

Agence de l'Eau Rhône-Méditerranée et Corse

Etude des plans d'eau du programme de surveillance des bassins Rhône- Méditerranée et Corse - Retenue de Bissorte (73) -Rapport de données brutes -Suivi annuel 2009

photo 1 : vue sur la retenue de Bissorte (S.T.E., 27 mai 2009)

Rapport n° 08-283/2010-PE2009-04 – Mai 2010

SOMMAIRE

1. PREAMBULE	<u>1</u>
1.1. CADRE DU PROGRAMME DE SUIVI	
1.2. PRESENTATION DU PLAN D'EAU ET LOCALISATION	
1.3. CONTENU DU SUIVI 2009	5
2. RESULTATS DES INVESTIGATIONS	6
2.1. INVESTIGATIONS PHYSICOCHIMIQUES	6
2.1.1. ANALYSES DES EAUX DE LA RETENUE	
2.1.1.1. Profils verticaux et évolutions saisonnières.	
2.1.1.2. Paramètres de constitution et typologie de la retenue	
2.1.1.3. Résultats des analyses physicochimiques des eaux (hors micropolluants)	
2.1.1.4. Micropolluants minéraux	
2.1.1.5. Micropolluants organiques	
2.1.2. ANALYSES DES SEDIMENTS	
2.1.2.1 Physicochimie des sédiments	
2.1.2.2. Micropolluants minéraux	
2.1.2.3. Micropolluants organiques	
2.2. PHYTOPLANCTON	
2.2.1. Prelevements integres	
2.2.2. LISTE FLORISTIQUE (NOMBRE DE CELLULES/ML)	
2.2.3. ÉVOLUTIONS SAISONNIERES DES GROUPEMENTS PHYTOPLANCTONIQUES	
2.3. OLIGOCHETES	
2.3.1. CONDITIONS DE PRELEVEMENTS	
2.3.2. LISTE FAUNISTIQUE DES OLIGOCHETES	
2.4. Hydromorphologie	
2.4.1. RESULTATS: INDICES DE QUALITE DES HABITATS ET DE L'ALTERATION MORPHOLOGIQUE	
2.5. MACROPHYTES	
2.5.1. METHODOLOGIE ADAPTEE AUX PLANS D'EAU MARNANTS	
2.5.2. REPERAGE DES ZONES FAVORABLES	
-ic 1.22 2.4.1.02 2.20 2.01.1.11 Old B.E.B.	
	•
3. INTERPRETATION GLOBALE DES RESULTATS	<u>28</u>
4. ANNEXES	29

1. PREAMBULE

1.1. CADRE DU PROGRAMME DE SUIVI

Dans le cadre de la mise en œuvre de la Directive Cadre Européenne sur l'Eau (DCE), un programme de surveillance doit être établi pour suivre l'état écologique (ou le potentiel écologique) et l'état chimique des eaux douces de surface.

Différents réseaux constituent le programme de surveillance. Parmi ceux-ci, deux réseaux sont actuellement mis en œuvre sur les plans d'eau :

- Le réseau de contrôle de surveillance (RCS) vise à donner une image globale de la qualité des eaux. Tous les plans d'eau naturels supérieurs à 50ha ont été pris en compte sur les bassins Rhône-Méditerranée et Corse. Pour les plans d'eau d'origine anthropique, une sélection a été opérée parmi les plans d'eau supérieurs à 50 ha, afin de couvrir au mieux les différents types présents (grandes retenues, plans d'eau de digue, plans d'eau de creusement).
- <u>Le contrôle opérationnel (CO)</u> vise à suivre spécifiquement les masses d'eau (naturelles ou anthropiques) supérieures à 50ha, à risque de non atteinte du bon état (ou du bon potentiel) des eaux en 2015.

Au total, 80 plans d'eau sont suivis sur les bassins Rhône-Méditerranée et Corse dans le cadre de ces deux réseaux.

Le contenu du programme de suivi sur les plans d'eau est identique pour le RCS et le CO. Un plan d'eau concerné par le CO sera cependant suivi à une fréquence plus soutenue (tous les 3 ans) comparativement à un plan d'eau strictement visé par le RCS (tous les 6 ans).

Le tableau 1 résume les différents éléments suivis par an et les fréquences d'intervention associées. Il s'agit du suivi qualitatif type mis en place sur les plans d'eau du programme de surveillance.

Tableau 1 : synoptique des investigations menées sur une année de suivi du plan d'eau

			Paramètres	Type de prélèvements/ Mesures	HIVER	PRINTEMPS	ЕТЕ	AUTOMNE
	Mesures in situ		O2 dis. (mg/l, %sat.), pH, COND (25 °C), T °C, transparence secchi	Profils verticaux	Х	Х	Х	Х
		Dhysics shimis alsociaus	DBO5, PO4, Ptot, NH4, NKJ, NO3,	Intégré	Χ	Х	Χ	Х
	_	Physico-chimie classique	NO2, COT, COD, MEST, Turbidité, Si dissoute	Ponctuel de fond	Х	Х	Х	Х
	Sur EAU	Substances prioritaires, autres	Micropolluants sur eau*	Intégré	Х	Х	Χ	Х
	Sur	substances et pesticides	Micropolidants sur eau	Ponctuel de fond	Χ	Х	Χ	Х
		Pigments chlorophylliens	Chlorophylle a + phéopigments	Intégré	Х	Х	Χ	Х
		riginents chlorophymens	Chlorophylie a + pheopigments	Ponctuel de fond				
	Minéralisation		Ca ²⁺ , Na ⁺ , Mg ²⁺ , K ⁺ , dureté, TA,	Intégré	Χ			
		Milleralisation	TAC, SO ₄ ²⁻ , Cl ⁻ , HCO ₃ ⁻	Ponctuel de fond				
S	Eau	interstitielle : Physico-chimie	PO4, Ptot, NH4					
Sur SEDIMENTS	Phase solide (<2mm)	Physico-chimie	Corg., Ptot, NKJ, Granulomètrie, perte au feu	Prélèvement au point de plus grande profondeur				Х
Su	Pt	Substances prioritaires, autres substances et pesticides	Micropolluants sur sédiments*					
			Phytoplancton	Prélèvement Intégré (Cemagref/Utermöhl)	Χ	Х	Χ	Х
			Oligochètes	IOBL				Χ
	HYDROBIOLOGIE et HYDROMORPHOLOGIE		Mollusques	IMOL				Χ
			Macrophytes	Protocole Cemagref			Χ	
			Hydromorphologie	A partir du Lake Habitat Survey (LHS)			Χ	
			Suivi piscicole	Protocole CEN (en charge de l'ONEMA)			Χ	

^{* :} se référer à l'annexe 5 de la circulaire DCE 2006/16, analyses à réaliser sur les paramètres pertinents à suivre sur le support concerné RCS : un passage par plan de gestion (soit une fois tous les six ans)

CO: un passage tous les trois ans

Poissons en charge de l'ONEMA (un passage tous les 6 ans)

♦ *Investigations physico-chimiques* :

Les différents paramètres physico-chimiques analysés sur l'eau sont suivis lors de quatre campagnes calées aux différentes phases du cycle annuel de fonctionnement du plan d'eau, soit entre le mois de février et le mois d'octobre. Les dates d'intervention sont mentionnées dans le tableau 2, au paragraphe 1.3.

A chaque campagne, sont réalisés au point de plus grande profondeur :

- ✓ un profil vertical des paramètres physico-chimiques de terrain : température, conductivité, oxygène dissous (en mg/l et % saturation) et pH;
- des échantillons d'eau pour analyses (physico-chimie, micropolluants, pigments chlorophylliens), il s'agit :
- d'un prélèvement intégré sur la colonne d'eau (constitué à partir du mélange de prélèvements ponctuels réalisés tous les mètres entre la surface et 2,5 fois la transparence mesurée avec le disque de Secchi);
- o d'un prélèvement de fond (réalisé généralement à un mètre du fond).

Les sédiments sont prélevés une fois par an lors de la 4^{ème} et dernière campagne au point de plus grande profondeur.

Les échantillons d'eau et de sédiments ont été transmis au Laboratoire Départemental d'Analyses de la Drôme (LDA 26) en charge des analyses.

♦ *Investigations hydromorphologiques et hydrobiologiques :*

Les investigations hydromorphologiques et hydrobiologiques ont été réalisées à des périodes adaptées aux objectifs des méthodes utilisées.

L'évaluation morphologique du plan d'eau a été assurée en suivant le protocole du Lake Habitat Survey (LHS) dans sa version 3.1 (mai 2006).

Les investigations hydrobiologiques comprennent plusieurs volets ¹:

- ✓ l'étude des peuplements phytoplanctoniques à partir du protocole standardisé d'échantillonnage, de conservation, d'observation et de dénombrement du phytoplancton en plan d'eau pour la mise en œuvre de la DCE (CEMAGREF INRA ; version 3.3 de mars 2009) ;
- ✓ l'étude des peuplements d'oligochètes à travers la détermination de l'Indice Oligochètes de Bio-indication Lacustre : IOBL (Norme AFNOR NF T90-391, mars 2005) ;
- l'étude des peuplements de macrophytes sur les plans d'eau marnants s'appuie sur la <u>méthode</u> <u>adaptée</u> mise au point par le CEMAGREF : Méthodologie d'étude des communautés de macrophytes en plan d'eau, version mai 2009.

1.2. Presentation du Plan d'eau et localisation

La retenue de Bissorte est située en haute montagne, dans le département de la Savoie, au cœur de la vallée de la Maurienne à une altitude de 2082 m. À l'origine, il existait un lac naturel (surcreusement glaciaire) fermé par un verrou rocheux. Ce verrou a été rehaussé d'un barrage construit entre 1930 et 1935.

carte 1 : localisation de la retenue de Bissorte (Savoie) – (éch . 1/200 000^e)

Le plan d'eau créé atteint une profondeur maximale de 55 m et permet le stockage d'un volume de 39,8 millions de m³ en CNE². La profondeur maximale qui a été mesurée en 2009 est de 43 m début juin 2009. La cuvette aval du plan d'eau est donc remplie par des sédiments (limons) formant un plateau à 2030 m NGF. Orienté Nord-Sud, le plan d'eau s'étend sur environ 2 km de long et reçoit

¹ l'étude des peuplements de mollusques n'est pas faite, car non pertinente pour les plans d'eau de type retenue.

² CNE : cote normale d'exploitation

les eaux du ruisseau de Bissorte et de nombreux autres petits ruisseaux. Son temps de séjour théorique est de 70 jours.

Le régime hydrologique du ruisseau de Bissorte est de type nival avec une période de crue à la fonte des neiges au printemps et des basses eaux en hiver et en fin d'été. La retenue est gelée en surface pendant une longue période hivernale.

La cote du plan d'eau varie de façon saisonnière entre 2039 et 2082 m NGF en fonction des besoins énergétiques, soit plus de 40 m de marnage. Le fonctionnement de Bissorte est particulier puisqu'il existe un système de transfert d'énergie par pompage (STEP) : son principe repose sur une double retenue d'eau : l'eau du bassin supérieur situé en amont (Bissorte) est turbinée aux heures de très forte consommation, puis recueillie dans une retenue en aval (bassin de l'Arc). Aux heures de faible consommation, l'eau est pompée et remontée dans la retenue en amont. Le stock d'énergie potentielle est ainsi reconstitué indéfiniment (source : EDF). Ce qui signifie que les eaux de l'*Arc* constituent l'une des sources majeures d'apport hydrique dans la retenue de Bissorte. La gestion de la cote du plan d'eau n'obéit donc qu'à la réponse aux besoins énergétiques.

La retenue de Bissorte se situe sur la commune d'Orelle. Le plan d'eau est géré par EDF (GEH Vallée de la Maurienne) pour la production d'électricité. L'accès au plan d'eau se fait à pied ou par le téléphérique EDF. On trouve sur le site quelques pêcheurs et des randonneurs à la belle saison.

1.3. CONTENU DU SUIVI 2009

La retenue de Bissorte est suivie au titre du Contrôle Opérationnel (CO). Le tableau ci-dessous indique la répartition des missions au sein du groupement aussi bien en phase terrain qu'en phase laboratoire/détermination. S.T.E. a en outre eu en charge de coordonner la mission et de collecter l'ensemble des données pour établir les rapports et mener l'exploitation des données.

Tableau 2 : synoptique des interventions de terrain et de laboratoire sur le plan d'eau, par campagne

Retenue de Bissorte (73)			terrain			laboratoire - détermination
Campagne	C1	C2	C3	C4	campagne IMOL-IOBL	
date	04/06/09	16/07/09	18/08/09	01/10/09	22/09/09	automne/hiver 2009-2010
physicochimie des eaux	S.T.E.	S.T.E.	S.T.E.	S.T.E.		LDA26
physicochimie des sédiments				S.T.E.		LDA26
phytoplancton	S.T.E.	S.T.E.	S.T.E.	S.T.E.		BECQ'Eau
hydromorphologie				S.T.E.		S.T.E.
macrophytes				S.T.E.		Mosaïque environnement
oligochètes					IRIS consultants	IRIS consultants

En 2009, les variations de la cote du plan d'eau ont été importantes, les eaux étaient hautes début juin, le plan d'eau a baissé durant l'été et s'est rempli à nouveau en fin d'été. Le fonctionnement lacustre induit par la STEP est complexe, d'autant que les remontées d'eau de l'Arc se font en profondeur et génèrent une distinction entre deux masses d'eau : la couche de surface est claire, faiblement minéralisée (120 à 200 μ S/cm), alors que la couche de fond est turbide, "lourde" et très minéralisée (200 à 850 μ S/cm) suivant les campagnes.

2. RESULTATS DES INVESTIGATIONS

2.1. INVESTIGATIONS PHYSICOCHIMIQUES

Les comptes rendus des campagnes de prélèvements physicochimiques et phytoplanctoniques sont présentés en annexe 3.

2.1.1. Analyses des eaux de la retenue

2.1.1.1. Profils verticaux et évolutions saisonnières

Le suivi prévoit la réalisation de profils verticaux sur la colonne d'eau à chaque campagne. Quatre paramètres sont mesurés : la température, la conductivité, l'oxygène (en concentration et en % saturation) et le pH. Les graphiques regroupant ces résultats pour chaque paramètre lors des 4 campagnes sont affichés dans ce chapitre.

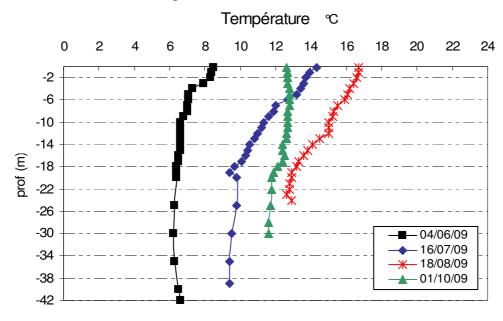


Figure 1 : profils verticaux de température au point de plus grande profondeur

La retenue de Bissorte ne stratifie pas réellement (stratification au sens limnologique). On observe un réchauffement partiel de la couche de surface (0-8 m) lors de la 1^{ère} campagne qui se transforme en un gradient de température entre 0 et 20 m lors de la campagne 2 (juillet) avec 14°C en surface et 9°C à -20 m, la colonne d'eau en dessous étant homogène en température. En août, la cote de la retenue est très basse, la température est de 16,5°C en surface et baisse progressivement en profondeur. En campagne 4, la température est homogène sur toute la colonne d'eau autour de 12°C.

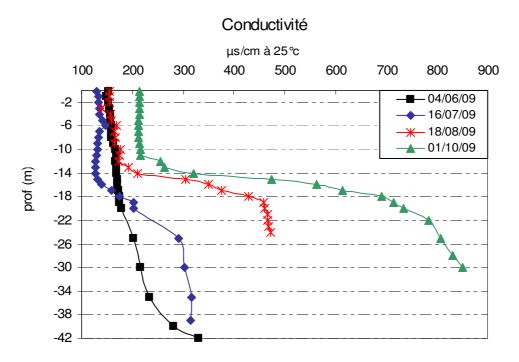


Figure 2 : profils verticaux de conductivité au point de plus grande profondeur

La conductivité est très variable sur la retenue de Bissorte : elle reste homogène dans les 12 premiers mètres puis elle augmente fortement dans la couche profonde, lors des quatre campagnes :

- ✓ début juin, la conductivité est de 150 μS/cm en surface, elle atteint progressivement 300 μS/cm dans le fond ;
- \checkmark mi juillet, la conductivité diminue en surface (130 μS/cm) par rapport à juin, la zone profonde est uniformément à 300 μS/cm;
- \checkmark fin août, la conductivité retrouve une valeur de 150 μS/cm en surface, la couche profonde est très minéralisée : 450 μS/cm ;
- ✓ début octobre, la conductivité est plus forte (220 μS/cm) en surface en lien (au moins en partie) avec la minéralisation de la matière organique. Les valeurs augmentent progressivement dans les couches profondes pour atteindre plus de 800 μS/cm;

La couche du fond (vingt derniers mètres environ) se distingue très clairement de la masse d'eau de surface avec une conductivité élevée à très élevée. Le phénomène est très vraisemblablement relié à l'origine des apports en eau : les eaux du fond sont issues de la remontée des eaux de l'Arc (système STEP), très chargées en minéraux en particulier en fin d'été (cf. suivi station de l'Arc à Modane).

La seule lecture de ces valeurs de conductivité montre la complexité de l'hydrologie de la retenue, notamment l'existence de certaines sous-masses d'eau à l'intérieur de la masse d'eau globale (rendant délicate l'appréciation de l'évolution de leur stock interne au fil des saisons).

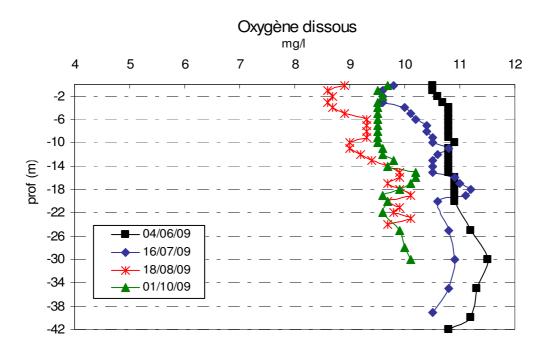


Figure 3 : profils verticaux d'oxygène dissous (en mg/l) au point de plus grande profondeur

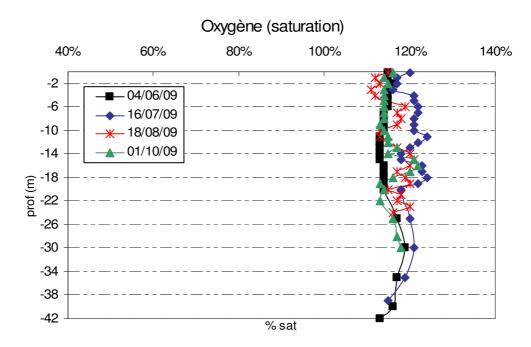


Figure 4 : profils verticaux d'oxygène dissous (en % saturation) au point de plus grande profondeur

L'oxygénation est bonne sur les 4 campagnes avec une sursaturation (110 à 120% sat) sur toute la colonne d'eau. On peut expliquer le phénomène par la remontée des eaux de l'Arc de plus de 1000 m, qui induit une sursaturation³ en oxygène des eaux remontées.

³ Les eaux de l'Arc (en général, à saturation en oxygène selon données RCS) à la centrale de Bissorte (932 m NGF) sont soumises à une Pression atmosphérique de 900 hPa, alors qu'à la retenue de Bissorte, P atm = 783 hPa, le ratio de saturation est donc de 115, ce qui explique qu'une eau saturation dans l'Arc corresponde à une eau à 115% de saturation une fois remontée à Bissorte.

La figure 5 représente le profil de pH sur la retenue de Bissorte lors des quatre campagnes.

N.B.: lors de la validation des données, un dysfonctionnement de pHmètre a été observé pour les valeurs de pH mesurées lors de la campagne d'août. Le profil a du être invalidé.

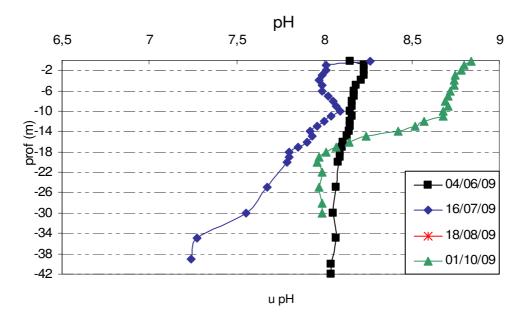


Figure 5 : profils verticaux de pH au point de plus grande profondeur

Le pH en fin d'hiver est homogène et légèrement basique, entre 8 et 8,2 unités. Lors des campagnes suivantes, les courbes de pH sont très variables : on note une différenciation de deux masses d'eau (0-10 m et 15-fond) comme pour les autres paramètres mesurés. Le pH diminue jusqu'à 7,2 dans le fond du plan d'eau en campagne 2. Lors de la dernière campagne, le pH est de 8,8 dans la zone euphotique en lien avec une forte activité photosynthétique (cf. §2.1.1.3, et 2.2.3), tandis que la couche profonde est à 8,0.

2.1.1.2. Paramètres de constitution et typologie de la retenue

N.B. pour tous les tableaux suivants :

LD = limite de détection, généralement =SQ/3, sauf pour DBO5 et turbidité pour lesquels LD=SQ, avec SQ = seuil de quantification; Présence = valeur comprise entre LD et SQ, composé présent mais non précisément quantifiable.

Les paramètres de minéralisation sont étudiés lors de la 1^{ère} campagne uniquement. Les résultats sont présentés dans le tableau 3.

Physico-chimie sur eau						
Retenue de	Bissorte	seuil quantification	04/06/2009			
code plan d'eau	: W1035063	scun quantification	Intégré	Fond		
Dureté calculée	°F	0,1 pour C1 seule	8,2			
T.A.C.	°F	0,5 pour C1 seule	4,4			
T.A.	°F	0,5 pour C1 seule	<ld< td=""><td></td></ld<>			
CO3	mg(CO3)/l	6 pour C1 seule	<ld< td=""><td></td></ld<>			
HCO3-	mg(HCO3)/l	6,1 pour C1 seule	53,7			
Calcium total	mg(Ca)/l	1 pour C1 seule	26			
Magnésium	mg(Mg)/l	1 pour C1 seule	4,1			
Sodium	mg(Na)/l	1 pour C1 seule	<ld< td=""><td></td></ld<>			
Potassium	mg(K)/l	1 pour C1 seule	<ld< td=""><td></td></ld<>			
Cl-	mg(Cl)/l	1 pour C1 seule	<ld< td=""><td></td></ld<>			
SO4	mg(SO4)/l	1 pour C1 seule	34			

Tableau 3 : résultats des paramètres de minéralisation lors de la 1° campagne

Les résultats indiquent une eau faiblement à moyennement carbonatée, de dureté assez faible, sulfatée. La retenue de Bissorte et son bassin versant se trouvent sur terrains du houiller, constitués de grès et de schistes. Le verrou rocheux repose sur des roches volcaniques.

2.1.1.3. Résultats des analyses physicochimiques des eaux (hors micropolluants)

Tableau 4 : résultats des paramètres de physico-chimie classique sur eau.

Physico-chimie sur eau										
Retenue de	Bissorte	seuil quantification	04/06	/2009	16/07	7/2009	18/08	/2009	01/10)/2009
code plan d'eau :	W1035063		Intégré	Fond	Intégré	Fond	Intégré	Fond	Intégré	Fond
Turbidité	NTU	0,1 pour C1 à C4	2,9	4,1	1,7	9,9	5,4	24,3	0,6	2,4
M.E.S.T.	mg/l	1 pour C1 à C4	2	5	1	16	1	23	<ld< td=""><td>3</td></ld<>	3
C.O.D.	mg(C)/l	0,1 pour C1 à C4	0,6	0,7	0,5	0,5	0,7	0,3	0,5	0,4
Oxyd. KMnO4 ac.	mg(O2)/l	0,1 pour C1 à C4	0,5	0,3	0,3	0,4	0,4	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
D.B.O.5	mg(O2)/l	0,5 pour C1 à C4	0,8	1,3	0,5	1	0,9	0,5	0,5	1
Azote Kjeldahl	mg(N)/l	1 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
NH4+	mg(NH4)/l	0,05 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
NO3-	mg(NO3)/l	1 pour C1 à C4	<ld< td=""><td>1,5</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>1,2</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	1,5	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>1,2</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>1,2</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>1,2</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>1,2</td></ld<></td></ld<>	<ld< td=""><td>1,2</td></ld<>	1,2
NO2-	mg(NO2)/l	0,02 pour C1 à C4	<ld< td=""><td>0,02</td><td><ld< td=""><td>0,02</td><td>0,02</td><td>0,05</td><td><ld< td=""><td>0,02</td></ld<></td></ld<></td></ld<>	0,02	<ld< td=""><td>0,02</td><td>0,02</td><td>0,05</td><td><ld< td=""><td>0,02</td></ld<></td></ld<>	0,02	0,02	0,05	<ld< td=""><td>0,02</td></ld<>	0,02
PO4	mg(PO4)/l	0,015 pour C1 à C4	0,061	0,061	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Phosphore Total	mg(P)/l	0,005 pour C1 à C4	0,025	0,025	0,006	0,032	0,009	0,035	0,014	0,019
Silice dissoute	mg(SiO2)/l	0,2 pour C1 à C4	2,1	2,6	1,7	2,1	1,9	1,9	1,7	3,4
Chl. A	μg/l	1 pour C1 à C4	<ld< td=""><td></td><td><ld< td=""><td></td><td><ld< td=""><td></td><td>3</td><td></td></ld<></td></ld<></td></ld<>		<ld< td=""><td></td><td><ld< td=""><td></td><td>3</td><td></td></ld<></td></ld<>		<ld< td=""><td></td><td>3</td><td></td></ld<>		3	
Chl. B	μg/l	1 pour C1 à C4	<ld< td=""><td></td><td><ld< td=""><td></td><td><ld< td=""><td></td><td><ld< td=""><td></td></ld<></td></ld<></td></ld<></td></ld<>		<ld< td=""><td></td><td><ld< td=""><td></td><td><ld< td=""><td></td></ld<></td></ld<></td></ld<>		<ld< td=""><td></td><td><ld< td=""><td></td></ld<></td></ld<>		<ld< td=""><td></td></ld<>	
Chl. C	μg/l	1 pour C1 à C4	<ld< td=""><td></td><td><ld< td=""><td></td><td><ld< td=""><td></td><td><ld< td=""><td></td></ld<></td></ld<></td></ld<></td></ld<>		<ld< td=""><td></td><td><ld< td=""><td></td><td><ld< td=""><td></td></ld<></td></ld<></td></ld<>		<ld< td=""><td></td><td><ld< td=""><td></td></ld<></td></ld<>		<ld< td=""><td></td></ld<>	
Phéophytine	μg/l	1 pour C1 à C4	<ld< td=""><td></td><td><ld< td=""><td></td><td><ld< td=""><td></td><td><ld< td=""><td></td></ld<></td></ld<></td></ld<></td></ld<>		<ld< td=""><td></td><td><ld< td=""><td></td><td><ld< td=""><td></td></ld<></td></ld<></td></ld<>		<ld< td=""><td></td><td><ld< td=""><td></td></ld<></td></ld<>		<ld< td=""><td></td></ld<>	

Les analyses des fractions dissoutes ont été réalisées sur eau filtrée (COD, NH4, NO3, NO2, PO4, Si).

- ✓ turbidité assez élevée et charge en MES dans les eaux en C2 et C3, liés à la turbidité des eaux issues de l'Arc par re-pompage ;
- ✓ faible charge organique dans le milieu aquatique ;
- ✓ l'azote minéral est peu voire non biodisponible dans le prélèvement intégré à toutes les campagnes ;
- ✓ production chlorophyllienne réduite.

Le rapport N/P⁴ est faible de l'ordre de 3, puisque l'azote minéral n'est pas quantifié dans les eaux en 1^{ère} campagne : l'azote est donc limitant par rapport au phosphore, favorisant logiquement le

⁴le rapport N/P est calculé à partir de [Nminéral]/ [P-PO₄³⁻] avec N minéral = [N-NO₃⁻]+[N-NO₂⁻]+[N-NH₄⁺] lors de la campagne de fin d'hiver.

développement des cyanophycées (au moins potentiellement). La teneur en silice dissoute est faible à moyenne, elle permet le développement des diatomées.

2.1.1.4. Micropolluants minéraux

Tableau 5 : résultats d'analyses de métaux sur eau

Micropolluants minéraux	Micropolluants minéraux sur eau									
Retenue de	Bissorte	cavil quantification	04/06/2009		16/07/2009		18/08/2009		01/10)/2009
code plan d'eau : W1035063		seuil quantification	Intégré	Fond	Intégré	Fond	Intégré	Fond	Intégré	Fond
Aluminium	μg (Al)/l	5 pour C1 à C4	128	146	20	60	130	334	19	83
Antimoine	μg(Sb)/l	0,2 pour C1 à C4	0,2	0,2	0,3	0,3	0,4	0,3	0,3	0,3
Argent	μg(Ag)/l	0,2 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Arsenic	μg(As)/l	0,2 pour C1 à C4	0,9	0,7	1,2	0,7	1,5	1,3	1,9	0,8
Baryum	μg(Ba)/l	5 pour C1 à C4	18	19,5	19,7	19,5	29,3	42,8	26	27
Beryllium	μg(Be)/l	0,2 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Bore	μg(B)/l	5 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>7</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>7</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>7</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>7</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>7</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>7</td></ld<></td></ld<>	<ld< td=""><td>7</td></ld<>	7
Cadmium	μg(Cd)/l	0,2 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Chrome Total	μg(Cr)/l	0,2 pour C1 à C4	0,2	0,3	<ld< td=""><td>0,3</td><td><ld< td=""><td>0,3</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	0,3	<ld< td=""><td>0,3</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	0,3	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Cobalt	μg(Co)/l	0,2 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,3</td><td><ld< td=""><td>0,4</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,3</td><td><ld< td=""><td>0,4</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,3</td><td><ld< td=""><td>0,4</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	0,3	<ld< td=""><td>0,4</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	0,4	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Cuivre	μg(Cu)/l	0,2 pour C1 à C4	0,9	1,1	<ld< td=""><td><ld< td=""><td>1,6</td><td>2</td><td>0,7</td><td>1</td></ld<></td></ld<>	<ld< td=""><td>1,6</td><td>2</td><td>0,7</td><td>1</td></ld<>	1,6	2	0,7	1
Etain	μg(Sn)/l	0,2 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Fer total	μg(Fe)/l	5 pour C1 à C4	51	73	7	46	65	198	<ld< td=""><td>40</td></ld<>	40
Manganèse	μg(Mn)/l	5 pour C1 à C4	<ld< td=""><td>12,4</td><td>5,3</td><td>20,4</td><td>12,8</td><td>47,2</td><td><ld< td=""><td>22,1</td></ld<></td></ld<>	12,4	5,3	20,4	12,8	47,2	<ld< td=""><td>22,1</td></ld<>	22,1
Mercure	μg(Hg)/l	0,1 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Molybdène	μg(Mo)/l	0,2 pour C1 à C4	0,2	0,5	0,2	0,6	0,5	0,9	0,4	1,5
Nickel	μg(Ni)/l	0,2 pour C1 à C4	0,3	0,5	<ld< td=""><td>0,6</td><td>0,3</td><td>0,5</td><td>0,2</td><td>0,6</td></ld<>	0,6	0,3	0,5	0,2	0,6
Plomb	μg(Pb)/l	0,2 pour C1 à C4	0,2	0,2	<ld< td=""><td><ld< td=""><td>0,3</td><td>0,8</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,3</td><td>0,8</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	0,3	0,8	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Sélénium	μg(Se)/l	0,2 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,3</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,3</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,3</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,3</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,3</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,3</td></ld<></td></ld<>	<ld< td=""><td>0,3</td></ld<>	0,3
Thallium	μg(Tl)/l	0,2 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Titane	μg(Ti)/l	0,2 pour C1 à C4	1,5	0,8	4,6	6	1,3	3,7	0,6	1,4
Uranium	μg(U)/l	0,2 pour C1 à C4	0,4	0,9	0,4	0,9	0,9	1,4	0,7	2,4
Vanadium	μg(V)/l	0,2 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,4</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,4</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,4</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,4</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,4</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	0,4	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Zinc	μg(Zn)/l	2 pour C1 à C4	<ld< td=""><td><ld< td=""><td>3</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>2</td><td>11</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>3</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>2</td><td>11</td></ld<></td></ld<></td></ld<></td></ld<>	3	<ld< td=""><td><ld< td=""><td><ld< td=""><td>2</td><td>11</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>2</td><td>11</td></ld<></td></ld<>	<ld< td=""><td>2</td><td>11</td></ld<>	2	11

Les analyses sur les métaux ont été effectuées sur eau brute.

Plusieurs minéraux sont présents dans l'eau en quantité importante :

- ✓ l'Aluminium est quantifié à toutes les campagnes entre 19 et 334 µg/l;
- ✓ le Baryum est présent à des concentrations supérieures à 18 μg/l sur tous les échantillons.

2.1.1.5. Micropolluants organiques

Le tableau 6 indique les micropolluants organiques qui ont été quantifiés lors des campagnes de prélèvements en 2009. La liste de l'ensemble des substances analysées est fournie en annexe 1

Tableau 6 : résultats d'analyses de micropolluants organiques présents sur eau

Toutes les valeurs quantifiées sont présentées dans le tableau 6. Cependant certaines valeurs pourront être qualifiées d'incertaines suite à la validation finale des résultats (cas des valeurs mesurées en DEHP, BTEX, Formaldéhyde, dont une contamination via la chaîne de prélèvement et/ou d'analyse de laboratoire est privilégiée."

Micropolluants organiques mis en évidence sur eau										
Retenue de Bissorte		anuil quantification	04/06/2009		16/07	//2009	18/08/2009		01/10/2009	
code plan d'eau :	W1035063	seuil quantification	Intégré	Fond	Intégré	Fond	Intégré	Fond	Intégré	Fond
Di(2-éthylhexyl)phtalate (DEHP)	μg/l	1 pour C1 à C4	1	2	3	3	3	3	1,6	<ld< td=""></ld<>
Ethylbenzène	μg/l	0,2 pour C1 à C4	<ld< td=""><td>0,2</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Formaldéhyde	μg/l	1 pour C1 à C4	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>1</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>1</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>1</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>1</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>1</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	1	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Monobutylétain	μg/l	0,015 pour C1 à C4	présence	<ld< td=""><td>0,031</td><td><ld< td=""><td>présence</td><td><ld< td=""><td>0,015</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	0,031	<ld< td=""><td>présence</td><td><ld< td=""><td>0,015</td><td><ld< td=""></ld<></td></ld<></td></ld<>	présence	<ld< td=""><td>0,015</td><td><ld< td=""></ld<></td></ld<>	0,015	<ld< td=""></ld<>
Naphtalène	μg/l	0,02 pour C1 à C4	0,03	0,05	<ld< td=""><td><ld< td=""><td>0,02</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,02</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	0,02	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Toluène	μg/l	0,2 pour C1 à C4	0,3	0,5	0,4	0,3	<ld< td=""><td><ld< td=""><td>0,6</td><td>0,5</td></ld<></td></ld<>	<ld< td=""><td>0,6</td><td>0,5</td></ld<>	0,6	0,5
Xylène méta + para	μg/l	0,2 pour C1 à C4	<ld< td=""><td>0,5</td><td>0,2</td><td>0,2</td><td><ld< td=""><td><ld< td=""><td>0,4</td><td>0,4</td></ld<></td></ld<></td></ld<>	0,5	0,2	0,2	<ld< td=""><td><ld< td=""><td>0,4</td><td>0,4</td></ld<></td></ld<>	<ld< td=""><td>0,4</td><td>0,4</td></ld<>	0,4	0,4
Xylène ortho	μg/l	0,2 pour C1 à C4	<ld< td=""><td>0,2</td><td>0,3</td><td>0,2</td><td><ld< td=""><td><ld< td=""><td>0,2</td><td>0,2</td></ld<></td></ld<></td></ld<>	0,2	0,3	0,2	<ld< td=""><td><ld< td=""><td>0,2</td><td>0,2</td></ld<></td></ld<>	<ld< td=""><td>0,2</td><td>0,2</td></ld<>	0,2	0,2
Xylènes (ortho, méta, para)	μg/l	0,2 pour C1 à C4	<ld< td=""><td>0,7</td><td>0,4</td><td>0,4</td><td><ld< td=""><td><ld< td=""><td>0,6</td><td>0,6</td></ld<></td></ld<></td></ld<>	0,7	0,4	0,4	<ld< td=""><td><ld< td=""><td>0,6</td><td>0,6</td></ld<></td></ld<>	<ld< td=""><td>0,6</td><td>0,6</td></ld<>	0,6	0,6

Le DEHP, indicateur de plastifiants, est quantifié entre 1 et 3 µg/l à toutes les campagnes.

Un Hydrocarbure Aromatique Polycyclique (Naphtalène) est quantifié à faible concentration dans le fond du plan d'eau. Des composés de type BTEX : Ethylbenzène, Toluène et Xylène sont présents à faible concentration sur les campagnes C1, C2 et C4.

Le formaldéhyde a été repéré en C3 à faible concentration. Cette molécule est très sensible aux conditions environnementales d'analyses et il est difficile d'assurer une précision de mesure lors des analyses.

Un composé organostanneux (Monobutylétain) est également présent sur les prélèvements intégrés lors des quatre campagnes.

Les substances appartenant aux polluants spécifiques (synthétiques) à l'état écologique (Arrêté du 25 janvier 2010) ne sont pas quantifiées sur les prélèvements réalisés.

2.1.2. Analyses des sédiments

2.1.2.1. Physicochimie des sédiments

Le tableau 7 fournit la synthèse de l'analyse granulométrique menée sur les sédiments prélevés.

Tableau 7 : synthèse granulométrique sur le sédiment du point de plus grande profondeur

Sédiment : composition granulométrique (%)				
Retenue de Bissorte	01/10/2009			
code plan d'eau : W1035063	01/10/2009			
classe granulométrique (µm)	%			
0 à 2	4,5			
2 à 20	51,4			
20 à 50	28,8			
50 à 63	4,5			
63 à 200	8,5			
200 à 1000	2,0			
1000 à 2000	0,3			
> 2000	0,0			

La granulométrie est fine sur la retenue de Bissorte. Le sédiment prélevé présente une portion argilo- limoneuse importante (56 %), et une portion de sables fins (40%). La portion grossière est nulle dans l'échantillon.

Les analyses de physico-chimie classique menées sur la fraction solide (MS de particules < 2mm) et sur l'eau interstitielle du sédiment sont rapportées au tableau 8.

Tableau 8 : Physicochimie classique des sédiments (matrice solide et eau interstitielle)

Eau interstitielle du sédiment : Physico-chimie							
Retenue de	Bissorte	seuil quantification					
code plan d'eau : W1035063			01/10/2009				
NH4+	mg(NH4)/l	0,5	4,54				
PO4	mg(PO4)/l	1,5	<ld< td=""></ld<>				
Phosphore Total	mg(P)/l	0,005	0,51				

Sédiment : Physico-chimie							
Retenue de Bissorte seuil quantification							
code plan d'eau : W1035063			01/10/2009				
Matières sèches minérales	% MS	0,3	97,3				
Perte au feu	% MS	0,3	2,7				
Matières sèches totales	%	0,3	71,3				
C.O.T.	mg(C)/kg MS	1	5000,0				
Azote Kjeldahl	mg(N)/kg MS	500	710,0				
Phosphore Total	mg(P)/kg MS	0,5	375,6				

Dans les sédiments, la teneur en matière organique est très faible avec moins de 3 %. Proportionnellement, la concentration en azote organique est relativement importante. Le rapport C/N est de 7 : ce qui indique que le sédiment est constitué de matière algale récemment déposée dont une partie sera recyclée en azote minéral. La concentration en phosphore est de 375 mg/kg MS, ce qui correspond à un faible stockage de phosphore dans les sédiments.

L'eau interstitielle contient les minéraux facilement mobilisables dans les sédiments. L'ammonium est en quantité faible. La concentration en phosphore total est considérée comme moyenne à élevée.

2.1.2.2. Micropolluants minéraux

Ils ont été dosés sur la fraction solide du sédiment.

Tableau 9 : résultats d'analyses de métaux sur sédiment

Sédiment : Micropolluants minéraux					
Retenue de	Bissorte	seuil quantification			
code plan d'eau :	W1035063		01/10/2009		
Aluminium	mg(Al)/kg MS	5	37800		
Bore	mg(B)/kg MS	0,2	68,5		
Fer total	mg(Fe)/kg MS	5	31700		
Mercure	mg(Hg)/kg MS	0,02	<ld< td=""></ld<>		
Zinc	mg(Zn)/kg MS	0,2	69,9		
Antimoine	mg(Sb)/kg MS	0,2	3,4		
Argent	mg(Ag)/kg MS	0,2	<ld< td=""></ld<>		
Arsenic	mg(As)/kg MS	0,2	12,8		
Baryum	mg(Ba)/kg MS	0,2	627,2		
Beryllium	mg(Be)/kg MS	0,2	2,5		
Cadmium	mg(Cd)/kg MS	0,2	<ld< td=""></ld<>		
Chrome Total	mg(Cr)/kg MS	0,2	79,7		
Cobalt	mg(Co)/kg MS	0,2	11,4		
Cuivre	mg(Cu)/kg MS	0,2	33,9		
Etain	mg(Sn)/kg MS	0,2	5,2		
Manganèse	mg(Mn)/kg MS	0,2	652,7		
Molybdène	mg(Mo)/kg MS	0,2	0,9		
Nickel	mg(Ni)/kg MS	0,2	38,7		
Plomb	mg(Pb)/kg MS	0,2	22,1		
Sélénium	mg(Se)/kg MS	0,2	0,6		
Tellurium	mg(Te)/kg MS	0,2	<ld< td=""></ld<>		
Thallium	mg(Th)/kg MS	0,2	1		
Titane	mg(Ti)/kg MS	0,2	1611,6		
Uranium	mg(U)/kg MS	0,2	1,7		
Vanadium	mg(V)/kg MS	0,2	98,4		

Les éléments Aluminium, Fer, et Titane sont à des concentrations remarquables. La dégradation de la roche mère est certainement la source majeure de production de ces éléments.

Parmi les métaux lourds, les éléments Arsenic, Chrome et Nickel présentent des concentrations non négligeables.

On trouve également du Vanadium en quantité supérieure aux valeurs moyennes obtenues sur les autres plans d'eau suivis sur les bassins de Rhône-Méditerranée et de Corse.

2.1.2.3. Micropolluants organiques

Le Tableau 10 indique les micropolluants organiques qui ont été quantifiés dans les sédiments lors de la campagne de prélèvements en 2009. La liste de l'ensemble des substances analysées est fournie en annexe 2. Ils ont été dosés sur la fraction solide du sédiment.

Tableau 10 : résultats d'analyses de micropolluants organiques présents sur sédiment

Sédiment : Micropolluants organiques mis en évidence					
Retenue de	Bissorte	seuil quantification			
code plan d'eau :	W1035063		01/10/2009		
Di(2-éthylhexyl)phtalate (DEHP)	μg/kg MS	100	106		
PCB totaux	μg/kg MS	5	7		
PCB101	μg/kg MS	1	présence		
PCB132	μg/kg MS	1	présence		
PCB138	μg/kg MS	1	2		
PCB149	μg/kg MS	1	1		
PCB153	μg/kg MS	1	2		
PCB170	μg/kg MS	1	présence		
PCB180	μg/kg MS	1	2		

Dans les sédiments de la retenue du Bissorte, quelques micropolluants organiques ont été détectés :

- \checkmark un indicateur plastifiant : le DEHP mesuré à 106 µg/kg, cette valeur reste toutefois très faible ;
- ✓ des Polychlorobiphényles (PCB), dont la concentration totale est faible, comprise entre 8 et 10 μg/kg (3 PCB détectés "présence" donc à concentrations respectives comprises entre 0,33 et 1 μg/kg).

2.2. PHYTOPLANCTON

2.2.1. Prélèvements intégrés

Les prélèvements intégrés destinés à l'analyse du phytoplancton ont été réalisés en même temps que les prélèvements pour analyses physicochimiques. Sur la retenue de Bissorte, la zone euphotique et la transparence mesurées sont représentées par le graphique de la figure 6. La transparence est réduite (2,6 m) en première campagne en raison de la turbidité naturelle des eaux de fonte des neiges. La transparence est élevée lors des campagnes 2 et 3 en lien avec un développement algal réduit. Elle est plus faible en C4 en lien avec le développement de diatomées (Tableau 11). Le prélèvement en zone euphotique a donc été réalisé sur 6 à 23 m.

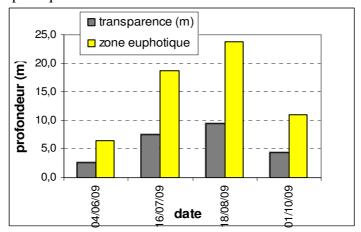


Figure 6 : évolution de la transparence et de la zone euphotique aux 4 campagnes

La liste des espèces de phytoplancton par plan d'eau a été établie selon la méthodologie développée par le CEMAGREF: *Protocole standardisé d'échantillonnage*, de conservation, d'observation et de dénombrement du phytoplancton en plan d'eau pour la mise en oeuvre de la DCE, Mars 2009.

On fixe ci-après les règles qui ont été appliquées dans les dénombrements du peuplement phytoplanctonique, sur la base des considérations pratiques imposées par les observations au microscope :

La liste présente le nombre de cellules observées/ml, identifiées à l'espèce dans la mesure du possible. Dans certains cas, l'identification à l'espèce s'avère toutefois impossible :

- certains critères d'identification sont visibles uniquement en période de reproduction de l'algue (stade de sporulation) ;
- des individus peuvent être détériorés dans l'échantillon, ne permettant pas une identification précise.

Les cellules concernées sont alors identifiées au genre (Mougeotia sp., Mallomonas sp...), voire à la classe (ex : chlorophycées indéterminées, kystes de chrysophycées).

Plus spécifiquement, le groupe des "chlorophycées indéterminées" correspond à l'ensemble des "algues vertes" non identifiables parce que ces dernières sont dégradées, sont au stade végétatif ou plus fréquemment encore, sont sous la forme de cellules sphériques ou ovales qui peuvent être identifiées comme un grand nombre d'espèces dans les ouvrages de taxonomie. Par ailleurs, et par expérience, il s'avère que ces individus correspondent rarement à des espèces déjà identifiées dans le même échantillon.

De ces faits, il ressort que la création d'une ligne de taxon déterminé seulement au genre (par ex. : *Mallomonas, Mougeotia*) suivi de « sp » correspond très probablement à une, voire même plusieurs espèces supplémentaires distinctes de celles par ailleurs identifiées à l'espèce dans ce même échantillon. Ex : les cellules de *Mougeotia sp.* ainsi identifiées au genre n'appartiennent pas à l'espèce *Mougeotia gracillima* identifiée par ailleurs dans le même échantillon. Ce taxon ainsi identifié au genre doit donc être compté pour au minimum une espèce supplémentaire.

Cette méthodologie de comptage des taxons et espèces, basée sur ces considérations techniques, est très certainement celle qui minimise au mieux les distorsions entre nombre d'espèces véritablement présentes et nombre comptable d'espèces identifiables au vu de l'état des individus les représentant.

En somme, le nombre d'espèces apparaissant en bas de tableau est :

- ✓ premier nombre N (entre parenthèses) = nombre d'espèces strictement identifiées à ce niveau, fournissant une borne minimale de la diversité spécifique (valeur certaine) ;
- ✓ deuxième nombre N' = somme du nombre N d'espèces véritablement identifiées, augmenté de 1 espèce pour 1 taxon au genre (ou classe,...).

2.2.2. Liste floristique (nombre de cellules/ml)

	Nb cellules /ml	Date prélèvement				
Groupe algal	Nom Taxon	04/06/2009	16/07/2009	18/08/2009	01/10/2009	
Chlorophycées	Chlorella vulgaris	3	36	2		
	Chlorophycées flagellées					
	indéterminées diam 5 10 μm	34			18	
	Chlorophycées indéterminées	23	7	3	18	
	Chlorophycées ovales	5				
	Elakatothrix gelatinosa			2		
	Oocystis lacustris				15	
	Tetraedron minimum	3				
Chrysophycées	Chrysolykos planctonicus				25	
	Dinobryon cylindricum		15			
	Dinobryon sociale var. stipitatum		1198	16	4	
	Erkenia subaequiciliata	356	7	7	15	
	Kephyrion mastigophorum	187	29	4	4	
	Kystes chrysophycées		7		4	
	Ochromonas sp.		4	6	29	
	Pseudopedinella sp.	5			18	
Cryptophycées	Cryptomonas sp.	3		7		
	Rhodomonas minuta	31			7	
	nannoplanctica	208	4	265	200	
Diatomées	Asterionella formosa	346	66	2	4	
	Cyclotella costei	86	360	14		
	Cyclotella sp.	10	4		5285	
	Cymbella sp.		4			
	Encyonema minutum				7	
	Fragilaria sp.	5	7			
	Fragilaria ulna f. angustissima				4	
	Fragilaria ulna var. acus	3	44	2	109	
	Gomphonema sp.	5				
	Nitzschia acicularis		4			
	Nitzschia sp.			7	15	
	Tabellaria flocculosa			15		
Dinophycées	Gymnodinium helveticum	5		2		
	Gymnodinium lantzschii	18			7	
	Peridiniopsis cunningtonii			1		
	Peridinium goslaviense	42				
	Peridinium willei			1		
Total	nombre cellules/ml	1378	1795	355	5788	
-	nombre taxons N min	15	12	16	16	
	nombre taxons N' (y/c groupe)	20	16	17	19	

Tableau 11: Liste taxonomique du phytoplancton

2.2.3. Évolutions saisonnières des groupements phytoplanctoniques

Les échantillons destinés à la détermination du phytoplancton sont constitués d'un prélèvement intégré sur la zone euphotique (équivalant à 2,5 fois la transparence lors de la campagne). Les graphiques suivants présentent la répartition du phytoplancton par groupe algal en cellules/ml puis en biovolume en mm³/l lors des quatre campagnes.

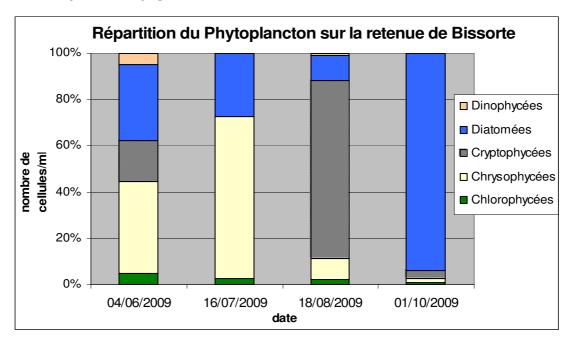


Figure 7 : répartition du phytoplancton par groupe algal, en nombre de cellules

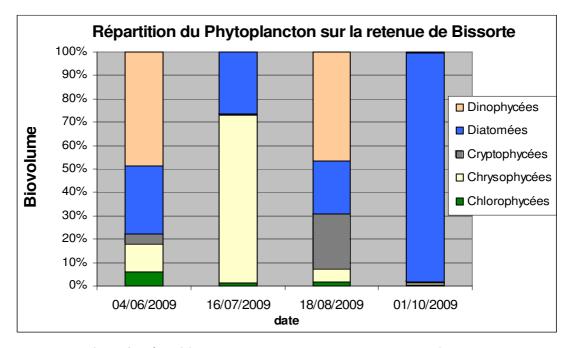


Figure 8 : répartition du phytoplancton par groupe algal, en biovolume

Le peuplement phytoplanctonique sur la retenue de Bissorte est globalement peu abondant, voire très faible en campagne 3. Le biovolume est compris entre 0,1 et 3,8 mm³/l.

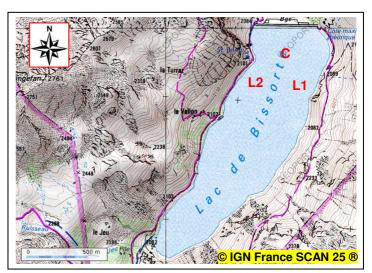
En fin d'hiver, le volume algal est occupé pour moitié par les peu nombreuses mais imposantes Dinophycées, en particulier *Peridinium goslaviense*. Les Diatomées, bien présentes sur toutes les campagnes, occupent alors 30% du volume algal avec notamment *Asterionella formosa*. En campagne 2, les Dinophycées disparaissent au profit des Chrysophycées (en particulier *Dinobryon sociale* indicateur oligo mésotrophe) et des Diatomées occupant respectivement 2/3 et 1/3 du volume. Lors de la 3ème campagne, le milieu se trouve en phase d'eaux claires avec un broutage de la part du zooplancton, les Dinophycées reprennent leur dominance partagée avec les Diatomées et les Cryptophycées (*Rhodomonas minuta*). Les Diatomées dominent totalement le peuplement en dernière campagne avec *Cyclotella* qui constitue 96% du biovolume et 91% des espèces dénombrées. Le phytoplancton est nettement plus abondant lors de cette dernière campagne (biovolume =3,8 mm³/l).

Globalement, la production algale indique un milieu peu enrichi (Indice Phytoplanctonique IPL : 24,7 correspondant à un milieu oligotrophe).

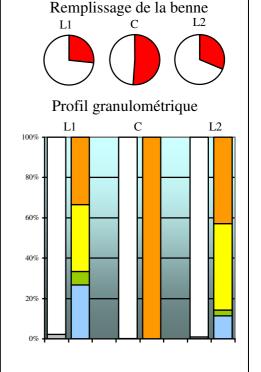
2.3. **OLIGOCHETES**

2.3.1. Conditions de prélèvements

Nom (dépt): Bissorte (73)


Type: grande retenue

Code PE: W1035063 Code ME: FRDL56


Coordonnées GPS (Lambert II étendu) X-Y des points :

L1 (latéral 1): 933684 - 2028518 C (centre): 933492 - 2028817 L2 (latéral 2): 933142 - 2028427

Caractéristiques :		L1	С	L2			
> Prélèvements							
Date		22 septembre 2009					
Heure		10h00	9h30	10h30			
Prof (m)		19	34	18			
Nombre et type de benne		5 Ponar	4 Ekman	5 Ponar			
Surface (m²)		0,128	0,084	0,128			
➤ Sédiments (les volumes sont donnés en ml)							

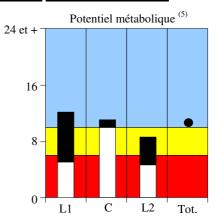
 Sédiments (les volumes sont donnés en ml) 							
Couleur	gris-beige	gris	gris-beige				
Odeur	nulle	légère	nulle				
Vol. total	3400	7300	4000				
Vol. < 0,5 mm (fines)	3325	7292	3965				
Vol.> 0,5 mm (débris)	75	8	35				
Vol. 0,5 à 5 mm, organique	25	8	15				
Vol. 0,5 à 5 mm, minéral	25	0	15				
Vol. > 5 mm, organique	5	0	1				
Vol. > 5 mm, minéral	20	0	4				

Particularités (conditions extérieures remarquables, écart au protocole...):

- Protocole de type retenue avec les trois points situés sur un axe transversal parallèle au barrage. Les points latéraux, localisés près des rives gauche et droite, sont décalés vers l'amont en cas d'absence de sédiments meubles dans l'axe.
- Surface prélevée supérieure aux valeurs préconisées dans la Norme IOBL (0,03 à 0,1 m²) sur les points latéraux en raison de la faible quantité de sédiments récoltés par benne et de leur hétérogénéité.

Commentaires:

- Le taux de remplissage de la benne est moyen (25-75%) au centre alors qu'il est faible sur les points latéraux.
- Les débris sont peu abondants (< 10%) et sont dominés par la fraction organique fine au centre alors qu'il n'y a pas de réelle dominance sur les points latéraux.


2.3.2. Liste faunistique des oligochètes

Liste faunistique (oligochètes) et indice IOBL

Nom: Bissorte Type: grande retenue Date: 22 septembre 2009								
	Taxon	Code Sandre	I (1)	Lat 1	Centre	Lat 2		
Lumbriculidae	Lumbriculidae sl	934	a	23		5		
	Lumbriculus variegatus	2979	a	6		9		
	Stylodrilus heringianus	2980	m	3		8		
	Stylodrilus lemani	19302	m	2				
Naididae ASC	Naididae ASC immat.	5231	a	2	73	12		
	Nais pardalis	19326	a	2				
	Tubifex tubifex	946	m		27	2		
Naididae SSC	Naididae SSC immat.	5230	a	1				
	Ophidonais serpentina	3006	a	20		5		
	Nombre de	e taxons =	S (2)	7	1	4		
	Nombre d'oligo	59	100	41				
	Nombre d'olig	59	1534	41				
Paramètres faunistiques	Surface écha	0,128	0,084	0,128				
	Densité en oligochètes (p	46	1826	32				
	Indice IO	BL par s	site (3)	12,0	10,8	8,6		
	Indice IO	OBL glo	bal ⁽⁴⁾		10,5			

Commentaires:

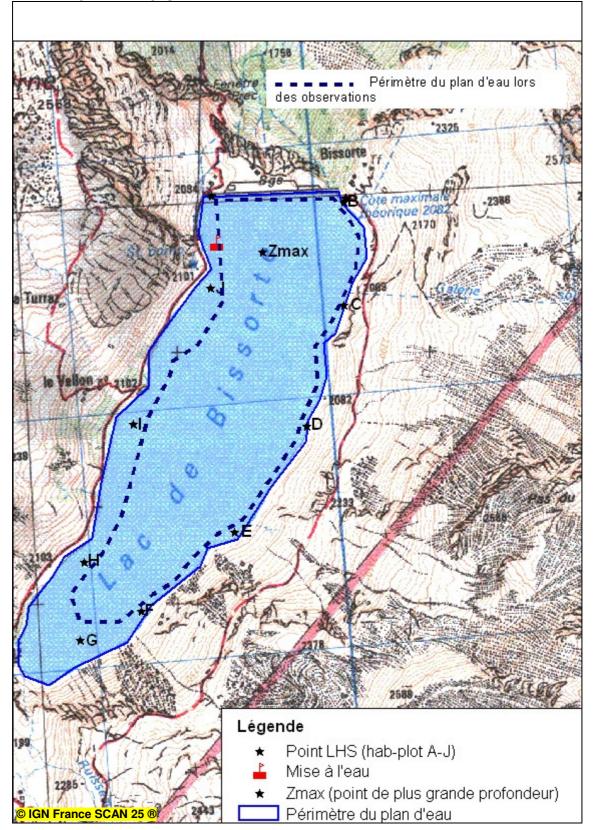
- Le potentiel métabolique des sédiments est globalement élevé. Les deux sites latéraux sont hétérogènes du fait d'une nette différence de richesse. Le point profond (centre) se distingue des points latéraux par une moindre richesse et une densité plus élevée.
- Quatre espèces (Nais pardalis, Ophidonais serpentina, Stylodrilus heringianus et Stylodrilus lemani) figurent sur la liste des oligochètes sensibles à la pollution en annexe C de la Norme NF T90-391.

Remarques:

- (1) Identification possible du taxon à tous les stades (a) ou seulement à l'état mature (m)
- (2) S est le nombre minimal possible de taxons parmi les 100 oligochètes comptés. Par exemple, le taxon Naididae ASC immat. (identification limitée par le caractère immature de l'individu) sera comptabilisé comme un taxon uniquement en cas d'absence d'autres Naididae ASC identifiables seulement au stade mature. Les valeurs d'abondance mises en caractère gras correspondent aux taxons pris en compte pour le calcul de la richesse.
- (3) Indice IOBL par site = S + 3log10 (D+1) où S = nombre de taxons parmi les oligochètes comptés et D = densité en oligochètes pour 0,1 m^2 .
- (4) Indice IOBL global = ½(IOBLcentre) + ¼(IOBLlat1) + ¼(IOBLlat2). Il s'agit donc de la moyenne entre l'indice IOBL de la zone centrale profonde et l'indice IOBL des zones latérales, ce dernier indice étant égal à la moyenne des indices IOBL des deux zones latérales (lat 1 et lat2)
- (5) Le graphique représente les valeurs de l'indice IOBL (ordonnée) dans les différents sites (abscisse). La partie noire des histogrammes correspond à la part "richesse" de l'indice IOBL (S) alors que la partie blanche indique la part "densité" de l'indice ($3 \log_{10} (D+1)$)

2.4. HYDROMORPHOLOGIE

La retenue du Bissorte est un plan d'eau artificiel de type retenue qui subit un marnage saisonnier conséquent lié à son exploitation pour l'hydroélectricité.


La reconnaissance hydromorphologique a été réalisée en fin d'été, le 1 octobre 2009 en même temps que la dernière campagne physicochimique et l'étude des macrophytes. La retenue était à une cote très basse, le marnage étant d'environ 18 m (cf. ligne d'eau sur carte 2).

La méthode aboutit au calcul de deux indices :

- ✓ LHMS : évaluation de l'altération du milieu ;
- ✓ LHQA : évaluation de la qualité des habitats du plan d'eau.

La localisation des points d'observations sur le plan d'eau est présentée sur la carte 2.

Les vues sur les 10 points d'observations sont fournies dans la suite du document (Figure 9).

carte 2 : localisation des points LHS sur la retenue de Bissorte (échelle : 1/15 000e)

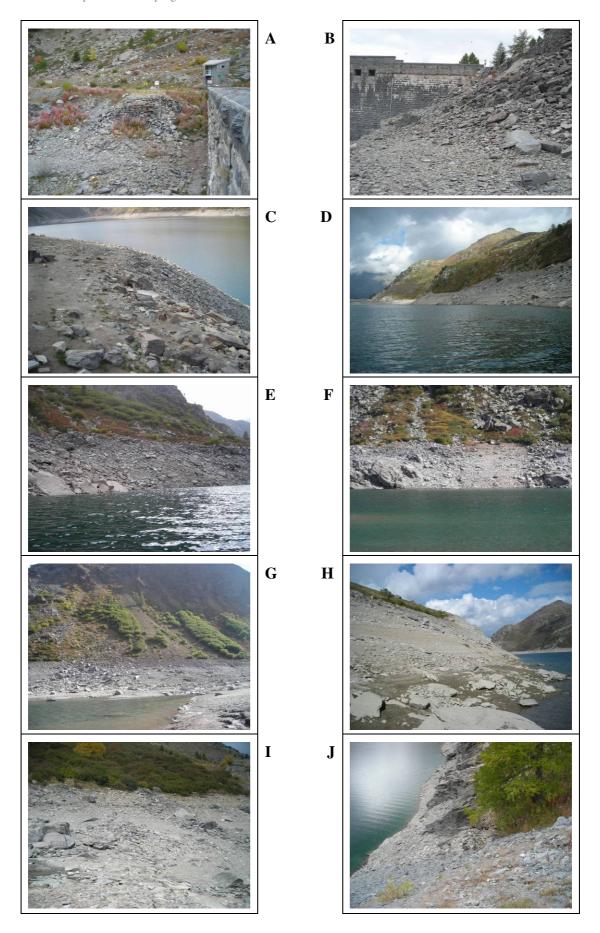


Figure 9: Photos des 10 points d'observation LHS

2.4.1. Résultats : indices de qualité des habitats et de l'altération morphologique

La retenue de Bissorte est située en haute montagne, avec des berges pentues. Les sols sont recouverts exclusivement de milieux naturels : pelouses rases, landes à rhododendrons et arbustes, éboulis rocheux. Seule la portion de digue est aménagée.

La grève et les berges sont peu modifiées mais subissent des pressions liées à l'usage de la retenue : marnage important entraînant l'érosion des berges, prises d'eau. La note du LHMS indique une altération modérée du milieu (24/42). Le plan d'eau présente une variété d'habitats faible en raison du manque de diversité d'occupation des berges mais également d'une zone littorale absente (profondeur élevée) en raison de la raideur des pentes. De ce fait, le score LHQA est faible avec une note de 48/112.

Le barrage de Bissorte constitue un infranchissable pour la faune aquatique.

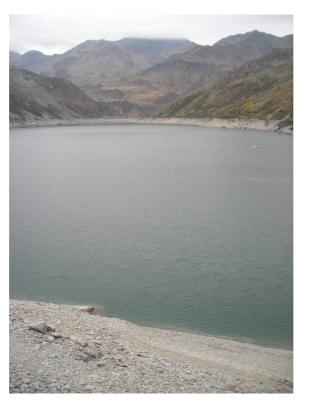


Figure 10 : vues générales sur la retenue

LHS - Fiche de synthèse

Caractéristiques générales du lac

Nom du lac Bissorte
Code lac W1035063
Date 01-oct-09
Points d'observation 10

Usage principal hydro-électricité

Type lacustre A1
Prise(s) d'eau 2

un talus de berge

Surface du lac (km2) 1,15 Périmètre du lac (m) 5360 Surface BV (km2) 87,5 Altitude (m) 2082

Profondeur max (m) 55 Marnage max (m) 44

Pressions et aménagements des berges du lac (%)

Ouvrages hydrauliques	11	Exploitation forestière	0	Décharge, poubelles	0
éléments libres	1	Prairie de fauche	0	Exploitation minière	0
éléments liés	10	Cultures	0	Route, voie ferrée, chemin	9
Protection de berges par		Vergers	0	Jardins, parcs	0
des méthodes douces	0	Erosion	76	Plages (baignade)	0
Ports et marinas	0	Zone résidentielle	0	Plantations de conifères	0
Activités commerciales	0	Aire de jeux	0	Camping, caravaning	0
Épandage	0				

Points d'observation

Nombre de points d'observation présentant:

une occupation naturelle du sol 2 des espèces nuisibles (sur berges et /ou sur littoral) 0

0

Zones humides et autres habitats %

des macrophytes

Roselière	0	Tapis de flottants	0	Forêt feuillus/mixte	0
Bois humide	0	Surface en eau	0	Forêt de conifères	0
Tourbière	0	Prairie	1	Lande	15
Marécage/marais	0	Autre espace humide	0	Rochers, dunes	30

LHMS		LHQA	
Score LHMS	24 /42	Score LHQA	48 /112
Modification de la grève	2 /8	Berges	7 /20
Usage intensif de la grève	4 /8	Plage/grève	13 /24
Pressions sur le lac	4 /8	Zone littorale	13 /32
Hydrologie (ouvrage)	8 /8	Lac	15 /36
Transport solide	6 /6	ll .	
Espèces exotiques	0 /4		

2.5. MACROPHYTES

2.5.1. Méthodologie adaptée aux plans d'eau marnants

Le plan d'eau étudié ici présente une variation annuelle de niveau d'eau supérieure à 2 m. La méthode pour l'étude des peuplements de macrophytes a donc été adaptée conformément aux prescriptions du Cemagref pour ce type de plan d'eau. Ces hydrosystèmes sont considérés comme instables, les peuplements observés ne permettent pas de définir un état écologique, mais l'étude des zones propices au développement d'hydrophytes et d'hélophytes permet d'évaluer un certain potentiel.

Il s'agit donc d'étudier certains secteurs où les conditions sont plus favorables (faible pente, influence d'un cours d'eau,...) :

- ✓ Oueues de retenue :
- ✓ Zones de contact entre affluents et plan d'eau ;
- ✓ Zones aménagées : port, mise à l'eau, base nautique.

Ces zones sont étudiées de la manière suivante :

- ✓ Un profil perpendiculaire unique sur la zone colonisée, en appliquant la méthodologie du CEMAGREF pour les plans d'eau non marnants ;
- ✓ Un relevé de rive sur 100 m.

Le repérage des secteurs propices se fait par observation sur le terrain, et à partir de la cartographie. La méthode de Jensen n'est pas appliquée pour les plans d'eau marnants.

Ces éléments sont reportés dans le fichier de saisie du CEMAGREF.

2.5.2. Repérage des zones favorables

Le plan d'eau a été parcouru dans son intégralité en bateau lors de la campagne de fin d'été en même temps que les observations hydromorphologiques. Les secteurs propices au développement de végétation aquatique ont été observés visuellement. Aucune hydrophyte, ni hélophyte n'a été repérée. Les zones rivulaires sont essentiellement minérales : éboulis, blocs.

Le marnage conséquent (>25 m), la pente abrupte des berges et l'absence de dépôts de sédiments fins en zone littorale empêchent la colonisation des végétaux sur ce plan d'eau. De plus, les variations fréquentes des niveaux d'eau associées au transfert des eaux de l'Arc en période de faible demande énergétique ne permettent pas de maintenir une zone littorale propice à la végétation sur le plan d'eau.

3. INTERPRETATION GLOBALE DES RESULTATS

Les résultats acquis durant le suivi annuel ont été interprétés en termes de potentiel écologique pour les plans d'eau d'origine anthropique et d'état chimique selon les critères et méthodes d'évaluation décrites dans l'arrêté du 25 janvier 2010.

Ces résultats ont également été traités en terme de niveau trophique à l'aide des outils de la diagnose rapide (Cemagref, 2003).

Les résultats de ces deux approches sont présentés dans le document complémentaire : Note synthétique d'interprétation des résultats.

✓ Critères d'applicabilité de la diagnose rapide

La diagnose rapide vise à évaluer l'état trophique des plans d'eau et à mettre en évidence les phénomènes d'eut susceptible d'engendrer dans les divers compartiments de l'écosystème au cours de la période de croissance végétale qui lui succède.

Cette méthode est donc adaptée aux plans d'eau qui **stratifient durablement en été** et exclut les plans d'eau **au temps de séjour réduit** (CEMAGREF, 1990, 2003) et les plans d'eau dont la profondeur moyenne est **inférieure à 3 m**.

La retenue de Bissorte est un plan d'eau d'une profondeur moyenne de 34 m. La stratification au sens limnologique est absente. En 2009, les variations de la cote du plan d'eau ont été importantes, les eaux étaient hautes début juin, le plan d'eau a baissé durant l'été et s'est rempli à nouveau en fin d'été. Le fonctionnement lacustre induit par la STEP est complexe, d'autant que les remontées d'eau de l'Arc se font en profondeur et génèrent une distinction entre deux masses d'eau : la couche de surface est claire, faiblement minéralisée (120 à 200 μ S/cm), alors que la couche de fond est turbide, lourde et très minéralisée (200 à 850 μ S/cm) suivant les campagnes.

Le temps de séjour est court, il est estimé à 70 jours d'après les données disponibles. Les eaux sont fréquemment renouvelées.

Le fonctionnement hydrologique décrit ci-dessus est l'une des raisons pour laquelle la retenue de Bissorte ne stratifie pas de manière marquée : l'interprétation de la diagnose rapide doit être faite avec réserve. De fait, l'indice dégradation n'est pas pertinent.

Agence de l'Eau Rhône - Méditerranée & Corse	
Etude des plans d'eau du programme de surveillance des bassins Rhône- Méditerranée et Corse – Retenue de Bissor	rte (73)

4. ANNEXES

Annexe 1 : Liste des micropolluants analysés sur eau

Code			Code		
SANDRE	Libel param	Famille composés	SANDRE	Libel param	Famille composés
5474	4-n-nonylphénol	Alkylphénols	1118	Benzo (ghi) Pérylène	HAP
1957	Nonylphénols	Alkylphénols	1117	Benzo (k) Fluoranthène	HAP
1920	p-(n-octyl)phénols	Alkylphénols	1476	Chrysène	HAP
1958	Para-nonylphénols ramifiés	Alkylphénols	1621	Dibenzo (ah) Anthracène	HAP
1959	Para-tert-octylphénol	Alkylphénols	1191	Fluoranthène	HAP
1593	Chloroaniline-2	Anilines et Chloroanilines	1623	Fluorène	HAP
1592	Chloroaniline-3	Anilines et Chloroanilines	1204	Indéno (123c) Pyrène	HAP
1591	Chloroaniline-4	Anilines et Chloroanilines	1619	Méthyl-2-Fluoranthène	HAP
1589	Dichloroaniline-2,4	Anilines et Chloroanilines	1618	Méthyl-2-naphtalène	HAP
1114	Benzène	BTEX	1517	Naphtalène	HAP
1602	Chlorotoluène-2	BTEX	1524	Phénanthrène	HAP
1601	Chlorotoluène-3	BTEX	1537	Pyrène	HAP
1600	Chlorotoluène-4	BTEX	1370	Aluminium	Métaux
1497	Ethylbenzène	BTEX	1376	Antimoine	Métaux
1633	Isopropylbenzène	BTEX	1368	Argent	Métaux
1278	Toluène	BTEX	1369	Arsenic	Métaux
5431	Xylène (ortho+meta+para)	BTEX	1396	Baryum	Métaux
1292	Xylène-ortho	BTEX	1377	Beryllium	Métaux
1955	Chloroalcanes C10-C13	Chloroalacanes	1362	Bore	Métaux
1467	Chlorobenzène (Mono)	Chlorobenzènes	1388	Cadmium	Métaux
1165	Dichlorobenzène-1,2	Chlorobenzènes	1389	Chrome	Métaux
1164	Dichlorobenzène-1,3	Chlorobenzènes	1379	Cobalt	Métaux
1166	Dichlorobenzène-1,4	Chlorobenzènes	1392	Cuivre	Métaux
1199	Hexachlorobenzène	Chlorobenzènes	1380	Etain	Métaux
1888	Pentachlorobenzène	Chlorobenzènes	1393	Fer	Métaux
1631	Tétrachlorobenzène-1,2,4,5	Chlorobenzènes	1394	Manganèse	Métaux
1630	Trichlorobenzène-1,2,3	Chlorobenzènes	1387	Mercure	Métaux
1283	Trichlorobenzène-1,2,4	Chlorobenzènes	1395	Molybdène	Métaux
1629	Trichlorobenzène-1,3,5	Chlorobenzènes	1386	Nickel	Métaux
1774	Trichlorobenzènes	Chlorobenzènes	1382	Plomb	Métaux
1469	Chloronitrobenzène-1,2	Chloronitrobenzènes	1385	Sélénium	Métaux
1468	Chloronitrobenzène-1,3	Chloronitrobenzènes	2559	Tellurium	Métaux
1470	Chloronitrobenzène-1,4	Chloronitrobenzènes	2555	Thallium	Métaux
1617	Dichloronitrobenzène-2,3	Chloronitrobenzènes	1373	Titane	Métaux
1615	Dichloronitrobenzène-2,5	Chloronitrobenzènes	1361	Uranium	Métaux
1614	Dichloronitrobenzène-3,4	Chloronitrobenzènes	1384	Vanadium	Métaux
2915	BDE100	Diphényléthers bromés	1383	Zinc	Métaux
2912	BDE153	Diphényléthers bromés	1135	Chloroforme (trichlorométhane)	OHV
2911	BDE154	Diphényléthers bromés	2611	Chloroprène	OHV
2920	BDE28	Diphényléthers bromés	2065	Chloropropène-3	OHV
2919	BDE47	Diphényléthers bromés	1160	Dichloréthane-1,1	OHV
2916	BDE99	Diphényléthers bromés	1161	Dichloréthane-1,2	OHV
1815	Décabromodiphényléther	Diphényléthers bromés	1162	Dichloréthylène-1,1	OHV
2609	Octabromodiphénylether	Diphényléthers bromés	1163	Dichloréthylène-1,2	OHV
1921	Pentabromodiphényléther	Diphényléthers bromés	1456	Dichloréthylène-1,2 cis	OHV
1465	Acide monochloroacétique	Divers	1727	Dichloréthylène-1,2 trans	OHV
1753	Chlorure de vinyle	Chlorure de vinyles	1168	Dichlorométhane	OHV
2826	Diéthylamine	Divers	1652	Hexachlorobutadiène	OHV
2773	Diméthylamine	Divers	1271	Tétrachloréthane-1,1,2,2	OHV
1494	Epichlorohydrine	Divers	1272	Tétrachloréthylène	OHV
1453	Acénaphtène	HAP	1276	Tétrachlorure de C	OHV
1622	Acénaphtylène	HAP	1284	Trichloréthane-1,1,1	OHV
1458	Anthracène	HAP	1285	Trichloréthane-1,1,2	OHV
1082	Benzo (a) Anthracène	HAP	1286	Trichloréthylène	OHV
1115	Benzo (a) Pyrène	HAP	1771	Dibutylétain	Organostanneux complets
1116	Benzo (b) Fluoranthène	HAP	1936	Tétrabutylétain	Organostanneux complets

page 1/2

Codo		ı	Codo	1	1
Code	Libel param	Famille composés	Code SANDRE	Libol param	Famille composés
2879	Tributylétain-cation	Organostanneux complets	1187	Libel_param Fénitrothion	Pesticides
	Triphénylétain	Organostanneux complets	1967	Fénoxycarbe	Pesticides
	PCB 101	PCB	2022	Fludioxonil	Pesticides
	PCB 118	PCB	1765	Fluroxypyr	Pesticides
1243	PCB 138	PCB	2547	Fluroxypyr-meptyl	Pesticides
1244	PCB 153	PCB	1194	Flusilazole	Pesticides
1090	PCB 169	PCB	1702	Formaldéhyde	Pesticides
		PCB	1506		
	PCB 180 PCB 28	PCB	1200	Glyphosate HCH alpha	Pesticides Pesticides
1239	PCB 35	PCB	1200	HCH beta	Pesticides
	PCB 52	PCB	1202	HCH delta	Pesticides
1091	PCB 77	PCB	2046	HCH epsilon	Pesticides
	2 4 D	Pesticides	1203	HCH gamma	Pesticides
	2 4 MCPA	Pesticides	1405	Hexaconazole	Pesticides
1832	2-Hydroxy-atrazine	Pesticides	1877	Imidaclopride	Pesticides
1903					
1688	Acétochlore Aclonifen	Pesticides Pesticides	1206 1207	Iprodione Isodrine	Pesticides Pesticides
1101	Alachlore	Pesticides	1207	Isoproturon	Pesticides
1101	Aldrine		1950		
		Pesticides Pesticides		Kresoxim méthyl	Pesticides
	Aminotriazole AMPA	Pesticides Pesticides	1094 1209	Lambda Cyhalothrine Linuron	Pesticides Pesticides
				Malathion	
1107 1109	Atrazine Atrazine déisopropyl	Pesticides	1210	Mécoprop	Pesticides Pesticides
	,	Pesticides	1214		Pesticides
1108	Atrazine déséthyl	Pesticides	2987	Métalaxyl m = mefenoxam	Pesticides
1951	Azoxystrobine	Pesticides	1796	Métaldéhyde	Pesticides
1113	Bentazone Bromacil	Pesticides Pesticides	1215	Métamitrone Métazachlore	Pesticides
1686			1670		Pesticides
1125	Bromoxynil	Pesticides	1216	Méthabenzthiazuron	Pesticides
1941	Bromoxynil octanoate	Pesticides	1227	Monolinuron	Pesticides
1129	Carbendazime	Pesticides	1519	Napropamide	Pesticides
1130	Carbofuran	Pesticides	1882	Nicosulfuron	Pesticides
1464	Chlorenvinphos	Pesticides	1669	Norflurazon	Pesticides
1134 1474	Chlorméphos	Pesticides	1667	Oxadiazon	Pesticides
1083	Chlorprophame	Pesticides Pesticides	1666 1231	Oxadixyl Oxydéméten méthyl	Pesticides Pesticides
1540	Chlorpyriphos éthyl	Pesticides	1234	Oxydéméton méthyl	Pesticides
1136	Chlorpyriphos méthyl Chlortoluron	Pesticides Pesticides		Pendiméthaline Phoxime	Pesticides
2017	Clomazone	Pesticides Pesticides	1665 1664	Procymidone	Pesticides Pesticides
1680	Cyproconazole	Pesticides	1414	Propyzamide	Pesticides
1359	Cyprodinil	Pesticides	1432	Pyriméthanil	-
1143	DDD-o,p'	Pesticides	1892	Rimsulfuron	Pesticides Pesticides
1143	DDD-p,p'	Pesticides	1263	Simazine	Pesticides
1144					
1145	DDE-o,p' DDE-p,p'	Pesticides Pesticides	1662 1694	Sulcotrione Tébuconazole	Pesticides Pesticides
1146	DDT-o,p'	Pesticides	1661	Tébutame	Pesticides Pesticides
1147	DDT-p,p'	Pesticides	1268	Terbuthylazine	Pesticides
1830	Déisopropyl-déséthyl-atrazine	Pesticides	2045	Terbuthylazine déséthyl	Pesticides
1149	Deltaméthrine	Pesticides	1954	Terbuthylazine desetnyi Terbuthylazine hydroxy	Pesticides Pesticides
1480	Dicamba	Pesticides	1269	Terbutryne	
	Dichlorprop	Pesticides	1660	Tétraconazole	Pesticides Pesticides
	Dichlorvos	Pesticides	1288	Trichlopyr	Pesticides
1173	Dieldrine	Pesticides	1289	Trifluraline	Pesticides
1814	Diflufénicanil	Pesticides	1636	Chlorométhylphénol-4,3	Phénols et chlorophénols
1678	Diméthénamide	Pesticides	1471	Chlorophénol-2	Phénois et chlorophénois
1403	Diméthomorphe	Pesticides	1651	Chlorophénol-3	Phénois et chlorophénois
1177	Diuron	Pesticides	1650	Chlorophénol-4	Phénois et chlorophénois Phénois et chlorophénois
1177	Endosulfan alpha	Pesticides	1486	Dichlorophénol-2,4	Phénois et chlorophénois
1179	Endosulfan beta	Pesticides	1235	Pentachlorophénol	Phénois et chlorophénois
1742	Endosulfan sulfate	Pesticides	1548	Trichlorophénol-2,4,5	Phénois et chlorophénois
1742	Endosulfan Total	Pesticides	1549	Trichlorophénol-2,4,6	Phénois et chlorophénois
1181	Endrine	Pesticides	1584	Biphényle	Semi volatils organiques divers
1744	Epoxiconazole	Pesticides	1461	DEPH	Semi volatils organiques divers
	Ethofumésate	Pesticides	1847	Tributylphosphate	Semi volatils organiques divers
1104	Linoiumesale	1 ธอมเป็นธอ	104/	тньицурноэрнаце	Denni voianis organiques divers

page 2/2

Annexe 2 : Liste des micropolluants analysés sur sédiment

Code SANDRE	Libel param	Famille composés	Code SANDRE	Libel param	Famille composés
5474	4-n-nonylphénol	Alkylphénols	1652	Hexachlorobutadiène	OHV
1957	Nonylphénols	Alkylphénols	1770	Dibutylétain (oxyde)	Organostanneux complets
1920	p-(n-octyl)phénols	Alkylphénols	1936	Tétrabutylétain	Organostanneux complets
1958	Para-nonylphénols ramifiés	Alkylphénols	2879	Tributylétain-cation	Organostanneux complets
1959	Para-tert-octylphénol	Alkylphénols	1779	Triphénylétain	Organostanneux complets
1602	Chlorotoluène-2	BTEX	1242	PCB 101	PCB
1601	Chlorotoluène-3	BTEX	1243	PCB 118	PCB
1600	Chlorotoluène-4	BTEX	1244	PCB 138	PCB
1497	Ethylbenzène	BTEX	1245	PCB 153	PCB
1633	Isopropylbenzène	BTEX	1090	PCB 169	PCB
5431	Xylène (ortho+meta+para)	BTEX	1246	PCB 180	PCB
1292	Xylène-ortho	BTEX	1239	PCB 28	PCB
1955	Chloroalcanes C10-C13	Chloroalacanes	1240	PCB 35	PCB
1165	Dichlorobenzène-1,2	Chlorobenzènes	1241	PCB 52	PCB
1164	Dichlorobenzène-1,3	Chlorobenzènes	1091	PCB 77	PCB
1166	Dichlorobenzène-1,4	Chlorobenzènes	1903	Acétochlore	Pesticides
1199	Hexachlorobenzène	Chlorobenzènes	1688	Aclonifen	Pesticides
1888	Pentachlorobenzène	Chlorobenzènes	1103	Aldrine	Pesticides
1631	Tétrachlorobenzène-1,2,4,5	Chlorobenzènes	1125	Bromoxynil	Pesticides
1630	Trichlorobenzène-1,2,3	Chlorobenzènes	1941	Bromoxynil octanoate	Pesticides
1283	Trichlorobenzène-1,2,4	Chlorobenzènes	1464	Chlorfenvinphos	Pesticides
1629	Trichlorobenzène-1,3,5	Chlorobenzènes	1134	Chlorméphos	Pesticides
1774	Trichlorobenzènes	Chlorobenzènes	1474	Chlorprophame	Pesticides
1617	Dichloronitrobenzène-2,3	Chloronitrobenzènes	1083	Chlorpyriphos éthyl	Pesticides
1615	Dichloronitrobenzène-2,5	Chloronitrobenzènes	1540	Chlorpyriphos méthyl	Pesticides
1614	Dichloronitrobenzene-2,5 Dichloronitrobenzene-3,4	Chloronitrobenzenes	1359	Cyprodinil	Pesticides
	,			DDD-o,p'	Pesticides Pesticides
2915	BDE100	Diphényléthers bromés	1143		
2912	BDE153	Diphényléthers bromés	1144	DDD-p,p'	Pesticides
2911	BDE154	Diphényléthers bromés	1145	DDE-o,p'	Pesticides
2920	BDE28	Diphényléthers bromés	1146	DDE-p,p'	Pesticides
2919	BDE47	Diphényléthers bromés	1147	DDT-o,p'	Pesticides
2916	BDE99	Diphényléthers bromés	1148	DDT-p,p'	Pesticides
1815	Décabromodiphényléther	Diphényléthers bromés	1149	Deltaméthrine	Pesticides
2609	Octabromodiphénylether	Diphényléthers bromés	1169	Dichlorprop	Pesticides
1921	Pentabromodiphényléther	Diphényléthers bromés	1173	Dieldrine	Pesticides
1453	Acénaphtène	HAP	1814	Diflufénicanil	Pesticides
1622	Acénaphtylène	HAP	1178	Endosulfan alpha	Pesticides
1458	Anthracène	HAP	1179	Endosulfan beta	Pesticides
1082	Benzo (a) Anthracène	HAP	1742	Endosulfan sulfate	Pesticides
1115	Benzo (a) Pyrène	HAP	1743	Endosulfan Total	Pesticides
1116	Benzo (b) Fluoranthène	HAP	1181	Endrine	Pesticides
1118	Benzo (ghi) Pérylène	HAP	1744	Epoxiconazole	Pesticides
1117	Benzo (k) Fluoranthène	HAP	1187	Fénitrothion	Pesticides
1476	Chrysène	HAP	1967	Fénoxycarbe	Pesticides
1621		HAP	2022	Fludioxonil	Pesticides
	Dibenzo (ah) Anthracène				
1191	Fluoranthène	HAP	2547	Fluroxypyr-meptyl	Pesticides
1623	Fluorène	HAP	1194	Flusilazole	Pesticides
1204	Indéno (123c) Pyrène	HAP	1200	HCH alpha	Pesticides
1619	Méthyl-2-Fluoranthène	HAP	1201	HCH beta	Pesticides
1618	Méthyl-2-naphtalène	HAP	1202	HCH delta	Pesticides
1517	Naphtalène	HAP	2046	HCH epsilon	Pesticides
1524	Phénanthrène	HAP	1203	HCH gamma	Pesticides
1537	Pyrène	HAP	1405	Hexaconazole	Pesticides
1370	Aluminium	Métaux	1206	Iprodione	Pesticides
1376	Antimoine	Métaux	1207	Isodrine	Pesticides
1368	Argent	Métaux	1950	Kresoxim méthyl	Pesticides
1369	Arsenic	Métaux	1094	Lambda Cyhalothrine	Pesticides
1396	Baryum	Métaux	1209	Linuron	Pesticides
1377	Beryllium	Métaux	1519	Napropamide	Pesticides
1362	Bore	Métaux	1667	Oxadiazon	Pesticides
1388	Cadmium	Métaux	1234	Pendiméthaline	Pesticides
1389	Chrome	Métaux	1664	Procymidone	Pesticides
1379	Cobalt	Métaux	1414	Propyzamide	Pesticides
		Métaux			
1392	Cuivre		1694	Tébuconazole	Pesticides
1380	Etain	Métaux	1661	Tébutame	Pesticides
1393	Fer	Métaux	1268	Terbuthylazine 	Pesticides
1394	Manganèse	Métaux	1269	Terbutryne	Pesticides
1387	Mercure	Métaux	1660	Tétraconazole	Pesticides
1395	Molybdène	Métaux	1289	Trifluraline	Pesticides
1386	Nickel	Métaux	1636	Chlorométhylphénol-4,3	Phénols et chlorophénols
1382	Plomb	Métaux	1486	Dichlorophénol-2,4	Phénols et chlorophénols
1385	Sélénium	Métaux	1235	Pentachlorophénol	Phénols et chlorophénols
		Métaux	1548	Trichlorophénol-2,4,5	Phénols et chlorophénols
2559	Tellurium	IVICIAUX	1010		
2559 2555	Tellurium Thallium	Métaux	1549	Trichlorophénol-2,4,6	Phénols et chlorophénols
2555	Thallium	Métaux	1549		
2555 1373	Thallium Titane	Métaux Métaux	1549 1584	Biphényle	Semi volatils organiques divers
2555 1373 1361	Thallium Titane Uranium	Métaux Métaux Métaux	1549 1584 1461	Biphényle DEPH	Semi volatils organiques divers Semi volatils organiques divers
2555 1373	Thallium Titane	Métaux Métaux	1549 1584	Biphényle	Semi volatils organiques divers

<u>Annexe 3 : Comptes rendus des campagnes de prélèvements physicochimiques et phytoplanctoniques sur l'année 2009</u>

Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES GENERALES PLAN D'EAU - STATION Date: 04/06/2009 Plan d'eau: Bissorte (retenue de -) Type (naturel, artificiel,...): artificiel Code lac: W1035063 Organisme / opérateur : **S.T.E.**: Hervé Coppin Campagne 1 Audrey Péricat et $march\acute{e}~n^{\circ}~08M082$ Organisme demandeur Agence de l'eau RM&C LOCALISATION PLAN D'EAU Commune : Orelle (73) Lac marnant: oui H.E.R.: Alpes internes Superficie du bassin-versant : 23,7 km² bassin versant naturel + 63,8 km2 artificiel ha Superficie du plan d'eau : 116 Profondeur maximale: m (extrait SCAN25, IGN 1/25 000)

€

angle de prise de vue de la photographie localisation du point de prélèvements

STATION

Photo du site : la berge RG au dessus de la mise à l'eau

Relevé phytoplanctonique et physi	* *	ı			
DONNEES GENERALES CAMP					
Plan d'eau :	Bissorte (retenue de -)				04/06/2009
Type (naturel, artificiel,):	artificiel				W1035063
Organisme / opérateurs :	S.T.E.: Audrey Périca	t et Hervé	Coppin	Campagne	
Organisme demandeur	Agence de l'eau RM&C			marché n°	08M082
STATION					
Coordonnées de la station	relevées sur : GPS				
Lambert 93	X: 981024		Y: 6459582		alt.: $2073 \ m$
WGS 84 (système international)	GPS (en dms) X:		Y:		alt.: m
Profondeur :	43,0 m				
	vent: faible				
	météo: soleil				
Conditions d'observation :	Surface de l'eau	faiblement ag	itée		
Conditions a cost varion.	Surface de l'edd .	iuroromom ug			
	Hauteur des vagues :	0,01 m	P atm stand	dard : 783	.08 hPa
	Bloom algal: non	*	Pression at		hPa
Marnage:	oui		ır de la ban		m
wiamage.	Oui	Trautet	ii uc ia baii	uc. o	111
PRELEVEMENTS	de l'activité biologiqu	е			
Heure de début du relevé :	09h 40	Heure de fin d	lu relevé ·	11h 20	
Ticure de debut du fereve .	0)11 +0	ileare de illi e	iu icicve.	1111 20	
Prélèvements pour analyses :	eau chlorophylle phytoplancton	matériel empl	oyé :	pompe	
Gestion :	EDF: hydroélectricité				
	EDF GEH Vallée de la M	I aurienne			
<u> </u>	Groupement d'usines de S		e		
	C. Aymoz : chargé d'expl	•			
				EDE at C T	. —
	Plan de prévention établi	pour l'interve	пион ение	CDCCC	`.E.
	Plan de prévention établi Le lac a dégelé début mai	•	ntion entre	EDF et 3.1	`.E.
Remarques observations	Le lac a dégelé début mai	i 2009.			
Remarques, observations:	Le lac a dégelé début mai Une reconnaissance du si	i 2009. te a été faite l	e 27 mai 20	009 par S.T	C.E.
Remarques, observations:	Le lac a dégelé début mai Une reconnaissance du si Un pompage des eaux de	i 2009. te a été faite l l'Arc peut êtr	e 27 mai 20	009 par S.T	C.E.
Remarques, observations:	Le lac a dégelé début mai Une reconnaissance du si Un pompage des eaux de de la demande énergétiqu	i 2009. te a été faite l l'Arc peut êtr ie.	e 27 mai 20 e réalisé la	009 par S.T nuit en cas	C.E. de baisse
Remarques, observations:	Le lac a dégelé début mai Une reconnaissance du si Un pompage des eaux de de la demande énergétiqu Les eaux de la couche pro	i 2009. Ite a été faite l l'Arc peut êtr le. ofonde sont pl	e 27 mai 20 e réalisé la lus minérali	009 par S.T nuit en cas isées (cf co	C.E. de baisse nductivité),
Remarques, observations:	Le lac a dégelé début mai Une reconnaissance du si Un pompage des eaux de de la demande énergétiqu	i 2009. Ite a été faite l l'Arc peut êtr le. ofonde sont pl	e 27 mai 20 e réalisé la lus minérali	009 par S.T nuit en cas isées (cf co	C.E. de baisse nductivité),

-25,0

-30,0

-35,0

-40,0

-42,0

prélèvement de fond

6,3

6,2

6,3

6,5

6,6

DONNEES PHYSICO-CHIMIQUES

Plan d'eau : Bissorte (retenue de -) Date : 04/06/2009

Type (naturel, artificiel,...): artificiel Code lac: W1035063

Organisme / opérateur : S.T.E. : Audrey Péricat et Hervé Coppin Campagne 1

Organisme demandeur Agence de l'eau RM&C marché n° 08M082

TRANSPARENCE

Secchi en m: 2,6 Zone euphotique (2,5 x Secchi): 6,5 m

PROFIL VERTICAL		_				_	
Moyen de mesure utilisé :		in-situ à ch	aque prof.		X	en surface da	ans un récipie
Volume prélevé (en litres) :	Prof.	Temp.	pН	Cond.	O_2	O_2	Heure
voidine preieve (en inces):	(m)	(°C)		(μS/cm 25°)	(mg/l)	(%)	
prélèvement intégré (1 L)	-0,1	8,5	8,15	154	10,5	115%	10:00
prélèvement intégré (1 L)	-1,0	8,4	8,23	150	10,5	115%	
prélèvement intégré (1 L)	-2.0	8.3	8.23	153	10.6	116%	

8,07

8,05

8,07

8,04

8,04

202

217

234

282

330

11,2

11,5

11,3

11,2

10,8

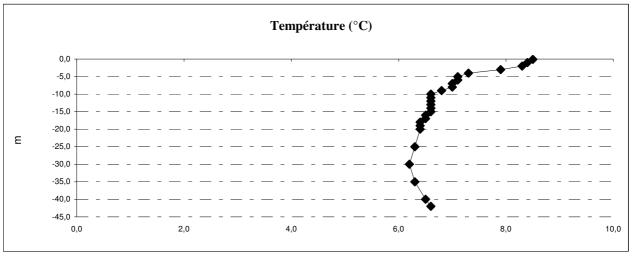
117%

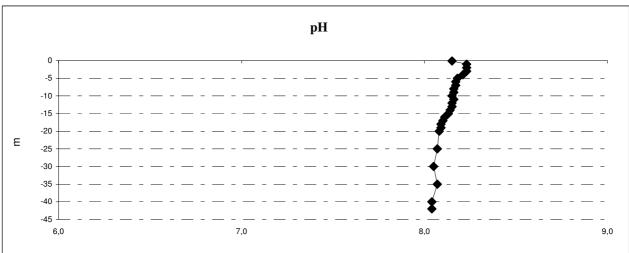
119%

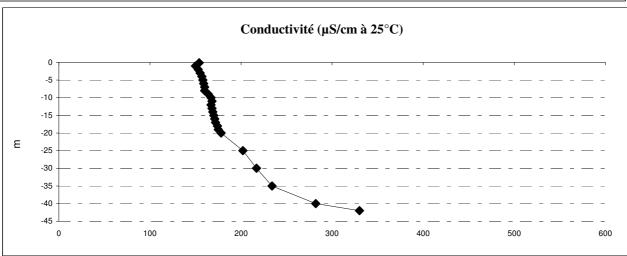
117%

116%

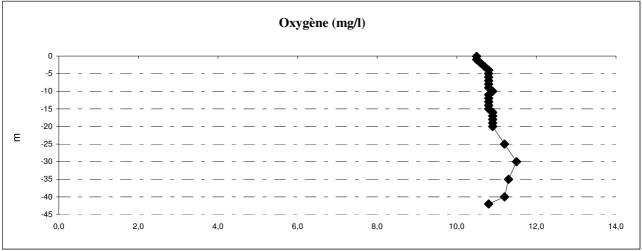
113%

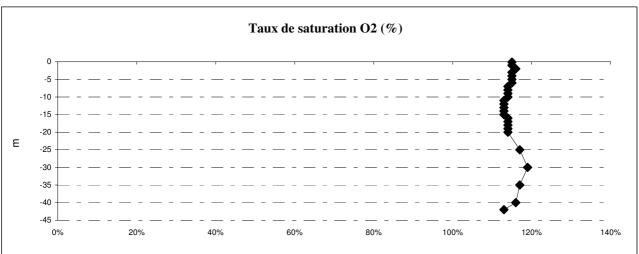

11:10


DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES


Plan d'eau: Bissorte (retenue de -)

Date: 04/06/2009 Type (naturel, artificiel,...): artificiel Code lac: W1035063


Organisme / opérateur : S.T.E.: Audrey Péricat et Hervé Coppin Campagne 1



Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES Plan d'eau: Type (naturel, artificiel,...): Organisme / opérateur: Organisme demandeur Agence de l'eau RM&C Date: 04/06/2009 Code lac: W1035063 Campagne 1 marché n° 08M082

Prélèvement d'eau de fond, po Distance au fond :		soit à Zf =	42,0 m			
Remarques et observations :			·			
Remise des échantillons :						
Echantillons pour analyses ph	ysicochimiqu	es (Laboratoire I	LDA26)			
échantillon intégré n°	1334234		Bon transport intégré :	EZ936740799		
échantillon de fond n°	1337639		Bon transport fond:	EZ941353302		
remise par S.T.E.:			le	à		
Au transporteur :	Chronopost		le 04/06/09	à	17h 00	
_	arrivée au lat	oratoire LDA 20	6 en mi-journée du :	05/06/09		
Echantillons pour analyses ph	ytoplanctoniq	ues à BECQ'EA	U, le 05/06/09			

DONNEES GENERALES PLAN D'EAU - STATION

Plan d'eau : Bissorte (retenue de -) Date : 16/07/2009

Type (naturel, artificiel,...): artificiel Code lac: W1035063

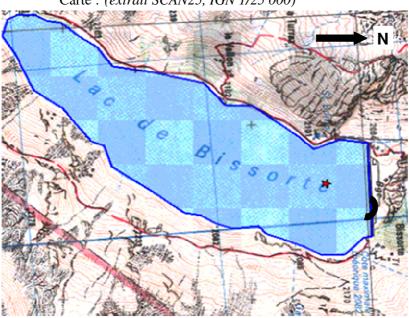
Organisme demandeur Agence de l'eau RM&C marché n° 08M082

LOCALISATION PLAN D'EAU

Organisme / opérateur :

Commune : Orelle (73)

S.T.E.:

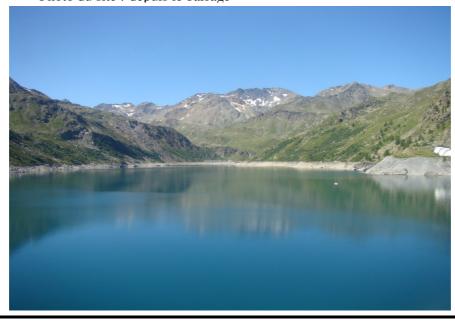

Lac marnant : oui H.E.R. : Alpes internes

Najmeh Rozitalab et Nicolas Sanmartin Campagne 2

Superficie du bassin-versant : 23,7 km² bassin versant naturel + 63,8 km² artificiel

Superficie du plan d'eau : 116 ha
Profondeur maximale : 55 m

Carte: (extrait SCAN25, IGN 1/25 000)


 \bigstar

localisation du point de prélèvements

angle de prise de vue de la photographie

STATION

Photo du site : depuis le barrage

Relevé phytoplanctonique et physi	* *
DONNEES GENERALES CAMP	
Plan d'eau:	Bissorte (retenue de -) Date: 16/07/2009
Type (naturel, artificiel,):	artificiel Code lac: W1035063
Organisme / opérateurs :	S.T.E.: Najmeh Rozitalab et Nicolas Sanmartin Campagne 2
Organisme demandeur	Agence de l'eau RM&C marché n° 08M082
STATION	
Coordonnées de la station	relevées sur : GPS
Lambert 93	X: 981024 Y: 6459582 alt.: 2070 m
WGS 84 (système international)	GPS (en dms) X: Y: alt.: m
Profondeur:	40,0 m
	vent: nul
	météo: soleil
	inecco. Sololi
Conditions d'observation :	Surface de l'eau : lisse
Conditions a observation.	Surface de read.
	Hauteur des vagues : 0,0 m P atm standard : 783,38 hPa
Mamaga	
Marnage :	oui Hauteur de la bande : 10 m
Campagne : PRELEVEMENTS Heure de début du relevé :	de la thermocline 10:15 Heure de fin du relevé : 11:50
Prélèvements réalisés :	eau chlorophylle matériel employé : pompe phytoplancton
	EDF: hydroélectricité
Contact préalable :	EDF GEH Vallée de la Maurienne
-	Groupement d'usines de Super Bissorte
	C. Aymoz : chargé d'exploitation 0479053831
	Plan de prévention établi pour l'intervention entre EDF et S.T.E.
	be presented that post intervention that the bit of billion
Remarques observations:	Variations de conductivité importante entre 20 et 30 m de profondeur :
Remarques, observations.	apport d'eau plus minéralisée à cette profondeur (remontée des eaux
	de l'Arc ?).
	Les teneurs en oxygène sont élevées : le phénomène est probablement
	lié au brassage des eaux induit par les remontées des eaux de l'Arc
	(transfert d'énergie) et le transfert de bassin versant.

DONNEES PHYSICO-CHIMIQUES

Plan d'eau : Bissorte (retenue de -) Date : 16/07/2009

Type (naturel, artificiel,...): artificiel Code lac: W1035063

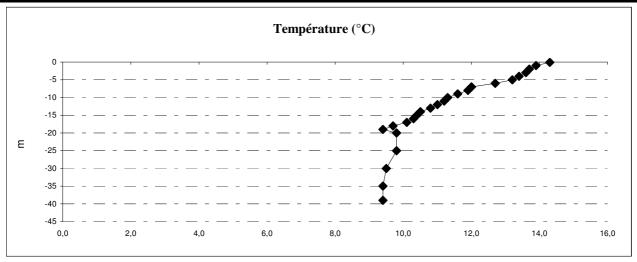
Organisme / opérateur : S.T.E. : Najmeh Rozitalab et Nicolas Sanmartin Campagne 2

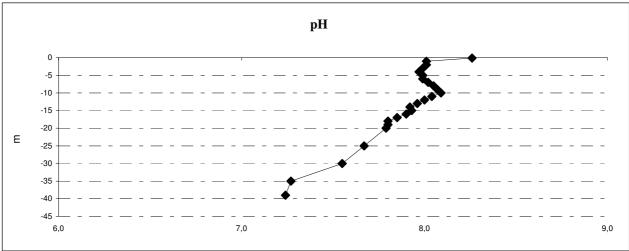
Organisme demandeur Agence de l'eau RM&C marché n° 08M082

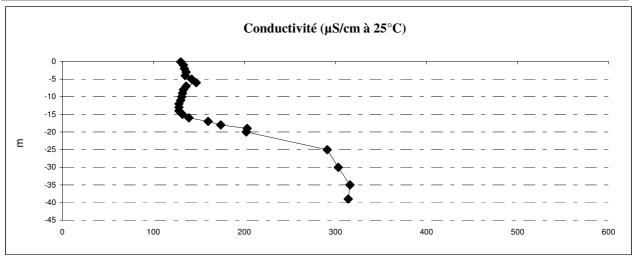
TRANSPARENCE

Secchi en m: 7,5 Zone euphotique (2,5 x Secchi): 18,0 m

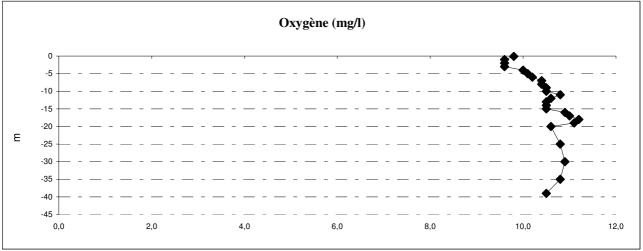
PRO	FII	VFRTICAL	

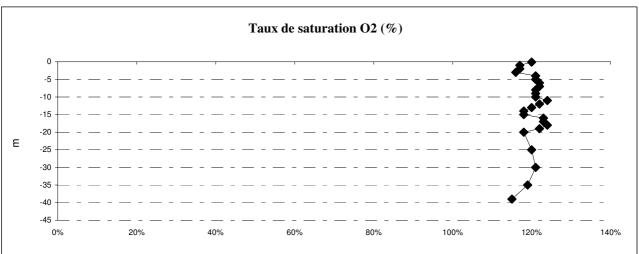

Moyen de mesure utilisé :		in-situ à ch	aque prof.		X	en surface da	ans un récipient
Volume prélevé (en litres) :	Prof.	Temp.	pН	Cond.	O_2	O_2	Heure
volume prefere (en nues).	(m)	(°C)	-	(µS/cm 25°)	(mg/l)	(%)	
prélèvement intégré (0,7 L)	-0,1	14,3	8,26	130	9,8	120%	10:15
prélèvement intégré (0,7 L)	-1,0	13,9	8,01	133	9,6	117%	
prélèvement intégré (0,7 L)	-2,0	13,7	8,01	134	9,6	117%	
prélèvement intégré (0,7 L)	-3,0	13,6	7,99	136	9,6	116%	
prélèvement intégré (0,7 L)	-4,0	13,4	7,97	135	10,0	121%	
prélèvement intégré (0,7 L)	-5,0	13,2	7,99	142	10,1	121%	
prélèvement intégré (0,7 L)	-6,0	12,7	7,99	147	10,2	122%	
prélèvement intégré (0,7 L)	-7,0	12,0	8,02	136	10,4	122%	
prélèvement intégré (0,7 L)	-8,0	11,9	8,05	133	10,4	121%	
prélèvement intégré (0,7 L)	-9,0	11,6	8,07	132	10,5	121%	
prélèvement intégré (0,7 L)	-10,0	11,3	8,09	131	10,5	121%	
prélèvement intégré (0,7 L)	-11,0	11,2	8,04	130	10,8	124%	
prélèvement intégré (0,7 L)	-12,0	11,0	8,00	128	10,6	122%	
prélèvement intégré (0,7 L)	-13,0	10,8	7,96	128	10,5	120%	
prélèvement intégré (0,7 L)	-14,0	10,5	7,92	128	10,5	118%	
prélèvement intégré (0,7 L)	-15,0	10,4	7,93	132	10,5	118%	
prélèvement intégré (0,7 L)	-16,0	10,3	7,90	139	10,9	123%	
prélèvement intégré (0,7 L)	-17,0	10,1	7,85	160	11,0	123%	
prélèvement intégré (0,7 L)	-18,0	9,7	7,80	174	11,2	124%	11:00
	-19,0	9,4	7,80	203	11,1	122%	
	-20,0	9,8	7,79	202	10,6	118%	
	-25,0	9,8	7,67	291	10,8	120%	
	-30,0	9,5	7,55	303	10,9	121%	
	-35,0	9,4	7,27	316	10,8	119%	
prélèvement de fond	-39,0	9,4	7,24	314	10,5	115%	11:50


DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES


Plan d'eau: Bissorte (retenue de -)

Date: 16/07/2009 Type (naturel, artificiel,...): artificiel Code lac: W1035063


Organisme / opérateur : S.T.E.: Campagne 2 Najmeh Rozitalab et Nicolas Sanmartin



Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES Plan d'eau: Type (naturel, artificiel,...): Organisme / opérateur: Organisme demandeur Date: 16/07/2009 Code lac: W1035063 S.T.E.: Najmeh Rozitalab et Nicolas Sanmartin Agence de l'eau RM&C Campagne 2 marché n° 08M082

Prélèvement d'eau de fond, po	ur analyses nh	vsicochimiques					
Distance au fond:		soit à Zf =	39,0 m				
Remarques et observations :	2,0 11		0,011				
Remise des échantillons :							
Echantillons pour analyses phy	ysicochimique	s (Laboratoire L	DA26)				
échantillon intégré n°	1334257		Bon transport	intégré :	EZ320952437	FR	
échantillon de fond n°	1337652		Bon transport	fond:	EZ320952445	FR	
remise par S.T.E.:			le		à		
Au transporteur:	Chronopost		le 1	16/07/09	à		16h 00
	arrivée au laboratoire LDA 26 en mi-journée du : 17/07/09						
			-				
Echantillons pour analyses phytoplanctoniques à BECQ'EAU, le 03/08/09							

DONNEES GENERALES PLAN D'EAU - STATION

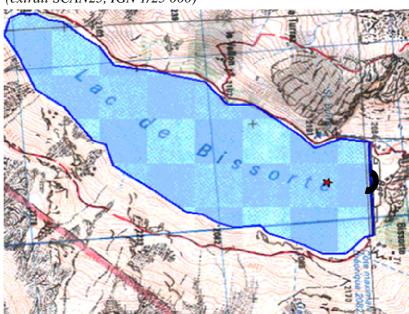
Plan d'eau : Date : 18/08/2009

Cada lea : W1035063

Type (naturel, artificiel,...): artificiel Code lac: W1035063

Organisme / opérateur : S.T.E.: Audrey Péricat et Julien Grappin Campagne 3
Organisme demandeur Agence de l'eau RM&C marché n° 08M082

LOCALISATION PLAN D'EAU

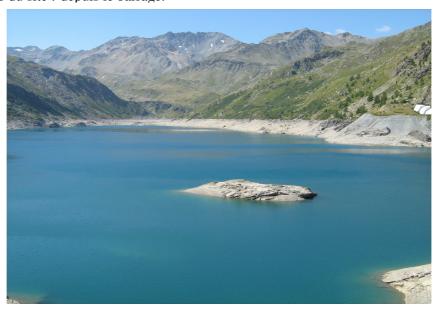

Commune : Orelle (73)

Lac marnant : oui H.E.R. : Alpes internes

Superficie du bassin-versant : 23,7 km² bassin versant naturel + 63,8 km² artificiel

Superficie du plan d'eau : 116 ha
Profondeur maximale : 55 m

Carte: (extrait SCAN25, IGN 1/25 000)



localisation du point de prélèvements

angle de prise de vue de la photographie

STATION

Photo du site : depuis le barrage.

Relevé phytoplanctonique et physi	* *
DONNEES GENERALES CAMP	
Plan d'eau:	Bissorte (retenue de -) artificiel Date: 18/08/2009 Code lac: W1035063
Type (naturel, artificiel,):	
Organisme / opérateurs :	S.T.E.: Audrey Péricat et Julien Grappin Campagne 3
Organisme demandeur	Agence de l'eau RM&C marché n° 08M082
STATION	1 / CDG
Coordonnées de la station	relevées sur : GPS
Lambert 93	
WGS 84 (système international)	
Profondeur:	25,0 m
	vent : faible
	météo : soleil
Conditions d'observation :	Surface de l'eau : faiblement agitée
	Hauteur des vagues : 0,05 m P atm standard : 784,85 hPa
	Bloom algal: non Pression atm.: 804 hPa
Marnage:	oui Hauteur de la bande : -25 m
PRELEVEMENTS Heure de début du relevé : Prélèvements réalisés :	12:10 Heure de fin du relevé : 13:20 eau chlorophylle matériel employé : pompe phytoplancton
Castion :	EDF: hydroélectricité
	· ·
Contact préalable :	EDF GEH Vallée de la Maurienne Groupement d'usines de Super Bissorte C. Aymoz : chargé d'exploitation 0479053831 Plan de prévention établi pour l'intervention entre EDF et S.T.E.
Remarques, observations:	fort marnage. L'une des prises d'eau est hors d'eau.

DONNEES PHYSICO-CHIMIQUES

Plan d'eau : Bissorte (retenue de -) Date : 18/08/2009

Type (naturel, artificiel,...): artificiel Code lac: W1035063

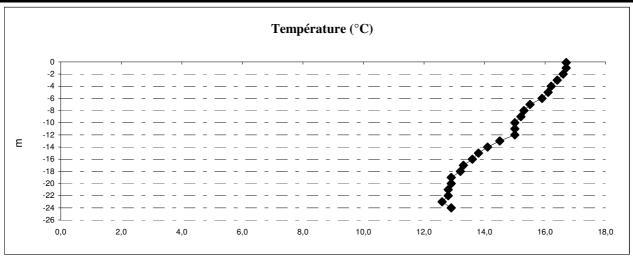
Organisme / opérateur : S.T.E. : Audrey Péricat et Julien Grappin Campagne 3

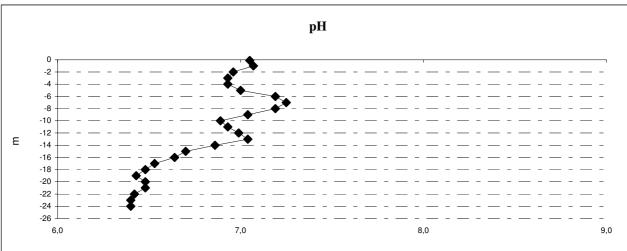
Organisme demandeur Agence de l'eau RM&C marché n° 08M082

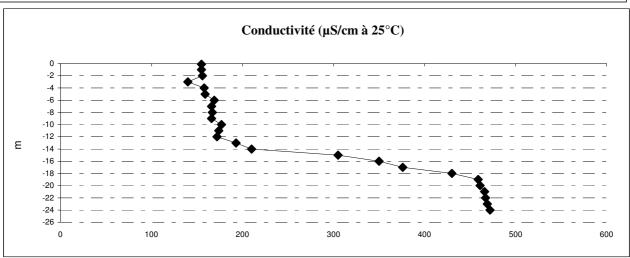
TRANSPARENCE

Secchi en m: 9,5 Zone euphotique (2,5 x Secchi): 23,8 m

DI	\mathbf{n}	ŒΠ	rt	7 T	\mathbf{r}		A	T
и.	-	1211		/ 1	- P		/1	

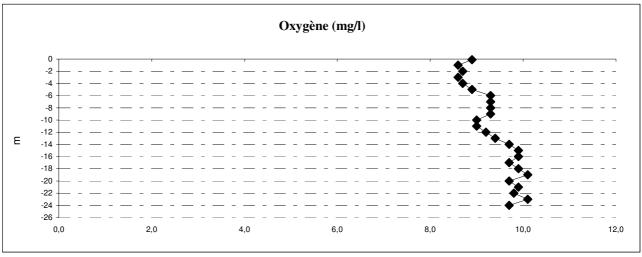

FROFIL VERTICAL							
Moyen de mesure utilisé :		in-situ à ch	aque prof.		X	en surface da	ns un récipient
Volume prélevé (en litres) :	Prof.	Temp.	pН	Cond.	O_2	O_2	Heure
volume preserve (en nues):	(m)	(°C)		(µS/cm 25°)	(mg/l)	(%)	
prélèvement intégré (0,5 L)	-0,1	16,7	7,05	155	8,9	115%	12:10
prélèvement intégré (0,5 L)	-1,0	16,7	7,07	155	8,6	112%	
prélèvement intégré (0,5 L)	-2,0	16,6	6,96	156	8,7	113%	
prélèvement intégré (0,5 L)	-3,0	16,4	6,93	140	8,6	111%	
prélèvement intégré (0,5 L)	-4,0	16,2	6,93	158	8,7	112%	
prélèvement intégré (0,5 L)	-5,0	16,1	7,00	159	8,9	114%	
prélèvement intégré (0,5 L)	-6,0	15,9	7,19	169	9,3	119%	
prélèvement intégré (0,5 L)	-7,0	15,5	7,25	166	9,3	117%	
prélèvement intégré (0,5 L)	-8,0	15,3	7,19	167	9,3	118%	
prélèvement intégré (0,5 L)	-9,0	15,2	7,04	166	9,3	117%	
prélèvement intégré (0,5 L)	-10,0	15,0	6,89	177	9,0	113%	
prélèvement intégré (0,5 L)	-11,0	15,0	6,93	174	9,0	113%	
prélèvement intégré (0,5 L)	-12,0	15,0	6,99	172	9,2	115%	
prélèvement intégré (0,5 L)	-13,0	14,5	7,04	193	9,4	117%	
prélèvement intégré (0,5 L)	-14,0	14,1	6,86	210	9,7	120%	
prélèvement intégré (0,5 L)	-15,0	13,8	6,70	305	9,9	121%	
prélèvement intégré (0,5 L)	-16,0	13,6	6,64	350	9,9	120%	
prélèvement intégré (0,5 L)	-17,0	13,3	6,53	376	9,7	117%	
prélèvement intégré (0,5 L)	-18,0	13,2	6,48	430	9,9	119%	
prélèvement intégré (0,5 L)	-19,0	12,9	6,43	459	10,1	120%	
prélèvement intégré (0,5 L)	-20,0	12,9	6,48	461	9,7	115%	
prélèvement intégré (0,5 L)	-21,0	12,8	6,48	466	9,9	118%	
prélèvement intégré (0,5 L)	-22,0	12,8	6,42	467	9,8	117%	
prélèvement intégré (0,5 L)	-23,0	12,6	6,40	469	10,1	120%	
prélèvement de fond	-24,0	12,9	6,40	472	9,7	116%	13:20

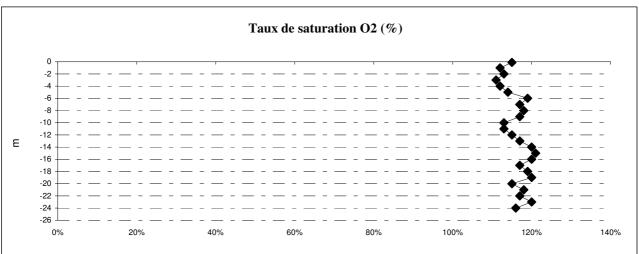

DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES


Bissorte (retenue de -) Plan d'eau:

Date: 18/08/2009 Type (naturel, artificiel,...): artificiel Code lac: W1035063

Organisme / opérateur : S.T.E.: Campagne 3 Audrey Péricat et Julien Grappin




Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES

Plan d'eau : Bissorte (retenue de -) Date : 18/08/2009
Type (naturel, artificiel,...) : artificiel Code lac : W1035063

Organisme / opérateur : S.T.E. : Audrey Péricat et Julien Grappin Campagne 3

Organisme demandeur Agence de l'eau RM&C marché n° 08M082

Prélèvement d'eau de fond, pour analyses physicochimiques :						
Distance au fond:	1,0 m	soit à Zf =	24,0 m			
Remarques et observations :						
Remise des échantillons :						
Echantillons pour analyses physicochimiques (Laboratoire LDA26)						
Echantillons pour analyses phy	ysicochimiques	s (Laboratoire L	DA26)			
Echantillons pour analyses phéchantillon intégré n°	_	s (Laboratoire L	DA26) Bon transport intégré :	EZ320952794FR		

remise par S.T.E.: le à à Au transporteur: Chronopost le 18/08/09 à 17h

arrivée au laboratoire LDA 26 en mi-journée du : 19/08/09

Echantillons pour analyses phytoplanctoniques à BECQ'EAU, le 20/08/09

DONNEES GENERALES PLAN D'EAU - STATION

Plan d'eau : Bissorte (retenue de -) Date : 01/10/2009

Type (naturel, artificiel,...): artificiel Code lac: W1035063

Organisme / opérateur : S.T.E.: Hervé Coppin et Najmeh Gibon Campagne 4

Organisme demandeur Agence de l'eau RM&C marché n° 08M082

LOCALISATION PLAN D'EAU

Commune : Orelle (73)

Lac marnant : oui H.E.R. : Alpes internes

Superficie du bassin-versant : 23,7 km² bassin versant naturel + 63,8 km² artificiel

Superficie du plan d'eau : 116 ha
Profondeur maximale : 55 m

Carte: (extrait SCAN25, IGN 1/25 000)

*

localisation du point de prélèvements

angle de prise de vue de la photographie

STATION

Photo du site : depuis la berge en rive droite : vue sur le bateau et le téléphérique

Relevé phytoplanctonique et physi	co-chimique en plan d'eau
DONNEES GENERALES CAMP	AGNE
Plan d'eau:	Bissorte (retenue de -) Date: 01/10/2009
Type (naturel, artificiel,):	artificiel Code lac: W1035063
Organisme / opérateurs :	S.T.E.: Hervé Coppin et Najmeh Gibon Campagne 4
Organisme demandeur	Agence de l'eau RM&C marché n° 08M082
STATION	
Coordonnées de la station	relevées sur : GPS
Lambert 93	X: 981057 Y: 6459553 alt.: 2062 m
WGS 84 (système international)	GPS (en dms) X: Y: alt.: m
Profondeur :	32,0 m
	vent : faible
	météo : très nuageux
Conditions d'observation :	Surface de l'eau : faiblement agitée
	C
	Hauteur des vagues : 0,05 m P atm standard : 784 hPa
	Bloom algal: non Pression atm.: 800 hPa
Marnage:	oui Hauteur de la bande : 18 m
	11400001 00 14 041100 1
Campagne:	4 campagne de fin d'été : fin de stratification estivale, avant baisse de la température
PRELEVEMENTS	
Heure de début du relevé :	09h 45 Heure de fin du relevé : 12h 30
Prélèvements réalisés :	eau chlorophylle matériel employé : pompe phytoplancton sédiments benne Ekmann
	EDF: hydroélectricité
Contact préalable :	EDF GEH Vallée de la Maurienne
-	Groupement d'usines de Super Bissorte
	C. Aymoz : chargé d'exploitation 0479053831
	Plan de prévention établi pour l'intervention entre EDF et S.T.E.
Remarques, observations:	marnage important.
remarques, observations.	La campagne initialement prévue en semaine 37 a dû être reportée
	pour cause de panne du téléphérique (du 7 au 21 septembre).
	Deux masses d'eau se distinguent :
	l'une jusqu'à -15 m, faiblement minéralisée, avec un pH alcalin
	l'autre entre -15 m et le fond, très minéralisée, et un pH plus faible

DONNEES PHYSICO-CHIMIQUES

Plan d'eau : Bissorte (retenue de -) Date : 01/10/2009

Type (naturel, artificiel,...): artificiel Code lac: W1035063

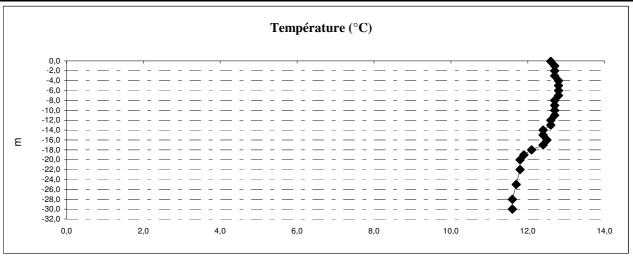
Organisme / opérateur : S.T.E. : Hervé Coppin et Najmeh Gibon Campagne 4

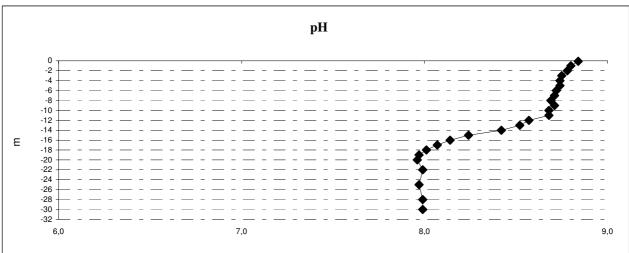
Organisme demandeur Agence de l'eau RM&C marché n° 08M082

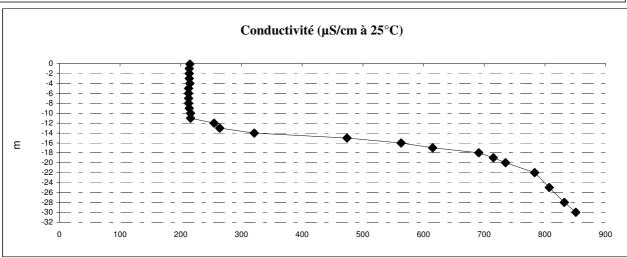
TRANSPARENCE

Secchi en m: 4,4 Zone euphotique (2,5 x Secchi): 11,0 m

תח	OTT	T T 7	ГРТ	TICA	T
$\nu \nu$		1 1/	H P I	11 /	

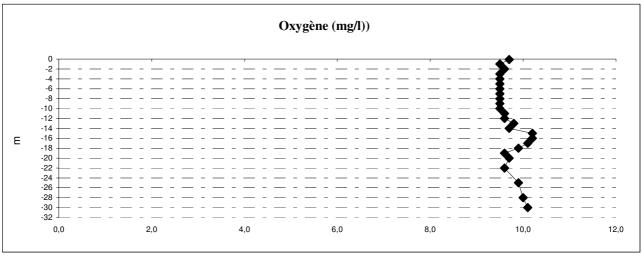

PROFIL VERTICAL		-					
Moyen de mesure utilisé :		in-situ à chaque prof.		X	en surface da	ans un récipient	
Volume prélevé (en litres) :	Prof.	Temp.	pН	Cond.	O_2	O_2	Heure
voiume preieve (en nues).	(m)	(°C)		(µS/cm 25°)	(mg/l)	(%)	
prélèvement intégré (1 L)	-0,1	12,6	8,84	215	9,7	116%	10:00
prélèvement intégré (1 L)	-1,0	12,7	8,80	214	9,5	114%	
prélèvement intégré (1 L)	-2,0	12,7	8,78	214	9,6	115%	
prélèvement intégré (1 L)	-3,0	12,7	8,75	214	9,5	114%	
prélèvement intégré (1 L)	-4,0	12,8	8,74	215	9,5	114%	
prélèvement intégré (1 L)	-5,0	12,8	8,74	213	9,5	114%	
prélèvement intégré (1 L)	-6,0	12,8	8,72	213	9,5	114%	
prélèvement intégré (1 L)	-7,0	12,8	8,71	213	9,5	114%	
prélèvement intégré (1 L)	-8,0	12,7	8,69	213	9,5	114%	
prélèvement intégré (1 L)	-9,0	12,7	8,71	214	9,5	113%	
prélèvement intégré (1 L)	-10,0	12,7	8,68	216	9,5	114%	
prélèvement intégré (1 L)	-11,0	12,7	8,68	216	9,6	115%	10:40
	-12,0	12,6	8,57	255	9,6	115%	
	-13,0	12,6	8,52	264	9,8	117%	
	-14,0	12,4	8,42	321	9,7	115%	
	-15,0	12,4	8,24	474	10,2	121%	
	-16,0	12,5	8,14	563	10,2	122%	
	-17,0	12,4	8,07	615	10,1	120%	
	-18,0	12,1	8,01	691	9,9	116%	
	-19,0	11,9	7,97	715	9,6	113%	
	-20,0	11,8	7,96	735	9,7	114%	
	-22,0	11,8	7,99	783	9,6	113%	
	-25,0	11,7	7,97	807	9,9	116%	
	-28,0	11,6	7,99	832	10,0	117%	
prélèvement de fond	-30,0	11,6	7,99	851	10,1	118%	11:30

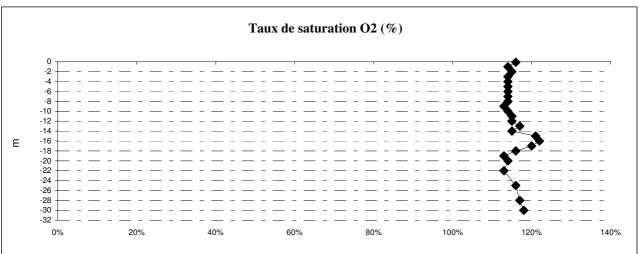

DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES


Bissorte (retenue de -) Plan d'eau:

Date: 01/10/2009 Type (naturel, artificiel,...): artificiel Code lac: W1035063

Organisme / opérateur : S.T.E.: Hervé Coppin et Campagne 4 Najmeh Gibon




DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES

Plan d'eau: Bissorte (retenue de -) Date: 01/10/2009 Type (naturel, artificiel,...): artificiel Code lac: W1035063

Organisme / opérateur : S.T.E.: Hervé Coppin et Campagne 4 Najmeh Gibon

marché n° 08M082 Organisme demandeur Agence de l'eau RM&C

Prélèvement d'eau de fond,	pour analyses p	hysicochimiques:
----------------------------	-----------------	------------------

soit à Zf = Distance au fond: 2.0 m 30,0 m

Remarques et observations :

Remise des échantillons:

Echantillons pour analyses physicochimiques (Laboratoire LDA26)

échantillon intégré n° 1334289 Bon transport intégré: EZ933296475FR échantillon de fond n° EZ933296489FR 1337712 Bon transport fond:

remise par S.T.E.: le à

Au transporteur : Chronopost le 01/10/09 à 18h 00

> arrivée au laboratoire LDA 26 en mi-journée du : 02/10/09

Echantillons pour analyses phytoplanctoniques à BECQ'EAU, le 12/10/09

Prélèvements de sédiments po DONNEES GENERALES PI			ques			
Plan d'eau :	Bissorte (reten	ue de-)			Date : 01/	10/2009
Type (naturel, artificiel,): artificiel				(035063	
I		Hervé Coppi	in et	Najmeh Gibon heure: 12:20		
Organisme demandeur :	Agence de l'eau	ı RM&C		marché n° 08M082		
Conditions de milieu						
chaud, ensoleillé	période estimé	e favorable à :		déb	its des affluents	faible
couvert X	mort et sédime	ntation du plan	ncton	X		
pluie, neige	sédimentation de MES de toute nature			X >>	turbidité afflu	ents non
Vent				_ 	Secchi (m) 4,4	
Matériel						
drague fond plat	pelle à main		benne X	piège	care	ottier
Localisation générale de la zon Point de plus grande profondeur	•	nts: (en	particulier, X Y	Z Lambert II ét	endu , profond	eur)
Prélèvements		1	2	3	4	5
profondeur (en m)		32	32			
épaisseur échantillonnée			1			
récents (<2cm)		X	X			
anciens (>2cm)		71	A			
indéterminé						
épaisseur, en cm	2	2				
granulomérie dominante	•		1			
blocs						
pierres galets graviers						
sables						
limons			v			
vases argile		X	X			
The state of the s						
aspect du sédiment			v			
homogène hétérogène		X	X			
couleur		aria	orio			
	gris	gris				
odeur	non	non				
présence de débris végétx non décomp		non	non			
présence d'hydrocarbures	non	non				
présence d'autres débris	non	non				
Remarques générales : Remise des échantillons :						
Nemise des echandilons:						

Echantillons pour analyses physicochimiques (Laboratoire LDA26)

Au transporteur : chronopost le 01/10/2009 à 18:00

arrivée au laboratoire LDA 26 en mi-journée du : 02/10/2009