieux oligotrophes à mésotrophes.

4.4.2.3 Unité d'Observation 3 (UO3)

L'échantillon de diatomées benthiques prélevé au niveau de l'UO3 sur substrat minéral présente 7 espèces dominantes (abondance > 7%) dont 6 déjà identifiées comme dominantes sur les UO1 et 2 :

- ✓ Achnanthidium minutissimum (ADMI 18,5%) déjà cité;
- ✓ le genre *Achnanthidium ACHD* est également bien représenté (10,25%)
- ✓ Encyonema bonapartei (EBNA 9,5%);
- ✓ Encyonopsis minuta (ECPM 9%) déjà cité;
- ✓ Achnanthidium straubianum (ADSB 8,5%) déjà cité ;
- ✓ Encyonopsis alpina (ECAL 7,5%) déjà cité;
- \checkmark Navicula cryptotenelloides (NCTO 7,25 %) est assez sensible aux pollutions (IPS = 3,5).

Globalement, le peuplement des substrats minéraux de l'UO3 indique un milieu d'eau douce bien oxygéné, pauvre en matière organique et dont la teneur en nutriment est faible à modérée.

Le prélèvement réalisé sur support végétal (hélophytes) présente seulement 3 espèces dominantes, qui ont déjà été retrouvées dans les autres échantillons de Nantua :

- ✓ Encyonopsis subminuta (ESUM 21,75%) déjà cité;
- ✓ le genre *Fragilaria* (FRAG 21,25%);
- ✓ Navicula cryptotenelloides (NCTO 8,25 %) déjà cité.

Les résultats de ce dernier échantillon confirment les observations réalisées sur les substrats minéraux pour l'UO3 : un milieu peu chargé en matière organique dont la teneur en nutriments reste modérée.

4.4.3 CONCLUSIONS

Les cortèges de diatomées observés sur le lac de Nantua sur toutes les unités d'observation, révèlent une bonne qualité. Le plan d'eau ne semble pas subir d'apport en matière organique et montre une charge faible à modérée en nutriments.

5 APPRECIATION GLOBALE DE LA QUALITE DU PLAN D'EAU

Le suivi physicochimique et biologique 2019 sur le lac de Nantua s'est déroulé conformément aux prescriptions de suivi de l'état écologique et l'état chimique des eaux douces de surface.

On rappelle que le lac de Nantua est suivi au titre des Réseaux de Contrôle de Surveillance (RCS) et du Contrôle Opérationnel (CO) et que les pressions à l'origine du risque de non atteinte des objectifs environnementaux fixés par la DCE sont multiples : pollutions diffuses et ponctuelles par les nutriments, altération de la morphologie et de la continuité piscicole.

L'année 2019 a été globalement chaude et bien arrosée dans le secteur de Nantua. Les résultats obtenus sont proches de ceux de 2016 pour tous les compartiments, ils sont synthétisés dans le tableau suivant.

Compartiment	Synthèse de la qualité du plan d'eau ⁶
Profils verticaux	Belle stratification thermique Désoxygénation hypolimnique marquée – anoxie au fond
Qualité physico-chimique des eaux	Absence de pollution organique Teneurs modérées en nitrates et faibles en phosphates Concentrations plus élevées en phosphore, fer et manganèse dans le fond en fin d'été Peu de métaux Quelques micropolluants organiques (metformine et plastifiants)

⁶ il s'agit d'une interprétation des valeurs brutes observées (analyses physico-chimiques, peuplements biologiques) mais pas d'une stricte évaluation de l'État écologique et chimique selon les arrêtés en vigueur

Qualité physico-chimique des sédiments en azote, et en phosphore. Relargage potentiel de phosphore à l'interface eau/sédiments Peu de métaux lourds Quelques HAP Biologie – chlorophylle a Production chlorophyllienne faible à moyenne Moyenne estivale : 2,3 μg/l Biologie - phytoplancton production algale faible à moyenne – phytoplancton au profil mésoeutrophe IPLAC : Bon état	Relargage potentiel de phosphore à l'interface eau/sédiments Peu de métaux lourds
	Biologie - phytoplancton
Biologie - macrophytes	e e
Biologie - phytobenthos	

L'ensemble des suivis physico-chimiques et biologiques 2019 indiquent un milieu aquatique de qualité bonne à moyenne. Le lac de Nantua, d'origine naturelle, présente une belle stratification thermique.

Les analyses physico-chimiques montrent des apports modérés en nutriments azotés et faibles pour le phosphore dans le milieu aquatique. Les nitrates restent disponibles toute l'année mais les phosphates sont absents en zone euphotique. La production primaire résultante reste modérée. Le cortège phytoplanctonique présente globalement un profil mésotrophe à tendance eutrophe.

L'analyse des micropolluants ne met pas en évidence de contamination métallique. Quelques micropolluants organiques sont retrouvés de manière récurrente (plastifiants DEHP, phtalate, Metformine).

On observe une forte demande en oxygène pour dégrader la matière organique dans la couche profonde, qui conduit à l'anoxie au fond du lac en période estivale.

La qualité des sédiments est moyenne, les teneurs en matière organique et en nutriments sont modérées. Les conditions anoxiques régnant dans le fond du lac en période estivale favorisent le phénomène de relargage vers la masse d'eau, notamment concernant l'élément phosphore.

Les micropolluants minéraux sont peu présents dans les sédiments. Les concentrations en HAP restent modérées, elles sont dans la lignée de ceux obtenus lors des précédents suivis.

L'indice biologique macrophytes (IBML) affiche une qualité en limite de classe moyen/bon. Cependant, la végétation aquatique est très peu présente dans le lac de Nantua. Il est donc difficile d'attribuer un niveau trophique au plan d'eau.

Les cortèges de diatomées observés sur le lac de Nantua révèlent une bonne qualité. Le plan d'eau ne semble pas subir d'apport en matière organique mais montre une charge faible à modérée en nutriments.

Les résultats du suivi 2019 montrent que le lac de Nantua peut être qualifié de mésotrophe à tendance eutrophe.

Agence de l'Eau Rhône Méditerranée Corse Étude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Nantua (01)
<u>- Annexes -</u>

Annexe 1. LISTE DES MICROPOLLUANTS ANALYSES SUR EAU

SANDRE aramètre	Libellé paramètre	LQ	Unité	Code SANDRE paramètre	Libellé paramètre	LQ	Unité	Code SANDRE paramètre	Libellé paramètre	LQ	Uni
1368	Argent	0.01	μg(Ag)/L	6456	Acebutolol	0.005	μg/L	6594	Anilofos	0.005	μg
				1453	Acénaphtène	0.01	μg/L	1458	Anthracène	0.01	μg
1370	Aluminium	2	μg(Al)/L	1622	Acénaphtylène	0.01	μg/L	2013	Anthraquinone	0.005	μg
1369	Arsenic	0.05	μg(As)/L	1100	Acéphate	0.005	μg/L	1965	Asulame	0.02	μg
1362	Bore	10	μg(B)/L	1454	Acétaldéhyde	5	μg/L	5361	Atenolol	0.005	μg
1396	Baryum	0.5	μg(Ba)/L	5579	Acetamiprid	0.02		1107	Atrazine	0.005	μg
	·				·		μg/L	1832	Atrazine 2 hydroxy	0.02	μg
1377	Beryllium	0.01	μg(Be)/L	6856	Acetochlor ESA	0.03	μg/L	1109	Atrazine déisopropyl	0.01	μе
1388	Cadmium	0.01	μg(Cd)/L	6862	Acetochlor OXA	0.03	μg/L	1108	Atrazine déséthyl	0.01	με
1084	Cyanures libres	0.2	μg(CN)/L	1903	Acétochlore	0.005	μg/L	1830	Atrazine déséthyl	0.03	με
1379	Cobalt	0.05	μg(Co)/L	5581	Acibenzolar-S-Methyl	0.02	μg/L	2014	Azaconazole	0.005	με
				6735	Acide acetylsalicylique	0.05	μg/L	2015	Azaméthiphos	0.02	με
1389	Chrome	0.5	μg(Cr)/L	5408	Acide clofibrique	0.005	μg/L				
1392	Cuivre	0.1	μg(Cu)/L		Acide fenofibrique			2937	Azimsulfuron	0.02	μ
1393	Fer	1	μg(Fe)/L	5369		0.005	μg/L	1110	Azinphos éthyl	0.02	μ
				6538	Acide mefenamique	0.005	μg/L	1111	Azinphos méthyl	0.005	μ
1387	Mercure	0.01	μg(Hg)/L	1465	Acide	0.2	μg/L	7817	Azithromycine	0.5	μ
1364	Lithium	0.5	μg(Li)/L	1521	Acide nitrilotriacétique	5	μg/L	1951	Azoxystrobine	0.02	μ
1394	Manganèse	0.5	μg(Mn)/L		Acide			6231	BDE 181	0.0005	μ
1395	Molybdène	1	μg(Mo)/L	6549	pentacosafluorotridecan	0.2	μg/L	5986	BDE 203	0.0015	με
								5997	BDE 205	0.0015	με
1386	Nickel	0.5	μg(Ni)/L	6550	Acide perfluorodecane	0.005	μg/L	2915	BDE100	0.0002	με
1382	Plomb	0.05	μg(Pb)/L		sulfonique (PFDS)			2913	BDE138	0.00015	με
1376	Antimoine	0.5	μg(Sb)/L	6509	Acide perfluoro-	0.002	μg/L	2912	BDE153	0.00013	
				0303	decanoïque (PFDA)	0.002	M9/ L				με
1385	Sélénium	0.1	μg(Se)/L	65.55	Acide perfluoro-	0.00		2911	BDE154	0.0002	με
1380	Etain	0.5	μg(Sn)/L	6507	dodecanoïque (PFDoA)	0.02	μg/L	2921	BDE17	0.00015	μ
2559	Tellure	0.5	μg(Te)/L		Acide perfluoroheptane			2910	BDE183	0.0005	μ
1373	Titane	0.5	μg(Ti)/L	6542	sulfonique	0.001	μg/L	2909	BDE190	0.0005	μ
			1011					1815	BDE209	0.005	μ
2555	Thallium	0.01	μg(TI)/L		Acide			2920	BDE28	0.0002	μ
1361	Uranium	0.05	μg(U)/L	6830	perfluorohexanesulfoni	0.002	μg/L	2919	BDE47	0.0002	με
1384	Vanadium	0.1	μg(V)/L		que (PFHS)			2918	BDE66	0.00015	με
				5980	Acide perfluoro-n-	0.2	μg/L	2917	BDE71	0.00015	μ
1383	Zinc	1	μg(Zn)/L		Acide perfluoro-n-			7437	BDE77	0.0002	щ
	1-(3-chloro-4-			5977	heptanoïque (PFHpA)	0.002	μg/L	2914	BDE85	0.0002	μ
2934	methylphenyl)uree	0.02	μg/L								
	methyrphenyrjaree			5978	Acide perfluoro-n-	0.002	μg/L	2916	BDE99	0.0002	με
6751	1,7-Dimethylxanthine	0.1	μg/L		hexanoïque (PFHxA)		10,	7522	Beflubutamide	0.01	με
0/31	1,7-Dilletilyixalitillile	0.1	µg/ L	CEOO	Acide perfluoro-n-	0.02	/1	1687	Bénalaxyl	0.005	με
7041	14-	0.005	μg/L	6508	nonanoïque (PFNA)	0.02	μg/L	7423	BENALAXYL-M	0.1	με
5399	17alpha-Estradiol	0.005	μg/L		Acide perfluoro-n-			1329	Bendiocarbe	0.005	μ
7011	1-Hydroxy Ibuprofen	0.01		6510	undecanoïque (PFUnA)	0.02	μg/L	1112	Benfluraline	0.005	μ
			μg/L		Acide			2924	Benfuracarbe	0.05	μ
1264	245T	0.02	μg/L	6560		0.02	μg/L	2074	Benoxacor	0.005	μ
1141	24D	0.02	μg/L		perfluorooctanesulfoniq			5512	Bensulfuron-methyl	0.02	μ
2872	24D isopropyl ester	0.005	μg/L	5347	Acide perfluoro-	0.002	μg/L	6595	Bensulide	0.005	щ
				3347	octanoïque (PFOA)	0.002	P6/ L	1113	Bentazone	0.03	μ
2873	24D méthyl ester	0.005	μg/L	65.47	Acide	0.00		7460	Benthiavalicarbe-	0.02	щ
1142	2 4 DB	0.1	μg/L	6547	Perfluorotetradecanoiqu	0.02	μg/L				
1212	2 4 MCPA	0.02	μg/L	5355	Acide salicylique	0.05	μg/L	1764	Benthiocarbe	0.005	μ
1213	2 4 MCPB	0.03	μg/L	1970		0.02		1114	Benzène	0.5	μ
					Acifluorfen		μg/L	1082	Benzo (a) Anthracène	0.001	μ
2011	2 6 Dichlorobenzamide	0.005	μg/L	1688	Aclonifen	0.001	μg/L	1115	Benzo (a) Pyrène	0.01	μ
	2-(3-			1310	Acrinathrine	0.005	μg/L	1116	Benzo (b) Fluoranthène	0.0005	μ
6870	trifluoromethylphenoxy	0.005	μg/L	6800	Alachlor ESA	0.03	μg/L	1118	Benzo (ghi) Pérylène	0.0005	μ
33.0		5.555	₩6/ L	6855	Alachlor OXA	0.03	μg/L	1117	Benzo (k) Fluoranthène	0.0005	щ
)nicotinamide			1101	Alachlore	0.005	μg/L	1924	Benzyl butyl phtalate	0.05	щ
7815	2,6-di-tert-butyl-4-	0.05	μg/L	6740	Albendazole	0.005		3209	Beta cyfluthrine	0.01	Щ
6022	2.4+2.5-dichloroanilines	0.05	μg/L				μg/L	6652	beta-	0.05	щ
7012	2-Hydroxy Ibuprofen	0.1		1102	Aldicarbe	0.02	μg/L	6457	Betaxolol		
1012			μg/L	1807	Aldicarbe sulfone	0.02	μg/L			0.005	με
0450	2-hydroxy-desethyl-	0.02	μg/L	1806	Aldicarbe sulfoxyde	0.02	μg/L	5366	Bezafibrate	0.005	μ
3159				1103	Aldrine	0.001	μg/L	1119	Bifénox	0.005	μ
	2-Naphthaleneacetic		μg/L	1697	Alléthrine	0.03	μg/L	1120	Bifenthrine	0.005	μ
3159 5352	· ·	0.1				0.005		1502	Bioresméthrine	0.005	μ
5352	acid, 6-hydroxy-alph			7501	Δ[[vvvcarho		μg/L	1584	Biphényle	0.005	μ
5352 2613	acid, 6-hydroxy-alph 2-nitrotoluène	0.02	μg/L	7501	Allyxycarbe						
5352	acid, 6-hydroxy-alph			6651	alpha-	0.05	μg/L	6453	Bisoprolol	0.005	μ
5352 2613	acid, 6-hydroxy-alph 2-nitrotoluène	0.02	μg/L μg/L	6651 1812	alpha- Alphaméthrine	0.05 0.005	μg/L	6453 7594	Bisoprolol Bisphenol S	0.005	
5352 2613 5695 2820	acid, 6-hydroxy-alph 2-nitrotoluène 3,4,5-Trimethacarb 3-Chloro-4	0.02 0.005 0.05	μg/L μg/L μg/L	6651	alpha-	0.05		7594	Bisphenol S	0.02	μ
5352 2613 5695 2820 5367	acid, 6-hydroxy-alph 2-nitrotoluène 3,4,5-Trimethacarb 3-Chloro-4 4-Chlorobenzoic acid	0.02 0.005	μg/L μg/L	6651 1812	alpha- Alphaméthrine	0.05 0.005	μg/L	7594 2766	Bisphenol S Bisphénol-A	0.02 0.02	μ <u>ε</u>
5352 2613 5695 2820 5367	acid, 6-hydroxy-alph 2-nitrotoluène 3,4,5-Trimethacarb 3-Chloro-4	0.02 0.005 0.05 0.1	μg/L μg/L μg/L μg/L	6651 1812 5370 7842	alpha- Alphaméthrine Alprazolam	0.05 0.005 0.01 0.1	μg/L μg/L μg/L	7594 2766 1529	Bisphenol S Bisphénol-A Bitertanol	0.02 0.02 0.005	μ <u>ε</u> μ <u>ε</u> μ <u>ε</u>
5352 2613 5695 2820 5367	acid, 6-hydroxy-alph 2-nitrotoluène 3,4,5-Trimethacarb 3-Chloro-4 4-Chlorobenzoic acid	0.02 0.005 0.05	μg/L μg/L μg/L	6651 1812 5370 7842 1104	alpha- Alphaméthrine Alprazolam Ametoctradine Amétryne	0.05 0.005 0.01 0.1 0.02	μg/L μg/L μg/L μg/L	7594 2766 1529 7104	Bisphenol S Bisphénol-A Bitertanol Bithionol	0.02 0.02 0.005 0.1	μ <u>ε</u> μ <u>ε</u> μ <u>ε</u>
5352 2613 5695 2820 5367 7816	acid, 6-hydroxy-alph 2-nitrotoluène 3,4,5-Trimethacarb 3-Chloro-4 4-Chlorobenzoic acid 4-méthoxycinnamate de 2-éthylhexyle	0.02 0.005 0.05 0.1 0.65	μg/L μg/L μg/L μg/L μg/L	6651 1812 5370 7842 1104 5697	alpha- Alphaméthrine Alprazolam Ametoctradine Amétryne Amidithion	0.05 0.005 0.01 0.1 0.02 0.005	μg/L μg/L μg/L μg/L μg/L	7594 2766 1529 7104 7345	Bisphenol S Bisphénol-A Bitertanol Bithionol Bixafen	0.02 0.02 0.005 0.1 0.02	HE HE HE HE
5352 2613 5695 2820 5367 7816	acid, 6-hydroxy-alph 2-nitrotoluène 3,4,5-Trimethacarb 3-Chloro-4 4-Chlorobenzoic acid 4-méthoxycinnamate de 2-éthylhexyle 4-Methylbenzylidene	0.02 0.005 0.05 0.1 0.65	μg/L μg/L μg/L μg/L μg/L μg/L	6651 1812 5370 7842 1104 5697 2012	alpha- Alphaméthrine Alprazolam Ametoctradine Amétryne Amidithion Amidosulfuron	0.05 0.005 0.01 0.1 0.02 0.005 0.005	µg/L µg/L µg/L µg/L µg/L µg/L	7594 2766 1529 7104 7345 5526	Bisphenol S Bisphénol-A Bitertanol Bithionol Bixafen Boscalid	0.02 0.02 0.005 0.1 0.02 0.02	H6 H6 H6 H6 H6
5352 2613 5695 2820 5367 7816 6536 5474	acid, 6-hydroxy-alph 2-nitrotoluène 3,4,5-Trimethacarb 3-Chloro-4 4-Chlorobenzoic acid 4-méthoxycinnamate de 2-éthylhexyle 4-Methylbenzylidene 4-n-nonylphénol	0.02 0.005 0.05 0.1 0.65 0.02	µg/L µg/L µg/L µg/L µg/L µg/L µg/L	6651 1812 5370 7842 1104 5697 2012 5523	alpha- Alphaméthrine Alprazolam Ametoctradine Amétryne Amidithion Amidosulfuron Aminocarbe	0.05 0.005 0.01 0.1 0.02 0.005 0.02	µg/L µg/L µg/L µg/L µg/L µg/L	7594 2766 1529 7104 7345 5526 1686	Bisphenol S Bisphénol-A Bitertanol Bithionol Bixafen Boscalid Bromacil	0.02 0.02 0.005 0.1 0.02 0.02 0.005	146 146 146 146 146 146 146
5352 2613 5695 2820 5367 7816 6536 5474	acid, 6-hydroxy-alph 2-nitrotoluène 3,4,5-Trimethacarb 3-Chloro-4 4-Chlorobenzoic acid 4-méthoxycinnamate de 2-éthylhexyle 4-Methylbenzylidene	0.02 0.005 0.05 0.1 0.65	μg/L μg/L μg/L μg/L μg/L μg/L	6651 1812 5370 7842 1104 5697 2012	alpha- Alphaméthrine Alprazolam Ametoctradine Amétryne Amidithion Amidosulfuron	0.05 0.005 0.01 0.1 0.02 0.005 0.005	µg/L µg/L µg/L µg/L µg/L µg/L	7594 2766 1529 7104 7345 5526	Bisphenol S Bisphénol-A Bitertanol Bithionol Bixafen Boscalid	0.02 0.02 0.005 0.1 0.02 0.02	HE HE HE HE HE HE
5352 2613 5695 2820 5367 7816 6536 5474 1958	acid, 6-hydroxy-alph 2-nitrotoluène 3,4,5-Trimethacarb 3-Chloro-4 4-Chlorobenzoic acid 4-méthoxycinnamate de 2-éthylhexyle 4-Methylbenzylidene 4-n-nonylphénol 4-nonylphénols ramifiés	0.02 0.005 0.05 0.1 0.65 0.02 0.1	µg/L µg/L µg/L µg/L µg/L µg/L µg/L	6651 1812 5370 7842 1104 5697 2012 5523	alpha- Alphaméthrine Alprazolam Ametoctradine Amétryne Amidithion Amidosulfuron Aminocarbe	0.05 0.005 0.01 0.1 0.02 0.005 0.02	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	7594 2766 1529 7104 7345 5526 1686	Bisphenol S Bisphénol-A Bitertanol Bithionol Bixafen Boscalid Bromacil	0.02 0.02 0.005 0.1 0.02 0.02 0.005	14 14 14 14 14 14
5352 2613 5695 2820 5367 7816 6536 5474 1958 2610	acid, 6-hydroxy-alph 2-nitrotoluène 3,4,5-Trimethacarb 3-Chloro-4 4-Chlorobenzoic acid 4-méthoxycinnamate de 2-éthylhexyle 4-Methylbenzylidene 4-n-nonylphénol 4-nonylphénols ramifiés 4-tert-butylphénol	0.02 0.005 0.05 0.1 0.65 0.02 0.1 0.1	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	6651 1812 5370 7842 1104 5697 2012 5523 2537 7580	alpha- Alphaméthrine Alprazolam Ametoctradine Amétryne Amidithion Amidosulfuron Aminocarbe Aminochlorophénol-2,4 Aminopyralid	0.05 0.005 0.01 0.1 0.02 0.005 0.02 0.02 0.1	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	7594 2766 1529 7104 7345 5526 1686 1859 5371	Bisphenol S Bisphénol-A Bitertanol Bithionol Bixafen Boscalid Bromacil Bromadiolone	0.02 0.005 0.1 0.02 0.002 0.005 0.005 0.005	14 14 14 14 14 14 14 14 14
5352 2613 5695 2820 5367 7816 6536 5474 1958	acid, 6-hydroxy-alph 2-nitrotoluène 3,4,5-Trimethacarb 3-Chloro-4 4-Chlorobenzoic acid 4-méthoxycinnamate de 2-éthylhexyle 4-Methylbenzylidene 4-n-nonylphénol 4-nonylphénols ramifiés	0.02 0.005 0.05 0.1 0.65 0.02 0.1	µg/L µg/L µg/L µg/L µg/L µg/L µg/L	6651 1812 5370 7842 1104 5697 2012 5523 2537 7580 1105	alpha- Alphaméthrine Alprazolam Ametoctradine Amétryne Amidithion Amidosulfuron Aminocarbe Aminochlorophénol-2,4 Aminopyralid Aminotriazole	0.05 0.005 0.01 0.1 0.02 0.005 0.02 0.02 0.1 0.1	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	7594 2766 1529 7104 7345 5526 1686 1859 5371	Bisphenol S Bisphénol-A Bitertanol Bithionol Bixafen Boscalid Bromacil Bromadiolone Bromazepam Bromochlorométhane	0.02 0.02 0.005 0.1 0.02 0.02 0.005 0.05 0.01	HE H
5352 2613 5695 2820 5367 7816 6536 5474 1958 2610	acid, 6-hydroxy-alph 2-nitrotoluène 3,4,5-Trimethacarb 3-Chloro-4 4-Chlorobenzoic acid 4-méthoxycinnamate de 2-éthylhexyle 4-Methylbenzylidene 4-n-nonylphénol 4-nonylphénols ramifiés 4-tert-butylphénol	0.02 0.005 0.05 0.1 0.65 0.02 0.1 0.1	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	6651 1812 5370 7842 1104 5697 2012 5523 2537 7580 1105 7516	alpha- Alphaméthrine Alprazolam Ametoctradine Amétryne Amidihion Amidosulfuron Aminocarbe Aminochlorophénol-2,4 Aminopyralid Aminotriazole Amiprofos-methyl	0.05 0.005 0.01 0.1 0.02 0.005 0.02 0.02 0.1 0.1 0.03	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	7594 2766 1529 7104 7345 5526 1686 1859 5371 1121	Bisphenol S Bisphénol-A Bitertanol Bithionol Bixafen Boscalid Bromacil Bromadiolone Bromazepam Bromochlorométhane Bromoforme	0.02 0.02 0.005 0.1 0.02 0.002 0.005 0.05 0.01 0.5 0.5	HE H
5352 2613 5695 2820 5367 7816 6536 5474 1958 2610	acid, 6-hydroxy-alph 2-nitrotoluène 3,4,5-Trimethacarb 3-Chloro-4 4-Chlorobenzoic acid 4-méthoxycinnamate de 2-éthylhexyle 4-Methylbenzylidene 4-n-nonylphénol 4-nonylphénols ramifiés 4-tert-butylphénol	0.02 0.005 0.05 0.1 0.65 0.02 0.1 0.1	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	6651 1812 5370 7842 1104 5697 2012 5523 2537 7580 1105 7516	alpha- Alphaméthrine Alprazolam Ametoctradine Amétryne Amidithion Amidosulfuron Aminocarbe Aminochlorophénol-2,4 Aminopyralid Aminotriazole Amiprofos-methyl Amitraze	0.05 0.005 0.01 0.1 0.02 0.005 0.02 0.02 0.1 0.1 0.03 0.005 0.005	иg/L иg/L иg/L иg/L иg/L иg/L иg/L иg/L	7594 2766 1529 7104 7345 5526 1686 1859 5371 1121 1122 1123	Bisphenol S Bisphénol-A Bitertanol Bithionol Bixafen Boscalid Bromacil Bromadiolone Bromazepam Bromochlorométhane Bromoforme Bromophos éthyl	0.02 0.02 0.005 0.1 0.02 0.005 0.05 0.05 0.01 0.5 0.05	14 14 14 14 14 14 14 14 14 14 14 14
5352 2613 5695 2820 5367 7816 6536 5474 1958 2610	acid, 6-hydroxy-alph 2-nitrotoluène 3,4,5-Trimethacarb 3-Chloro-4 4-Chlorobenzoic acid 4-méthoxycinnamate de 2-éthylhexyle 4-Methylbenzylidene 4-n-nonylphénol 4-nonylphénols ramifiés 4-tert-butylphénol	0.02 0.005 0.05 0.1 0.65 0.02 0.1 0.1	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	6651 1812 5370 7842 1104 5697 2012 5523 2537 7580 1105 7516	alpha- Alphaméthrine Alprazolam Ametoctradine Amétryne Amidihion Amidosulfuron Aminocarbe Aminochlorophénol-2,4 Aminopyralid Aminotriazole Amiprofos-methyl	0.05 0.005 0.01 0.1 0.02 0.005 0.02 0.02 0.1 0.1 0.03	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	7594 2766 1529 7104 7345 5526 1686 1859 5371 1121 1122 1123	Bisphenol S Bisphénol-A Bitertanol Bithionol Bixafen Boscalid Bromacil Bromadiolone Bromazepam Bromochlorométhane Bromophos éthyl Bromophos méthyl	0.02 0.02 0.005 0.1 0.02 0.005 0.05 0.01 0.5 0.5 0.005	146 146 146 146 146 146 146 146 146 146
5352 2613 5695 2820 5367 7816 6536 5474 1958 2610	acid, 6-hydroxy-alph 2-nitrotoluène 3,4,5-Trimethacarb 3-Chloro-4 4-Chlorobenzoic acid 4-méthoxycinnamate de 2-éthylhexyle 4-Methylbenzylidene 4-n-nonylphénol 4-nonylphénols ramifiés 4-tert-butylphénol	0.02 0.005 0.05 0.1 0.65 0.02 0.1 0.1	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	6651 1812 5370 7842 1104 5697 2012 5523 2537 7580 1105 7516	alpha- Alphaméthrine Alprazolam Ametoctradine Amétryne Amidithion Amidosulfuron Aminocarbe Aminochlorophénol-2,4 Aminopyralid Aminotriazole Amiprofos-methyl Amitraze	0.05 0.005 0.01 0.1 0.02 0.005 0.02 0.02 0.1 0.1 0.03 0.005 0.005	иg/L иg/L иg/L иg/L иg/L иg/L иg/L иg/L	7594 2766 1529 7104 7345 5526 1686 1859 5371 1121 1122 1123 1124 1685	Bisphenol S Bisphénol-A Bitertanol Bithionol Bixafen Boscalid Bromacil Bromadiolone Bromazepam Bromochlorométhane Bromophos éthyl Bromophos méthyl Bromopropylate	0.02 0.02 0.005 0.1 0.02 0.005 0.05 0.01 0.5 0.05 0.005 0.005 0.005	
5352 2613 5695 2820 5367 7816 6536 5474 1958 2610	acid, 6-hydroxy-alph 2-nitrotoluène 3,4,5-Trimethacarb 3-Chloro-4 4-Chlorobenzoic acid 4-méthoxycinnamate de 2-éthylhexyle 4-Methylbenzylidene 4-n-nonylphénol 4-nonylphénols ramifiés 4-tert-butylphénol	0.02 0.005 0.05 0.1 0.65 0.02 0.1 0.1	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	6651 1812 5370 7842 1104 5697 2012 5523 2537 7580 1105 7516 1308 6967	alpha- Alphaméthrine Alprazolam Ametoctradine Amétryne Amidithion Amidosulfuron Aminocarbe Aminochlorophénol-2,4 Aminopyralid Aminotriazole Amiprofos-methyl Amitraze Amitriptyline	0.05 0.005 0.01 0.1 0.02 0.005 0.02 0.1 0.1 0.03 0.005 0.005 0.005	нg/L нg/L нg/L нg/L нg/L нg/L нg/L нg/L	7594 2766 1529 7104 7345 5526 1686 1859 5371 1121 1122 1123 1124 1685 1125	Bisphenol S Bisphénol-A Bitertanol Bithionol Bixafen Boscalid Bromacil Bromadiolone Bromazepam Bromochlorométhane Bromophos éthyl Bromophos méthyl Bromopropylate Bromoxynil	0.02 0.02 0.005 0.1 0.02 0.005 0.005 0.05 0.05 0.05 0.05 0.005 0.005 0.005 0.005	HE H
5352 2613 5695 2820 5367 7816 6536 5474 1958 2610	acid, 6-hydroxy-alph 2-nitrotoluène 3,4,5-Trimethacarb 3-Chloro-4 4-Chlorobenzoic acid 4-méthoxycinnamate de 2-éthylhexyle 4-Methylbenzylidene 4-n-nonylphénol 4-nonylphénols ramifiés 4-tert-butylphénol	0.02 0.005 0.05 0.1 0.65 0.02 0.1 0.1	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	6651 1812 5370 7842 1104 5697 2012 5523 2537 7580 1105 7516 1308 6967 6781	alpha- Alphaméthrine Alprazolam Ametoctradine Amétryne Amidithion Amidosulfuron Aminocarbe Aminochlorophénol-2,4 Aminopyralid Aminotriazole Amiprofos-methyl Amitraze Amitriptyline Amlodipine	0.05 0.005 0.01 0.1 0.02 0.005 0.02 0.1 0.1 0.03 0.005 0.005 0.005	ル度/L ル度/L ル度/L ル度/L ル度/L ル度/L ル度/L ル度/L ル度/L ル度/L ル度/L ル度/L ル度/L ル度/L ル度/L ル度/L	7594 2766 1529 7104 7345 5526 1686 1859 5371 1121 1122 1123 1124 1685	Bisphenol S Bisphénol-A Bitertanol Bithionol Bixafen Boscalid Bromacil Bromadiolone Bromazepam Bromochlorométhane Bromophos éthyl Bromophos méthyl Bromopropylate	0.02 0.02 0.005 0.1 0.02 0.005 0.05 0.01 0.5 0.05 0.005 0.005 0.005	

Code SANDRE paramètre	Libellé paramètre	LQ	Unité	Code SANDRE paramètre	Libellé paramètre	LQ	Unité	Code SANDRE paramètre	Libellé paramètre	LQ	Uni
7502	Bufencarbe	0.02	μg/L	1471	Chlorophénol-2	0.05	μg/L	7801	Cyprosulfamide	0.02	μg
				1651	Chlorophénol-3	0.05	μg/L	2897	Cyromazine	0.02	μе
6742	Buflomedil	0.05	μg/L	1650	Chlorophénol-4	0.05		7503	Cythioate	0.02	με
1861	Bupirimate	0.01	μg/L				μg/L	5930	Daimuron	0.005	μ
6518	Bupivacaine	0.005	μg/L	2611	Chloroprène	0.5	μg/L	2094	Dalapon	0.02	μ
1862	Buprofézine	0.005	μg/L	2065	Chloropropène-3	0.5	μg/L	5597	Daminozide	0.03	μ
5710	Butamifos	0.005	μg/L	1473	Chlorothalonil	0.01	μg/L	6677	Danofloxacine	0.1	щ
1126	Butraline	0.005	μg/L	1602	Chlorotoluène-2	0.5	μg/L	1869	Dazomet	0.05	щ
				1601	Chlorotoluène-3	0.5	μg/L		DCPMU (métabolite du		
1531	Buturon	0.02	μg/L	1600	Chlorotoluène-4	0.5	μg/L	1929	Diuron)	0.02	μ
7038	Butylate	0.03	μg/L	1683	Chloroxuron	0.005	μg/L		DCPU (métabolite		
1855	Butylbenzène n	0.5	μg/L		Chlorprophame			1930	Diuron)	0.05	μ
1610	Butylbenzène sec	0.5	μg/L	1474		0.005	μg/L	1143	DDD-o,p'	0.001	μ
1611	Butylbenzène tert	0.5	μg/L	1083	Chlorpyriphos éthyl	0.005	μg/L	1144	DDD-p,p'	0.001	μ
1863	Cadusafos	0.02	μg/L	1540	Chlorpyriphos méthyl	0.005	μg/L	1145	DDE-o,p'	0.001	Д
6519	Cafeine	0.01		1353	Chlorsulfuron	0.02	μg/L	1146	DDE-p,p'	0.001	μ
			μg/L	6743	Chlortetracycline	0.02	μg/L	1147	DDT-o,p'	0.001	μ
1127	Captafol	0.01	μg/L	2966	Chlorthal dimethyl	0.005	μg/L	1148	DDT-p,p'	0.001	μ
1128	Captane	0.01	μg/L	1813	Chlorthiamide	0.01	μg/L		DEHP		
5296	Carbamazepine	0.005	μg/L	5723	Chlorthiophos	0.02	μg/L	6616 1149	Deltaméthrine	0.4	μ
6725	Carbamazepine epoxide	0.005	μg/L					1149	Déméton S méthyl	0.001	μ
1463	Carbaryl	0.02	μg/L	1136	Chlortoluron	0.02	μg/L	1133		0.005	μ
1129	Carbendazime	0.005		2715	Chlorure de Benzylidène	0.1	μg/L	1154	Déméton S méthyl	0.01	μ
			μg/L	2977	CHLORURE DE CHOLINE	0.1	μg/L	1150	sulfone	0.01	
1333	Carbétamide	0.02	μg/L	1753	Chlorure de vinyle	0.05	μg/L	1150	Déméton-O	0.01	μ
1130	Carbofuran	0.005	μg/L	1476	Chrysène	0.01	μg/L	1152	Déméton-S	0.01	μ
1805	Carbofuran 3 hydroxy	0.02	μg/L	5481	Cinosulfuron	0.005	μg/L	2051	Déséthyl-terbuméthon	0.02	μ
1131	Carbophénothion	0.005	μg/L	6540	Ciprofloxacine	0.02	μg/L	2980	Desmediphame	0.02	μ
1864	Carbosulfan	0.02	μg/L	6537	Clarithromycine	0.005		2738	Desméthylisoproturon	0.02	μ
2975	Carboxine	0.02					μg/L	1155	Desmétryne	0.02	μ
			μg/L	6968	Clenbuterol	0.005	μg/L	6574	Dexamethasone	0.05	μ
6842	Carboxyibuprofen	0.1	μg/L	2978	Clethodim	0.02	μg/L	1156	Diallate	0.02	μ
2976	Carfentrazone-ethyl	0.005	μg/L	6792	Clindamycine	0.005	μg/L	5372	Diazepam	0.005	μ
1865	Chinométhionate	0.005	μg/L	2095	Clodinafop-propargyl	0.02	μg/L	1157	Diazinon	0.005	μ
7500	Chlorantraniliprole	0.02	μg/L	1868	Clofentézine	0.005	μg/L	1621	Dibenzo (ah) Anthracène	0.01	١
1336	Chlorbufame	0.02	μg/L	2017	Clomazone	0.005	μg/L	1021	Dibelizo (all) Alltillacelle	0.01	μ
7010	Chlordane alpha	0.005		1810	Clopyralide	0.02	μg/L	1479	Dibromo-1,2 chloro-	0.5	١
			μg/L	2018		0.005		14/5	3propane	0.5	μ
1757	Chlordane beta	0.005	μg/L		Cloquintocet mexyl		μg/L	1158	Dibromochlorométhane	0.05	μ
1758	Chlordane gamma	0.005	μg/L	6748	Clorsulone	0.01	μg/L	1498	Dibromoéthane-1,2	0.05	щ
5553	Chlorefenizon	0.005	μg/L	6389	Clothianidine	0.03	μg/L	1513	Dibromométhane	0.5	щ
1464	Chlorfenvinphos	0.02	μg/L	5360	Clotrimazole	0.005	μg/L	7074	Dibutyletain cation	0.0025	μ
2950	Chlorfluazuron	0.01	μg/L	6520	Cotinine	0.005	μg/L	1480	Dicamba	0.03	μ
1133	Chloridazone	0.005	μg/L	2972	Coumafène	0.005	μg/L	1679	Dichlobénil	0.005	μ
				1682	Coumaphos	0.02	μg/L	1159	Dichlofenthion	0.005	μ
5522	Chlorimuron-ethyl	0.02	μg/L	2019	Coumatétralyl	0.005	μg/L	1360	Dichlofluanide	0.005	μ
5405	Chlormadinone	0.01	μg/L	1640	Crésol-ortho	0.005		1160	Dichloréthane-1,1	0.5	μ
1134	Chlorméphos	0.005	μg/L				μg/L	1161	Dichloréthane-1,2	0.5	μ
5554	Chlormequat	0.03	μg/L	5724	Crotoxyphos	0.005	μg/L	1162	Dichloréthylène-1,1	0.5	μ
2097	Chlormequat chlorure	0.038	μg/L	5725	Crufomate	0.005	μg/L	1456	Dichloréthylène-1,2 cis	0.05	μ
1955	Chloroalcanes C10-C13	0.15	μg/L	6391	Cumyluron	0.03	μg/L		Dichloréthylène-1,2		
1593		0.15		1137	Cyanazine	0.02	μg/L	1727	trans	0.5	μ
	Chloroaniline-2		μg/L	5726	Cyanofenphos	0.1	μg/L	2929	Dichlormide	0.01	μ
1592	Chloroaniline-3	0.05	μg/L	5567	Cyazofamid	0.05	μg/L	1586	Dichloroaniline-3,4	0.015	μ
1591	Chloroaniline-4	0.05	μg/L	5568	Cycloate	0.02	μg/L	1585	Dichloroaniline-3,5	0.013	μ
1467	Chlorobenzène	0.5	μg/L	6733	Cyclophosphamide	0.001	μg/L	1165	Dichlorobenzène-1,2	0.02	μ
2016	Chlorobromuron	0.005	μg/L					1165	Dichlorobenzene-1,2		
1853	Chloroéthane	0.5	μg/L	2729	CYCLOXYDIME	0.02	μg/L		Dichlorobenzene-1,3	0.5	μ
1135	Chloroforme	0.5		1696	Cycluron	0.02	μg/L	1166	Dichlorobenzene-1,4 Dichlorobromométhane		μ
			μg/L	7748	cyflufénamide	0.05	μg/L	1167		0.05	μ
1736	Chlorométhane	0.5	μg/L	1681	Cyfluthrine	0.005	μg/L	1485	Dichlorodifluorométhan	0.5	μ
2821	Chlorométhylaniline-4,2	0.02	μg/L	5569	Cyhalofop-butyl	0.05	μg/L		e e		
1636	Chlorométhylphénol-4,3	0.05	μg/L	1138	Cyhalothrine	0.005	μg/L	1168	Dichlorométhane	5	μ
1341	Chloronèbe	0.005	μg/L	1139	Cymoxanil	0.003	μg/L	1617	Dichloronitrobenzène-	0.05	μ
1594	Chloronitroaniline-4,2	0.1	μg/L		·			1	2,3	2.00	
	·			1140	Cyperméthrine	0.005	μg/L	1616	Dichloronitrobenzène-	0.05	μ
1469	Chloronitrobenzène-1,2	0.02	μg/L	1680	Cyproconazole	0.02	μg/L	1010	2,4	0.03	μ
1468	Chloronitrobenzène-1,3	0.02	μg/L	1359	Cyprodinil	0.005	μg/L	1615	Dichloronitrobenzène-	0.05	I
1470	Chloronitrobenzène-1,4	0.05	μg/L					1615	2,5	0.05	μ
1684	Chlorophacinone	0.02	μg/L					1614	Dichloronitrobenzène- 3,4	0.05	щ
								1613	Dichloronitrobenzène- 3,5	0.05	μ

Code SANDRE paramètre	Libellé paramètre	LQ	Unité	Code SANDRE paramètre	Libellé paramètre	LQ	Unité	Code SANDRE paramètre	Libellé paramètre	LQ	Uni
1645	Dichlorophénol-2,3	0.05	μg/L	6791	Doxycycline	0.005	μg/L	1825	Fluazifop-butyl	0.02	μg/
1647	Dichlorophénol-3,4	0.05	μg/L	7515	DPU (Diphenylurée)	0.01	μg/L	1404 2984	Fluazifop-P-butyl Fluazinam	0.1	μg/
1655	Dichloropropane-1,2	0.2	μg/L	6714	Dydrogesterone	0.02	μg/L	2984		0.1	μg/
1654	Dichloropropane-1,3	0.5	μg/L	5751	Edifenphos	0.005	μg/L		Fludioxonil	0.02	μg/
				1493	EDTA	5	μg/L	6863	Flufenacet oxalate	0.01	μg/
2081	Dichloropropane-2,2	0.05	μg/L	8102	Emamectine	0.1	μg/L	6864	Flufenacet sulfonic acid	0.01	µg/
2082	Dichloropropène-1,1	0.5	μg/L	1178	Endosulfan alpha	0.001	μg/L	1676	Flufénoxuron	0.02	μg
1834	Dichloropropylène-1,3	0.05	μg/L	1179	Endosulfan beta	0.001	μg/L	5635	Flumequine	0.02	μg,
1835	Dichloropropylène-1,3	0.05	μg/L	1742	Endosulfan sulfate	0.001	μg/L	2023	Flumioxazine	0.005	μд
1653	Dichloropropylène-2,3	0.5	μg/L					1501	Fluométuron	0.02	μд
1169	Dichlorprop	0.03	μg/L	1181	Endrine	0.001	μg/L	7499	Fluopicolide	0.02	μg
	· · ·			2941	Endrine aldehyde	0.005	μg/L	7649	Fluopyram	0.02	μg
2544	Dichlorprop-P	0.03	μg/L	6768	Enoxacine	0.02	μg/L	1191	Fluoranthène	0.005	μд
1170	Dichlorvos	0.00025	μg/L	6784	Enrofloxacine	0.02	μg/L	1623	Fluorène	0.005	μд
5349	Diclofenac	0.01	μg/L	1494	Epichlorohydrine	0.1	μg/L	5373	Fluoxetine	0.005	μg
1171	Diclofop méthyl	0.05	μg/L	1873	EPN	0.005	μg/L	2565	Flupyrsulfuron methyle	0.02	μе
1172	Dicofol	0.005	μg/L	1744	Epoxiconazole	0.02	μg/L	2056	Fluquinconazole	0.02	μд
5525	Dicrotophos	0.005		1182	EPTC	0.1	μg/L	1974	Fluridone	0.02	μд
	· ·		μg/L	7504	Equilin	0.005		1675	Flurochloridone	0.005	μд
6696	Dicyclanil	0.01	μg/L				μg/L	1765	Fluroxypyr	0.03	μд
2847	Didéméthylisoproturon	0.02	μg/L	6522	Erythromycine	0.005	μg/L	2547	Fluroxypyr-meptyl	0.02	μд
1173	Dieldrine	0.001	μg/L	1809	Esfenvalérate	0.005	μg/L	2024	Flurprimidol	0.005	μд
7507	Dienestrol	0.005	μg/L	5397	Estradiol	0.005	μg/L	2008	Flurtamone	0.02	μд
1402	Diéthofencarbe	0.02	μg/L	6446	Estriol	0.005	μg/L	1194	Flusilazole	0.02	μд
				5396	Estrone	0.01	μg/L	2985	Flutolanil	0.02	μе
1527	Diéthyl phtalate	0.05	μg/L	5529	Ethametsulfuron-methyl	0.005	μg/L	1503	Flutriafol	0.02	με
2826	Diéthylamine	6	μg/L	2093	Ethephon	0.02	μg/L	6739	Fluvoxamine	0.02	
2628	Diethylstilbestrol	0.005	μg/L	1763	Ethidimuron	0.02	μg/L				μе
2982	Difenacoum	0.005	μg/L					7342	fluxapyroxade	0.01	μе
1905	Difénoconazole	0.02	μg/L	5528	Ethiofencarbe sulfone	0.005	μg/L	1192	Folpel	0.01	μg
5524	Difenoxuron			6534	Ethiofencarbe sulfoxyde	0.02	μg/L	2075	Fomesafen	0.05	μе
		0.005	μg/L	1183	Ethion	0.02	μg/L	1674	Fonofos	0.005	μе
2983	Difethialone	0.02	μg/L	1874	Ethiophencarbe	0.02	μg/L	2806	Foramsulfuron	0.03	μg
1488	Diflubenzuron	0.02	μg/L	1184	Ethofumésate	0.005	μg/L	5969	Forchlorfenuron	0.005	μg
1814	Diflufénicanil	0.001	μg/L	1495	Ethoprophos	0.02	μg/L	1702	Formaldéhyde	1	μе
6647	Dihydrocodeine	0.005	μg/L	5527	Ethoxysulfuron	0.02	μg/L	1975	Foséthyl aluminium	0.02	μg
5325	Diisobutyl phthalate	0.4	μg/L	2673	Ethyl tert-butyl ether	0.5	μg/L	1816	Fosetyl	0.0185	μе
				1497	Ethylbenzène	0.5		2744	Fosthiazate	0.02	μg
6729	Diltiazem	0.005	μg/L				μg/L	1908	Furalaxyl	0.005	μд
1870	Diméfuron	0.02	μg/L	5648	EthylèneThioUrée	0.1	μg/L	2567	Furathiocarbe	0.02	μд
7142	Dimepiperate	0.005	μg/L	6601	EthylèneUrée	0.1	μg/L	7441	Furilazole	0.1	μд
2546	Dimétachlore	0.005	μg/L	6644	Ethylparaben	0.01	μg/L	5364	Furosemide	0.02	μе
5737	Dimethametryn	0.005	μg/L	2629	Ethynyl estradiol	0.001	μg/L	7602	Gabapentine	0.01	μе
6865	Dimethenamid ESA	0.01		5625	Etoxazole	0.005	μg/L		gamma-		
			μg/L	5760	Etrimfos	0.005	μg/L	6653	Hexabromocyclododeca	0.05	μд
1678	Diméthénamide	0.005	μg/L	2020	Famoxadone	0.005	μg/L	5365	Gemfibrozil	0.02	μд
7735	Diméthénamide OXA	0.01	μg/L	5761	Famphur	0.005	μg/L	1526	Glufosinate	0.02	μд
5617	Dimethenamid-P	0.03	μg/L	2057	Fénamidone	0.02	μg/L	1506	Glyphosate	0.02	μе
1175	Diméthoate	0.01	μg/L	1185	Fénarimol	0.005	μg/L μg/L	5508	Halosulfuron-methyl	0.02	μе
1403	Diméthomorphe	0.02	μg/L					2047	Haloxyfop	0.05	μе
2773	Diméthylamine	10		2742	Fénazaquin	0.02	μg/L	1833	Haloxyfop-éthoxyéthyl	0.03	με
			μg/L	6482	Fenbendazole	0.005	μg/L	1909	Haloxyfop-R	0.02	με
1641	Diméthylphénol-2,4	0.02	μg/L	1906	Fenbuconazole	0.02	μg/L				
6972	Dimethylvinphos	0.005	μg/L	2078	Fenbutatin oxyde	0.0217	μg/L	1200	HCH alpha	0.001	μе
1698	Dimétilan	0.02	μg/L	7513	Fenchlorazole-ethyl	0.1	μg/L	1201	HCH beta	0.001	μе
5748	dimoxystrobine	0.02	μg/L	1186	Fenchlorphos	0.005	μg/L	1202	HCH delta	0.001	μg
1871	Diniconazole	0.02	μg/L	2743	Fenhexamid	0.005	μg/L	2046	HCH epsilon	0.005	μе
				1187	Fénitrothion	0.001	μg/L	1203	HCH gamma	0.001	μе
1578	Dinitrotoluène-2,4	0.5	μg/L	5627	Fenizon	0.005	μg/L	1197	Heptachlore	0.005	μе
1577	Dinitrotoluène-2,6	0.5	μg/L					1748	Heptachlore époxyde cis	0.005	μе
5619	Dinocap	0.05	μg/L	5763	Fenobucarb	0.005	μg/L	1749	Heptachlore époxyde	0.005	μе
1491	Dinosèbe	0.02	μg/L	5368	Fenofibrate	0.01	μg/L	1910	Heptenophos	0.005	μе
1176	Dinoterbe	0.03	μg/L	6970	Fenoprofen	0.05	μg/L	1199	Hexachlorobenzène	0.001	μg
7494	Dioctyletain cation	0.0025		5970	Fenothiocarbe	0.005	μg/L	1652	Hexachlorobutadiène	0.02	μе
	· '		μg/L	1973	Fénoxaprop éthyl	0.02	μg/L	1656	Hexachloroéthane	0.3	μе
5743	Dioxacarb	0.005	μg/L	1967	Fénoxycarbe	0.005	μg/L	2612	Hexachloropentadiène	0.1	μе
7495	Diphenyletain cation	0.00046	μg/L	1188	Fenpropathrine	0.005	μg/L	1405	Hexaconazole	0.02	μе
1699	Diquat	0.03	μg/L	1700	Fenpropidine	0.01	μg/L	1875	Hexaflumuron	0.005	με
1492	Disulfoton	0.005	μg/L	1189	Fenpropimorphe	0.005		1673	Hexazinone	0.02	μе
5745	Ditalimfos	0.05	μg/L				μg/L	1876	Hexythiazox	0.02	μе
				1190	Fenthion	0.005	μg/L	5645	Hydrazide maleique	0.5	μе
1966	Dithianon	0.1	μg/L	1500	Fénuron	0.02	μg/L	6746	Hydrochlorothiazide	0.005	μе
1177	Diuron	0.02	μg/L	1701	Fenvalérate	0.01	μg/L	6730	Hydroxy-metronidazole	0.003	με
1490	DNOC	0.02	μg/L	2021	Ferbam	10000	μg/L				
2933	Dodine	0.02	μg/L	2009	Fipronil	0.005	μg/L	5350	Ibuprofene	0.01	με
6969	Doxepine	0.005	μg/L	1840	Flamprop-isopropyl	0.005	μg/L	6727	Ifosfamide	0.005	με
0505	Dovebule	0.003	M6/ ₽	6539	Flamprop-methyl	0.005	μg/L	1704	Imazalil	0.02	μg
								1695	Imazaméthabenz	0.02	μе
				1939	Flazasulfuron	0.02	μg/L	1911	Imazaméthabenz méthyl	0.01	μе
				6393	Flonicamid	0.005	μg/L				
				2810	Florasulam	0.02	μg/L				
				6764	Florfenicol	0.1	μg/L				
				6545	Fluazifop	0.02	μg/L	1			

Code SANDRE paramètre	Libellé paramètre	LQ	Unité	Code SANDRE paramètre	Libellé paramètre	LQ	Unité	Code SANDRE paramètre	Libellé paramètre	LQ	Uni
2986	Imazamox	0.02	μg/L	2752	Mecoprop-2-	0.005	μg/L	1881	Myclobutanil	0.02	μg/
2090	Imazapyr	0.02	μg/L	2753	Mecoprop-2-ethylhexyl	0.005	μg/L	6380	N-(2,6-dimethylphenyl)-	0.01	μg/
2860	IMAZAQUINE	0.02	μg/L	2754	Mecoprop-2-octyl ester	0.005	μg/L		N-(2-methoxyethyl	0.005	
7510	Imibenconazole	0.005		2755	Mecoprop-methyl ester	0.005	μg/L	6443	Nadolol	0.005	μg/
			μg/L	2084	Mécoprop-P	0.1	μg/L	1516	Naled	0.005	μg/
1877	Imidaclopride	0.02	μg/L	1968	Méfenacet	0.005	μg/L	1517	Naphtalène	0.005	μg/
6971	Imipramine	0.005	μg/L					1519	Napropamide	0.005	μg/
1204	Indéno (123c) Pyrène	0.0005	μg/L	2930	Méfenpyr diethyl	0.005	μg/L	5351	Naproxene	0.05	μg/
6794	Indometacine	0.02	μg/L	2568	Mefluidide	0.02	μg/L	1937	Naptalame	0.05	μg/
5483	Indoxacarbe	0.02	μg/L	2987	Méfonoxam	0.02	μg/L	1462	n-Butyl Phtalate	0.05	μg/
6706	Iobitridol	0.1	μg/L	5533	Mepanipyrim	0.005	μg/L	1520	Néburon	0.02	μg/
				5791	Mephosfolan	0.005	μg/L	1882	Nicosulfuron	0.01	μg/
2741	Iodocarbe	0.02	μg/L	1969	Mépiquat	0.03	μg/L	5657	Nicotine	0.02	μg/
2025	Iodofenphos	0.005	μg/L	2089	Mépiquat chlorure	0.04	μg/L	2614	Nitrobenzène	0.1	μg,
2563	Iodosulfuron	0.02	μg/L					1229	Nitrofène	0.005	μg
5377	Iopromide	0.1	μg/L	6521	Mepivacaine	0.01	μg/L	1637	Nitrophénol-2	0.05	μg
1205	loxynil	0.02	μg/L	1878	Mépronil	0.005	μg/L	5400	Norethindrone	0.001	μg
				1677	Meptyldinocap	1	μg/L	6761	Norfloxacine	0.1	μд
2871	loxynil methyl ester	0.005	μg/L	1510	Mercaptodiméthur	0.01	μg/L	6772	Norfluoxetine	0.005	μе
1942	loxynil octanoate	0.01	μg/L	1804	Mercaptodiméthur	0.02	μg/L	1669	Norflurazon	0.005	μе
7508	Ipoconazole	0.02	μg/L	2578	Mesosulfuron methyle	0.02	μg/L	2737	Norflurazon desméthyl	0.005	μе
5777	Iprobenfos	0.005	μg/L	2076	Mésotrione	0.02		1883	Nuarimol	0.005	με
1206	Iprodione	0.005	μg/L				μg/L	6767	O-Demethyltramadol	0.005	με
2951	Iprovalicarbe	0.02		1706	Métalaxyl	0.02	μg/L	6533	Ofloxacine	0.003	με
	· ·		μg/L	1796	Métaldéhyde	0.02	μg/L	2027	Ofurace	0.005	
6535	Irbesartan	0.005	μg/L	1215	Métamitrone	0.02	μg/L				με
1935	Irgarol (Cybutryne)	0.0025	μg/L	6894	Metazachlor oxalic acid	0.1	μg/L	1230	Ométhoate	0.0005	με
1976	Isazofos	0.02	μg/L	6895	Metazachlor sulfonic	0.1	μg/L	1668	Oryzalin	0.1	με
1836	Isobutylbenzène	0.5	μg/L	1670	Métazachlore	0.005	μg/L	2068	Oxadiargyl	0.005	με
1207	Isodrine	0.001						1667	Oxadiazon	0.005	με
			μg/L	1879	Metconazole	0.02	μg/L	1666	Oxadixyl	0.005	με
1829	Isofenphos	0.005	μg/L	6755	Metformine	0.005	μg/L	1850	Oxamyl	0.02	με
5781	Isoprocarb	0.005	μg/L	1216	Méthabenzthiazuron	0.005	μg/L	5510	Oxasulfuron	0.005	με
1633	Isopropylbenzène	0.5	μg/L	5792	Methacrifos	0.02	μg/L	5375	Oxazepam	0.005	με
2681	Isopropyltoluène o	0.5	μg/L	1671	Méthamidophos	0.02	μg/L	7107	Oxyclozanide	0.005	με
1856	Isopropyltoluène p	0.5		1217	Méthidathion	0.02	μg/L	6682	Oxycodone	0.01	με
			μg/L					1231	Oxydéméton méthyl	0.02	με
1208	Isoproturon	0.02	μg/L	1218	Méthomyl	0.02	μg/L	1952	Oxyfluorfène	0.002	με
6643	Isoquinoline	0.01	μg/L	6793	Methotrexate	0.005	μg/L	6532	Oxytetracycline	0.005	με
2722	Isothiocyanate de	0.05	μg/L	1511	Méthoxychlore	0.005	μg/L	1920	p-(n-octyl)phénol	0.03	με
1672	Isoxaben	0.02	μg/L	5511	Methoxyfenoside	0.1	μg/L	2545	Paclobutrazole	0.02	με
2807	Isoxadifen-éthyle	0.005	μg/L	1619	Méthyl-2-Fluoranthène	0.001	μg/L	5354	Paracetamol	0.025	με
1945	Isoxaflutol	0.02		1618	Méthyl-2-Naphtalène	0.005	μg/L	5806	Paraoxon	0.005	μ
			μg/L	6695	Methylparaben	0.01	μg/L	1232	Parathion éthyl	0.01	μ
5784	Isoxathion	0.005	μg/L	2067	Metiram	0.03	μg/L	1233	Parathion méthyl	0.005	με
7505	Karbutilate	0.005	μg/L					6753		0.003	
5353	Ketoprofene	0.01	μg/L	1515	Métobromuron	0.02	μg/L		Parconazole		μ
7669	Ketorolac	0.01	μg/L	6854	Metolachlor ESA	0.02	μg/L	1242	PCB 101	0.0012	щ
1950	Kresoxim méthyl	0.02	μg/L	6853	Metolachlor OXA	0.02	μg/L	1627	PCB 105	0.0003	μ
				1221	Métolachlore	0.005	μg/L	5433	PCB 114	0.00003	μ
1094	Lambda Cyhalothrine	0.00006	μg/L	5796	Metolcarb	0.005	μg/L	1243	PCB 118	0.0012	μ
1406	Lénacile	0.005	μg/L	5362	Metoprolol	0.005	μg/L	5434	PCB 123	0.00003	μ
6711	Levamisole	0.005	μg/L					2943	PCB 125	0.005	μ
6770	Levonorgestrel	0.02	μg/L	1912	Métosulame	0.005	μg/L	1089	PCB 126	0.000006	μ
7843	Lincomycine	0.005	μg/L	1222	Métoxuron	0.02	μg/L	1884	PCB 128	0.0012	μ
				5654	Metrafenone	0.005	μg/L	1244	PCB 138	0.0012	με
1209	Linuron	0.02	μg/L	1225	Métribuzine	0.02	μg/L	1885	PCB 149	0.0012	μ
5374	Lorazepam	0.005	μg/L	6731	Metronidazole	0.005	μg/L	1245	PCB 153	0.0012	μ
1210	Malathion	0.005	μg/L	1797	Metsulfuron méthyl	0.02	μg/L	2032	PCB 156	0.00012	μ
5787	Malathion-o-analog	0.005	μg/L					5435	PCB 157	0.000018	μ
1211	Mancozèbe	0.03	μg/L	1226	Mévinphos	0.005	μg/L	5436	PCB 167	0.00003	μ
				7143	Mexacarbate	0.005	μg/L	1090	PCB 169	0.000006	μ
6399	Mandipropamid	0.02	μg/L	1707	Molinate	0.005	μg/L	1626	PCB 169	0.00000	
1705	Manèbe	0.03	μg/L	2542	Monobutyletain cation	0.0025	μg/L				μ
6700	Marbofloxacine	0.1	μg/L	1880	Monocrotophos	0.02	μg/L	1246	PCB 180	0.0012	με
2745	MCPA-1-butyl ester	0.005	μg/L	1227	Monolinuron	0.02	μg/L	5437	PCB 189	0.000012	με
2746	MCPA-2-ethylhexyl	0.005	μg/L					1625	PCB 194	0.0012	με
				7496	Monooctyletain cation	0.001	μg/L	1624	PCB 209	0.005	με
2747	MCPA-butoxyethyl ester	0.005	μg/L	7497	Monophenyletain cation	0.001	μg/L	1239	PCB 28	0.0012	με
2748	MCPA-ethyl-ester	0.01	μg/L	1228	Monuron	0.02	μg/L	1886	PCB 31	0.005	με
2749	MCPA-methyl-ester	0.005	μg/L	6671	Morphine	0.02	μg/L	1240	PCB 35	0.005	μ
5789	Mecarbam	0.005	μg/L	7475	Morpholine	2	μg/L	2031	PCB 37	0.005	με
1214		0.02		1512	MTBE	0.5		1628	PCB 44	0.0012	με
	Mécoprop		μg/L				μg/L	1241	PCB 52	0.0012	με
2870	Mecoprop n isobutyl	0.005	μg/L	6342	Musc xylène	0.1	μg/L	2048	PCB 54	0.0012	με
2750	Mecoprop-1-octyl ester	0.005	μg/L					5803	PCB 66	0.005	με
2751	Mecoprop-2,4,4-	0.005	,.					1091	PCB 77	0.00006	με
			μg/L					1031	1 00 / /	5.55000	μŧ

Code SANDRE paramètre	Libellé paramètre	LQ	Unité	Code SANDRE paramètre	Libellé paramètre	LQ	Unité	Code SANDRE paramètre	Libellé paramètre	LQ	Unité
1762	Penconazole	0.02	μg/L	1092	Prosulfocarbe	0.03	μg/L	2085	Sulfosufuron	0.02	μg/L
1887	Pencycuron	0.02	μg/L	2534	Prosulfuron	0.02	μg/L	1894	Sulfotep	0.005	μg/L
1234	Pendiméthaline	0.005	μg/L	5603	Prothioconazole	0.05	μg/L	5831	Sulprofos	0.02	μg/L
6394	Penoxsulam	0.003	μg/L	7442	Proximpham	0.005	μg/L	1193	Taufluvalinate	0.005	μg/L
	Pentachlorobenzène			5416	Pymétrozine	0.02	μg/L	1694	Tébuconazole Tébufénozide	0.02	μg/L
1888		0.001	μg/L	6611	Pyraclofos	0.005	μg/L	1895 1896	Tébufenozide	0.02	μg/L
1235	Pentachlorophénol	0.03	μg/L	2576	Pyraclostrobine	0.02	μg/L	7511	Tébupirimfos	0.003	μg/L μg/L
7670	Pentoxifylline	0.005	μg/L	5509	Pyraflufen-ethyl	0.1	μg/L	1661	Tébutame	0.005	μg/L μg/L
6219	Perchlorate	0.1	μg/L	1258		0.02		1542	Tébuthiuron	0.005	μg/L
6548	Perfluorooctanesulfona	0.02	μg/L		Pyrazophos		μg/L	5413	Tecnazène	0.003	μg/L
0348	mide (PFOSA)	0.02	μg/ L	6386	Pyrazosulfuron-ethyl	0.005	μg/L	1897	Téflubenzuron	0.005	μg/L
1523	Perméthrine	0.01	μg/L	6530	Pyrazoxyfen	0.005	μg/L	1953	Téfluthrine	0.005	μg/L
7519	Pethoxamide	0.02	μg/L	1537	Pyrène	0.005	μg/L	7086	Tembotrione	0.005	μg/L
1499	Phénamiphos	0.005	μg/L	5826	Pyributicarb	0.005	μg/L	1898	Téméphos	0.02	μg/L
1524	Phénanthrène	0.005		1890	Pyridabène	0.005	μg/L	1659	Terbacile	0.005	μg/L
			μg/L	5606	Pyridaphenthion	0.005	μg/L	1266	Terbuméton	0.02	μg/L
5420	Phénazone	0.005	μg/L	1259	Pyridate	0.01	μg/L	1267	Terbuphos	0.005	μg/L
1236	Phenmédiphame	0.02	μg/L	1663	Pyrifénox	0.01	μg/L	6963	Terbutaline	0.02	μg/L
5813	Phenthoate	0.005	μg/L	1432	Pyriméthanil	0.005	μg/L	1268	Terbuthylazine	0.02	μg/L
7708	Phenytoin	0.05	μg/L	1260	Pyrimiphos éthyl	0.02	μg/L	2045	Terbuthylazine déséthyl	0.005	
1525	Phorate	0.005	μg/L	1260		0.02		2045			μg/L
1237	Phosalone	0.005	μg/L		Pyrimiphos méthyl		μg/L	7150	Terbuthylazine desethyl-	0.02	μg/L
1971	Phosmet	0.003	μg/L	5499	Pyriproxyfène	0.005	μg/L		2-hydroxy		
				7340	Pyroxsulam	0.05	μg/L	1954	Terbuthylazine hydroxy	0.02	μg/L
1238	Phosphamidon	0.005	μg/L	1891	Quinalphos	0.02	μg/L	1269	Terbutryne	0.02	μg/L
1665	Phoxime	0.005	μg/L	2087	Quinmerac	0.02	μg/L	5384	Testosterone	0.005	μg/L
1489	Phtalate de diméthyle	0.4	μg/L	2028	Quinoxyfen	0.005	μg/L	1936	Tetrabutyletain	0.00058	μg/L
1708	Piclorame	0.03	μg/L	1538	Quintozène	0.01	μg/L	1270	Tétrachloréthane-1,1,1,2		μg/L
5665	Picolinafen	0.005	μg/L	2069	Quizalofop	0.02	μg/L	1271	Tétrachloréthane-1,1,2,2		μg/L
2669	Picoxystrobine	0.02	μg/L	2070	Quizalofop éthyl	0.1	μg/L	1272	Tétrachloréthylène	0.5	μg/L
7057	Pinoxaden	0.05	μg/L	6529	Ranitidine	0.005	μg/L	2735	Tétrachlorobenzène	0.02	μg/L
1709	Piperonil butoxide	0.005	μg/L	1892	Rimsulfuron	0.005	μg/L	2010	Tétrachlorobenzène-	0.02	μg/L
5819								1276	Tétrachlorure de C	0.5	μg/L
	Piperophos	0.005	μg/L	2029	Roténone	0.005	μg/L	1277	Tétrachlorvinphos	0.005	μg/L
1528	Pirimicarbe	0.02	μg/L	5423	Roxythromycine	0.05	μg/L	1660	Tétraconazole	0.02	μg/L
5531	Pirimicarbe Desmethyl	0.02	μg/L	7049	RS-Iopamidol	0.1	μg/L	6750	Tetracycline	0.1	μg/L
5532	Pirimicarbe Formamido	0.005	ug/I	2974	S Métolachlore	0.1	μg/L	1900	Tétradifon	0.005	μg/L
5552	Desmethyl	0.005	μg/L	6527	Salbutamol	0.005	μg/L	5249	Tétraphénylétain	0.005	μg/L
7668	Piroxicam	0.02	μg/L	1923	Sébuthylazine	0.02	μg/L	5837	Tetrasul	0.01	μg/L
5821	p-Nitrotoluene	0.15	μg/L	6101	Sebuthylazine 2-hydroxy	0.005	μg/L	1713	Thiabendazole	0.02	μg/L
6771	Pravastatine	0.02	μg/L	5981	Sebutylazine desethyl	0.005	μg/L	5671	Thiacloprid	0.05	μg/L
				1262	Secbumeton	0.02	μg/L	1940	Thiafluamide	0.02	μg/L
6734	Prednisolone	0.02	μg/L	7724	Sedaxane	0.02	μg/L	6390	Thiamethoxam	0.02	μg/L
1949	Pretilachlore	0.005	μg/L	6769	Sertraline	0.005	μg/L	1714 5934	Thiazasulfuron Thidiazuron	0.05	μg/L
6531	Prilocaine	0.005	μg/L	1808	Séthoxydime	0.02	μg/L	7517	Thiencarbazone-methyl	0.02	μg/L μg/L
6847	Pristinamycine IIA	0.02	μg/L					1913	Thifensulfuron méthyl	0.03	μg/L μg/L
1253	Prochloraze	0.001	μg/L	1893	Siduron	0.005	μg/L	7512	Thiocyclam hydrogen	0.02	
1664	Procymidone	0.005	μg/L	5609	Silthiopham	0.02	μg/L	1093	Thiodicarbe	0.01	μg/L μg/L
1889	Profénofos	0.005	μg/L	1539	Silvex	0.02	μg/L	1715	Thiofianox	0.05	
5402	Progesterone	0.02	μg/L	1263	Simazine	0.005	μg/L	5476	Thiofanox sulfone	0.03	μg/L μg/L
1710	Promécarbe	0.005	μg/L	1831	Simazine hydroxy	0.02	μg/L	5475	Thiofanox sulfoxyde	0.02	μg/L μg/L
				5477	Simétryne	0.005	μg/L	2071	Thiométon	0.005	μg/L μg/L
1711	Prométon	0.005	μg/L	5055	somme de	0.05		5838	Thionazin	0.005	μg/L μg/L
1254	Prométryne	0.02	μg/L	5855	Méthylphénol-3 et de	0.05	μg/L	7514	Thiophanate-ethyl	0.05	μg/L μg/L
1712	Propachlore	0.01	μg/L		Somme du 1,2,3,5			1717	Thiophanate-méthyl	0.05	μg/L
6398	Propamocarb	0.02	μg/L	6326	tetrachlorobenzene et1,	0.02	μg/L	1717	Thirame	0.03	μg/L μg/L
1532	Propanil	0.005	μg/L		Somme du			6524	Ticlopidine	0.01	μg/L μg/L
6964	Propaphos	0.005	μg/L	3336		0.02	μg/L	7965	Timolol	0.005	μg/L μg/L
1972	Propaguizafop	0.02	μg/L	5424	Dichlorophenol-2,4 et du	0.005	, . = D	5922	Tiocarbazil	0.005	μg/L μg/L
1255	Propargite	0.005	μg/L	5424	Sotalol	0.005	μg/L	5675	Tolclofos-methyl	0.005	μg/L μg/L
1256	Propargite	0.003		5610	Spinosad	0.01	μg/L	1278	Toluène	0.003	μg/L
	•		μg/L	7506	Spirotetramat	0.02	μg/L	1719	Tolylfluanide	0.005	μg/L
5968	Propazine 2-hydroxy	0.02	μg/L	2664	Spiroxamine	0.02	μg/L	6720	Tramadol	0.005	μg/L
1533	Propétamphos	0.005	μg/L	3160	s-Triazin-2-ol, 4-amino-6-	0.05	μg/L	1544	Triadiméfon	0.005	μg/L
1534	Prophame	0.02	μg/L	3100	(ethylamino)-	0.05	µ8/ ∟	1280	Triadiménol	0.02	μg/L
1257	Propiconazole	0.005	μg/L	1541	Styrène	0.5	μg/L				0, -
1535	Propoxur	0.02	μg/L	1662	Sulcotrione	0.03	μg/L	1			
5602	Propoxycarbazone-	0.02	μg/L	6525	Sulfamethazine	0.005	μg/L	1			
5363	Propranolol	0.005	μg/L	6795	Sulfamethizole	0.005	μg/L	1			
	·			5356	Sulfamethoxazole	0.005	μg/L	1			
1837	Propylbenzène	0.5	μg/L					1			
6214	Propylene thiouree	0.5	μg/L	6575	Sulfaquinoxaline	0.05	μg/L	1			
6693	Propylparaben	0.01	μg/L	6572	Sulfathiazole	0.005	μg/L	1			
5421	Propyphénazone	0.005	μg/L	5507	Sulfomethuron-methyl	0.005	μg/L	1			
1414	Propyzamide	0.005	μg/L	CEC1	Sulfonate de	0.02	110/1	1			
	Proquinazid	0.02	μg/L	6561	perfluorooctane	0.02	μg/L				

Code	Ettate des pians à eat		
SANDRE	Libellé paramètre	LQ	Unité
paramètre			
1281	Triallate	0.02	μg/L
1914	Triasulfuron	0.02	μg/L
1901	Triazamate	0.005	μg/L
1657	Triazophos	0.005	μg/L
2064	Tribenuron-Methyle	0.02	μg/L
5840	Tributyl phosphorotrithioite	0.02	μg/L
2879	Tributyletain cation	0.0002	μg/L
1847	Tributylphosphate	0.005	μg/L
1288	Trichlopyr	0.02	μg/L
1284	Trichloréthane-1,1,1	0.05	μg/L
1285	Trichloréthane-1,1,2	0.25	μg/L
1286	Trichloréthylène	0.5	μg/L
1630	Trichlorobenzène-1,2,3	0.05	μg/L
1283	Trichlorobenzène-1,2,4	0.05	μg/L
1629	Trichlorobenzène-1,3,5	0.05	μg/L μg/L
1195	Trichlorofluorométhane	0.05	μg/L μg/L
1548 1549	Trichlorophénol-2,4,5 Trichlorophénol-2,4,6	0.05	μg/L
			μg/L
1854	Trichloropropane-1,2,3	0.5	μg/L
1196	Trichlorotrifluoroéthane-1,1,2	0.5	μg/L
6989	Triclocarban	0.005	μg/L
5430	Triclosan	0.05	μg/L
2898	Tricyclazole	0.02	μg/L
2885	Tricyclohexyletain cation	0.0005	μg/L
5842	Trietazine	0.005	μg/L
6102	Trietazine 2-hydroxy	0.005	μg/L
5971	Trietazine desethyl	0.005	μg/L
2678	Trifloxystrobine	0.02	μg/L
1902	Triflumuron	0.02	μg/L
1289	Trifluraline	0.005	μg/L
2991	Triflusulfuron-methyl	0.005	μg/L
1802	Triforine	0.005	μg/L
6732	Trimetazidine	0.005	μg/L
5357	Trimethoprime	0.005	μg/L
1857	Triméthylbenzène-1,2,3	1	μg/L
1609	Triméthylbenzène-1,2,4	1	μg/L
1509	Triméthylbenzène-1,3,5	1	
2096	Trinexapac-ethyl	0.02	μg/L μg/L
2886			
	Trioctyletain cation	0.0005	μg/L
6372	Triphenyletain cation	0.00059	μg/L
2992	Triticonazole	0.02	μg/L
7482	Uniconazole	0.005	μg/L
1290	Vamidothion	0.005	μg/L
1291	Vinclozoline	0.005	μg/L
1293	Xylène-meta	0.5	μg/L
1292	Xylène-ortho	0.5	μg/L
1294	Xylène-para	1	μg/L
1722	Zirame	100	μg/L
	7-1-1-1	0.005	μg/L
5376	Zolpidem	0.005	μg/ L

Annexe 2. LISTE DES MICROPOLLUANTS ANALYSES SUR SEDIMENT

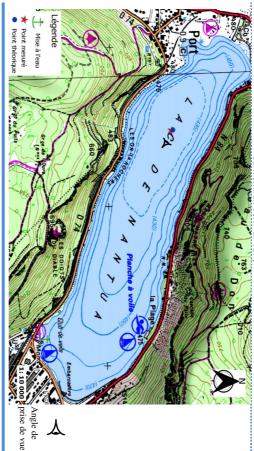
	Enac aes pians a can an programme a						
Code SANDRE	Paramètre	LQ	Unité	Code SANDRE	Paramètre	LQ	
1370	Aluminium	5	mg/(kg MS)	2916	BDE99	10	μg
.376	Antimoine	0.2	mg/(kg MS)	1114	Benzène	5	μg,
1368	Argent	0.1	mg/(kg MS)	1607	Benzidine	100	μg
1369	Arsenic	0.2	mg/(kg MS)	1082	Benzo (a) Anthracène	10	μg,
1396	Baryum	0.4	mg/(kg MS)	1115	Benzo (a) Pyrène	10	μg
1377	Beryllium	0.2	mg/(kg MS)	1116	Benzo (b) Fluoranthène	10	μg
1362	Bore	1	mg/(kg MS)	1118	· · ·	10	μg
1388	Cadmium	0.1	mg/(kg MS)	1117	Benzo (ghi) Pérylène	10	
1389		0.1	mg/(kg MS)		Benzo (k) Fluoranthène		μg
1379	Chrome	0.2	mg/(kg MS)	1924	Benzyl butyl phtalate	100	μg
1392	Cobalt	0.2	mg/(kg MS)	6652	beta-Hexabromocyclododecane	10	μе
1380	Cuivre	0.2		1119	Bifénox	50	μе
	Etain		mg/(kg MS)	1584	Biphényle	20	με
1393	Fer	5	mg/(kg MS)	1122	Bromoforme	5	με
1364	Lithium	0.2	mg/(kg MS)	1464	Chlorfenvinphos	20	με
1394	Manganèse	0.4	mg/(kg MS)	1134	Chlorméphos	10	με
1387	Mercure	0.01	mg/(kg MS)	1955	Chloroalcanes C10-C13	2000	μе
1395	Molybdène	0.2	mg/(kg MS)	1593	Chloroaniline-2	50	με
1386	Nickel	0.2	mg/(kg MS)	1467	Chlorobenzène	10	με
1382	Plomb	0.2	mg/(kg MS)	1135	Chloroforme (Trichlorométhane)	5	με
1385	Sélénium	0.2	mg/(kg MS)	1635	Chlorométhylphénol-2,5	50	με
2559	Tellure	0.2	mg/(kg MS)	1636	Chlorométhylphénol-4,3	50	με
2555	Thallium	0.2	mg/(kg MS)	1469	Chloronitrobenzène-1,2	20	με
1373	Titane	1	mg/(kg MS)	1468	Chloronitrobenzène-1,3	20	με
1361	Uranium	0.2	mg/(kg MS)	1470	Chloronitrobenzène-1,4	20	με
1384	Vanadium	0.2	mg/(kg MS)	1471	Chlorophénol-2	50	με
1383	Zinc	0.4	mg/(kg MS)	1651	Chlorophénol-3	50	με
6536	4-Methylbenzylidene camphor	10	μg/(kg MS)	1650	Chlorophénol-4	50	με
5474	4-n-nonylphénol	40	μg/(kg MS)	2611	Chloroprène	20	με
6369	4-nonylphenol diethoxylate (mélange d'is	15	μg/(kg MS)	2065	Chloropropène-3	5	με
1958	4-nonylphénols ramifiés	40	μg/(kg MS)	1602	Chlorotoluène-2	5	με
7101	4-sec-Butyl-2,6-di-tert-butylphenol	20	μg/(kg MS)	1601	Chlorotoluène-3	5	μ
2610	4-tert-butylphénol	40	μg/(kg MS)	1600	Chlorotoluène-4	5	μ
1959	4-tert-octylphénol	40	μg/(kg MS)	1474		4	
1453	Acénaphtène	10	μg/(kg MS)	1083	Chlorprophame	10	μ
1622	Acénaphtylène	10	μg/(kg MS)		Chlorpyriphos éthyl	20	μ
1903	Acétochlore	4	μg/(kg MS)	1540	Chlorpyriphos méthyl		μ
6509	Acide perfluoro-decanoïque (PFDA)	50	μg/(kg MS)	1476	Chrysène	10	μ
6830	Acide perfluorohexanesulfonique (PFHS)	50	μg/(kg MS)	2017	Clomazone	4	μ
5978	Acide perfluoro-n-hexanoïque (PFHxA)	50	μg/(kg MS)	5360	Clotrimazole	100	μ
6560	Acide perfluorooctanesulfonique (PFOS)	5	μg/(kg MS)	1639	Crésol-méta	50	μ
5347	Acide perfluoro-octanoïque (PFOA)	50	μg/(kg MS)	1640	Crésol-ortho	50	μ
1688	Aclonifen	20	μg/(kg MS)	1638	Crésol-para	50	μ
1103	Aldrine	20	μg/(kg MS)	1140	Cyperméthrine	20	μ
6651	alpha-Hexabromocyclododecane	10	μg/(kg MS)	1680	Cyproconazole	10	μ
1812		4	μg/(kg MS)	1359	Cyprodinil	2	μ
7102	Alphaméthrine Anthanthrene	10	μg/(kg IVIS) μg/(kg MS)	1143	DDD-o,p'	5	μ
1458		10		1144	DDD-p,p'	5	μ
	Anthraguinana		μg/(kg MS)	1145	DDE-o,p'	5	μ
2013	Anthraquinone	4	μg/(kg MS)	1146	DDE-p,p'	5	μ
1951	Azoxystrobine	10	μg/(kg MS)	1147	DDT-o,p'	5	μ
5989	BDE 196	10	μg/(kg MS)	1148	DDT-p,p'	5	μ
5990	BDE 197	10	μg/(kg MS)	6616	DEHP	100	με
5991	BDE 198	10	μg/(kg MS)	1149	Deltaméthrine	2	μ
5986	BDE 203	10	μg/(kg MS)	1157	Diazinon	25	μ
5996	BDE 204	10	μg/(kg MS)	1621	Dibenzo (ah) Anthracène	10	με
5997	BDE 205	10	μg/(kg MS)	1158	Dibromochlorométhane	5	μ
2915	BDE100	10	μg/(kg MS)	1498	Dibromoéthane-1,2	5	μ
2913	BDE138	10	μg/(kg MS)	7074	Dibutyletain cation	10	μ
2912	BDE153	10	μg/(kg MS)	1160	Dichloréthane-1,1	10	μ
2911	BDE154	10	μg/(kg MS)	1161	Dichloréthane-1,2	10	μ
2910	BDE183	10	μg/(kg MS)	1162	Dichlorethane-1,2 Dichlorethylène-1,1	10	μ
1815	BDE209	5	μg/(kg MS)				μξ
2920	BDE28	10	μg/(kg MS)	1456	Dichloréthylène 1,2 trans	10	μ
2919	BDE47	10	μg/(kg MS)	1727	Dichlorethylène-1,2 trans	10	μ
7437	BDE77	10	μg/(kg MS)	1589	Dichloroaniline-2,4	50	με
				1588	Dichloroaniline-2,5	50	με
				1165	Dichlorobenzène-1,2	10	με
				1164	Dichlorobenzène-1,3	10	μе

ANDRE 1167 1168 1617 1616 1615 1614 1613 1645 1486 1649 1648 1647 1646 1655 1654	Dichlorobromométhane Dichlorométhane Dichloronitrobenzène-2,3 Dichloronitrobenzène-2,4 Dichloronitrobenzène-2,5 Dichloronitrobenzène-3,4 Dichloronitrobenzène-3,5 Dichlorophénol-2,3 Dichlorophénol-2,4 Dichlorophénol-2,5 Dichlorophénol-2,6 Dichlorophénol-3,4 Dichlorophénol-3,5 Dichloropropane-1,2 Dichloropropane-1,3	5 10 50 50 50 50 50 50 50 50 50 50 50	µg/(kg MS) µg/(kg MS)	1094 6664 1619 1618 2542 7496 7497 1517 1519	Lambda Cyhalothrine Methyl triclosan Méthyl-2-Fluoranthène Méthyl-2-Naphtalène Monobutyletain cation Monooctyletain cation Monophenyletain cation Naphtalène	10 20 10 10 75 40 41.5 25	μg/(kg N μg/(kg N μg/(kg N μg/(kg N μg/(kg N μg/(kg N μg/(kg N
1168	Dichlorométhane Dichloronitrobenzène-2,3 Dichloronitrobenzène-2,4 Dichloronitrobenzène-2,5 Dichloronitrobenzène-3,4 Dichloronitrobenzène-3,5 Dichlorophénol-2,3 Dichlorophénol-2,4 Dichlorophénol-2,5 Dichlorophénol-2,6 Dichlorophénol-3,4 Dichlorophénol-3,5 Dichlorophénol-3,5 Dichloropropane-1,2 Dichloropropane-1,3	10 50 50 50 50 50 50 50 50 50 50 50	µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS)	1619 1618 2542 7496 7497 1517 1519	Méthyl-2-Fluoranthène Méthyl-2-Naphtalène Monobutyletain cation Monooctyletain cation Monophenyletain cation Naphtalène	10 10 75 40 41.5	μg/(kg N μg/(kg N μg/(kg N μg/(kg N μg/(kg N
1617	Dichloronitrobenzène-2,3 Dichloronitrobenzène-2,4 Dichloronitrobenzène-2,5 Dichloronitrobenzène-3,4 Dichloronitrobenzène-3,5 Dichlorophénol-2,3 Dichlorophénol-2,4 Dichlorophénol-2,5 Dichlorophénol-2,6 Dichlorophénol-3,4 Dichlorophénol-3,5 Dichloropropane-1,2 Dichloropropane-1,3	50 50 50 50 50 50 50 50 50 50	µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS) µg/(kg MS)	1618 2542 7496 7497 1517 1519	Méthyl-2-Naphtalène Monobutyletain cation Monooctyletain cation Monophenyletain cation Naphtalène	10 75 40 41.5	μg/(kg N μg/(kg N μg/(kg N μg/(kg N
1616 1615 1614 1613 1645 1486 1649 1648 1647 1646 1655 1654	Dichloronitrobenzène-2,4 Dichloronitrobenzène-2,5 Dichloronitrobenzène-3,4 Dichloronitrobenzène-3,5 Dichlorophénol-2,3 Dichlorophénol-2,4 Dichlorophénol-2,5 Dichlorophénol-2,6 Dichlorophénol-3,4 Dichlorophénol-3,5 Dichloropropane-1,2 Dichloropropane-1,3	50 50 50 50 50 50 50 50 50 50	μg/(kg MS) μg/(kg MS) μg/(kg MS) μg/(kg MS) μg/(kg MS) μg/(kg MS) μg/(kg MS) μg/(kg MS)	2542 7496 7497 1517 1519	Monobutyletain cation Monooctyletain cation Monophenyletain cation Naphtalène	75 40 41.5	μg/(kg N μg/(kg N μg/(kg N
1615 1614 1613 1645 1486 1649 1648 1647 1646 1655 1654	Dichloronitrobenzène-2,5 Dichloronitrobenzène-3,4 Dichloronitrobenzène-3,5 Dichlorophénol-2,3 Dichlorophénol-2,4 Dichlorophénol-2,5 Dichlorophénol-2,6 Dichlorophénol-3,4 Dichlorophénol-3,5 Dichloropropane-1,2 Dichloropropane-1,3	50 50 50 50 50 50 50 50	μg/(kg MS)	7496 7497 1517 1519	Monooctyletain cation Monophenyletain cation Naphtalène	40 41.5	μg/(kg N μg/(kg N
1614 1613 1645 1486 1649 1648 1647 1646 1655 1654	Dichloronitrobenzène-3,4 Dichloronitrobenzène-3,5 Dichlorophénol-2,3 Dichlorophénol-2,4 Dichlorophénol-2,5 Dichlorophénol-2,6 Dichlorophénol-3,4 Dichlorophénol-3,5 Dichloropropane-1,2 Dichloropropane-1,3	50 50 50 50 50 50 50	μg/(kg MS) μg/(kg MS) μg/(kg MS) μg/(kg MS) μg/(kg MS)	7497 1517 1519	Monophenyletain cation Naphtalène	41.5	μg/(kg N
1613 1645 1486 1649 1648 1647 1646 1655	Dichloronitrobenzène-3,5 Dichlorophénol-2,3 Dichlorophénol-2,4 Dichlorophénol-2,5 Dichlorophénol-2,6 Dichlorophénol-3,4 Dichlorophénol-3,5 Dichloropropane-1,2 Dichloropropane-1,3	50 50 50 50 50 50	μg/(kg MS) μg/(kg MS) μg/(kg MS) μg/(kg MS)	1517 1519	Naphtalène		
1645 1486 1649 1648 1647 1646 1655	Dichlorophénol-2,3 Dichlorophénol-2,4 Dichlorophénol-2,5 Dichlorophénol-2,6 Dichlorophénol-3,4 Dichlorophénol-3,5 Dichloropropane-1,2 Dichloropropane-1,3	50 50 50 50 50	μg/(kg MS) μg/(kg MS) μg/(kg MS)	1519	·	25	
1486 1649 1648 1647 1646 1655	Dichlorophénol-2,4 Dichlorophénol-2,5 Dichlorophénol-2,6 Dichlorophénol-3,4 Dichlorophénol-3,5 Dichloropropane-1,2 Dichloropropane-1,3	50 50 50 50	μg/(kg MS) μg/(kg MS)				μg/(kg N
1649 1648 1647 1646 1655	Dichlorophénol-2,5 Dichlorophénol-2,6 Dichlorophénol-3,4 Dichlorophénol-3,5 Dichloropropane-1,2 Dichloropropane-1,3	50 50 50	μg/(kg MS)		Napropamide	10	μg/(kg ľ
1648 1647 1646 1655 1654	Dichlorophénol-2,6 Dichlorophénol-3,4 Dichlorophénol-3,5 Dichloropropane-1,2 Dichloropropane-1,3	50 50			n-Butyl Phtalate	100	μg/(kg l
1647 1646 1655 1654	Dichlorophénol-3,4 Dichlorophénol-3,5 Dichloropropane-1,2 Dichloropropane-1,3	50	μg/(kg MS)	1637	Nitrophénol-2	50	μg/(kg l
1646 1655 1654	Dichlorophénol-3,5 Dichloropropane-1,2 Dichloropropane-1,3			6598	Nonylphénols linéaire ou ramifiés	40	μg/(kg
1655 1654	Dichloropropane-1,2 Dichloropropane-1,3	50	μg/(kg MS)	1669	Norflurazon	4	μg/(kg
1654	Dichloropropane-1,3		μg/(kg MS)	2609	Octabromodiphénylether	10	μg/(kg
	Dichloropropane-1,3	10	μg/(kg MS)	6686	Octocrylene	100	μg/(kg
		10	μg/(kg MS)	1667	Oxadiazon	10	μg/(kg
2081	Dichloropropane-2,2	10	μg/(kg MS)	1952	Oxyfluorfène	10	μg/(kg
2082	Dichloropropène-1,1	10	μg/(kg MS)	1920	p-(n-octyl)phénol	40	μg/(kg
1834		10		1232	Parathion éthyl	20	μg/(kg
	Dichloropropylène-1,3 Cis		μg/(kg MS)	1242	PCB 101	1	μg/(kg
1835	Dichloropropylène-1,3 Trans	10	μg/(kg MS)	1627	PCB 105	1	μg/(kg
1653	Dichloropropylène-2,3	10	μg/(kg MS)	5433	PCB 114	1	μg/(kg
1170	Dichlorvos	30	μg/(kg MS)	1243	PCB 118	1	μg/(kg
1172	Dicofol	20	μg/(kg MS)	5434	PCB 123	1	μg/(kg
1173	Dieldrine	20	μg/(kg MS)	1089	PCB 126	1	μg/(kg
1814	Diflufénicanil	10	μg/(kg MS)	1244	PCB 138	1	μg/(kg
5325	Diisobutyl phthalate	100	μg/(kg MS)	1885	PCB 149	1	μg/(kg
6658	Diisodecyl phthalate	10000	μg/(kg MS)	1245	PCB 153	1	μg/(kg
6215	Diisononyl phtalate	5000	μg/(kg MS)	2032	PCB 156	1	μg/(kg
1403	, , ,	10		5435	PCB 157	1	μg/(kg
	Diméthomorphe		μg/(kg MS)	5436	PCB 167	1	μg/(kg
1641	Diméthylphénol-2,4	50	μg/(kg MS)	1090	PCB 169	1	μg/(kg
1578	Dinitrotoluène-2,4	50	μg/(kg MS)	1626	PCB 170	1	μg/(kg
1577	Dinitrotoluène-2,6	50	μg/(kg MS)	1246	PCB 180	1	μg/(kg
7494	Dioctyletain cation	102	μg/(kg MS)	5437	PCB 189	1	μg/(kg
7495	Diphenyletain cation	11.5	μg/(kg MS)	1625	PCB 194	1	μg/(kg
1178	Endosulfan alpha	20	μg/(kg MS)	1624	PCB 209	1	μg/(kg
1179	Endosulfan beta	20	μg/(kg MS)	1239	PCB 28	1	μg/(kg
1742	Endosulfan sulfate	20	μg/(kg MS)	1886	PCB 31	1	μg/(kg
1181	Endrine	20	μg/(kg MS)	1240	PCB 35	1	μg/(kg
1744	Epoxiconazole	10	μg/(kg MS)	1628	PCB 44	1	μg/(kg
5397	•	20		1241	PCB 52	1	μg/(kg
	Estradiol		μg/(kg MS)	1091	PCB 77	1	μg/(kg
1497	Ethylbenzène	5	μg/(kg MS)	5432	PCB 81	1	μg/(kg
2629	Ethynyl estradiol	20	μg/(kg MS)	1234	Pendiméthaline	10	μg/(kg
1187	Fénitrothion	10	μg/(kg MS)	1888	Pentachlorobenzène	5	μg/(kg
2022	Fludioxonil	4	μg/(kg MS)	1235	Pentachlorophénol	50	μg/(kg
1191	Fluoranthène	10	μg/(kg MS)	1523	Perméthrine	5	μg/(kg
1623	Fluorène	10	μg/(kg MS)	1524	Phénanthrène	10	μg/(kg
2547	Fluroxypyr-meptyl	20	μg/(kg MS)	1664	Procymidone	10	μg/(kg
1194	Flusilazole	20	μg/(kg MS)	1414	Propyzamide	10	μg/(kg
6618	Galaxolide	100	μg/(kg MS)	1537	Pyrène	10	μg/(kg
				2028	Quinoxyfen	10	μg/(kg
6653	gamma-Hexabromocyclododecane	10	μg/(kg MS)	7128	Somme de 3 Hexabromocyclododecanes	10	μg/(kg
1200	HCH alpha	10	μg/(kg MS)	1662	Sulcotrione	10	μg/(kg
1201	HCH beta	10	μg/(kg MS)	6561	Sulfonate de perfluorooctane	5	μg/(kg
1202	HCH delta	10	μg/(kg MS)	1694	Tébuconazole	10	μg/(kg
2046	HCH epsilon	10	μg/(kg MS)	1661	Tébutame	4	μg/(kg
1203	HCH gamma	10	μg/(kg MS)	1268	Terbuthylazine	10	μg/(kg
1197	Heptachlore	10	μg/(kg MS)	1269	Terbutryne	4	μg/(kg
1748	Heptachlore époxyde cis	10	μg/(kg MS)	1936	Tetrabutyletain	15	μg/(kg
1749	Heptachlore époxyde trans	10	μg/(kg MS)	1270	Tétrachloréthane-1,1,1,2	5	μg/(kg
1199	Hexachlorobenzène	10	μg/(kg MS)	1271	Tétrachloréthane-1,1,2,2	10	μg/(kg
1652				1272	Tétrachloréthylène	5	μg/(kg
	Hexachlorobutadiène	10	μg/(kg MS)				
1656	Hexachloroéthane	1	μg/(kg MS)				
1405	Hexaconazole	10	μg/(kg MS)				
1204	Indéno (123c) Pyrène	10	μg/(kg MS)				
1206	Iprodione	10	μg/(kg MS)				
7129	Irganox 1076	20	μg/(kg MS)				
1935	Irgarol (Cybutryne)	10	μg/(kg MS)				
1207	Isodrine	4	μg/(kg MS)				
1633	Isopropylbenzène	5	μg/(kg MS)				
1950	Kresoxim méthyl	10	μg/(kg MS)				

	inde des pians à eau du programme	1	
Code	Paramètre	LQ	Unité
SANDRE	T/: 11 1 2 4000	10	
2010	Tétrachlorobenzène-1,2,3,4	10	μg/(kg MS)
2536	Tétrachlorobenzène-1,2,3,5	10	μg/(kg MS)
1631	Tétrachlorobenzène-1,2,4,5	10	μg/(kg MS)
1273	Tétrachlorophénol-2,3,4,5	50	μg/(kg MS)
1274	Tétrachlorophénol-2,3,4,6	50	μg/(kg MS)
1275	Tétrachlorophénol-2,3,5,6	50	μg/(kg MS)
1276	Tétrachlorure de C	5	μg/(kg MS)
1660	Tétraconazole	10	μg/(kg MS)
5921	Tetramethrin	40	μg/(kg MS)
1278	Toluène	5	μg/(kg MS)
2879	Tributyletain cation	25	μg/(kg MS)
1847	Tributylphosphate	4	μg/(kg MS)
1288	Trichlopyr	10	μg/(kg MS)
1284	Trichloréthane-1,1,1	5	μg/(kg MS)
1285	Trichloréthane-1,1,2	5	μg/(kg MS)
1286	Trichloréthylène	5	μg/(kg MS)
2732	Trichloroaniline-2,4,5	50	μg/(kg MS)
1595	Trichloroaniline-2,4,6	50	μg/(kg MS)
1630	Trichlorobenzène-1,2,3	10	μg/(kg MS)
1283	Trichlorobenzène-1,2,4	10	μg/(kg MS)
1629	Trichlorobenzène-1,3,5	10	μg/(kg MS)
1195	Trichlorofluorométhane	10	μg/(kg MS)
1644		50	μg/(kg MS)
1643	Trichlorophénol-2,3,4		
	Trichlorophénol-2,3,5	50	μg/(kg MS)
1642	Trichlorophénol-2,3,6	50	μg/(kg MS)
1548	Trichlorophénol-2,4,5	50	μg/(kg MS)
1549	Trichlorophénol-2,4,6	50	μg/(kg MS)
1723	Trichlorophénol-3,4,5	50	μg/(kg MS)
6506	Trichlorotrifluoroethane	5	μg/(kg MS)
6989	Triclocarban	20	μg/(kg MS)
2885	Tricyclohexyletain cation	15	μg/(kg MS)
1289	Trifluraline	10	μg/(kg MS)
2886	Trioctyletain cation	100	μg/(kg MS)
6372	Triphenyletain cation	15	μg/(kg MS)
1293	Xylène-meta	2	μg/(kg MS)
1292	•	2	μg/(kg MS)
1294	· · · · · · · · · · · · · · · · · · ·	2	
	Xylène-ortho Xylène-para Xylènes (o,m,p)		μg/(kg MS) μg/(kg MS) μg/(kg MS)

Annexe 3. COMPTES RENDUS DES CAMPAGNES PHYSICO-CHIMIQUES ET PHYTOPLANCTONIQUES

Relevé phytoplanctonique et physico-chimique en plan d'eau


DONNEES GENERALES PLAN D'EAU

Organisme demandeur: Types (naturel, artificiel ...): Organisme / opérateur : Agence de l'Eau RMC STE: Lionel Bochu & Naturel Nantua Ingrid Mathieu Date: Marché n°: 160000036 Code lac: V2515003 21/03/2019

LOCALISATION PLAN D'EAU

Commune : Lac marnant : Temps de séjour :	Nantua non 251 jours	Type: N4 lacs naturels de moyenne montagne calcaire, profonds
Temps de séjour :	251 jours	profonds
Superficie du plan d'eau:	133 ha	
Profondeur maximale:	42.8 m	Profondeur maximale: 42.8 m

Carte (extrait SCAN 25 IGN)

STATION

Photo du site:

Relevé phytoplanctonique et physico-chimique en plan d'eau

P atm. : Vent: WGS 84 (syst.internationnal GPS ° "'): DONNEES GENERALES PLAN D'EAU Marnage: Bloom algal: Hauteur de vagues: Météo: Profondeur: Coordonnée de la station : Organisme demandeur: Organisme / opérateur : Types (naturel, artificiel ...): Lambert 93: ✓ 1- temps sec ensoleillé ✓ 4- pluie fine ✓ 7- gel 0.05 m NON NON STE: Lionel Bochu & Agence de l'Eau RMC Naturel Nantua Hauteur de bande : X :: 899130 5°34'51,99" I ✓ Système de Géolocalisation Portable STATION 2- faiblement nuageux5- orage-pluie forte8- fortement nuageux □ 3- agitée □ 4- très agitée Ingrid Mathieu Cote échelle : 3- temps humide 6- neige Date: Marché n°: 160000036 Code lac: V2515003 alt. : 475 m ☐ Carte IGN 21/03/19

Campagne
1
campagne de fin d'hiver : homothermie du plan d'eau avant démarrage de l'activité biologique

REMARQUES ET OBSERVATIONS

Contact préalable :

Mairie de Nantua

Observation:

Remarques:

Profils homogènes avec léger réchauffement en surface.

Une desoxygénation de la couche profonde est déjà mesurée.

Relevé phytoplanctonique et physico-chimique en plan d'eau

DONNEES GENERALES PLAN D'EAU

 Plan d'eau :
 Nantua
 Date :
 21/03/19

 Types (naturel, artificiel ...) :
 Naturel
 Code lac :
 V2515003

 Organisme / opérateur :
 STE : Lionel Bochu & Ingrid Mathieu
 Campagne : 1

 Organisme demandeur :
 Agence de l'Eau RMC
 Marché n° : 160000036

PRELEVEMENTS ZONE EUPHOTIQUE

Prélèvement pour analyses physico-chimiques et phytoplancton

Heure de relevé :

Profondeur : Volume prélevé : Matériel employé :	0 à 8 m 7 L 9 m tuyau intégrateur	4
Chlorophylle:	OUI Volume filtré sur place : 1000 ml	<u>B.</u>
Phytoplancton:	OUI Ajout de lugol : 5 ml	
Prélèvement pour an	Prélèvement pour analyses micropolluants	OUI
Heure de relevé :	12:40	
Profondeur:	0 à 8 m	
Prélèvement : Volume prélevé :	1 pvlt tous les 0.8 m 12 L Nbre de prélèvements :	Ξ
Matériel employé :	Bouteille téflon 1,2L PRELEVEMENTS DE FOND	0111
Prélèvement pour an	Prélèvement pour analyses physico-chimiques	OUI
Prélèvement pour an	Prélèvement pour analyses micropolluants	OUI
Heure de relevé : Profondeur : Volume prélevé : Matériel employé :	12:00 41 m 16 L Nobre de prélèvements: Bouteille téflon 5,3 L	w
Remarques prélèvement :		
	REMISE DES ECHANTILLONS	NS
Code prélèvement zone euphotique: Code prélèvement de fond:	notique: 624375 Bon o	6913423500364929 6913423500364910
Dépôt : TNT 🗆 C Date : 21/03/19 Réception au laboratoire le :	Chrono ☐ CARSO ☐ Ville::Chambéry 9 Heure: 17:30; le: 22/03/19	

Relevé phytoplanctonique et physico-chimique en plan d'eau

DONNEES PHYSICO-CHIMIQUES

 Plan d'eau :
 Nantua
 Date :
 21/03/19

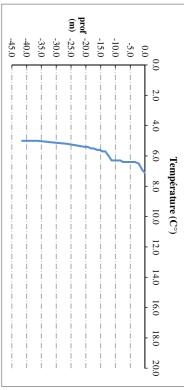
 Types (naturel, artificiel ...) :
 Naturel
 Code lac :
 V2515003

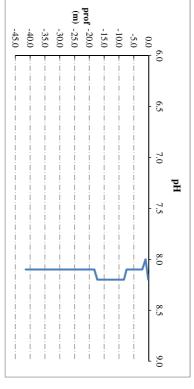
 Organisme / opérateur :
 STE : Lionel Bochu & Ingrid Mathieu
 Ingrid Mathieu
 Campagne : 1

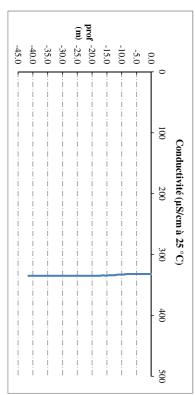
 Organisme demandeur :
 Agence de l'Eau RMC
 Marché n° : 160000036

TRANSPARENCE

Secchi = 3.2 m	Zone euphotique (x 2,5 secchi)
----------------	--------------------------------

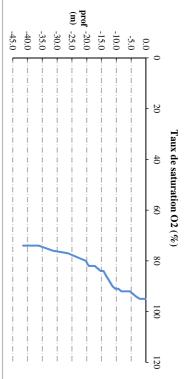

Disque

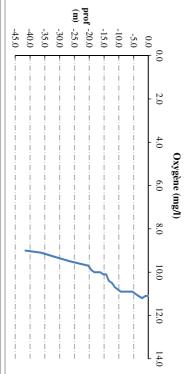

PROFIL VERTICAL

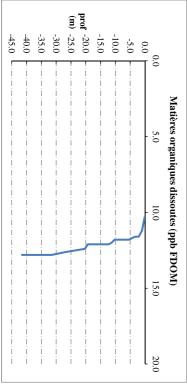

Type de pvlt	Prof.	Temp	pН	Cond.	02	02	Matières organiques dissoutes	Heure
	(m)	(°C)		(μS/cm 25°)	(%)	(mg/l)	ppb	
	-0.1	7.1	8.2	332	95	11.1	10.3	12:40
	-1.0	6.9	8.0	332	95	11.1	11.2	
	-2.1	6.5	8.1	332	95	11.2	11.6	
Prélèvement	-3.4	6.4	8.1	332	94	11.1	11.6	
de la zone	-4.4	6.4	8.1	332	93	11.0	11.7	
euphotique	-5.4	6.4	8.1	332	92	10.9	11.8	
	-6.3	6.4	8.1	332	92	10.9	11.8	
	-7.4	6.4	8.1	332	92	10.9	11.8	
	-8.3	6.3	8.2	332	92	10.9	11.8	
	-9.3	6.3	8.2	333	91	10.9	11.8	
	-10.3	6.3	8.2	333	91	10.8	11.8	
	-11.3	6.3	8.2	333	90	10.7	12.0	
	-12.3	6.0	8.2	334	88	10.5	12.1	
	-13.4	5.7	8.2	334	86	10.4	12.1	
	-14.3	5.7	8.2	334	84	10.1	12.1	
	-14.4	5.7	8.2	334	84	10.1	12.1	
	-15.3	5.6	8.2	335	84	10.1	12.1	
	-16.3	5.6	8.2	334	83	10.0	12.1	
	-17.3	5.5	8.2	335	82	10.0	12.1	
	-18.3	5.5	8.1	335	82	10.0	12.1	
	-19.3	5.4	8.1	335	82	9.9	12.1	
	-20.3	5.4	8.1	335	80	9.7	12.4	
	-26.4	5.2	8.1	335	77	9.5	12.6	
	-31.5	5.1	8.1	335	76	9.3	12.8	
	-36.3	5.0	8.1	335	74	9.1	12.8	
Pvlt de fond	-41.5	5.0	8.1	335	74	9.0	12.8	12:00

Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES PHYSICO-CHIMIQUES / GRAPHIQUE

Organisme demandeur:	Organisme / opérateur :	Types (naturel, artificiel):	Plan d'eau :
Agence de l'Eau RMC	STE: Lionel Bochu &	Naturel	Nantua
	Ingrid Mathieu		
Marché n°: 1600000	Campagne: 1	Code lac: V2515003	Date:
: 160000036	e:1	V2515003	21/03/19


Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES PHYSICO-CHIMIQUES / GRAPHIQUE


Plan d'eau : Nantua Date : 21/03/19


Types (naturel, artificiel ...) : Naturel Naturel Code lac : V2515003

Organisme / opérateur : STE : Lionel Bochu & Ingrid Mathieu Campagne : 1

Organisme demandeur : Agence de l'Eau RMC Marché n° : 160000036

Relevé phytoplanctonique et physico-chimique en plan d'eau

DONNEES GENERALES PLAN D'EAU

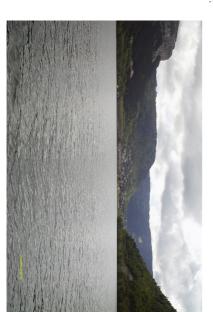
 Plan d'eau :
 Nantua
 Date :
 27/05/2019

 Types (naturel, artificiel ...) :
 Naturel
 Code lac :
 V2515003

 Organisme / opérateur :
 STE : Lionel Bochu & Adrien Bonnefoy
 Campagne : 2

 Organisme demandeur :
 Agence de l'Eau RMC
 Marché n° : 160000036

LOCALISATION PLAN D'EAU


Profondeur maximale: 42.8 m	Superficie du plan d'eau : 133 ha	Temps de séjour : 251 jours profonds	Lac marnant: non lacs natur	Commune: Nantua Type:
		profonds	lacs nature	Type:
			lacs naturels de moyenne montagne calcaire,	N4

Carte (extrait SCAN 25 IcN 125 000)

Carte (extrait SCAN 25 IcN 125 000)

Foat Et Du VERN

Photo du site:

Remarques:

Pas de profils sonde Fdom

Relevé phytoplanctonique et physico-chimique en plan d'eau

Vent: WGS 84 (syst.internationnal GPS ° "'): DONNEES GENERALES PLAN D'EAU Observation: Contact préalable : Marnage: Bloom algal: Hauteur de vagues: P atm. : Météo: Profondeur: Coordonnée de la station : Organisme demandeur: Organisme / opérateur : Types (naturel, artificiel ...): Lambert 93: ☐ 1- temps sec ensoleillé ☐ 4- pluie fine ☐ 7- gel □ 0- nul □ 1- faible □ 2- moyen □ 3- fort NON NON 0.05 m 956 hPa Mairie de Nantua Mise en place de la stratification thermique - désoxygénation de la couche profonde campagne printanière de croissance du phytoplancton : mise en place de la thermocline REMARQUES ET OBSERVATIONS **Nantua** Agence de l'Eau RMC STE: Lionel Bochu & Naturel Hauteur de bande : 0 m X :: 899130 5°34'51,99" I ✓ Système de Géolocalisation Portable STATION 2- faiblement nuageux5- orage-pluie forte✓ 8- fortement nuageux □ 3- agitée □ 4- très agitée Adrien Bonnefoy Côte échelle: 3- temps humide 6- neige Date: Marché n°: 160000036 Code lac: V2515003 alt. : 475 m ☐ Carte IGN ND 27/05/19

Relevé phytoplanctonique et physico-chimique en plan d'eau

DONNEES GENERALES PLAN D'EAU

Organisme demandeur : Organisme / opérateur : Types (naturel, artificiel ...): Agence de l'Eau RMC STE : Lionel Bochu & Naturel Adrien Bonnefoy Marché n°: 160000036 Date: Code lac: V2515003 27/05/19

PRELEVEMENTS ZONE EUPHOTIQUE

Prélèvement pour analyses physico-chimiques et phytoplancton

Volume prélevé : Matériel employé : Chlorophylle: Phytoplancton: Heure de relevé: OUI OUI 14 m tuyau integrateur 0 à 12 m Volume filtré sur place : Ajout de lugol: Nbre de prélèvements: 1000 ml

Prélèvement pour analyses micropolluants organiques

Matériel employé : Volume prélevé : Prélèvement : tous les 1 m Bouteille téflon 1,2L 0 à 12 m 13 L Nbre de prélèvements :

12

Heure de relevé

11:40

PRELEVEMENTS DE FOND

OUI

Prélèvement pour analyses mricopolluants organiques Prélèvement pour analyses physico-chimiques OUI NO INO

Remarques prélévement :

Matériel employé:

Bouteille téflon 5,3 L

Volume prélevé :

12:10

41 m

16 L

Nbre de prélèvements :

S

Les prélèvements de la zone euphotique ont été réalisé entre 0 et 12 m,

au lieu de 0 à 10 m, suite à une erreur de calcul.

REMISE DES ECHANTILLONS

Dépôt : TNT 🗆 Ch Date : 27/05/19 Réception au laboratoire le : Code prélèvement de fond: Code prélèvement zone euphotique: Chrono 624376 Bon de transport:
624436 Bon de transport: 6913423500365123 6913423500365130

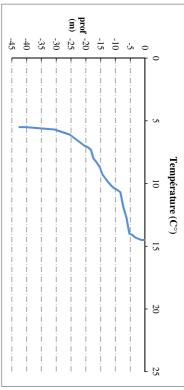
Relevé phytoplanctonique et physico-chimique en plan d'eau

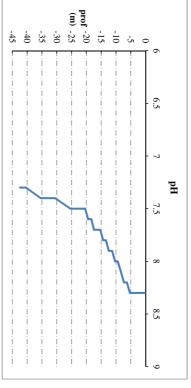
DONNEES PHYSICO-CHIMIQUES

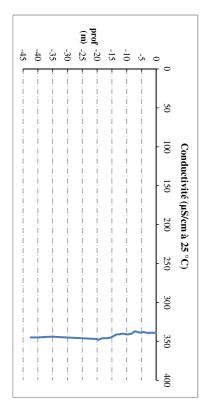
Organisme demandeur: Organisme / opérateur : Types (naturel, artificiel ...): STE: Lionel Bochu & Agence de l'Eau RMC Naturel Nantua Adrien Bonnefoy Code lac: V2515003 Marché n°: 160000036 Date: 27/05/19

TRANSPARENCE

Disque Secchi = Zone euphotique (x 2.5 secchi) =

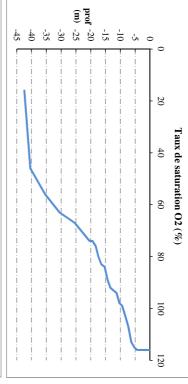

PROFIL VERTICAL

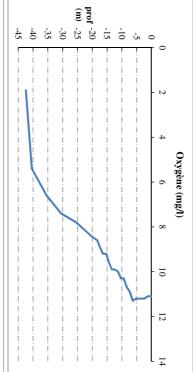

Moyen de mesure utilisé: ✓ in situ à chaque profondeur en surface dans un récipiant

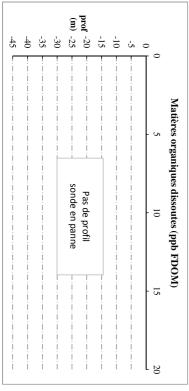

			LL					
							-484	
16	16	+	5	34.	7.3	5.5	-42.4	
5 46 5.4	46		Oi.	345	7.3	5.5	-40.4	Pvlt de fond
56	56		-4	34	7.4	5.6	-35.4	
63	63		5	34:	7.4	5.7	-30.5	
67	67		5	346	7.5	6.1	-25.4	
74	74		7	34	7.5	7	-20.4	
74	74		σ.	34	7.6	7.1	-19.4	
76	76	i	σ,	340	7.6	7.3	-18.3	
80	80		٥,	340	7.7	∞	-17.4	
83	83		٥١,	340	7.7	8.3	-16.4	
84	84		•	345	7.7	8.7	-15.3	
89	89			343	7.8	9.3	-14.3	
92	92			341	7.8	9.6	-13.4	
93	93			341	7.9	9.9	-12.4	
94	94		Ī	340	7.9	10.2	-11.3	
98	98			341	∞	10.4	-10.3	
99	99			341	∞	10.5	-9.4	
103	103		-	340	8.1	10.7	-8.3	
107	107			337	8.2	11.9	-7.3	euphotique
113	113			338	8.2	12.7	-6.3	zone
115	115		_	339	8.3	14	-5.3	de la
116	116			338	8.3	14.1	-4.3	Prélèvement
116	116		_	339	8.3	14.3	-3.3	
116	116		_	339	8.3	14.4	-2.3	
			Ŭ	339	8.3	14.5	-1.3	
116 11.1	116			339	8.3	14.5	-0.2	
(%) (mg/l)	(%)		25°)	(µS/cm 25°)		(°C)	(m)	
. 02 O2 organiques dissoutes		. 02		Cond	рН	Temp	Prof.	Type de pvlt
Matières								

Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES PHYSICO-CHIMIQUES / GRAPHIQUE

Marché n°: 16000003		Agence de l'Eau RMC	Organisme demandeur :
Campagne: 2	Adrien Bonnefoy	STE: Lionel Bochu &	Organisme / opérateur :
Code lac: V2515003		Naturel	Types (naturel, artificiel):
Date: 27/05/19		Nantua	Plan d'eau :


Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES PHYSICO-CHIMIQUES / GRAPHIQUE


Plan d'eau : Nantua Date : 27/05/19


Types (naturel, artificiel ...) : Naturel Code lac : V2515003

Organisme / opérateur : STE : Lionel Bochu & Adrien Bonnefoy Campagne : 2

Organisme demandeur : Agence de l'Eau RMC Marché n° : 160000036

DONNEES GENERALES PLAN D'EAU

 Plan d'eau :
 Nantua
 Date :
 13/08/2019

 Types (naturel, artificiel ...) :
 Naturel
 Code lac :
 V2515003

 Organisme / opérateur :
 STE : Adrien Bonnefoy & Guillaume Cunillera
 Guillaume Cunillera
 Campagne : 3

 Organisme demandeur :
 Agence de l'Eau RMC
 Marché n° : 160000036

LOCALISATION PLAN D'EAU

Profondeur maximale: 42.8 m	Superficie du plan d'eau : 133	Temps de séjour : 251	Lac marnant: non	Commune: Nantu
8 m	133 ha	251 jours		a
42.8 m		profonds	lacs naturels de moyenne montagne calcaire,	Type: N4

Port

Source: IGN scan 25

Angle de prise de vue

STATION

Photo du site:

Relevé phytoplanctonique et physico-chimique en plan d'eau

Vent: WGS 84 (syst.internationnal GPS ° "'): DONNEES GENERALES PLAN D'EAU Marnage: Bloom algal: Hauteur de vagues: P atm. : Météo: Profondeur: Coordonnée de la station : Organisme demandeur: Organisme / opérateur : Types (naturel, artificiel ...): Lambert 93: ☐ 1- temps sec ensoleillé ☐ 4- pluie fine ☐ 7- gel □ 0- nul □ 1- faible □ 2- moyen □ 3- fort NON NON 0.05 m 965 hPa campagne estivale : thermocline bien installée, deuxième phase de croissance des Agence de l'Eau RMC STE: Adrien Bonnefoy & Naturel Hauteur de bande : 0 m X: 899154 5°34′53,1″ F ✓ Système de Géolocalisation Portable STATION ✓ 2- faiblement nuageux☐ 5- orage-pluie forte☐ 8- fortement nuageux □ 3- agitée □ 4- très agitée Guillaume Cunillera phytoplancton Côte échelle : 3- temps humide 6- neige Date: Marché n°: 160000036 Code lac: V2515003 alt. : 475 m ☐ Carte IGN ND 13/08/19

REMARQUES ET OBSERVATIONS

Contact préalable : Mairie de Nantua

Remarques:

Observation:

belle stratification thermique

désoxygénation quasi complète au fond du lac

DONNEES GENERALES PLAN D'EAU

 Plan d'eau :
 Nantua
 Date :
 13/08/19

 Types (naturel, artificiel ...) :
 Naturel
 Code lac :
 V2515003

 Organisme / opérateur :
 STE : Adrien Bonnefoy & Guillaume Cunillera
 Campagne : 3

 Organisme demandeur :
 Agence de l'Eau RMC
 Marché n° : 160000036

PRELEVEMENTS ZONE EUPHOTIQUE

Prélèvement pour analyses physico-chimiques et phytoplancton

Heure de relevé : Profondeur : Volume prélevé : Matériel employé :	11:10 0 à 15.5 m 9 L Nbre de prélèvements : 5 20 m tuyau integrateur	
Chlorophylle:	OUI Volume filtré sur place : 1000 mi	
Phytoplancton:	OUI Ajout de lugol : 5 ml	
Prélèvement pour an	Prélèvement pour analyses micropolluants	OUI
Heure de relevé :	11:40	
Profondeur : Prélèvement :	m	
Volume preleve : Matériel employé :	Bouteille téflon 1,2L Nore de prejevements: 10	
	PRELEVEMENTS DE FOND	OUI
Prélèvement pour an	Prélèvement pour analyses physico-chimiques	OUI
Prélèvement pour an	Prélèvement pour analyses micropolluants	OUI
Heure de relevé : Profondeur : Volume prélevé :	12:15 40 m 151 Nbre de prélèvements: 3	
Remarques prélèvement :	P -	
	REMISE DES ECHANTILLONS	
Code prélèvement zone euphotique: Code prélèvement de fond:	notique: 624377 624437	
Dépôt : TNT	Chrono ☐ CARSO ✓ Ville : Venissieux 9 Heure: 13:40; le : 14/08/19	

Relevé phytoplanctonique et physico-chimique en plan d'eau

DONNEES PHYSICO-CHIMIQUES

 Plan d'eau :
 Nantua
 Date :
 13/08/19

 Types (naturel, artificiel ...) :
 Naturel
 Code lac :
 V2515003

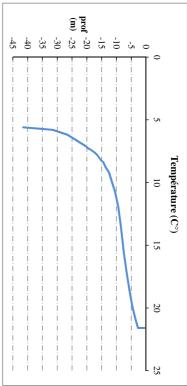
 Organisme / opérateur :
 STE : Adrien Bonnefoy & Guillaume Cunillera
 Campagne : 3

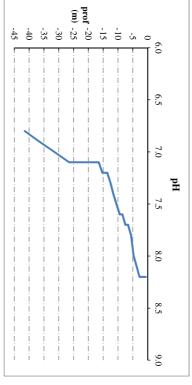
 Organisme demandeur :
 Agence de l'Eau RMC
 Marché n° : 160000036

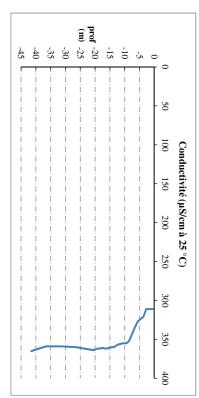
TRANSPARENCE

	Disque Secchi =
	6.2 m
PROFIL VERTICAL	Zone euphotique (x 2.5 secchi) =
	15.5

Moyen de mesure utilisé:

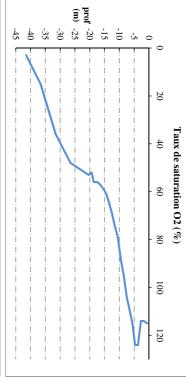

in situ à chaque profondeur

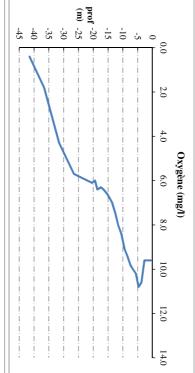

en surface dans un récipiant

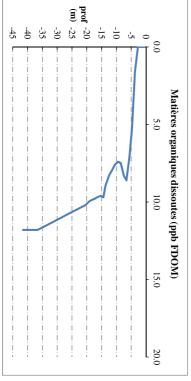

	11.8	0.4	3	365	6.8	5.6	-41.5	Pvlt de fond
	11.8	1.8	15	359	6.9	5.7	-36.6	
	11.3	4.3	36	359	7.0	5.8	-31.5	
	10.8		48		7.1	6.2	-26.5	
	10.2		53		7.1	7.1	-20.4	
	10.0		52	362	7.1	7.3	-19.4	
	9.9		56		7.1	7.4	-18.6	
	9.8	6.3	56		7.1	7.6	-17.4	
	9.7		57		7.1	7.8	-16.5	
	9.6	6.6	59	361	7.2	8.2	-15.3	
	9.7	6.8	61	360	7.2	8.4	-14.4	
	8.9	7.0	64	360	7.2	8.8	-13.6	
	8.3	7.5	69	357	7.3	9.2	-12.5	
	8.0	8.0	74	356	7.4	9.9	-11.6	
	7.6	8.4	79	355	7.5	10.7	-10.5	
	7.4	9.1	89	355	7.6	11.9	-9.4	euphotique
	7.5	9.4	95	352	7.6	13.5	-8.5	zone
	8.3	9.8	104	343	7.7	15.6	-7.5	de la
	8.6	10.0	109	335	7.7	17.1	-6.6	Prélèvement
	7.1	10.2	115	327	7.8	18.6	-5.6	
	5.2	10.8	124	324	8.0	19.8	-4.7	
	1.6	10.6	124	321	8.1	20.8	-3.7	,
	0.0	9.6	114	311	8.2	21.6	-2.7	
	0.0	9.6	114	311	8.2	21.6	-1.7	
11:10	0.0	9.6	115	311	8.2	21.6	-0.6	
	ppb	(mg/l)	(%)	(µS/cm 25°)		(°C)	(m)	
Heure	organiques dissoutes	02	02	Cond.	pН	Temp	Prof.	Type de pvlt

Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES PHYSICO-CHIMIQUES / GRAPHIQUE

Organisme demandeur:	Organisme / opérateur :	Types (naturel, artificiel):	Plan d'eau :
Agence de l'Eau RMC	STE : Adrien Bonnefoy & Guillaume Cuniller	Naturel	Nantua
	Guillaume Cunillera		
Marché n°: 16000003	Campagne :	Code lac: V251500	Date:
: 160000036	ie:3	V2515003	13/08/19


Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES PHYSICO-CHIMIQUES / GRAPHIQUE


 Plan d'eau :
 Nantua
 Date : 13/08/19


 Types (naturel, artificiel ...) :
 Naturel
 Code lac : V2515003

 Organisme / opérateur :
 STE : Adrien Bonnefoy & Guillaume Cunillera
 Campagne : 3

 Organisme demandeur :
 Agence de l'Eau RMC
 Marché n° : 160000036

DONNEES GENERALES PLAN D'EAU

 Plan d'eau :
 Nantua
 Date :
 17/10/2019

 Types (naturel, artificiel ...) :
 Naturel
 Code lac :
 V2515003

 Organisme / opérateur :
 STE : Lionel Bochu & Adrien Bonnefoy
 Campagne : 4

 Organisme demandeur :
 Agence de l'Eau RMC
 Marché n° : 160000036

LOCALISATION PLAN D'EAU

Type: N4 lacs naturels de moyenne montagne calcaire, profonds

Carte (extrait SCAN 25 IGN 1/25 000)

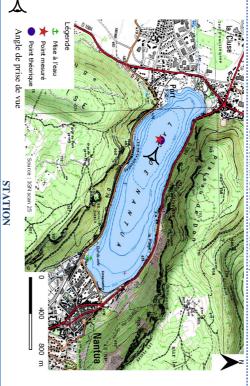
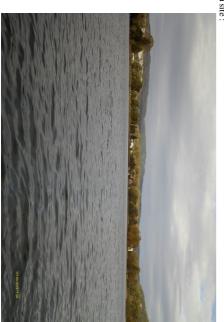



Photo du site:

Relevé phytoplanctonique et physico-chimique en plan d'eau

Vent: WGS 84 (syst.internationnal GPS ° "'): DONNEES GENERALES PLAN D'EAU Marnage: Bloom algal: Hauteur de vagues: P atm. : Météo: Profondeur: Coordonnée de la station : Organisme demandeur: Organisme / opérateur : Types (naturel, artificiel ...): Lambert 93: ☐ 1- temps sec ensoleillé ☐ 4- pluie fine ☐ 7- gel □ 0- nul □ 1- faible □ 2- moyen □ 3- fort NON NON 0.15 m 960 hPa campagne de fin d'été : fin de stratification avant baisse de la température REMARQUES ET OBSERVATIONS Nantua Agence de l'Eau RMC STE: Lionel Bochu & Naturel Hauteur de bande : 0 m X: 899123 5°34′51,6″ F ✓ Système de Géolocalisation Portable STATION □ 2- faiblement nuageux□ 5- orage-pluie forte☑ 8- fortement nuageux √ 3- agitée ☐ 4- très agitée Adrien Bonnefoy Côte échelle : 3- temps humide 6- neige Date: Marché n°: 160000036 Code lac: V2515003 alt. : 475 m ☐ Carte IGN ND 17/10/19

Contact préalable :

Mairie de Nantua

Observation:

Remarques: Lac encore bien stratifié. Epilimnion jusqu'à - 9m.
Désoxygénation complète au fond du plan d'eau.

DONNEES GENERALES PLAN D'EAU

Organisme demandeur : Organisme / opérateur : Types (naturel, artificiel ...): Agence de l'Eau RMC STE : Lionel Bochu & Naturel Adrien Bonnefoy Marché n°: 160000036 Code lac: V2515003 Date: 17/10/19

PRELEVEMENTS ZONE EUPHOTIQUE

Prélèvement pour analyses physico-chimiques et phytoplancton

Volume prélevé : Matériel employé : Matériel employé : Prélèvement pour analyses physico-chimiques Matériel employé: Chlorophylle: Remarques prélèvement : Volume prélevé : Prélèvement pour analyses micropolluants Volume prélevé : Prélèvement pour analyses micropolluants Phytoplancton: Heure de relevé: Heure de relevé : Prélèvement : Heure de relevé : Profondeur: OUI 12:00 OUI Bouteille téflon 1,2L 20 m tuyau intégrateur Bouteille téflon 5,3 L 1 prélèvement tous les 17 L 0 à 15 m 0 à 15 m 41 m 16 L Volume filtré sur place : REMISE DES ECHANTILLONS PRELEVEMENTS DE FOND Ajout de lugol: Nbre de prélèvements : 1 mNbre de prélèvements : Nbre de prélèvements: 1000 ml S 16 OUI OUI OUI

Dépôt : TNT 🗆 Ch Date : 17/10/19 Réception au laboratoire le :

Chrono [

18/10/19

CARSO Ville :Chambery

Heure: 17:40

Code prélèvement de fond: Code prélèvement zone euphotique:

624378 Bon de transport : 624438 Bon de transport :

6913424250273286 6913424250273380

Relevé phytoplanctonique et physico-chimique en plan d'eau

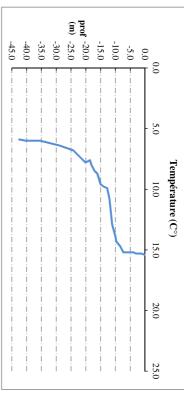
DONNEES PHYSICO-CHIMIQUES

Organisme demandeur: Organisme / opérateur : Types (naturel, artificiel ...): Agence de l'Eau RMC STE: Lionel Bochu & Naturel Nantua Adrien Bonnefoy Code lac: V2515003 Marché n°: 160000036 Date: 17/10/19

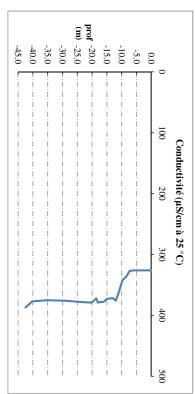
TRANSPARENCE

euphotique (x 2,5 secchi) =

Disque Sec

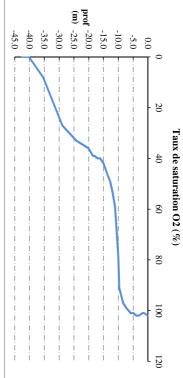

PROFIL VERTICAL

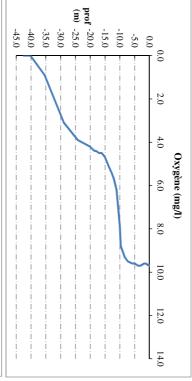
Moyen de mesure utilisé: ✓ in situ à chaque profondeur en surface dans un récipient

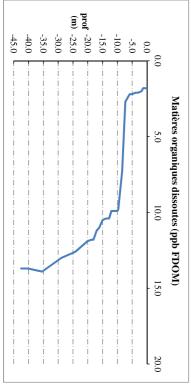

						Pvlt de fond											,			,	caprioridae	de la zone	Prélévement	;								Type de pvlt
					-42.5	-40.2	-35.4	-28.9	-24.2	-20.1	-18.6	-18.1	-17.0	-16.1	-15.0	-13.8	-12.8	-12.0	-11.1	-10.0	-9.7	-8.4	-7.3	-5.8	-4.9	-3.9	-3.0	-1.8	-1.3	-0.1	(m)	Prof.
					5.9	6.0	6.0	6.4	6.8	7.8	7.6	8.0	8.5	8.7	9.6	9.8	9.9	10.8	12.9	13.9	14.3	14.7	15.2	15.2	15.2	15.2	15.3	15.3	15.3	15.4	(°C)	Тетр
					7.3	7.3	7.3	7.4	7.4	7.4	7.3	7.4	7.4	7.4	7.5	7.5	7.5	7.6	7.7	7.8	7.9	7.9	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1		рН
					387	377	375	376	378	379	372	379	378	378	373	372	372	376	364	346	342	336	327	326	326	326	326	326	326	326	(µS/cm 25°)	Cond.
					0	0	8	27	33	36	39	39	40	40	42	46	49	53	59	79	91	97	99	101	101	102	102	101	101	102	(%)	02
					0.0	0.0	0.9	3.1	3.9	4.2	4.4	4.4	4.5	4.5	4.7	5.1	5.4	5.7	6.2	7.9	8.8	9.3	9.5	9.6	9.6	9.7	9.7	9.6	9.6	9.7	(mg/l)	02
					13.7	13.7	13.9	13.0	12.6	11.9	11.8	11.8	11.2	11.0	10.5	10.4	10.4	9.9	9.9	9.9	9.8	7.3	2.7	2.2	2.2	2.1	2.1	2.0	1.8	1.8	ppb	Matières organiques dissoutes
				Y	13:14													,					0							13:01		Heure

Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES PHYSICO-CHIMIQUES / GRAPHIQUE

	•	•		
Plan d'eau :	Nantua		Date:	17/10/19
Types (naturel, artificiel):	Naturel		Code lac: V251500	V2515003
Organisme / opérateur :	STE: Lionel Bochu &	Adrien Bonnefoy	Campagne :	le:4
Organisme demandeur:	Agence de l'Eau RMC		Marché n°: 16000003	: 160000036


Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES PHYSICO-CHIMIQUES / GRAPHIQUE


 Plan d'eau :
 Nantua
 Date :
 17/10/19


 Types (naturel, artificiel ...) :
 Naturel
 Code lac :
 V2515003

 Organisme / opérateur :
 STE : Lionel Bochu & Adrien Bonnefoy
 Campagne : 4

 Organisme demandeur :
 Agence de l'Eau RMC
 Marché n° : 160000036

Plan d'eau : Naturel QUE SEGUITIERLES POUT ATTAITSES PHYSICO-CHITINIQUES Plan d'eau : Naturel Code lac : V:	Nantua Naturel	o pour	iaiyaca P	TI y SICC	Date: 17/10/19 Code lac: V2515003
Organisme / opérateur : Organisme demandeur :	STE : Lionel Bochu & Agence de l'Eau RMC	Bochu & Eau RMC	Adrien Bonnefoy	y	Campagne: 4 Marché n°: 160000036
	CONDI	CONDITIONS DU MILIEU	MILIEU		
Météo ☐ 1- temp: — 2- faible — 3- temp:	1- temps sec ensoleillé 2- faiblement nuageux 3- temps humide		4- pluie fine 5- orage-pluie 6- neige	forte	7- gel 8- fortement nuageux
Vent:	□ 0- nul □ 1- faible		2- moyen 3- fort		4- brise 5- brise modéré
Surface de l'eau :	☐ 1- lisse ☐	2- faiblement agitée	<	3- agitée	☐ 4- très agitée
Période estimé favorable à : ☑ mort et sédimentation du plancton ☑ sédimentation de MES de toute nature	ton nature				
Heure de prélèvement :	13:20	MATERIEL			
✓ benne Ekmann	pelle à main	ain Aut	Autre:		
Localisation générale de la zone de prélèvement (X, Y Lambert 93) (correspond au point de plus grande profondeur de C4)	prélèvement (X, Y profondeur de C4	(Lambert 93)		X :: 899123	23 Y: 6565876
Pélèvements		13 1	2	δ ω	4
Epaisseur échantillonnée		42	7.2	44	
récents (< 2cm) anciens (> 2cm) Granulométrie dominante		×	Х	×	
graviers sables					
limons x		×		×	
Aspect du sédiments		-			-
homogène hétérogène couleur		x gris/beige	x gris/beige	x gris/beige	6
odeur		légère	légère	légère	
Présence d'hydrocarhures	ecomposes	non	non	non	
Présence d'autres débris		non	non	non	
	REMISE D	REMISE DES ECHANTILLONS	TILLONS		
Code prélèvement :	Bon de transport :	Bon de transp	ort:		XV506260206EE
TNT Chrono J LDA 26 Dénôt Date 17/10/19		Ville : Henre :	Chambery		
on au laboratoire	18/10/19				

Annexe 4. Donnees brutes pour l'etude des macrophytes

LINITE D'ORSERVAT	TION MACROPHYTES	DE	SCRIPTION G	ENERALE	
Nom du plan d'eau :	Nantua		Code: V2515003		
Organisme :	Mosaïque Environnement			Eric BOUCARD	
N°Unité d'observation :		(jj/mm/aaaa) :		14/08/2019	
Heure début (hh:mm) :	9:30	Heure de fin (hh:mm) :	12:30	
Coordonnées GPS du	Point central de l'unité :	Lambert 93			
			x :	899103.994	
1			y:	6565544.190	
Transparence mesurée au Orientation / vents domina	• • • • • • • • • • • • • • • • • • • •	6.40 protégé	Niveaux des	s eaux (m) :	
Orientation / Vents domina	ants.	protege			
	Typologie des rives au	<mark>niveau de l'unité d'</mark> o	bservation		
Noter la fréquence des élé	<mark>éments observés :</mark> 1, très ra	are,2, rare, 3 , présen préciser	t, 4 abondant,	5, très abondant, "autre" : à	
Numéro du type de rive do		4 umides caractéristic	dues"		
Tourbières	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Landes tourbeuses / humic	des				
Marais / Marécages					
Plan d'eau proche (<50m d	le la rive)				
Prairies inondées / humide					
Mégaphorbiaie / Végétation	n hélophyte en touradons				
Forêt hygrophile / Bois mar	récageux (aulnaie-saussaie)				
Autre**					
Type 2 : "Zones ri Forêts feuillus et mixtes Forêts de conifères	vulaires colonisées par un	e végétation arbusti	ve et arbores	cente non humide"	
Arbustes et buissons					
Lande / Lande à Ericacées					
Autre**					
Type 3 : "Zones rivu	laires non colonisées par u	ıne végétation arbus	stive et arbore	escente non humide"	
Hautes herbes					
Rives rocheuses					
Plages / Sol nu					
Autre**					

Type 4 : "Zones artificia	alisées ou sub	ssant des pressions anthropiques visibles"
Ports		
Mouillages		
Jetées		
Urbanisation		
Entretien de la végétation rivulaire		
Zones déboisées		
Litière		
Décharge		
Remblais		
Murs		
Digues		
Revêtements artificiels		
Plages aménagées		
Zone de baignade		
Chemins et routes	5	
Ouvrages de génie civil		
Agriculture		
Autre**		
Pourcentage du linéaire tota	al de rive repré	senté par ce type sur l'ensemble du plan d'eau :
Type 1 (%) : 8		Type 3 (%):
Type 2 (%) :		Type 4 (%): 92
Largeur de la zone littorale "euphotique	e" :	b "réduite"
	0	ires / Précisions
	Commenta	10371100310113

UNIT	TE D'OBSERVAT	ION MACROPHYTES		DESCRIPTION	LOCALE
	an d'eau :	Nantua	- T	Code:	V2515003
Organisme		Mosaïque Environnemen		E	ric BOUCARD
	observation:		jj/mm/aaaa) :		14/08/2019
	ut (hh:mm) :	9:30	Heure de fir	n (hh:mm) :	12:30
Coordonne	ées GPS du Poir	nt central de l'unité :	Lambert 93		
					000400 0000
				X:	899103.9938
				Nr.	6565544.10
			É	у:	6565544.19
		Condition	s d'observation		
Vent :	nul				
Météo :	soleil				
Surface de	e l'eau :	lisse	Hauteur des va	agues (m):	
			tion de la rive		
Descriptio	n de la zone rive	eraine (Cf. Fiche 1/1)			
Occupation	du sol dominant	te:		Route	
	n dominante :			Herbacée	
	n de la berge (C	f Fiche 1/1)		ricipacee	
	du talus :	i i i i i i i i i i i i i i i i i i i			
		2.00			
Hauteur (m		3.00			
Impacts hu	umains visibles :	oui			
Indices d'ér	rosion :	oui			
Tyne de su	bstrat dominant :	7.		Т	
Page Commence		111		25	
Type de ve	gétation dominar	nte:		Arborée	
Cubetrate	· [V · Vaso: T ·]	Terre, argile, marne, tourbe	· C · Cables gravi	iors C : Caillouv	niomos galots : D : Dio
Substrats	·[v . vase, i .		Débris organiques]		, pierres, galeis , b . bio
Doccrinti	ion do la nlago	dunco, D. I	ocono organiqueoj		
	ion de la plage	X		10	
Largeur (m	Ž.		0.0	00	
Impacts hu	umains visibles :	na Type de su	ostrat dominant :		na
Indices d'ér	rosion :	na Type de vé	gétation dominante	e:	na
		A	35.11	903	
	n de la zone litto				
	plorée (m) :		otrat dominant :	- 1	C
Longueur e	explorée(m):	100 Impacts hui	nains visibles :		Dui
				1	
Type do vá	gétation aquatiqu	ie dominante :	hydrophytes	I	
Type de ve	getation aquatiqu	de dominante .	nyuropnytes	1	
		Commenta	ires / Précisions		
	David I	an de Basili et e l	A EA	IOP VD	TOO 220
	Dans le cad	re de l'utilisation de l	a norme AFN	VOR XP	30-320
Cha	amps supplém	entaires à renseigner			
200000					
Per	nte des fonds	Forte			į.

UNITE D'OBSER	RVATION MACROPHYTES		RELEVE D	E RIVE
Nom du plan d'eau :	Nantua	Code:		V2515003
Organisme :	Mosaïque Environnement	Opér	ateur :	Eric BOUCARD
N°Unité d'observation :	1	Date (jj/n	nm/aaaa) :	14/08/2019
Heure début (hh:mm) :	9:30	Heure de f	in (hh:mm) :	12:30

Commentaires / Précisions

* indiquer la superficie de (des) l'herbier(s), la profondeur, le type de subtrat, la présence de fleurs, de fruits, etc. Substrat dominant : [V : vase; T : Terre, argile, marne, tourbe; R : Racines, branchages; S : Sables, graviers; C : Cailloux, pierres, galets; B : Blocs, dalles; D : Débris organiques]

	200	ne erganneacej	
TAXONS	Abondance	Observations complémentaires (*)	
ambrip	2		Amblystegium riparium (Hedw.) Schimp.
stispx	1		Stigeoclonium Kützing, 1843
spispx	1		Spirogyra sp. Link
oedspx	1		Oedogonium Link ex Hirn, 1900
cinfon	1		Cinclidotus fontinaloides (Hedw.) P.Beauv.
sczspx	1		Schizothrix Kützing ex Gomont, 1892
toyspx	1		Tolypothrix Kützing ex Bornet & Flahault, 1886
fonant	1		Fontinalis antipyretica Hedw.
fiscra	3		Fissidens crassipes Wilson ex Bruch & Schimp.
rhyrip	2		Rhynchostegium riparioides (Hedw.) Cardot
eupcan	1		Eupatorium cannabinum L., 1753
rubcae	2		Rubus caesius L., 1753
lyceur	1		Lycopus europaeus L., 1753
brypse	1		Bryum pseudotriquetrum (Hedw.) P.Gaertn. et al.
rivspx	1		Rivularia C. Agardh, 1886
JUGATR	1		Jungermannia atrovirens Dumort.

UNITE D'OBSERVATION MACROPHYTES				Pi	ROFIL GAUCHE
Nom du plan d'eau :		Nantua (Code :	V2515003
Organisme :	Mosaïqı	Mosaïque Environnement		Opérateur :	Eric BOUCARD
N°Unité d'observation :	1	1 Date (jj/mm/aaaa) :			14/08/2019
Heure début (hh:mm) :	11:	11:20 Matériel u		ıtilisé :	grappin
Heure fin (hh:mm):	12:	00			
	•		_		

Profondeur maximale de colonisation observée durant le relevé sur l'ensemble du profil (m) :	0.7
Commentaires / Précisions	

Coordonnées GPS de début :	Lambert 93			
	x:	899057.384		
	y:	6565552.938		
	7			
Coordonnées GPS de fin :	Lambert 93			
	x:	899065.315		
	y:	6565577.416		

DANS LE CADRE DE L'UTILISATION DE LA NORME AFNOR XP T90-328					
Les champs suivants sont à remplir					
Longueur du profil (20m <l<100m):< td=""></l<100m):<>					
Distance du début du profil par rapport au point central (>10m):	50				

Points contacts	Profondeur (m)	Substrat dominant	Taxons	Abondance	
1		С	na		#N/A
2	0.3		na		#N/A
3			na		#N/A
4			na		#N/A
5			rhyrip	1	Rhynchostegium riparioide
6			na		#N/A
7	1.9		na		#N/A
8			na		#N/A
9			na		#N/A
10			na		#N/A
11			na		#N/A
12			na		#N/A
13			na		#N/A
14			na		#N/A
15			na		#N/A
16			na		#N/A
17		С	na		#N/A
18		С	na		#N/A
19			na		#N/A
20			na		#N/A
21			na		#N/A
22	12		na		#N/A
23			na		#N/A
24			na		#N/A
25			na		#N/A
26			na		#N/A
27	15.5		na		#N/A
28			na		#N/A
29			na		#N/A
30	19	С	na		#N/A

UNITE D'OBSERVATION MACROPHYTES			PROFIL CENTRAL			
Nom du plan d'eau :		Nantua		Code :	V2515003	
Organisme :	Mosaïqu	ue Environner	ment	Opérateur :	Eric BOUCARD	
N°Unité d'observation :	1	Date (jj/mm	n/aaaa) :		14/08/2019	
Heure début (hh:mm) :	9:3	30	Matériel u	ıtilisé :	grappin	
Heure fin (hh:mm):	10:	10				
	Comm	entaires / Pr	<u>écisions</u>			
Coordonnées GPS de début : Lambert 93						
				y:	6565544.190	

DANS LE CADRE DE L'UTILISATION DE LA NORME AFNOR XF	7 T90-328
Les champs suivants sont à remplir	
Longueur du profil (20m <l<100m):< td=""><td>20</td></l<100m):<>	20
Distance du début du profil par rapport au point central (>10m):	

Lambert 93

Х:

y:

899111.764

6565568.666

Coordonnées GPS de fin :

Profil Central					
Points contacts	Profondeur (m)		minant	Taxons	Abondance
1	0.3			na	na
2	0.5			na	na
3	1.2	С		na	na
4	1.4	С		na	na
5	1.5	С		na	na
6	2.1	С		na	na
7	3.1	С		na	na
8	3.4	С		na	na
9	4	С		na	na
10		С		na	na
11	8	С		na	na
12	7.5	С		na	na
13	9			na	na
14	9	С		na	na
15	9.5	С		na	na
16	10.5	С		na	na
17	12	С		na	na
18	12	С		na	na
19	13	С		na	na
20	13	С		na	na
21	14	С		na	na
22	15	С	I	na	na
23	17	С		na	na
24	17	С		na	na
25	17	С		na	na
26	18	С		na	na
27	19	С		na	na
28	19	С		na	na
29	20	С		na	na
30	21	С		na	na

#N/A #N/A

UNITE D'OBSERV	ATION MACROPHYTES			PROFIL DROIT	
Nom du plan d'eau :		Nantua	ì	Code :	V2515003
Organisme :	Mosaïqı	ue Envir	onnement	Opérateur :	Eric BOUCARD
N°Unité d'observation :	1	Date ((jj/mm/aaaa) :		14/08/2019
Heure début (hh:mm) :	10:4	40	Matériel u	ıtilisé :	grappin
Heure fin (hh:mm):	11:	15			

Profondeur maximale de colonisation observée durant le relevé sur l'ensemble du profil (m) :	0.2
Commentaires / Précisions	

Coordonnées GPS de début :	Lambert 93	
	x:	899150.369
	y:	6565543.505
Coordonnées GPS de fin :	Lambert 93	
	Lambert 33	
	X:	899152.378

DANS LE CADRE DE L'UTILISATION DE LA NORME AFNOR XP	T90-328
Les champs suivants sont à remplir	
Longueur du profil (20m <l<100m) :<="" td=""><td>20</td></l<100m)>	20
Distance du début du profil par rapport au point central (>10m):	50

Profil Droit						
Points contacts	Profondeur (m)	Substrat do	minant Ta	xons	Abondance	
1	0.2	С	fiso	cra		Fissidens crassipes Wilson
			am	nbrip	1	/ imbiyotogiam npanam (mo
2			na			#N/A
3			na			#N/A
4			na			#N/A
5			na			#N/A
6			na			#N/A
7			na			#N/A
8			na			#N/A
9		С	na			#N/A
10			na			#N/A
11	7		na			#N/A
12		С	na			#N/A
13			na			#N/A
14			na			#N/A
15		С	na			#N/A
16		С	na			#N/A
17	9.5		na			#N/A
18			na			#N/A
19			na			#N/A
20			na			#N/A
21	13		na			#N/A
22	13		na			#N/A
23			na			#N/A
24			na			#N/A
25			na			#N/A
26			na			#N/A
27	17		na			#N/A
28			na			#N/A
29			na			#N/A
30	21	С	na			#N/A

Type 1 : "Zones humides caractéristiques" Tourbières Landes tourbeuses / humides Marais / Marécages Plan d'eau proche (<50m de la rive)
N°Unité d'observation : Heure début (hh:mm) : 16:30
Heure début (hh:mm): Coordonnées GPS du Point central de l'unité: Lambert 93 x: 900126.883 y: 6565186.274 Transparence mesurée au disque de Secchi (m): Orientation / vents dominants: Typologie des rives au niveau de l'unité d'observation Noter la fréquence des éléments observés: 1, très rare, 2, rare, 3, présent, 4 abondant, 5, très abondant, "autropréciser Numéro du type de rive dominant: Type 1: "Zones humides caractéristiques" Tourbières Landes tourbeuses / humides Marais / Marécages Plan d'eau proche (<50m de la rive)
Coordonnées GPS du Point central de l'unité : X : 900126.883 y: 6565186.274
Transparence mesurée au disque de Secchi (m): Orientation / vents dominants: Typologie des rives au niveau de l'unité d'observation Noter la fréquence des éléments observés: 1, très rare, 2, rare, 3, présent, 4 abondant, 5, très abondant, "autropréciser Numéro du type de rive dominant: Type 1: "Zones humides caractéristiques" Tourbières Landes tourbeuses / humides Marais / Marécages Plan d'eau proche (<50m de la rive)
Transparence mesurée au disque de Secchi (m) : 5.00 Orientation / vents dominants : 5.00 Typologie des rives au niveau de l'unité d'observation Noter la fréquence des éléments observés : 1, très rare, 2, rare, 3, présent, 4 abondant, 5, très abondant, "autropréciser Numéro du type de rive dominant : 4 Type 1 : "Zones humides caractéristiques" Tourbières Landes tourbeuses / humides Marais / Marécages Plan d'eau proche (<50m de la rive)
Transparence mesurée au disque de Secchi (m) : 5.00 Orientation / vents dominants : 5.00 Typologie des rives au niveau de l'unité d'observation Noter la fréquence des éléments observés : 1, très rare, 2, rare, 3, présent, 4 abondant, 5, très abondant, "autropréciser Numéro du type de rive dominant : 4 Type 1 : "Zones humides caractéristiques" Tourbières Landes tourbeuses / humides Marais / Marécages Plan d'eau proche (<50m de la rive)
Typologie des rives au niveau de l'unité d'observation Noter la fréquence des éléments observés : 1, très rare, 2, rare, 3 , présent, 4 abondant, 5, très abondant, "autropréciser Numéro du type de rive dominant : Type 1 : "Zones humides caractéristiques" Tourbières Landes tourbeuses / humides Marais / Marécages Plan d'eau proche (<50m de la rive)
Typologie des rives au niveau de l'unité d'observation Noter la fréquence des éléments observés : 1, très rare, 2, rare, 3, présent, 4 abondant, 5, très abondant, "autropréciser Numéro du type de rive dominant : Type 1 : "Zones humides caractéristiques" Tourbières Landes tourbeuses / humides Marais / Marécages Plan d'eau proche (<50m de la rive)
Noter la fréquence des éléments observés : 1, très rare, 2, rare, 3 , présent, 4 abondant, 5, très abondant, "autropréciser Numéro du type de rive dominant : Type 1 : "Zones humides caractéristiques" Tourbières Landes tourbeuses / humides Marais / Marécages Plan d'eau proche (<50m de la rive)
Numéro du type de rive dominant : Type 1 : "Zones humides caractéristiques" Tourbières Landes tourbeuses / humides Marais / Marécages Plan d'eau proche (<50m de la rive)
Numéro du type de rive dominant : Type 1 : "Zones humides caractéristiques" Tourbières Landes tourbeuses / humides Marais / Marécages Plan d'eau proche (<50m de la rive)
Type 1 : "Zones humides caractéristiques" Tourbières Landes tourbeuses / humides Marais / Marécages Plan d'eau proche (<50m de la rive)
Tourbières Landes tourbeuses / humides Marais / Marécages Plan d'eau proche (<50m de la rive)
Landes tourbeuses / humides Marais / Marécages Plan d'eau proche (<50m de la rive)
Marais / Marécages Plan d'eau proche (<50m de la rive)
Plan d'eau proche (<50m de la rive)
Prairies inondées / humides
Mégaphorbiaie / Végétation hélophyte en touradons
Forêt hygrophile / Bois marécageux (aulnaie-saussaie)
Autre**
Type 2 : "Zones rivulaires colonisées par une végétation arbustive et arborescente non humide"
Autre**
Forêts feuillus et mixtes Forêts de conifères Arbustes et buissons Lande / Lande à Ericacées

Type 4 : "Zones artificia	lisées ou subi	ssant des pressions anthropiques visibles"
Ports		
Mouillages		
Jetées		
Urbanisation		
Entretien de la végétation rivulaire		
Zones déboisées		
Litière		
Décharge		
Remblais		
Murs		
Digues		
Revêtements artificiels		
Plages aménagées		
Zone de baignade		
Chemins et routes	5	
Ouvrages de génie civil		
Agriculture		
Autre**		
Pourcentage du linéaire tota Type 1 (%) : 8 Type 2 (%) :	l de rive repré	senté par ce type sur l'ensemble du plan d'eau : Type 3 (%) : Type 4 (%) : 92
Largeur de la zone littorale "euphotique	' " :	b "réduite"

Commentaires / Précisions
UO réalisée entre le 13/08/2019 en fin d 'après-midi et le 14/08/2019 en début d'après-midi

Nom du plan d'eau : Organisme : N'Unité d'observation : Heure début (hh.mm) : Coordonnées GPS du Point central de l'unité : Lambert 93 Conditions d'observation Vent : faible Météo : faible Météo : faiblement nu Surface de l'eau : Description de la zone riveraine (Cf. Fiche 1/1) Decription du la berge (Cf. Fiche 1/1) Decription de la berge (Cf. Fiche 1/1) Impacts humains visibles : Oui Description de la plage Largeur (m) : Impacts humains visibles : Oui Type de substrat dominant : C conditions d'observation Activate (Fiche 1/1) Activate (Fiche 1/		ATION MACROPHYTES		DESCRIPTION	A control of the cont
N'Unité d'observation : Heure début (hh.mm) : 10:30					
Heure début (hh:mm): Coordonnées GPS du Point central de l'unité : Lambert 93 X: 900126.8832 y: 6565186.274 Conditions d'observation Vent : faible faible				E	
Coordonnées GPS du Point central de l'unité : Lambert 93 x: 900126.8832 y: 6565186.274 Conditions d'observation Vent : faible Météo : faiblement nu Surface de l'eau : Description de la zone riveraine (Cf. Fiche 1/1) Occupation du sol dominante : Route & Voie ferrée Description de la berge (Cf. Fiche 1/1) Decription du talus : Hauteur (m) : 3.00 Impacts humains visibles : oui indices d'érosion : Type de végétation dominante : T T Description de la plage Largeur (m) : 0.30 Impacts humains visibles : oui Type de substrat dominant : C cindices d'érosion : Type de végétation dominante : C cindices d'érosion : Type de végétation dominante : C cindices d'érosion : Type de végétation dominante : C cindices d'érosion : Type de végétation dominante : C cindices d'érosion : Type de végétation dominante : C cindices d'érosion : Type de végétation dominante : C cindices d'érosion : Type de végétation dominante : C cindices d'érosion : Type de végétation dominante : C cindices d'érosion : Type de végétation dominante : C cindices d'érosion : Type de végétation dominante : C cindices d'érosion : Type de substrat dominant : C cindices d'érosion : Type de substrat dominante : C cindices d'érosion : Type de substrat dominante : C cindices d'érosion : Type de substrat dominante : C cindices d'érosion : Type de substrat dominante : C cindices d'érosion : Type de substrat dominante : C cindices d'érosion : Type de substrat dominante : C cindices d'érosion : Type de substrat dominante : C cindices d'érosion : Type de substrat dominante : C cindices d'érosion : Type de substrat dominante : C cindices d'érosion : Type de substrat dominante : C cindices d'érosion : Type de substrat dominante : C cindices d'érosion : Type de substrat dominante : C cindices d'érosion : C cindices d'érosion : Type de substrat dominante : C c cindices d'érosion : C c c cindices d'érosion : C c c contracte d'érosion : C c c				(hh:mm) · I	
Conditions d'observation Vent : faible					10.73
Conditions d'observation Vent : faible				1	E UNIVA MUEN
Conditions d'observation Went : faible Météo : faiblement nu Surface de l'eau : faiblement agitée Hauteur des vagues (m) : Description de la zone riveraine (Cf. Fiche 1/1) Occupation du sol dominante : Route & Voie ferrée Végétation dominante : arborescente Description de la berge (Cf. Fiche 1/1) Decription du talus : Hauteur (m) : 3.00 Impacts humains visibles : oui Indices d'érosion : oui Type de substrat dominant : T Type de végétation dominante : Arborée Substrats : [V : Vase; T : Terre, argile, marne, tourbe ; S : Sables, graviers C : Cailloux, pierres, galets ; B : Bic dalles ; D : Débris organiques] Description de la plage Largeur (m) : 0.30 Impacts humains visibles : oui Type de substrat dominant : c Indices d'érosion : Type de végétation dominante : arborescente Description de la zone littorale Largeur explorée (m) : 3 Type de subtrat dominant : c				x:	900126.8832
Conditions d'observation Went : faible Météo : faiblement nu Surface de l'eau : faiblement agitée Hauteur des vagues (m) : Description de la zone riveraine (Cf. Fiche 1/1) Occupation du sol dominante : Route & Voie ferrée Végétation dominante : arborescente Description de la berge (Cf. Fiche 1/1) Decription du talus : Hauteur (m) : 3.00 Impacts humains visibles : oui Indices d'érosion : oui Type de substrat dominant : T Type de végétation dominante : Arborée Substrats : [V : Vase; T : Terre, argile, marne, tourbe ; S : Sables, graviers C : Cailloux, pierres, galets ; B : Bic dalles ; D : Débris organiques] Description de la plage Largeur (m) : 0.30 Impacts humains visibles : oui Type de substrat dominant : c Indices d'érosion : Type de végétation dominante : arborescente Description de la zone littorale Largeur explorée (m) : 3 Type de subtrat dominant : c				N°	6565106 274
Vent : faible Météo : Surface de l'eau : faiblement agitée Hauteur des vagues (m) : Description de la zone riveraine (Cf. Fiche 1/1) Occupation du sol dominante : Route & Voie ferrée Végétation dominante : arborescente Description de la berge (Cf. Fiche 1/1) Decription du talus : Hauteur (m) : 3.00 Impacts humains visibles : oui Indices d'érosion : oui Type de végétation dominante : T Type de végétation dominante : Arborée Substrats : [V : Vase, T : Terre, argile, marne, tourbe ; S : Sables, graviers C : Cailloux, pierres, galets ; B : Bid dalles ; D : Débris organiques] Description de la plage Largeur (m) : 0.30 Impacts humains visibles : oui Type de substrat dominant : c Indices d'érosion : oui Type de substrat dominant : c Indices d'érosion : oui Type de végétation dominante : arborescente Description de la zone littorale Largeur explorée (m) : 3 Type de subtrat dominant : c Impacts humains visibles : oui Type de subtrat dominant : c Indices d'érosion : oui Type de subtrat dominant : c Impacts humains visibles : oui Type de végétation dominante : c Indices d'érosion : oui Type de subtrat dominant : c Indices d'erosion : oui Type de subtrat dominant : c Indices d'erosion : oui Type de subtrat dominant : c Indices d'erosion : oui Type de subtrat dominant : c Indices d'erosion : oui Type de subtrat dominant : c Indices d'erosion : oui Type de subtrat dominant : c Indices d'erosion : oui Type de subtrat dominant : c Indices d'erosion : oui Type de subtrat dominant : c Indices d'erosion : oui Type de subtrat dominant : c Indices d'erosion : oui Type de subtrat dominant : c Indices d'erosion : oui Type de subtrat dominant : c Indices d'erosion : oui Type de subtrat dominant : c Indices d'erosion : oui Type de subtrat dominant : c Indices d'erosion : oui Type de subtrat dominant : c Indices d'erosion : oui Type de subtrat dominant : c Indices d'erosion : oui Type de subtrat dominant : c Indices d'er				у.	0303180.274
Météo : faiblement nu Surface de l'eau : faiblement agitée Hauteur des vagues (m) : Description de la zone riveraine (Cf. Fiche 1/1) Occupation du sol dominante : Route & Voie ferrée Végétation dominante : arborescente Description de la berge (Cf. Fiche 1/1) Decription du talus : Hauteur (m) : 3.00 Impacts humains visibles : oui Indices d'érosion : Type de substrat dominante : T Type de végétation dominante : T Type de végétation dominante : T Substrats : [V : Vase; T : Terre, argile, marne, tourbe ; S : Sables, graviers C : Cailloux, pierres, galets ; B : Blocation de la plage Largeur (m) : 0.30 Impacts humains visibles : oui Type de substrat dominant : c Indices d'érosion : Oui Type de substrat dominant : c Indices d'érosion : Oui Type de végétation dominante : arborescente Description de la zone littorale Largeur explorée (m) : 3 Type de subtrat dominant : c		Condition	ns d'observation		
Surface de l'eau : faiblement agitée Hauteur des vagues (m) : Description de la zone riveraine (Cf. Fiche 1/1) Occupation du sol dominante : Route & Voie ferrée Végétation dominante : arborescente Description de la berge (Cf. Fiche 1/1) Decription du talus : Hauteur (m) : 3.00 Impacts humains visibles : oui Indices d'érosion : Type de substrat dominante : T Type de végétation dominante : Arborée Substrats : [V : Vase; T : Terre, argile, marne, tourbe ; S : Sables, graviers C : Cailloux, pierres, galets ; B : Blodalles ; D : Débris organiques] Description de la plage Largeur (m) : 0.30 Impacts humains visibles : oui Type de substrat dominant : c Indices d'érosion : Type de végétation dominante : arborescente Description de la zone littorale Largeur explorée (m) : 3 Type de subtrat dominant : c	Vent: faible				
Description de la zone riveraine (Cf. Fiche 1/1) Occupation du sol dominante : Route & Voie ferrée Végétation dominante : arborescente Description de la berge (Cf. Fiche 1/1) Decription du talus : Hauteur (m) : 3.00 Impacts humains visibles : oui Indices d'érosion : Type de substrat dominante : T Type de végétation dominante : Arborée Substrats : [V : Vase; T : Terre, argile, marne, tourbe ; S : Sables, graviers C : Cailloux, pierres, galets ; B : Bio dalles ; D : Débris organiques] Description de la plage Largeur (m) : O.30 Impacts humains visibles : oui Type de substrat dominant : c Indices d'érosion : Oui Type de végétation dominante : arborescente Description de la zone littorale Largeur explorée (m) : 3 Type de subtrat dominant : c	Météo : faiblement n	u		8 <u>4</u>	
Description de la zone riveraine (Cf. Fiche 1/1) Occupation du sol dominante : Route & Voie ferrée Végétation dominante : arborescente Description de la berge (Cf. Fiche 1/1) Decription du talus : Hauteur (m) : 3.00 Impacts humains visibles : oui Indices d'érosion : Type de substrat dominante : T Type de végétation dominante : T Type de végétation dominante : Arborée Substrats : [V : Vase; T : Terre, argile, marne, tourbe; S : Sables, graviers C : Cailloux, pierres, galets; B : Block dalles; D : Débris organiques] Description de la plage Largeur (m) : 0.30 Impacts humains visibles : oui Type de substrat dominant : c Indices d'érosion : Type de végétation dominante : arborescente Description de la zone littorale Largeur explorée (m) : 3 Type de subtrat dominant : c	Surface de l'eau :			jues (m):	
Occupation du sol dominante : Végétation dominante : Description de la berge (Cf. Fiche 1/1) Decription du talus : Hauteur (m) : Indices d'érosion : Type de substrat dominante : Description de la plage Largeur (m) : Impacts humains visibles : Oui Description de la plage Largeur (m) : Impacts humains visibles : Oui Description de la plage Largeur (m) : Impacts humains visibles : Oui Type de substrat dominante : Oui Type de substrat dominante : Oui Type de substrat dominant : Oui Type de substrat dominant : C Type de végétation dominante : Oui Type de substrat dominant : Oui Type de végétation dominante : Oui Type de substrat dominante : Oui Type de végétation dominante : Oui Type de végétation dominante : Oui Type de végétation dominante : Oui Type de substrat dominante : Oui Oui Type de substrat dominante : Oui Oui Oui Type de substrat dominante :	Description de la zone six		ption de la rive		
Végétation dominante : Description de la berge (Cf. Fiche 1/1) Decription du talus :			_		
Description de la berge (Cf. Fiche 1/1) Decription du talus: Hauteur (m): Impacts humains visibles: Type de substrat dominant: Type de végétation dominante: Substrats: [V: Vase; T: Terre, argile, marne, tourbe; S: Sables, graviers C: Cailloux, pierres, galets; B: Block dalles; D: Débris organiques] Description de la plage Largeur (m): Impacts humains visibles: Impacts d'érosion: Description de la zone littorale Largeur explorée (m): 3 Type de substrat dominant: C Type de substrat dominant: C Type de végétation dominante: C Type de substrat dominant: C Type de végétation dominante: C		nte :	11		e
Description du talus : Hauteur (m) : Impacts humains visibles : Indices d'érosion : Type de substrat dominant : Type de végétation dominante : Substrats : [V : Vase; T : Terre, argile, marne, tourbe ; S : Sables, graviers C : Cailloux, pierres, galets ; B : Block dalles ; D : Débris organiques] Description de la plage Largeur (m) : Impacts humains visibles : Indices d'érosion : Description de la zone littorale Largeur explorée (m) : 3 Type de substrat dominant : C Type de substrat dominant : C Type de végétation dominante : C Type de substrat dominant : C Type de végétation dominante : C Type de végétation dominante : C Type de substrat dominant : C Type de végétation dominante : C		Of Fire 4/4)	а	rborescente	
Hauteur (m): Impacts humains visibles: Indices d'érosion: Type de substrat dominant: Type de végétation dominante: Substrats: [V: Vase; T: Terre, argile, marne, tourbe; S: Sables, graviers C: Cailloux, pierres, galets; B: Blood dalles; D: Débris organiques] Description de la plage Largeur (m): Impacts humains visibles: Indices d'érosion: Oui Type de substrat dominant: Indices d'érosion: Description de la zone littorale Largeur explorée (m): 3 Type de subtrat dominant: C	to a vine live vince and a reserve to the con-	CT. Fiche 1/1)			
Impacts humains visibles : oui Indices d'érosion : oui Type de substrat dominant : T Type de végétation dominante : Arborée Substrats : [V : Vase; T : Terre, argile, marne, tourbe ; S : Sables, graviers C : Cailloux, pierres, galets ; B : Blood dalles ; D : Débris organiques] Description de la plage Largeur (m) : 0.30 Impacts humains visibles : oui Type de substrat dominant : c Indices d'érosion : oui Type de végétation dominante : arborescente Description de la zone littorale Largeur explorée (m) : 3 Type de subtrat dominant : c	Decription du talus :				
Indices d'érosion :	Hauteur (m):	3.00			
Type de substrat dominant : Type de végétation dominante : Substrats : [V: Vase; T : Terre, argile, marne, tourbe ; S : Sables, graviers C : Cailloux, pierres, galets ; B : Block dalles ; D : Débris organiques] Description de la plage Largeur (m) : Impacts humains visibles : Indices d'érosion : Oui Type de substrat dominant : T T Arborée Oui Type de substrat dominant : C Type de végétation dominante : Description de la zone littorale Largeur explorée (m) : 3 Type de subtrat dominant : C	Impacts humains visibles	oui			
Type de substrat dominant : Type de végétation dominante : Substrats : [V : Vase; T : Terre, argile, marne, tourbe ; S : Sables, graviers C : Cailloux, pierres, galets ; B : Block dalles ; D : Débris organiques] Description de la plage Largeur (m) : Impacts humains visibles : Indices d'érosion : Oui Type de substrat dominant : T T Arborée Oui Type de substrat dominant : C Type de végétation dominante : Description de la zone littorale Largeur explorée (m) : 3 Type de subtrat dominant : C	Indices d'érosion :	oui			
Type de végétation dominante : Substrats: [V: Vase; T: Terre, argile, marne, tourbe ; S: Sables, graviers C: Cailloux, pierres, galets ; B: Blood dalles ; D: Débris organiques] Description de la plage Largeur (m): Impacts humains visibles: Indices d'érosion: Oui Type de substrat dominant: Type de végétation dominante: Description de la zone littorale Largeur explorée (m): 3 Type de subtrat dominant: C				Т	
Substrats: [V : Vase; T : Terre, argile, marne, tourbe ; S : Sables, graviers C : Cailloux, pierres, galets ; B : Bloodalles ; D : Débris organiques] Description de la plage Largeur (m) : 0.30 Impacts humains visibles : oui Type de substrat dominant : c Indices d'érosion : Type de végétation dominante : arborescente Description de la zone littorale Largeur explorée (m) : 3 Type de subtrat dominant : c	S. P. S.	Control of			
Description de la plage Largeur (m): Impacts humains visibles: Indices d'érosion: Oui Type de substrat dominant: Type de végétation dominante: arborescente Description de la zone littorale Largeur explorée (m): 3 Type de subtrat dominant: c	Type de vegetation domina	ante :		Arboree	
Description de la plage Largeur (m): Impacts humains visibles: Indices d'érosion: Description de la zone littorale Largeur explorée (m): Jui Débris organiques 0.30 Type de substrat dominant: c Type de végétation dominante: arborescente Type de substrat dominant: c	Substrate : [V : Vaco: T :	Torro arailo marno tourbe	. C · Cables gravio	re C : Caillouv	niorros galate : D : Die
Description de la plage Largeur (m): Impacts humains visibles: Indices d'érosion: Oui Type de substrat dominant: Type de végétation dominante: arborescente Description de la zone littorale Largeur explorée (m): 3 Type de subtrat dominant: c	Substitute . [v . vase, 1 .			is C. Callioux	, pierres, galets , B . Dit
Largeur (m) : 0.30 Impacts humains visibles : oui Type de substrat dominant : c Indices d'érosion : Type de végétation dominante : arborescente Description de la zone littorale Largeur explorée (m) : 3 Type de subtrat dominant : c	Description de la plage		3		
Impacts humains visibles : oui		ì	0.30		
Indices d'érosion :	100 miles (100 miles (· oui Type de su	12 TO		r
Description de la zone littorale Largeur explorée (m): 3 Type de subtrat dominant : c					
Largeur explorée (m): 3 Type de subtrat dominant : c	indices d'erosion .	Type de ve	getation dominante		aiborescente
Largeur explorée (m): 3 Type de subtrat dominant : c		torale		20	
Longueur explorée(m): 100 Impacts humains visibles : oui	Largeur explorée (m):	3 Type de su			С
	Longueur explorée(m):	100 Impacts hu	mains visibles :	L	oui
	Type de végétation aquation	que dominante ·	hydrophytes		
Type de végétation aquatique dominante : hydrophytes	. , , , a a regulation addution		injunction in the second		
Type de végétation aquatique dominante : hydrophytes		Comment	aires / Précisions		
Type de végétation aquatique dominante : hydrophytes Commentaires / Précisions					
500 301 (301 (400 - 3) (30 (400 (30 (40 (40 (40 (40 (40 (40 (40 (40 (40 (4					
500 301 (301 (400 - 3) (30 (400 (30 (40 (40 (40 (40 (40 (40 (40 (40 (40 (4					
500 301 (301 (400 - 3) (30 (400 (30 (40 (40 (40 (40 (40 (40 (40 (40 (40 (4					
Commentaires / Précisions	Dans le c	adre de l'utilisation d	e la norme AFI	NOR XF	790-328
(200 Altri	01			The second second	
Dans le cadre de l'utilisation de la norme AFNOR XP T90-328	Champs suppl	ementaires à renseigne	<u>er</u>		
Commentaires / Précisions		nds: Fort	te		· · · · · · · · · · · · · · · · · · ·

UNITE D'OBSER	RVATION MACROPHYTES		RELEVE D	E RIVE
Nom du plan d'eau :	Nantua	Code:		V2515003
Organisme :	Mosaïque Environnement	Opér	ateur :	Eric BOUCARD
N°Unité d'observation :	2	Date (jj/n	nm/aaaa) :	13/08/2019
Heure début (hh:mm) :	12:00	Heure de f	in (hh:mm) :	12:30

Commentaires / Précisions

* indiquer la superficie de (des) l'herbier(s), la profondeur, le type de subtrat, la présence de fleurs, de fruits, etc. Substrat dominant : [V : vase; T : Terre, argile, marne, tourbe; R : Racines, branchages; S :

Sables, graviers; **C** : Cailloux, pierres, galets; **B** : Blocs, dalles; **D** : Débris organiques]

nce Observations

TAXONS	Abondance	Observations complémentaires (*)	
rubcae	2		Rubus caesius L., 1753
filulm	2		Filipendula ulmaria (L.) Maxim., 1879
fisadi	3		Fissidens adianthoides Hedw.
spispx	1		Spirogyra sp. Link
pelend	2		Pellia endiviifolia (Dicks.) Dumort.
ambrip	2		Amblystegium riparium (Hedw.) Schimp.
eupcan	1		Eupatorium cannabinum L., 1753
menaqu	1		Mentha aquatica L., 1753
angsyl	1		Angelica sylvestris L., 1753
carpen	1		Carex pendula Huds., 1762
vaeoff	1		Valeriana officinalis L., 1753
carela	1		Carex elata All., 1785
lytsal	1		Lythrum salicaria L., 1753
lysvul	2		Lysimachia vulgaris L., 1753
iripse	1		Iris pseudacorus L., 1753
lyceur	1		Lycopus europaeus L., 1753
fonant	1		Fontinalis antipyretica Hedw.
rhyrip	1		Rhynchostegium riparioides (Hedw.) Cardot
rivspx	1		Rivularia C. Agardh, 1886
toyspx	1		Tolypothrix Kützing ex Bornet & Flahault, 1886
cinfon	1		Cinclidotus fontinaloides (Hedw.) P.Beauv.
oedspx	1		Oedogonium Link ex Hirn, 1900
micspx	1		Microspora Thuret, 1850
encspx	1		Encyonema Kützing, 1833
chespx	1		Chaetophora F. Schrank, 1783
brypse	1		Bryum pseudotriquetrum (Hedw.) P.Gaertn. et al.
ambflu	1		Amblystegium fluviatile (Hedw.) Schimp.
sczspx	1		Schizothrix Kützing ex Gomont, 1892

UNITE D'OBSERVATION MACROPHYTES			ROFIL GAUCHE
Nantua Co		Code:	V2515003
Mosaïque Environnement C		Opérateur :	Eric BOUCARD
2 Date (jj/mm/aaaa) :			13/08/2019
12:30	Matériel u	ıtilisé :	grappin
13:20			
	Mosaïque Enviro 2 Date (j 12:30	Mosaïque Environnement 2	Mosaïque Environnement 2 Date (jj/mm/aaaa): 12:30 Matériel utilisé:

Commentaires / Précisions	

Coordonnées GPS de début :	Lambert 9	Lambert 93			
		x :	900081.079		
		y:	6565203.213		
Coordonnées GPS de fin :	Lambert 9	Lambert 93			
		x :	900090.311		
		y:	6565225.405		

DANS LE CADRE DE L'UTILISATION DE LA NORME AFNOR XF	7 T90-328
Les champs suivants sont à remplir	
Longueur du profil (20m <l<100m) :<="" td=""><td>25</td></l<100m)>	25
Distance du début du profil par rapport au point central (>10m):	50

Points contacts	Profondeur (m)		int Taxons	Abondance	
1	0.1		na		#N/A
2			na		#N/A
3			na		#N/A
4			na		#N/A
5			sczspx	3	Schizothrix Kützing ex Gon
6			na	1	#N/A
7			na		#N/A
8			sczspx	1	Schizothrix Kützing ex Gon
9			na		#N/A
10			na		#N/A
11	1.3		na		#N/A
12	1.4	С	na		#N/A
13			na		#N/A
14			na		#N/A
15		С	na		#N/A
16			na		#N/A
17	3.7	С	na		#N/A
18		С	na		#N/A
19	5.5	С	na		#N/A
20	7.5	С	na		#N/A
21		С	na		#N/A
22	8	С	na		#N/A
23	10	С	na		#N/A
24	11		na		#N/A
25	11		na		#N/A
26	11		na		#N/A
27	12		na		#N/A
28	13.5		na		#N/A
29			na		#N/A
30	16		na		#N/A
					Ī

de : V2515003 érateur : Eric BOUCARD
érateur : Eric BOUCARD
13/08/2019
sé: grappin
S (

Profondeur maximale de colonisation observée durant le relevé sur l'ensemble du profil (m) :	0
Commentaires / Précisions	

Coordonnées GPS de début :	Lambert 93	Lambert 93			
		x :	900126.883		
		y:	6565186.274		
Coordonnées GPS de fin :	Lambert 93	Lambert 93			
		x :	900142.839		
		V:	6565205.909		

DANS LE CADRE DE L'UTILISATION DE LA NORME AFNOR XF	T90-328
Les champs suivants sont à remplir	
Longueur du profil (20m <l<100m) :<="" td=""><td>25</td></l<100m)>	25
Distance du début du profil par rapport au point central (>10m) :	

Profil Central				
Points contacts		Substrat domina	nt Taxons	Abondance
1	0.3		na	na
2	0.4		na	na
3	0.5		na	na
4	0.5	С	na	na
5	0.7		na	na
6	0.8	С	na	na
7	1	С	na	na
8	1.2	С	na	na
9	1.2		na	na
10	1.5		na	na
11	2.2		na	na
12	2.3	С	na	na
13	2.9	С	na	na
14	3.5	С	na	na
15	4.5	С	na	na
16	5.5	С	na	na
17	6	С	na	na
18	6.5	С	na	na
19	7.5	С	na	na
20	7.5		na	na
21	9	С	na	na
22	11	С	na	na
23	11	С	na	na
24	11	С	na	na
25	13	С	na	na
26	13	С	na	na
27	13	С	na	na
28	14	С	na	na
29	15	С	na	na
30	15	С	na	na

#N/A #N/A

UNITE D'OBSERVATION MACROPHYTES				ı	PROFIL DROIT
Nom du plan d'eau :		Nantua	ua Code :		V2515003
Organisme :	Mosaïqu	Mosaïque Environnement		Opérateur :	Eric BOUCARD
N°Unité d'observation :	2	2 Date (jj/mm/aaaa) :			13/08/2019
Heure début (hh:mm) :	13:2	20 Matériel ι		ıtilisé :	grappin
Heure fin (hh:mm):	13:4	13:45			

Profondeur maximale de colonisation observée durant le relevé sur l'ensemble du profil (m) :	0
Commentaires / Précisions	

Coordonnées GPS de début :	Lambert 9	Lambert 93		
		x :	900164.596	
		y:	6565154.735	
Coordonnées GPS de fin :	Lambert 9	3		
		x :	900186.333	
		V:	6565174.672	

DANS LE CADRE DE L'UTILISATION DE LA NORME AFNOR XP T90-328				
Les champs suivants sont à remplir				
Longueur du profil (20m <l<100m):< td=""></l<100m):<>				
Distance du début du profil par rapport au point central (>10m):	50			

Profil Droit				
Points contacts	Profondeur (m)		ninant Taxons	Abondance
1	0.3		na	na
2	0.5		na	na
3	0.8		na	na
4	1.2	С	na	na
5	2.1	С	na	na
6	2.5	С	na	na
7	3	С	na	na
8	3.1	С	na	na
9	3.9	С	na	na
10	6	С	na	na
11	6	С	na	na
12	7	С	na	na
13	7	С	na	na
14	7	С	na	na
15		С	na	na
16		С	na	na
17		С	na	na
18	9	С	na	na
19	10	С	na	na
20	10	С	na	na
21	11	С	na	na
22	11	С	na	na
23	11	С	na	na
24	12		na	na
25	13		na	na
26	13	С	na	na
27	13	С	na	na
28	15	С	na	na
29		С	na	na
30	15	С	na	na

#N/A #N/A

	TION MACROPHYTES		SCRIPTION C	
Nom du plan d'eau :	Nantua		Code :	V2515003
Organisme :	Mosaïque Environnement			Eric BOUCARD
N°Unité d'observation : Heure début (hh:mm) :	3 Date (jj/mm/aaaa) : Heure de fin (l	hh:mm\:	13/08/2019 16:20
, ,	Point central de l'unité :		l	10.20
Coordonnees GP3 du	Point central de l'unite .	Lambert 93		000500 257
			X :	900586.357
			у:	6565627.834
Fransparence mesurée au	disque de Secchi (m) :	5.00	Niveaux des	s eaux (m) : 475.00
Orientation / vents domina	ants :	sous le vent		
	Typologie des rives au	niveau de l'unité d'o	bservation	
Noter la fréquence des éle	<mark>éments observés :</mark> 1, très ra	re,2, rare, 3 , présen [.] préciser	t, 4 abondant,	5, très abondant, "autre" : à
Numéro du type de rive d	•	4		
71		umides caractéristic	ques"	
Tourbières				
Landes tourbeuses / humid	des			
Marais / Marécages				
Plan d'eau proche (<50m d	de la rive)			
Prairies inondées / humide	es .			
Mégaphorbiaie / Végétatio	n hélophyte en touradons			
Forêt hygrophile / Bois ma	récageux (aulnaie-saussaie)		1	
Autre**				
Tyne 2 : "Zones ri	ivulaires colonisées par une	vágátation arhustiv	vo ot arhoros	cente non humide"
Forêts feuillus et mixtes	valaires esterilesses par une		10 01 01 00	oonto non namao
Forêts de conifères				
Arbustes et buissons				
_ande / Lande à Ericacées				
Autre**				

Type 4 : "Zones artificia	alisées ou sub	ssant des pressions anthropiques visibles"
Ports		
Mouillages		
Jetées		
Urbanisation		
Entretien de la végétation rivulaire		
Zones déboisées		
Litière		
Décharge		
Remblais		
Murs		
Digues		
Revêtements artificiels		
Plages aménagées		
Zone de baignade		
Chemins et routes	5	
Ouvrages de génie civil		
Agriculture		
Autre**		
Pourcentage du linéaire tota	al de rive repré	senté par ce type sur l'ensemble du plan d'eau :
Type 1 (%) : 8		Type 3 (%):
Type 2 (%) :		Type 4 (%): 92
Largeur de la zone littorale "euphotique	e" :	b "réduite"
	0	ires / Précisions
	Commenta	10371100310113

UNITE D'ORSERVA	TION MACROPHYTES		DESCRIPTION	NIOCALE
Nom du plan d'eau :	Nantua		Code :	V2515003
Organisme :	Mosaïque Environnemen			ric BOUCARD
N°Unité d'observation :	3 Date (j	j/mm/aaaa) :	G 114 4 11	13/08/2019
Heure début (hh:mm) :	13:30	Heure de fi	n (hh:mm) :	16:20
Coordonnées GPS du Poi	nt central de l'unité :	Lambert 93	S 19	
			27309	
			X:	900586.357
			1/2	6565627 024
1			у:	6565627.834
Suparage and	Condition	s d'observation		
Vent: moyen				
Météo : faiblement nu	1		nimani X	
Surface de l'eau :	faiblement agitée	Hauteur des va	agues (m):	
		tion de la rive	- 25	
Description de la zone riv	eraine (Cf. Fiche 1/1)			
Occupation du sol dominan	te:		Т	
Végétation dominante :			herbacée	
Description de la berge (C	of. Fiche 1/1)			
Decription du talus :				
Hauteur (m) :	2.00			
Impacts humains visibles :	W			
A CONTRACTOR OF THE SECTION OF THE S				
Indices d'érosion :	non			
Type de substrat dominant	:		В	
Type de végétation domina	nte :		arborescente	
	38		10001000	
Substrats: [V : Vase; T :	Terre, argile, marne, tourbe			, pierres, galets ; B : Bloo
	dalles ; D : E	Débris organiques		
Description de la plage				
Largeur (m):		0.0	00	
Impacts humains visibles :	na Type de sub	strat dominant :		na
Indices d'érosion :		étation dominante	e: [na
00000000000000000000000000000000000000	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		**************************************	3177.0
Description de la zone litt				
Largeur explorée (m):		otrat dominant :	1	С
Longueur explorée(m) :	100 Impacts hun	nains visibles :	L	non
			1	
Type de végétation aquatiq	uo dominanto :	hálanhutas	I	
i ype de vegetation aquatiq	ue uominante .	hélophytes		
	Commenta	ires / Précisions		
	001111101110	2		
Dans le c	adre de l'utilisation de	la norme Al	NOR XE	T90-328
Dansie	udie de l'utilisation de	a norme Ar	HON XI	100 020
Champs supple	émentaires à renseigne	<u>r</u>		
Pente des fon	de · East			Ì
Pente des fon	ds: Forte	9		

UNITE D'OBSER	RVATION MACROPHYTES		RELEVE D	E RIVE
Nom du plan d'eau :	Nantua	Code:	V2515003	
Organisme :	Mosaïque Environnement	Opér	ateur :	Eric BOUCARD
N°Unité d'observation :	3	Date (jj/n	nm/aaaa) :	13/08/2019
Heure début (hh:mm) :	13:30	Heure de f	in (hh:mm) :	16:20

Commentaires / Précisions

* indiquer la superficie de (des) l'herbier(s), la profondeur, le type de subtrat, la présence de fleurs, de fruits, etc. Substrat dominant : [V : vase; T : Terre, argile, marne, tourbe; R : Racines, branchages; S : Sables, graviers; C : Cailloux, pierres, galets; B : Blocs, dalles; D :

	<u>Déb</u>	ris organiques]	
TAXONS	Abondance	Observations complémentaires (*)	
filulm	1		Filipe
rubcae	1		Rubu
phraus	3		Phrag
carela	2		Care
lysvul	2		Lysin
menaqu	1		Ment
brypse	3		Bryur
ambrip	2		Ambl
	1	calystegia sepium	
carpen	1		Care
lyceur	1		Lycop
rivspx	2		Rivul
toyspx	2		Tolyp
fisadi	3		Fissio
fiscra	2		Fissio
ambflu	1		Ambl
phospx	1		Phor
gomspx	1		Gom
lynspx	1		Lyngl

Filipendula ulmaria (L.) Maxim., 1879 Rubus caesius L., 1753 Phragmites australis (Cav.) Trin. ex Steud., 1840 Carex elata All., 1785 Lysimachia vulgaris L., 1753 Mentha aquatica L., 1753

Bryum pseudotriquetrum (Hedw.) P.Gaertn. et al. Amblystegium riparium (Hedw.) Schimp.

Carex pendula Huds., 1762
Lycopus europaeus L., 1753
Rivularia C. Agardh, 1886
Tolypothrix Kützing ex Bornet & Flahault, 1886
Fissidens adianthoides Hedw.
Fissidens crassipes Wilson ex Bruch & Schimp.
Amblystegium fluviatile (Hedw.) Schimp.
Phormidium Kützing ex Gomont, 1892
Gomphoneis P. T. Cleve
Lyngbya C.Agardh ex Gomont, 1892

UNITE D'OBSERVATION MACROPHYTES				Pi	ROFIL GAUCHE
Nom du plan d'eau :		Nantua C		Code :	V2515003
Organisme :	Mosaïqu	Mosaïque Environnement		Opérateur :	Eric BOUCARD
N°Unité d'observation :	3	3 Date (jj/mm/aaaa) :		13/08/2019	
Heure début (hh:mm) :	14:0	14:00 Matériel u		ıtilisé :	grappin
Heure fin (hh:mm):	14:	50		_	
			=		

Profondeur maximale de colonisation observée durant le relevé sur l'ensemble du profil (m) :	0.5
Commentaires / Précisions	

Coordonnées GPS de début :	Lambert 9	Lambert 93		
		x :	900618.188	
		y:	6565605.541	
Coordonnées GPS de fin :	Lambert 9	3		
		x :	900588.455	
		V:	6565565.895	

DANS LE CADRE DE L'UTILISATION DE LA NORME AFNOR XP T90-328					
Les champs suivants sont à remplir					
Longueur du profil (20m <l<100m):< td=""></l<100m):<>					
Distance du début du profil par rapport au point central (>10m):					

Profil Gauche					
Points contacts	Profondeur (m)	Substrat dominant	Taxons	Abondance	
1			lynspx	3	₋yngbya C.Agardh e
2			lynspx	3	_yngbya C.Agardh ex
3	0.7	С	na		#N/A
4		С	na		#N/A
5	1.7	С	na		#N/A
6		С	na		#N/A
7	3.5	С	na		#N/A
8	4.5	С	na		#N/A
9		С	na		#N/A
10	7	С	na		#N/A
11	7	С	na		#N/A
12	7.5	С	na		#N/A
13	8	С	na		#N/A
14	9	С	na		#N/A
15	10	С	na		#N/A
16		С	na		#N/A
17	11	С	na		#N/A
18	11	С	na		#N/A
19			na		#N/A
20	12	С	na		#N/A
21	12	С	na		#N/A
22			na		#N/A
23	13	С	na		#N/A
24	13.5	С	na		#N/A
25			na		#N/A
26			na		#N/A
27			na		#N/A
28			na		#N/A
29	15	С	na		#N/A
30	15	С	na		#N/A

UNITE D'OBSERVATION MACROPHYTES			
Nantua (Code :	V2515003
Mosaïque Environnement		Opérateur : Eric BOUCARI	
3 Date	(jj/mm/aaaa) :	13/08/2019	
14:50	14:50 Matériel u		grappin
15:35			•
	Nantua Mosaïque Envir 3 Date 14:50	Nantua Mosaïque Environnement 3 Date (jj/mm/aaaa) : 14:50 Matériel u	Nantua Code : Mosaïque Environnement Opérateur : 3 Date (jj/mm/aaaa) : 14:50 Matériel utilisé :

Profondeur maximale de colonisation observée durant le relevé sur l'ensemble du profil (m) : 1

Commentaires / Précisions

Coordonnées GPS de début :	Lambert 9	Lambert 93			
		x :	900586.357		
		y:	6565627.834		
Coordonnées GPS de fin :	Lambert 9	3			
		x :	900567.218		
		y:	6565597.093		

DANS LE CADRE DE L'UTILISATION DE LA NORME AFNOR XP T90-328					
Les champs suivants sont à remplir					
Longueur du profil (20m <l<100m):< td=""></l<100m):<>					
Distance du début du profil par rapport au point central (>10m):					

Profil Central						
Points contacts	Profondeur (m)	Substrat d	lominant	Taxons	Abondance	
1	0.3	С	d	rivspx		Rivularia C. Agardh, 1886
				phospx	1	Phormidium Kützing ex Gorr
2		С	d	na		#N/A
3	0.7	С		phraus		Phragmites australis (Cav.)
4		С	d	phraus	3	Phragmites australis (Cav.)
5		С	d	phraus	3	Phragmites australis (Cav.)
6	1.6	С		na		#N/A
7	2	С		na		#N/A
8		С	d	na		#N/A
9		С		na		#N/A
10				na		#N/A
11		С		na		#N/A
12		С		na		#N/A
13				na		#N/A
14	6	С		na		#N/A
15	7	С		na		#N/A
16	7	b		na		#N/A
17	8			na		#N/A
18				na		#N/A
19	9	b		na		#N/A
20	9	b		na		#N/A
21	10	b		na		#N/A
22	11	b		na		#N/A
23	11	b		na		#N/A
24	12	b		na		#N/A
25	11	b		na		#N/A
26	14	b		na		#N/A
27	14	b		na		#N/A
28	15	С		na		#N/A
29				na		#N/A
30	15	b		na		#N/A

UNITE D'OBSERV	F	PROFIL DROIT			
Nom du plan d'eau :		Nantua (Code :	V2515003
Organisme :	Mosaïqu	Mosaïque Environnement		Opérateur :	Eric BOUCARD
N°Unité d'observation :	3	Date (jj/m	m/aaaa) :	13/08/2019	
Heure début (hh:mm) :	15:3	15:35 Matériel ut		ıtilisé :	grappin
Heure fin (hh:mm):	16:2	16:20			
			_		

Profondeur maximale de colonisation observée durant le relevé sur l'ensemble du profil (m) :	1
Commentaires / Précisions	

Coordonnées GPS de début :	Lambert 9	Lambert 93				
		x :	900551.032			
		y:	6565658.968			
Coordonnées GPS de fin :	Lambert 9	Lambert 93				
		x :	900535.650			
		V:	6565629.017			

DANS LE CADRE DE L'UTILISATION DE LA NORME AFNOR XP T90-328					
Les champs suivants sont à remplir					
Longueur du profil (20m <l<100m):< td=""></l<100m):<>					
Distance du début du profil par rapport au point central (>10m):	50				

Profil Droit						
Points contacts	Profondeur (m)		ominant	Taxons	Abondance	
1				na		#N/A
2				na		#N/A
3				rivspx	2	Rivularia C. Agardh, 1886
4				na		#N/A
5		С		rivspx	2	Rivularia C. Agardh, 1886
6		С		na		#N/A
7				na		#N/A
8				na		#N/A
9		С		na		#N/A
10				na		#N/A
11				na		#N/A
12		С		na		#N/A
13		С		na		#N/A
14				na		#N/A
15		С		na		#N/A
16		С		na		#N/A
17		С		na		#N/A
18		С		na		#N/A
19		С		na		#N/A
20				na		#N/A
21		С		na		#N/A
22				na		#N/A
23				na		#N/A
24				na		#N/A
25				na		#N/A
26				na		#N/A
27				na		#N/A
28				na		#N/A
29	15	С		na		#N/A
30	16	С		na		#N/A

Annexe 5. FICHES PHYTOBENTHOS - IBDLACS

PRELEVEMENTS

Diatomées en plan d'eau – Données soutenant la biologie – IRSTEA-AFB - v1.0 – oct. 2017 *Donnée obligatoire pour le référencement de l'opération

IDENTIFICATION DE L'OPERATION DE PRELEVEMENT	
Localisation	
Code opération	
Département	01
Code station*	V2515003
Libellé station	Nantua
Nom du plan d'eau	Nantua
Code point*	
Date*	30/07/2019

Intervenants	
Code producteur*	13000672900029
Nom producteur	
Code préleveur*	13000672900029
Nom préleveur	
Code déterminateur*	13000672900029
Nom déterminateur	

Coordonnées	
Coordonnées X (LB 93)*	899088
Coordonnées Y (LB 93)*	6565545

Unité d'observation	
UO hors protocole macrophytes	Non
Numéro d'unité d'observation*	1
Numero du type de rive dominant	Type 4 : "Zones artificialisées ou subissant des pressions anthropiques visibles"

PRELEVEME	PRELEVEMENT SUR SUBSTRAT DUR		
N° d'inventaire Omnidia associé	20190600000022		
Type de substrat dur	Pierres, galets		
Colmatage	Pas de colmatage		
Profondeur max. de la zone d'échantillonnage	0,8		
PRELEVEMENT SUR SUBSTRAT VEGETAL			
N° d'inventaire Omnidia associé			
Type biologique végétal			
Nombre de tiges			
Nom latin du taxon			
Profondeur max. de la zone d'échantillonnage			
PHYSICO-CHIMIE DU PLAN D'EAU			
Température (°C)	22		
O ₂ dissous (mg/L)	9,2		
Conductivité (µS/cm)	306		
Saturation en O ₂ (%)	111		
рН	8,3		
INFORMATIONS COMPLEMENTAIRES			
Impacts humains visibles	Oui		
Distance à la rive (m)	2		
Transparence disque de Secchi (m)			
Transparence déterminable au niveau de l'UO	Non		
COMMENTAIRES			
absence de substrat végétal			

Diatomées en plan d'eau – Données soutenant la biologie – IRSTEA-AFB - v1.0 – oct. 2017 *Donnée obligatoire pour le référencement de l'opération

IDENTIFICATION DE L'OPERATION DE PRELEVEMENT	
Localisation	
Code opération	
Département	01
Code station*	V2515003
Libellé station	Nantua
Nom du plan d'eau	Nantua
Code point*	
Date*	30/07/2019
Intervenants	

Intervenants	
Code producteur*	13000672900029
Nom producteur	
Code préleveur*	13000672900029
Nom préleveur	
Code déterminateur*	13000672900029
Nom déterminateur	

Coordonnées	
Coordonnées X (LB 93)*	900081
Coordonnées Y (LB 93)*	6565203

Unité d'observation	
UO hors protocole macrophytes	Non
Numéro d'unité d'observation*	2
Numéro du type de rive dominant	Type 4 : "Zones artificialisées ou subissant des pressions anthropiques visibles"

PRELEVEMENT SUR SUBSTRAT DUR			
N° d'inventaire Omnidia associé	20190600000023		
Type de substrat dur	Pierres, galets		
Colmatage	Pas de colmatage		
Profondeur max. de la zone d'échantillonnage	0,8		
PRELEVEMENT	PRELEVEMENT SUR SUBSTRAT VEGETAL		
N° d'inventaire Omnidia associé			
Type biologique végétal			
Nombre de tiges			
Nom latin du taxon			
Profondeur max. de la zone d'échantillonnage			
PHYSICO-C	PHYSICO-CHIMIE DU PLAN D'EAU		
Température (°C)	21,7		
O ₂ dissous (mg/L)	9,3		
Conductivité (µS/cm)	310		
Saturation en O ₂ (%)	112		
рН	8,2		
INFORMATIONS COMPLEMENTAIRES			
Impacts humains visibles	Oui		
Distance à la rive (m)	1,5		
Transparence disque de Secchi (m)			
Transparence déterminable au niveau de l'UO	Non		
COMMENTAIRES			
absence de substrat végétal			

Diatomées en plan d'eau – Données soutenant la biologie – IRSTEA-AFB - v1.0 – oct. 2017 *Donnée obligatoire pour le référencement de l'opération

IDENTIFICATION DE L'OPERATION DE PRELEVEMENT	
Localisation	
Code opération	
Département	01
Code station*	V2515003
Libellé station	Nantua
Nom du plan d'eau	Nantua
Code point*	
Date*	30/07/2019

Intervenants	
Code producteur*	13000672900029
Nom producteur	
Code préleveur*	13000672900029
Nom préleveur	
Code déterminateur*	13000672900029
Nom déterminateur	

Coordonnées	
Coordonnées X (LB 93)*	900554
Coordonnées Y (LB 93)*	6565648

Unité d'observation	
UO hors protocole macrophytes	Non
Numéro d'unité d'observation*	3
Numéro du type de rive dominant	Type 4 : "Zones artificialisées ou subissant des pressions anthropiques visibles"

PRELEVEMENT SUR SUBSTRAT DUR									
N° d'inventaire Omnidia associé	2019060000024								
Type de substrat dur	Pierres, galets								
Colmatage	Pas de colmatage								
Profondeur max. de la zone d'échantillonnage	1,2								
PRELEVEMENT SUR SUBSTRAT VEGETAL									
N° d'inventaire Omnidia associé 20190600000025									
Type biologique végétal	Hélophytes								
Nombre de tiges	8								
Nom latin du taxon	Phragmites australis								
Profondeur max. de la zone d'échantillonnage	0,5								
PHYSICO-C	HIMIE DU PLAN D'EAU								
Température (°C)	21,6								
O ₂ dissous (mg/L)	8,7								
Conductivité (μS/cm)	300								
Saturation en O ₂ (%)	105								
pH	8,2								
INFORMATIO	ONS COMPLEMENTAIRES								
Impacts humains visibles	Oui								
Distance à la rive (m)	2								
Transparence disque de Secchi (m)									
Transparence déterminable au niveau de l'UO	Non								
·	MMENTAIRES								

Annexe 6. SYNTHESE PISCICOLE OFB - 2019

Fiche synthétique Etat du peuplement piscicole Protocole CEN 1475

Plan d'eau : NANTUA Réseau : DCE surveillance et opérationnel

Superficie: 141 Ha Zmax: 42 m

Date échantillonnage : du 16 au 19/09/2019 Opérateur : OFB (USML et SD01)

Nb filets benthiques : 40 (1800 m2) Nb filets pélagiques : 10 (1650 m2)

Composition et structure du peuplement :

Année	200)8	20:	13	2019			
Espèces	numériques	pondéraux	numériques	pondéraux	numériques	pondéraux		
	ind/1000m2	gr/1000m2	ind./1000m2	gr./1000m2	ind./1000m2	gr./1000m2		
BRE	0,24 608,27							
BRO	0,24	51,09	0,3	49,3	0,6	325,8		
CHE	1,22	1291,00	1,6	2120,2	0,3	365,2		
COR	0,24 59,85		0,3	157,4	0,3	4,6		
GAR	149,15 4081,51		227,8	4409,9	209,9	4470,9		
LOF	0,24	1,95						
OBL			0,3	2,7				
OCL	0,49 2,92		0,3	1,6	2,9	16,5		
PER	118,25 4648,91		131,2	131,2 10088,9		19681,4		
PFL	5,84 261,56		16,1	490,2	66,7	2047,8		
ROT	0,73 612,17		1,3	279,5	5,8	1555,5		
SAN			1,6	827,3	0,9	274,5		
TAN			1,3	1490,8	0,3	396,5		
TRL	0,24	14,11	0,5	154,5				
	242,34	10616,30	382,6	20072,3	1705,5 29138,8			
IIL Seuils de l'Arrêté du 27/07/18	0,5	B7	0,3	72	0,009			

BRE : brème commune / BRO : brochet / CHE : chevaine / COR : corégone / GAR : gardon / LOF : loche franche / OBL : omble chevalier / OCL : écrevisse américaine / PER : perche / PFL : écrevisse signal / ROT : rotengle / SAN : sandre / TAN : tanche / TRL : truite de lac

Tab. 1: comparaison des résultats de pêche obtenus en 2008, 2013 et 2019sur le lac de Nantua (les rendements surfaciques prennent en compte tous les types de filets tendus, rendements **num** en ind./1000m2 filet et **pond** en gr./1000m2 filets)

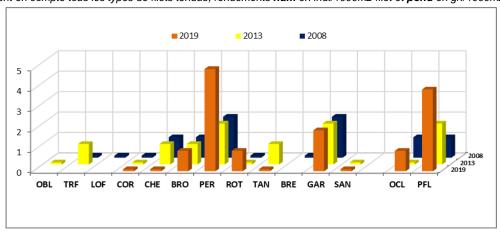


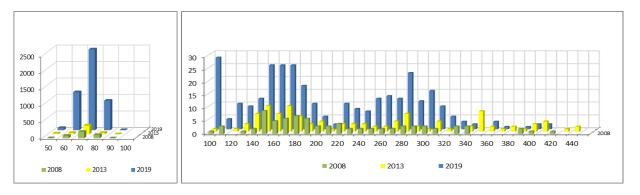
Fig.1 : comparaison des classes d'abondances des différentes espèces capturées à Nantua (de 0,1 = simple présence à 5 = abondance optimale)

Le peuplement du lac de Nantua reste composé d'une dizaine d'espèces de poissons et 2 écrevisses d'origine nord-américaine. Le "pool" d'espèces centrales demeure lui aussi stable autour du gardon et de la perche : cette dernière dominant très fortement ce peuplement. Le brochet affiche une certaine stabilité, alors qu'en parallèle, la truite lacustre, tout aussi emblématique de ce lac semble en recul. Le corégone est nettement sous représenté dans l'échantillon malgré le soutien constant des gestionnaires. Les abondances de toutes ces espèces restent stables à l'exception de celle de la perche dont l'évolution influe nettement sur les rendements globaux de capture.

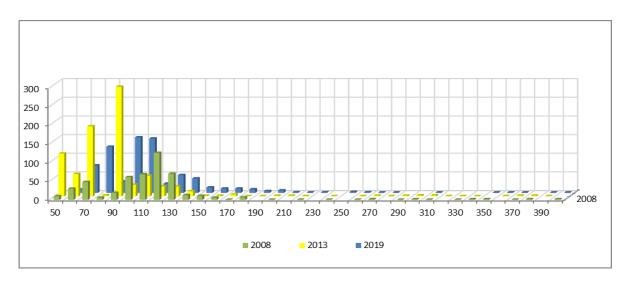
La présence du sandre semble se confirmer alors qu'inversement, compte tenu de la persistance d'une importante couche désoxygénée au lac, le maintien d'une population d'omble chevalier et la restauration d'une population de corégone apparaissent improbables.

Enfin, l'écrevisse signal est en constante expansion, dans toutes les strates superficielles du lac.

Distribution spatiale des captures :


La distribution verticale des espèces reste elle aussi très stable, que ce soit au niveau des strates benthiques ou de la pleine eau (zone pélagique) qui reste majoritairement colonisée par le gardon. L'hypolimnion profond, en de-ça de 30m est en anoxie partielle ou totale, ce qui limite fortement sa fréquentation, notamment par les salmonidés.

Année	Filets bent	enthiques									Filets pélagiques									
		BRE	BRO	CHE	COR	LOF	OBL	OCL	ROT	SAN	TAN	TRL	GAR	PER	PFL		COR	GAR	PER	TRL
2008	0-3		1	4					3			1	12	55	6	0-6		168		
	3-6			1		1							55	158	15	6-12		182	1	
	6-12	1						1					100	226	3	12-18	1	2		
	12-20							1					82	45		18-24				
	20-35												11	1		24-30				
	>35															30-36		1		
2013	0-2,9		1	4				1	4		2		53	44	22	0-6		10		
	3-5,9			1					1		3		50	158	16	6-12		223	1	
	6-11,9			1						3			274	276	21	12-18				
	12-19,9				1					3		1	19	10	1	18-24				
	20-34,9						1							1		24-30				1
	>35															30-36				
2019	0-2,9		1	1				4	19				159	1640	61	0-6		179	85	
	3-5,9		1					4	1	1	1		261	2486	78	6-12	1	42	97	
	6-11,9							2		2			67	573	89	12-18				
	12-19,9												10	7	2	18-24				
	20-34,9												6	4		24-30				
	>35															30-36				


Fig. 2 : distribution spatiale des captures observées en 2008, 2013 et 2019 sur le lac de Nantua (effectifs bruts)

Structure des populations majoritaires :

Le corégone ne parvient pas à constituer une population, le seul individu capturé est un juvénile. L'espèce est soutenue par les gestionnaires halieutiques et il n'est pas possible de statuer sur le renouvellement naturel à Nantua, bien que des comportements de reproduction aient pu être observés.

La densité d'alevins de l'année de perche est exceptionnelle en 2019, cette situation est probablement le résultat de la succession de printemps favorables à la reproduction et d'hivers doux permettant une bonne survie des alevins de l'année.

Le recrutement du gardon apparaît quant à lui un peu moins bon qu'en 2013 mais la densité de juvéniles (1+) reste correcte. Ces jeunes poissons affectionnent la zone pélagique où ils se trouvent en bancs parfois importants, ils constituent une ressource alimentaire pour les brochets et truites de lacs qui se situent sous ces bancs.

Éléments de synthèse :

En 2019, le peuplement piscicole du lac de Nantua semble afficher une certaine dérive avec une augmentation très nette de la dominance de la perche. Cet effet est probablement conjoncturel mais, s'il devait se pérenniser, pourrait finir par avoir un impact sur les communautés de zoo- et phyto-plancton lacustre mais aussi d'organismes benthiques.

Il n'est pas à exclure qu'il existe un lien entre expansion de l'écrevisse signal et celle de la perche, la première servant de nourriture à la seconde.

Les efforts d'améliorations de la qualité de l'eau du lac et des affluents doivent être poursuivis (azote, phosphore et micropolluants). En parallèle, il semble nécessaire :

- de maintenir en bon état fonctionnel les habitats littoraux,
- de restaurer la qualité physico-chimique et hydromorphologique des tributaires du lac, le Merloz, la Doye et le Bras du Lac.

L'indice ichtyologique lacustre « I.I.L. » sanctionne très sévèrement cette dérive apparente de ce peuplement pisciaire, dont l'état est aujourd'hui qualifié de mauvais. La note obtenue ne nous semble pas refléter complètement cet état, en effet si le lac de Nantua est toujours en butte à des phénomènes de pollution, accidentels ou chroniques, il présente un potentiel de production biologique très élevé dont les hauts rendements de pêche mesurés en 2019 constituent un signe.