

Agence de l'Eau Rhône Méditerranée Corse

ÉTUDE DES PLANS D'EAU DU PROGRAMME DE SURVEILLANCE DES BASSINS RHONE-MEDITERRANEE ET CORSE RAPPORT DE DONNEES BRUTES ET **INTERPRETATION** LAC DE PALADRU

SUIVI ANNUEL 2014

Rapport n° 12-458/2015-PE2014-04 – octobre 2015

Sciences et Techniques de l'Environnement – B.P. 374 17, Allée du Lac d'Aiguebelette - Savoie Technolac 73372 Le Bourget du Lac cedex tél.: 04 79 25 08 06; tcp: 04 79 62 13 22

SOMMAIRE

<u>- CF</u>	HAPITRE 1 : CADRE DU PROGRAMME DE SUIVI	<u> 1</u>
. CF	HAPITRE 2 : RAPPEL METHODOLOGIQUE	5
I	INVESTIGATIONS PHYSICOCHIMIQUES	
	1.1 Méthodologie	
	1.2 Programme analytique	
	1.3 Déroulement du suivi 2014	
	1.3.1 Campagne 1	
	1.3.2 Campagne 2 1.3.3 Campagne 3	
	1.3.4 Campagne 4	
2	INVESTIGATIONS HYDROBIOLOGIQUES	13
	2.1 Etude des peuplements phytoplanctoniques	
	2.1.1 Prélèvement des échantillons	
	2.1.2 Détermination des taxons	13
	2.2 Etude des peuplements d'invertébrés benthiques	14
	2.2.1 Prélèvement des échantillons	
	2.2.2 Détermination des taxons	
	2.3 Etude des peuplements de macrophytes	
	2.3.1 Positionnement des unités d'observation (UO)	
	2.3.2 Description d'une unité d'observation	18
- CI	HAPITRE 3 : DESCRIPTION DU PLAN D'EAU SUIVI	21
1	PRESENTATION DU PLAN D'EAU ET LOCALISATION	23
2	CONTENU DU SUIVI 2014	24
3	BILAN CLIMATIQUE REGIONAL	24
- CI	HAPITRE 4 : RESULTATS DES INVESTIGATIONS	25
1		
	1.1 Analyses des eaux	
	1.1.1 Profils verticaux et évolutions saisonnières	
	1.1.2 Paramètres de constitution et typologie du lac	
	1.1.3 Analyses physicochimiques des eaux (hors micropolluants)	
	1.1.4 Micropolluants minéraux	
	1.1.5 Micropolluants organiques	
	1.2 Analyses des sédiments	
	1.2.1 Analyses physicochimiques des sédiments (hors micropolluants)	
	1.2.2 Micropolluants minéraux	
2		
_	2.1 Prélèvements intégrés	
	2.2 Liste floristique	
	2.3 Evolutions saisonnières des groupements phytoplanctoniques	
3	INVERTEBRES BENTHIQUES (IBL SIMPLIFIE)	42
	3.1 Carte de localisation des points de prélèvements	
	3.2 Caractéristiques des points de prélèvements	
	3.3 Liste faunistique IBLs	
	3.4 Interprétation des résultats	
4	MACROPHYTES	47
	4.1 Choix des unités d'observation	

4.2	Carte de localisation des unités d'observation	49
4.3	Végétation aquatique identifiée	50
4.3.	· · · · · · · · · · · · · · · · · · ·	
4.3.2	2 Unité d'observation n°2	51
4.3.3	3 Unité d'observation n°3	52
4.3.4	4 Unité d'observation n°4	53
4.3.5		
4.3.0	6 Unité d'observation n°6	55
4.4	Liste des espèces protégées et espèces invasives	55
4.5	Approche du niveau trophique du plan d'eau	55
4.6	Comparaison avec le suivi 2011	56
4.7	Relevés des unités d'observation	57
- ANNEXE	SS	59

FICHE QUALITE DU DOCUMENT

	Agence de l'Eau Rhône Méditerranée Corse (AERMC)				
	Direction des Données et Redevances				
	2-4, Allée de Lodz				
Maître d'ouvrage	69363 Lyon Cedex 09				
	Interlocuteur: Mr IMBERT Loïc				
	Coordonnées: loic.imbert@eaurmc.fr				
Titre du projet	Etude des plans d'eau du programme de surveillance des bassins Rhône- Méditerranée et Corse – Rapport de données brutes et interprétation – Lac de Paladru				
Référence du document	Rapport n°12-458/2015-PE2014-04				
Date	Octobre 2015				
Auteur(s)	S.T.E. Sciences et Techniques de l'Environnement – B.P. 374				
	17, Allée du Lac d'Aiguebelette – Savoie Technolac				
	73372 Le Bourget du Lac Cedex				
	Tél.: 04.79.25.08.06; Tcp.: 04.79.62.13.22				

Contrôle qualité

Version	Rédigé par	Date	Visé par	Date
V1	Hervé Coppin	15/06/2015	Audrey Péricat	15/06/15
V2	Hervé Coppin	14/10/2015	Audrey Péricat	14/10/15

Thématique

Mots-clés	Géographiques : Bassin Rhône-Méditerranée – Rhône-Alpes – Isère (38) – Lac de Paladru
	Thématiques : Réseaux de surveillance – Etat trophique – Plan d'eau
Résumé	Le rapport rend compte de l'ensemble des données collectées sur le lac de Paladru lors des campagnes de suivi 2014. Une présentation du plan d'eau et du cadre d'intervention est menée puis les résultats des investigations sont développés dans la suite du document.

Diffusion

Envoyé à :				
Nom	Organisme	Date	Format(s)	Nombre d'exemplaire(s)
Loïc IMBERT	AERMC	14/10/2015	Papier	1
pour validation				

Copie à :					
Nom	Organisme	Date	Format(s)	Nombre d'exemplaire(s)	
Eric BERTRAND	S.T.E.	14/10/2015	Informatique	1	
pour information					

- CHAPITRE 1 : CADRE DU PROGRAMME DE SUIVI -

Dans le cadre de la mise en œuvre de la Directive Cadre Européenne sur l'Eau (DCE), un programme de surveillance doit être établi pour suivre l'état écologique (ou le potentiel écologique) et l'état chimique des eaux douces de surface.

Différents réseaux constituent le programme de surveillance. Parmi ceux-ci, deux réseaux sont actuellement mis en œuvre sur les plans d'eau :

- Le réseau de contrôle de surveillance (RCS) vise à donner une image globale de la qualité des eaux. Tous les plans d'eau naturels supérieurs à 50 ha ont été pris en compte sur les bassins Rhône-Méditerranée et Corse. Pour les plans d'eau d'origine anthropique, une sélection a été opérée parmi les plans d'eau supérieurs à 50 ha, afin de couvrir au mieux les différents types présents (grandes retenues, plans d'eau de digue, plans d'eau de creusement).
- <u>Le contrôle opérationnel (CO)</u> vise à suivre spécifiquement les masses d'eau (naturelles ou anthropiques) supérieures à 50 ha, à risque de non atteinte du bon état (ou du bon potentiel) des eaux en 2015.

Au total, 80 plans d'eau sont suivis sur les bassins Rhône-Méditerranée et Corse dans le cadre des deux réseaux RCS et CO.

Le contenu du programme de suivi sur les plans d'eau est identique pour le RCS et le CO. Un plan d'eau concerné par le CO sera cependant suivi à une fréquence plus soutenue (tous les 3 ans) comparativement à un plan d'eau strictement visé par le RCS (tous les 6 ans).

Le tableau 1 résume les différents éléments suivis sur une année et les fréquences d'intervention associées. Il s'agit du suivi qualitatif type mis en place sur les plans d'eau concernés par le RCS et le CO. Pour chaque plan d'eau, selon leur typologie et l'historique de leur suivi, ce programme peut faire l'objet d'ajustements concernant l'hydrobiologie.

Tableau 1 : Synoptique générique des investigations menées sur une année de suivi d'un plan d'eau

			Paramètres	Type de prélèvements/ Mesures	HIVER	PRINTEMPS	ETE	AUTOMNE
	Mesures in situ		O2 dis. (mg/l, %sat.), pH, COND (25°C), T°C, transparence secchi	Profils verticaux	X	X	Х	Х
	_	Physico-chimie classique	DBO5, PO4, Ptot, NH4, NKJ, NO3, NO2, COT, COD, MEST,	Intégré Ponctuel de fond	X	X	X	X
	Sur EAU	Substances prioritaires, autres substances et pesticides	Turbidité, Si dissoute Micropolluants sur eau*	Intégré Ponctuel de fond	X	X	X	X
	Pigments chlorophylliens		Chlorophylle a + phéopigments	Intégré Ponctuel de fond	X	Х	Х	X
Minéralisation		Minéralisation	Ca ²⁺ , Na ⁺ , Mg ²⁺ , K ⁺ , dureté, TA, TAC, SO ₄ ²⁻ , Cl ⁻ , HCO ₃ ⁻	Intégré Ponctuel de fond	X			
Eau interstitielle : Physico-chimie		interstitielle : Physico-chimie	PO4, Ptot, NH4					
Sur SEDIMENTS	Physico-chimie Physico-chimie Substances prioritaires, autres		Corg., Ptot, NKJ, Granulomètrie, perte au feu	Prélèvement au point de plus grande profondeur				Х
Su	ď	Substances prioritaires, autres substances et pesticides	Micropolluants sur sédiments*					
	HYDROBIOLOGIE et		Phytoplancton	Prélèvement Intégré (Cemagref/Utermöhl)	Χ	Χ	Х	Χ
			Invertébrés benthiques	Lac naturel : IBLsimplifié				Χ
			involtebres bentinques	Retenues : IOBL (NF T90-391)				X
		DROMORPHOLOGIE	Macrophytes	Norme XP T 90-328			Х	
			Hydromorphologie	en charge de l'ONEMA			Χ	
			Suivi piscicole	Protocole CEN (en charge de l'ONEMA)			Х	

^{* :} se référer à l'annexe 5 de la circulaire du 29 janvier 2013 relative à l'application de l'arrêté du 25 janvier 2010 établissant le programme de surveillance de l'état des eaux.

En 2014, le suivi physico-chimique et hydrobiologique a porté sur 5 plans d'eau désignés au titre du réseau de contrôle de surveillance (RCS) et du contrôle opérationnel (CO) sur la partie centrale du bassin Rhône-Méditerranée.

	d'eau du programme	e de surveillance des l	bassins Rhône-Méd	iterranée et Corse – La	c de Paladru (3
- CHAI	OITDE 7	· RADDE	I METU	ODOLOGI	IOUE -
- CIIAI	TINE 2	MAITE		<u>ODOLOGI</u>	IQUE -

1 INVESTIGATIONS PHYSICOCHIMIQUES

1.1 METHODOLOGIE

Le contenu des investigations physicochimiques est similaire sur les quatre campagnes, excepté deux points :

- ✓ les paramètres de minéralisation sur eau (prélèvement intégré) sont analysés uniquement lors de la 1^{ère} campagne ;
- ✓ un échantillon de sédiment est prélevé lors de la dernière campagne.

Le profil vertical et les prélèvements sont réalisés dans le secteur de plus grande profondeur que l'on recherche à partir des données collectées au préalable (bathymétrie, étude, communication avec les gestionnaires). Dans le cas des retenues, cette zone se situe en général à proximité du barrage dans le chenal central. Sur le terrain, la recherche du point de plus grande profondeur est menée à l'aide d'un échosondeur.

Le matériel utilisé pour les prélèvements d'eau pour ce suivi est un système de pompage. Souple, il permet la multiplication aisée du nombre de points de mesures sur la verticale. En pratique, il s'agit d'une pompe péristaltique équipée de tuyaux tout téflon. Le tuyau est descendu à l'aide d'une corde graduée lestée pour permettre un prélèvement à la profondeur désirée. On prélève grâce à un système de vide d'air qui permet de remplir les flacons directement sans passage dans la pompe. L'utilisation de raccords a été limitée au maximum. Les raccords et la vanne sont en acier inoxydable.

Au droit du point de plus grande profondeur, on effectue, dans l'ordre :

- a) une mesure de transparence au disque de Secchi, avec lecture côté "ombre" du bateau pour une parfaite acuité visuelle. Chacun des deux opérateurs fait la lecture en aveugle (1ère lecture non indiquée au 2e lecteur).
- b) un profil vertical de température (°C), conductivité (μS/cm à 25°C), pH (u. pH) et oxygène dissous (% sat. et mg/l). Il est réalisé à l'aide de 2 sondes multiparamètres OTT MS5 qui peuvent effectuer des mesures jusqu'à 200 m de profondeur :
 - la sonde MS1 installée sur un câble de 140 m connectée à un ordinateur permettant une lecture en temps réel des données, un enregistrement des données à la demande ou par pas de temps ;
 - la sonde MS2 disposant d'une mémoire interne pouvant être programmée pour enregistrer les données à une fréquence de temps définie préalablement (5 secondes).

Les sondes sont équipées d'un capteur de pression permettant d'enregistrer la profondeur de la mesure. Les deux sondes sont descendues en parallèle sur la colonne d'eau pour le recueil du profil vertical.

c) deux prélèvements pour analyses physicochimiques (uniquement micropolluants minéraux et organiques pour l'échantillon intégré) :

- l'échantillon intégré est en général constitué de prélèvements ponctuels tous les mètres sur la zone euphotique (soit 2,5 fois la transparence); ces prélèvements unitaires sont disposés dans une bonbonne en verre pyrex de 20 litres graduée et équipée d'un robinet verre/téflon pour conditionner les échantillons. Pour les analyses physicochimiques (uniquement micropolluants minéraux et organiques), 18 litres sont nécessaires. Des prélèvements unitaires de même volume sont échantillonnés tous les mètres sur la zone euphotique pour atteindre le volume désiré. Une fois l'échantillon finalisé, le conditionnement est réalisé sur le bateau, en respectant l'ensemble des prescriptions du laboratoire.
- l'échantillon ponctuel de fond est prélevé à environ 1 m du fond, pour éviter la mise en suspension des sédiments. L'obtention de cette profondeur est obtenue par un lest placé 1 m en dessous de la crépine, servant ainsi de palpeur. Une attention particulière doit ici être apportée dans la manipulation de ce lest près du fond : approche lente, pour éviter un brassage du sédiment. Le flaconnage est réalisé directement dans les flacons verre 1 L du laboratoire. Un bouchon conique équipé d'une entrée d'eau et d'une sortie d'air a été spécifiquement mis au point pour permettre un échantillonnage sans flacon intermédiaire. Le risque de contamination est ainsi le plus limité possible. Les flacons plastiques ne peuvent pas être échantillonnés directement : écrasement par vide d'air. Ils sont donc remplis à partir des flacons verre 1L.

Pour chaque échantillon, le laboratoire CARSO fournit une glacière avec les flaconnages préalablement étiquetés adaptés aux analyses demandées par l'Agence de l'Eau RM&C. Les échantillons sont conservés dans une enceinte isolée au contact de blocs réfrigérants et de glace fondante, puis envoyés par transporteur TNT pour un acheminement au laboratoire CARSO dans un délai de 24h, sauf cas particuliers.

d) un prélèvement intégré destiné à l'analyse du phytoplancton et de la chlorophylle et aux analyses de physico-chimie classique :

Les prélèvements doivent être obligatoirement intégrateurs de la colonne d'eau correspondant à la zone euphotique. Pour l'échantillonnage, 6 litres sont nécessaires. Ainsi, selon la profondeur de la zone euphotique, plusieurs matériels peuvent être utilisés, l'objectif étant de limiter les aliquotes, et donc les manipulations afin que l'échantillon soit le plus homogène possible :

- ✓ la cloche Pelletier présente un volume de 1,3 l pour un échantillonnage sur 18 m, elle ne peut échantillonner au-delà de 20 m;
- ✓ le tuyau intégrateur (système décrit dans le protocole de l'IRSTEA) est adaptable pour toute profondeur, le volume échantillonné dépend du diamètre du tuyau. S.T.E. a mis au point 2 tuyaux :
 - o l'un de 10 m de diamètre élevé pour les zones euphotiques réduites,
 - o l'autre de 30 m pour les transparences élevées.

Le choix du matériel respecte l'objectif de ne pas multiplier les prélèvements élémentaires.

¹ Compte tenu de la transparence Tr. de certains plans d'eau, exprimable en plusieurs mètres, la règle du Tr. x 2,5 a parfois conduit à une valeur calculée supérieure à la profondeur du plan d'eau. Dans ces cas, le prélèvement a été arrêté à 1 m du fond, pour éviter le prélèvement d'eau de contact avec le sédiment, qui peut, selon les cas, présenter des caractéristiques spécifiques. Inversement, lorsque la transparence est très faible, amenant à une épaisseur de zone euphotique d'à peine quelques mètres, les prélèvements peuvent être resserrés à un pas moindre que 1 m (par exemple : tous les 50 cm).

Zeuph < 10 m	10 m < Zeuph < 18 m	Zeuph >18 m
Tuyau intégrateur 10 m	Cloche pelletier	Tuyau intégrateur 30 m

La filtration de la chlorophylle est effectuée sur le terrain par le préleveur S.T.E. à l'aide d'un kit de filtration de terrain Nalgène.

Pour l'analyse du phytoplancton, 2 échantillons sont réalisés dans des flacons blancs opaques en PP de 250 ml dûment étiquetés (nom du lac, date, préleveur, campagne). On y ajoute un volume connu de lugol pour fixation. Les échantillons sont conservés au réfrigérateur. Un des deux échantillons est ensuite transmis au bureau d'études BECQ'EAU (Anne Rolland) en charge de la détermination et du comptage du phytoplancton. L'autre échantillon est conservé dans les locaux de S.T.E dans le cadre du contrôle qualité.

Pour les analyses de physico-chimie classique, le laboratoire CARSO fournit une glacière avec les flaconnages préalablement étiquetés adaptés aux analyses demandées par l'Agence de l'Eau RM&C. Les échantillons sont conservés dans une enceinte isolée au contact de blocs réfrigérants et de glace fondante, puis envoyés par transporteur TNT pour un acheminement au laboratoire CARSO dans un délai de 24h, sauf cas particuliers.

e) un prélèvement de sédiment :

Ce type de prélèvement n'est réalisé que lors d'une seule campagne, celle de fin d'été (septembre), susceptible de représenter la phase la plus critique pour ce compartiment. Le prélèvement de sédiments est réalisé impérativement **après** les prélèvements d'eau afin d'éviter tout risque de mise en suspension de particules du sédiment lors de son échantillonnage, et donc de contamination du prélèvement d'eau (surtout celui du fond).

Il est réalisé par une série de prélèvements à la benne Ekman. Au vu de sa taille et de la fraction ramenée par ce type de benne (en forme de secteur angulaire), on réalise de 2 à 5 prélèvements pour ramener une surface de l'ordre de 1/10 m². On observe sur chacun de ces échantillons la structure du sédiment dans le double but de :

- description (couleur, odeur, aspect, granulométrie,...);
- sélection de la seule tranche superficielle (environ 2-3 premiers cm) destinée à l'analyse.

Pour chaque échantillon, le laboratoire LDA26 fournit une glacière avec le flaconnage adapté aux analyses demandées par l'Agence de l'Eau RM&C.

Les échantillons sont conservés dans une enceinte isolée au contact de blocs réfrigérants et de glace fondante, puis envoyés par transporteur Chronopost pour un acheminement au Laboratoire Départemental de la Drôme (LDA26) dans un délai de 24h, sauf cas particuliers.

1.2 PROGRAMME ANALYTIQUE

Concernant les analyses, les paramètres suivants sont mesurés :

✓ sur le prélèvement intégré destiné aux analyses de physico-chimie classique et de la chlorophylle :

- o turbidité, MES, COD, DBO₅, DCO, PO₄³⁻, Ptot, NH₄⁺, NKJ, NO₃⁻, NO₂⁻, silice dissoute;
- o chlorophylles a et indice phéopigments ;
- o dureté, TAC, HCO_3^- , $Ca^{+\bar{+}}$, $Mg^{+\bar{+}}$, Na^+ , K^+ , Cl^- , SO_4^- (seulement en 1ère campagne);
- ✓ sur le prélèvement intégré destiné aux analyses de micropolluants minéraux et organiques :
 - o micropolluants minéraux et organiques : liste des substances fournie en annexe 1.
- ✓ sur le prélèvement de fond :
 - $\circ \quad \text{turbidit\'e, MES, COD, DBO}_5, DCO, PO_4^{3^-}, Ptot, NH_4^+, NKJ, NO_3^-, NO_2^-, silice \ dissoute \ ;$
 - micropolluants minéraux et organiques : liste des substances fournie en annexe 1.

Les paramètres analysés sur les **sédiments** prélevés lors de la 4^{ème} campagne sont les suivants :

- ✓ sur la phase solide (fraction < 2 mm):
 - o granulométrie;
 - o matières sèches minérales, perte au feu, matières sèches totales ;
 - o carbone organique;
 - o phosphore total;
 - o azote Kjeldahl;
 - o azote organique;
 - o ammonium;
 - o micropolluants minéraux et organiques : liste des substances fournie en annexe 2.
- ✓ Sur l'eau interstitielle :
 - o orthophosphates;
 - o phosphore total;
 - o ammonium.

1.3 DEROULEMENT DU SUIVI 2014

Les investigations physicochimiques ont été réalisées lors de quatre campagnes qui correspondent aux différentes étapes de développement de la vie lacustre.

1.3.1 CAMPAGNE 1

La première campagne correspond à la phase d'homothermie du plan d'eau. La masse d'eau est homogène (en température et en oxygène). Sur les lacs monomictiques², cette phase intervient en hiver. La campagne est donc réalisée en fin d'hiver avant que l'activité biologique ne débute (début mars en Rhône-Alpes). Pour les lacs dimictiques³, cette phase intervient après le dégel du plan d'eau, la masse d'eau se mélange à l'issue de la période de stratification inverse (Cf. figures 1 et 2).

² Plan d'eau qui présente une seule alternance stratification / déstratification annuelle.

³ Plan d'eau qui présente deux alternances de stratification / déstratification annuellement : l'une en hiver, l'autre en été. En hiver, la stratification est généralement accompagnée du gel sur la surface du lac.

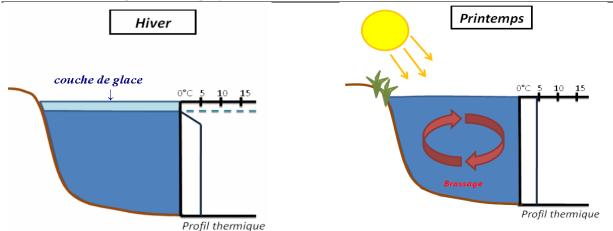


Figure 1 : Stratification thermique hivernale

Figure 2: Brassage de fin d'hiver

(Figures qui concernent un lac dimictique, source S.T.E.)

1.3.2 CAMPAGNE 2

La seconde campagne correspond à la période de démarrage et de développement de l'activité biologique des lacs. Il s'agit de la période de mise en place de la stratification thermique conditionnée par le réchauffement (Cf. figure 4). Cette phase intervient au printemps et c'est à cette période que l'activité biologique atteint son maximum. La campagne est donc généralement réalisée durant les mois de mai à juin (exceptionnellement juillet pour les plans d'eau d'altitude).

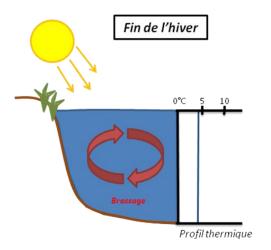


Figure 3 : Brassage de fin d'hiver

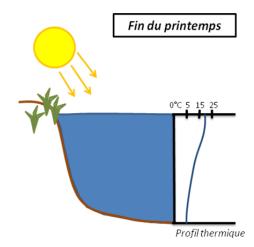


Figure 4 : Phase de stratification printanière

1.3.3 **C**AMPAGNE 3

La troisième campagne correspond à la période de stratification maximum du plan d'eau avec une thermocline bien installée. Elle correspond à la 2^{ème} phase de croissance du phytoplancton (Cf. figure 6). Cette phase intervient en période estivale. La campagne est donc réalisée durant les mois de juillet et août, lorsque l'activité biologique est maximale.

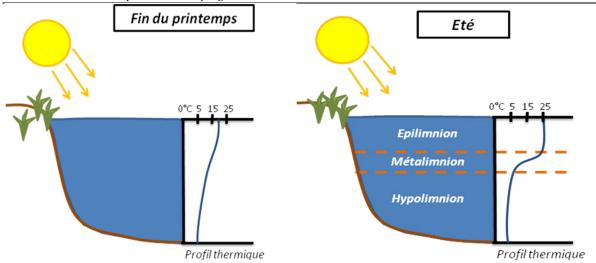


Figure 5 : Phase de stratification printanière

Figure 6 : Stratification installée

1.3.4 <u>CAMPAGNE 4</u>

La quatrième campagne correspond à la fin de la stratification estivale du plan d'eau. Elle intervient avant la baisse de la température et la disparition de la thermocline. L'épilimnion présente alors son épaisseur maximale. Cette phase intervient en fin d'été : la campagne est donc réalisée durant le mois de septembre.

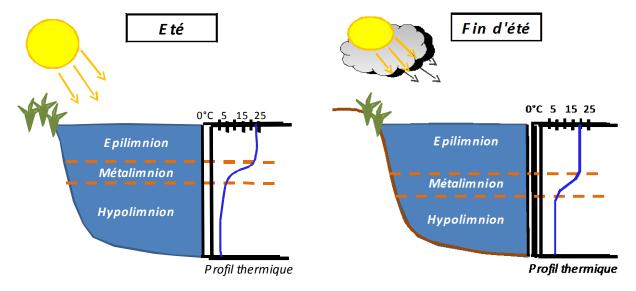


Figure 7 : Phase de stratification estivale (C3)

Figure 8 : Fin d'été, baisse de la thermocline (C4)

2 INVESTIGATIONS HYDROBIOLOGIQUES

Les investigations hydrobiologiques menées en 2014 sur le lac de Paladru comprennent :

- ✓ l'étude des peuplements phytoplanctoniques à partir du protocole standardisé d'échantillonnage, de conservation, d'observation et de dénombrement du phytoplancton en plan d'eau pour la mise en œuvre de la DCE (IRSTEA INRA; version 3.3 de mars 2009);
- ✓ l'étude des peuplements d'invertébrés benthiques à partir du protocole d'échantillonnage des invertébrés benthiques adapté aux plans d'eau naturels profonds (IRSTEA, 2009). Ce protocole est mis en œuvre pour les lacs naturels ;
- ✓ l'étude des peuplements de macrophytes sur le lac s'appuie sur la méthode mise au point par l'IRSTEA et décrite au sein de la norme AFNOR XP T90-328 : « Echantillonnage des communautés de macrophytes en plans d'eau », décembre 2010.

2.1 ETUDE DES PEUPLEMENTS PHYTOPLANCTONIQUES

L'étude des peuplements phytoplanctoniques a été réalisée à partir du protocole standardisé d'échantillonnage, de conservation, d'observation et de dénombrement du phytoplancton en plan d'eau pour la mise en œuvre de la DCE (IRSTEA – INRA; version 3.3 de mars 2009).

Les prélèvements ont été effectués par S.T.E. lors des campagnes de prélèvements pour analyses physico-chimiques. La détermination a été réalisée par Anne Rolland du bureau d'études BECQ'Eau, spécialiste en systématique et écologie des algues d'eau douce.

2.1.1 Prelevement des echantillons

Les prélèvements ont été réalisés selon la méthodologie présentée au point d) du §1.1 « Méthodologie » du chapitre 2 : Rappel méthodologique.

2.1.2 DETERMINATION DES TAXONS

La méthode mise en oeuvre est conforme au protocole de l'IRSTEA, qui re-précise la méthode d'Utermohl.

On en rappelle ci-dessous les principales étapes, et surtout, les points de la méthodologie sur lesquels il faut insister.

Les échantillons bruts, fixés au lugol en phase terrain puis conservés au frais, sont mis à sédimenter (chambre 10 ml). Après 4h minimum (correspondant à une sédimentation de 1 cm), on pratique la détermination. Le comptage est réalisé en balayant des champs strictement aléatoires jusqu'à atteinte d'un nombre de 400 individus ; le nombre de champs nécessaire pour atteindre ce quota est noté.

En cas de densité d'individus insuffisante (cas de plans d'eau très oligotrophes), on refait une sédimentation en chambre de volume supérieur.

La détermination est faite à l'espèce dans la mesure du possible.

On fixe ci-après les règles qui ont été appliquées dans les dénombrements du peuplement phytoplanctonique, sur la base des considérations pratiques imposées par les observations au microscope :

La liste présente le nombre de cellules observées/ml, identifiées à l'espèce dans la mesure du possible. Dans certains cas, l'identification à l'espèce s'avère toutefois impossible :

- certains critères d'identification sont visibles uniquement en période de reproduction de l'algue (stade de sporulation) ;
- des individus peuvent être détériorés dans l'échantillon, ne permettant pas une identification précise.

Les cellules concernées sont alors identifiées au genre (*Mougeotia sp., Mallomonas sp...*), voire à la classe (ex : chlorophycées indéterminées, kystes de chrysophycées).

Plus spécifiquement, le groupe des "chlorophycées indéterminées" correspond à l'ensemble des "algues vertes" non identifiables parce que ces dernières sont dégradées, sont au stade végétatif ou plus fréquemment encore, sont sous la forme de cellules sphériques ou ovales qui peuvent être identifiées comme un grand nombre d'espèces dans les ouvrages de taxonomie. Par ailleurs, et par expérience, il s'avère que ces individus correspondent rarement à des espèces déjà identifiées dans le même échantillon.

De ces faits, il ressort que la création d'une ligne de taxon déterminé seulement au genre (par ex. : *Mallomonas, Mougeotia*) suivi de « sp » correspond très probablement à une, voire même plusieurs espèces supplémentaires distinctes de celles par ailleurs identifiées à l'espèce dans ce même échantillon. Ex : les cellules de *Mougeotia sp.* ainsi identifiées au genre n'appartiennent pas à l'espèce *Mougeotia gracillima* identifiée par ailleurs dans le même échantillon. Ce taxon ainsi identifié au genre doit donc être compté pour au minimum une espèce supplémentaire.

Cette méthodologie de comptage des taxons et espèces, basée sur ces considérations techniques, est très certainement celle qui minimise au mieux les distorsions entre nombre d'espèces véritablement présentes et nombre comptable d'espèces identifiables au vu de l'état des individus les représentant.

En somme, le nombre d'espèces apparaissant en bas de tableau est :

- premier nombre N (entre parenthèses) = nombre d'espèces strictement identifiées à ce niveau, fournissant une borne minimale de la diversité spécifique (valeur certaine) ;
- deuxième nombre N' = somme du nombre N d'espèces véritablement identifiées, augmenté de 1 espèce pour 1 taxon au genre (ou classe,...).

En plus des règles générales de comptage (NF EN 15204) dans des champs avec ou sans grille de comptage, il est entendu qu'un filament d'une longueur de $100~\mu m$, une colonie ou un coenobe compte pour un individu.

Au sein de ces individus, le nombre de cellules par individu est compté directement par l'opérateur sur l'échantillon pendant le comptage lorsque l'observation le permet. Dans le cas d'organismes pluricellulaires dont les cellules sont difficilement distinguables ou trop nombreuses, le nombre de cellules est estimé par individu. Pour les diatomées, seules les frustules avec plastes (cellules vivantes) sont comptées. Certaines espèces habituellement coloniales comme *Microcystis aeruginosa* peuvent se rencontrer sous forme de cellules isolées. Dans ce cas, l'individu compté est la cellule.

2.2 ETUDE DES PEUPLEMENTS D'INVERTEBRES BENTHIQUES

L'étude des peuplements d'invertébrés benthiques a été réalisée à partir du protocole d'échantillonnage des invertébrés benthiques adapté aux plans d'eau naturels profonds (IRSTEA, 2009).

Les prélèvements, la séparation des individus de la classe des Oligochètes et de la famille des Chironomidae du reste de la faune et la détermination des invertébrés autres que Oligochètes et Chironomidae ont été effectués par S.T.E. La détermination des Oligochètes et des Chironomidae a été réalisée par Jean Wuillot du bureau d'étude Iris Consultants, spécialiste en systématique et écologie de ces taxons.

2.2.1 Prelevement des echantillons

Les prélèvements ont lieu après le brassage printanier, en période d'homothermie, marquée dans nos régions tempérées par une température de 7-8°C et les premières éclosions de chironomes, soit entre mars et mai (Verneaux et al., 1993 a). Les prélèvements sont réalisés à l'aide d'une benne Ekman modifiée pour prélever les 10 premiers centimètres de sédiment. Les sédiments bruts récoltés sont remontés jusqu'à la surface à l'intérieur de la benne puis déposés dans une bassine.

A l'instar des échantillons IOBL, une première concentration de la faune est opérée sur le terrain. Les particules fines sont éliminées par filtration sur un tamis de 0,25 mm. Si des éléments grossiers (pierres, galets, morceaux de bois...) sont présents, ils sont brossés et enlevés individuellement. Le refus du tamis est ensuite mis dans un flacon (1L à 1,5L en général) et est fixé au formol en quantité telle que la concentration finale dans le flacon est égale à 5% (v/v).

La surface échantillonnée d'un point de contrôle doit être comprise entre 675 cm² et 700 cm². La benne Ekman permet de prélever une surface de sédiment d'environ 225 cm². En conséquence, le nombre de prélèvements par point est triplé. Ces trois prélèvements unitaires (entre lesquels on se sera déplacé d'une dizaine de mètres¹) constituent l'échantillon du point.

Sur chaque plan d'eau, 12 points de contrôle sont échantillonnés. Ils sont répartis sur 2 isobathes du plan d'eau : 7 points sur une isobathe située en zone sublittorale (Zl = 3 m) et 5 points sur une isobathe en zone profonde (Zf = 3/4 Zmax).

Les points de prélèvement de l'isobathe sublittorale sont répartis de manière à couvrir au mieux le linéaire de cette isobathe en privilégiant toutefois les zones favorables à l'accumulation des sédiments (zones de plus faible pente). Ainsi, les points ne font pas l'objet d'une répartition équidistante afin d'éviter les zones non propices à l'échantillonnage et/ou ne présentant pas de sédiment.

Les points de prélèvement de l'isobathe profonde sont, dans la mesure du possible, liés aux points de prélèvement de l'isobathe sublittorale par la définition de radiales reliant le point de plus grande profondeur à 5 des points d'échantillonnage sublittoraux.

Les échantillonnages sont donc réalisés sur 5 couples de points sur l'isobathe sublittorale et l'isobathe profonde et 2 points " orphelins " sur l'isobathe sublittorale.

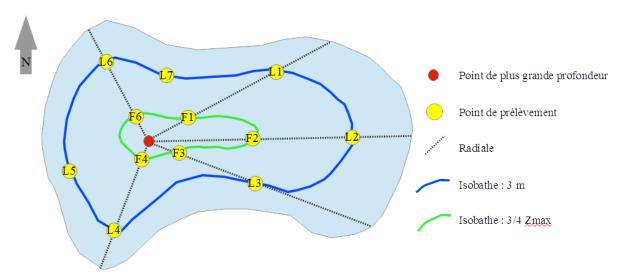


Figure 9 : Principe de localisation des prélèvements pour la détermination de la faune benthique

2.2.2 DETERMINATION DES TAXONS

Au laboratoire, les échantillons vont faire l'objet d'une seconde concentration. Les échantillons fixés sont tamisés sur une colonne de 2 tamis. Le tamis du haut a une maille de 5 mm et sert à éliminer les grosses particules minérales et organiques. Il retient éventuellement des invertébrés de grande taille qui seront retirés à la pince et incorporés au refus du tamis du bas. Celui-ci a une maille de 0,5 mm et c'est sur son refus que s'effectue l'extraction des invertébrés.

Les invertébrés benthiques sont ensuite séparés des refus des tamis sous loupes annulaire et binoculaire, les organismes ainsi récoltés sont conservés dans 3 piluliers d'alcool à 70%. Les Oligochètes et les Chironomidae sont conservés chacun dans un pilulier spécifique pour transmission à IRIS Consultants en charge de la détermination. Le reste de la faune est conservé dans le 3^{ème} pilulier.

La détermination au niveau spécifique des oligochètes s'effectue à l'aide de la technique d'identification figurant dans la norme IOBL / AFNOR 2005 et est identique à celle de l'IOBL (observation à la loupe binoculaire (grossissement x10 à x40), puis au microscope (montage sur lame dans de la glycérine)).

La détermination au niveau générique des chironomes nécessite leur observation au microscope. L'ensemble des Chironomidae de l'échantillon est déposé dans une coupelle en verre à fond plat quadrillée. Si le nombre total d'individus récolté est estimé à plus de 100, les individus sont mélangés et répartis de manière homogène dans la coupelle. 100 individus issus de cases choisies de manière aléatoire sont ensuite prélevés. Les Chironomidae à identifier sont séparés entre les larves et les nymphes. Les larves sont observées individuellement au microscope dans un montage constitué de glycérine. Les nymphes sont soit directement identifiées à la loupe binoculaire soit après examen au microscope (montage en milieu aqueux) de certaines parties constituant les critères de détermination.

La détermination au niveau générique des autres taxons nécessite leur observation à la loupe binoculaire.

Une fois la faune séparée, les individus récoltés sont dénombrés, et la densité est exprimée pour chaque taxon en nombre d'individus par mètre carré. Le recours au sous-échantillonnage n'est effectué que pour les Oligochètes et les Chironomidae et seulement au-delà de 100 individus dénombrés par échantillon et dans des conditions contrôlées, répondant à la norme définie dans l'IOBL (AFNOR, 2005).

2.3 ETUDE DES PEUPLEMENTS DE MACROPHYTES

La méthodologie s'appuie sur la norme AFNOR XP T90-328 « échantillonnage des communautés de macrophytes en plans d'eau », décembre 2010.

L'étude des peuplements de macrophytes a été réalisée par Éric Boucard et Alexandre Ballaydier du bureau d'études Mosaïque Environnement.

2.3.1 Positionnement des unites d'observation (UO)

Une **première phase** est basée sur la méthode de Jensen. On définit ainsi successivement les grandeurs suivantes :

- **NPBM**: Nombre de Profils d'observation de Base Minimal, en fonction de la superficie du plan d'eau, par classes (tableau reproduit ci-après);
- **NPB**: Nombre de Profils d'observation de Base, correspondant à un ajustement de NPBM en fonction de la superficie du plan d'eau par rapport aux bornes (sup. et inf.) de la classe de superficie à laquelle il appartient. Par expérience, cette correction est le plus souvent mineure, voire non significative;
- C : facteur de correction en fonction du développement des rives. Ce coefficient est susceptible de modifier très sensiblement le nombre de profils lorsqu'on l'applique (alinéa suivant) ;
- $NP = C \times NPB$.

Ce nombre de profils détermine (quand on inclut le profil de base placé selon le grand axe du plan d'eau), un nombre de points d'intersection avec la rive (= points - pivots potentiels) égal à 2xNP + 2. Ce protocole a été automatisé à S.T.E. sous la forme de la feuille de calcul exposée ci-dessous.

Smini (km²) Smaxi (km²) NPBM 0,05 0,39 1 0,40 0,79 2 0,80 1,59 3 3,19 4 1,60 5 3,20 6,39 6,40 12,79 6 25,59 12,80 7 25,60 51,19 8 51.20 102.39

Tableau 2 : Calcul du nombre d'unités d'observation selon Jensen

Plan d'eau :	Carcès				
$S (km^2) = 0.87$		P (km) = 9.08			
NPBM =	3	car appa	rtient à la cla	sse	
		**	Smini	0,8	
			Smaxi	1,59	
NPB =	3,09				
Coeff. de Dvlp	t des rives	C =	2,75		
Nombre de pr	ofils	NP =	8		

A l'issue de cette première phase, on dispose ainsi de la localisation d'un nombre défini de points-pivots d'investigations. La norme XP T90-328 allège les investigations macrophytes qui porteraient, selon cette seule méthode de Jensen, autour de tous ces points (pivots des Unités d'Observation) ainsi définis en nombre et localisation.

8 profils

87 ha

Parmi ces NP=

Pour superficie=
N UO est

Intervient alors une **deuxième phase** qui permet d'effectuer un choix parmi ces points désormais qualifiables de potentiels.

Elle consiste à ranger le linéaire de rives selon les formations végétales et les aménagements de rive définis dans le tableau 1 de typologie des rives de la norme XPT90-328, que l'on peut résumer comme suit :

typologie des zones rivulaires	type
humides caractéristiques	1
avec végétation arbustive/arborescente non humide	2
sans végétation arbustive/arborescente non humide	3
artificialisées, avec pressions anthropiques	4

Ainsi, sur la base de l'analyse de bureau (étude des documents cartographiques, photos aériennes...) et/ou d'un tour de plan d'eau préalable, on détermine l'appartenance des rives aux 4 classes 1, 2, 3 et 4.

La norme AFNOR XP T90-328 indique le nombre d'unités d'observation à réaliser en fonction de la superficie du plan d'eau : au moins 3 UO pour un plan d'eau inférieur à 250 ha, au moins 6 UO pour un plan d'eau de 250 à 1000 ha et au moins 8 UO pour plan d'eau supérieur à 1000 ha.

Au final, les unités d'observation sont choisies parmi les points contacts définis par la méthode de Jensen, avec comme objectif de représenter tous les types de rives dont le linéaire est égal ou supérieur à 10% du total du linéaire du plan d'eau. Le nombre d'unités d'observation effectivement réalisé est au moins égal au nombre prédéfini par la norme.

Les plans d'eau suivis en 2014 ont déjà fait l'objet d'une étude macrophytes en 2011. La localisation des transects réalisés en 2011 a été considérée dans le choix des unités d'observation 2014. Dans la mesure du possible (respect de la norme AFNOR XP T90-328), les unités d'observation sont placées au droit des transects 2011, pour faciliter la comparaison des peuplements observés.

2.3.2 Description d'une unite d'observation

Schématiquement, chaque unité d'observation comporte :

- un relevé de la zone littorale L, de part et d'autre du point central, sur une longueur maximale de 100 m;
- 3 profils P1 à P3, perpendiculaires à la rive (= 3 relevés), espacés au maximum de 50 m et au minimum de 10 m sur lesquels on effectue les observations.

Figure 10 : Représentation schématique d'une unité d'observation

100 m.

central

Rive

2.3.2.1 Observation de rive (littorale : L)

Elle s'applique sur une longueur maximale de 100 m de rive, de part et d'autre du point pivot. Les coordonnées de son milieu sont donc celles du point pivot. La largeur de la zone littorale étudiée est comprise entre environ 1 m (si pente raide) à une dizaine de mètres (si zone littorale plutôt plane). Cette largeur s'entend depuis la ligne d'eau en direction de la pleine eau ; il s'agit donc d'une observation stricte du milieu aquatique. Néanmoins, en complément, il est également pris en compte la zone littorale potentielle de rive qui correspond à la surface comprise entre la ligne d'eau et la limite des plus hautes eaux.

Cette prospection s'effectue en zigzags et vise à détecter l'ensemble des espèces présentes et leur abondance relative.

2.3.2.2 Transects (profils P1 à P3)

Il s'agit de 3 transects perpendiculaires à la rive, dont :

- P1 est le central : les coordonnées GPS de son extrémité "rive" déterminent le positionnement de l'ensemble de l'unité d'observation ;
- P2 et P3 sont les latéraux, et dont l'extrémité en rive est décalée de 50 m maximum (10 m au minimum) par rapport à celle de P1. Dans la pratique, ces extrémités "rive" de P2 et P3 correspondent aux extrémités du transect littoral L.

La longueur de chacun des profils est définie par la zone euphotique. Il est au minimum de 20 m (cas des pentes de fond fortes) et au maximum de 100 m (cas des pentes de fonds faibles). Le point terminal du profil est défini lorsque la profondeur d'échantillonnage atteint la valeur de la largeur de la zone littorale $Z\Phi$.

La matérialisation des transects est réalisée grâce à l'utilisation d'une corde de longueur supérieure à 120 m, métrée, et tendue entre la berge et la zone de haut-fond sur plus d'une centaine de mètres.

Le bateau (zodiac ou canoë-kayak) est ensuite accroché à la corde et la progression du bateau s'effectue le long de la corde. Deux personnes sont présentes sur le bateau : la première réalise les déplacements du bateau le long de la corde, note et met en échantillon les prélèvements. La deuxième personne réalise le point contact, identifie la nature du substrat, la profondeur d'échantillonnage, les espèces et leur attribue un coefficient d'abondance.

30 points contacts répartis de manière homogène (le premier point contact est situé dans le plan d'eau à 1 m de la rive) sont réalisés à l'aide :

- d'un râteau télescopique de 4 m de long métré tous les 10 cm;
- au-delà de 4 m de profondeur, à l'aide d'un grappin métré jusqu'à 20 m.

Les espèces déterminables sur place sont déterminées à l'aide d'une loupe de terrain (x10 et x20). L'observation au bathyscope permet de bien contrôler le prélèvement au râteau. Les échantillons sont ensuite prélevés (sauf espèces protégées), numérotés, conservés, puis déterminés au bureau à l'aide d'une loupe binoculaire et/ou d'un microscope (ex : cas des algues et bryophytes).

Il est noté pour chaque point contact :

- taxon(s) identifié(s) et / ou prélevé(s) pour confirmation ultérieure ;
- abondance;
- substrat;
- profondeur.

Cas particulier : lorsque, dans la zone littorale, des roselières denses sont présentes et que le prélèvement au râteau se fait difficilement, l'évaluation de l'abondance des espèces est également faite au bathyscope sur une surface équivalente au râteau.

-	SUIVI -

1 Presentation du plan d'eau et localisation

Le lac de Paladru, aussi appelé lac de Charavines, est situé dans le département de l'Isère (38) à une altitude de 492 m. Il s'agit d'un lac d'origine naturelle, il s'est formé à la suite de processus glaciaires (creusement et barrage morainique). Il est alimenté par un bassin versant de 48 km², les apports en eau se font principalement par deux ruisseaux (le Courbon à Montferrat et le Chantabot au Pin), mais aussi par des sources sous-lacustres. Les eaux du lac rejoignent la rivière « la Fure » au droit de Charavines. Depuis 1866, un système de vanne en sortie de lac permet de réguler le débit du cours d'eau en fonction des besoins des usines situées en aval. La superficie du lac est de 355 ha pour une profondeur maximale mesurée de 36 m. Ce lac présente un fonctionnement de lac monomictique chaud.

L'occupation des sols aux abords du lac se répartit entre une urbanisation intensive (résidences, villas, routes), quelques boisements, des prairies pâturées et quelques zones humides. Le lac de Paladru est utilisé pour les loisirs nautiques : baignade, voile et motonautisme. De plus, il est apprécié pour la beauté des paysages qu'il offre mais aussi par les pêcheurs amateurs (salmonidés, percidés, cyprinidés, etc.). Bien que privé, ce lac est géré par le Syndicat Mixte du lac de Paladru et par l'AAPPMA de Paladru pour la pêche.

Carte 1 : Localisation du lac de Paladru (Isère)

2 CONTENU DU SUIVI 2014

Le lac de Paladru est suivi au titre des Réseaux de Contrôle de Surveillance (RCS) et du Contrôle Opérationnel (CO). Le tableau ci-dessous indique la répartition des missions aussi bien en phase terrain qu'en phase laboratoire/détermination. S.T.E. a, en outre, eu en charge de coordonner la mission et de collecter l'ensemble des données pour établir les rapports et mener l'exploitation des données.

Tableau 3 : Synoptique des interventions de terrain et de laboratoire sur le plan d'eau, par campagne

Lac de Paladru	Phase terrain					Laboratoire - détermination	
Campagne	C1	IBLs	C2	C3	IBML	C4	
Date	04/03/2014	31/03/2014	26/05/2014	23/07/2014	06/08/2014 07/08/2014 08/08/2014	02/10/2014	automne/hiver 2014-2015
Physicochimie des eaux	S.T.E.		S.T.E.	S.T.E.		S.T.E.	CARSO
Physicochimie des sédiments						S.T.E.	LDA26
Phytoplancton	S.T.E.		S.T.E.	S.T.E.		S.T.E.	BECQ'Eau
Macrophytes					Mosaïque envir. / S.T.E.		Mosaïque environnement
Invertébrés		S.T.E.					S.T.E. / IRIS Consultants

3 BILAN CLIMATIQUE REGIONAL

En Rhône-Alpes, le bilan climatique de l'année 2014⁴ fait état d'une année globalement arrosée et exceptionnellement chaude (sans période de fortes chaleurs). Dans le détail :

- ✓ l'hiver a été marqué par d'abondantes précipitations et une douceur exceptionnelle ;
- ✓ au printemps, les précipitations ont été peu fréquentes et peu abondantes et la douceur a perduré particulièrement durant les mois de mars et avril ;
- ✓ malgré un mois de juin chaud et ensoleillé, l'été a été particulièrement maussade avec un mois de juillet exceptionnellement pluvieux et une fraîcheur très marquée en août.

⁴ Source : <u>http://climat.meteofrance.com</u>

Etude des plans d'eau du prog	gramme de surveillance des bassins Rhône-Méditerra	mee et Corse – Lac de Paladru (38 ₎
- CH A	APITRE 4 : RESULTA	TS DES
	INVESTIGATIONS -	

1 INVESTIGATIONS PHYSICOCHIMIQUES

Les comptes rendus des campagnes de prélèvements physicochimiques et phytoplanctoniques sont présentés en annexe 3.

1.1 ANALYSES DES EAUX

1.1.1 Profils verticaux et evolutions saisonnières

Le suivi prévoit la réalisation de profils verticaux sur la colonne d'eau à chaque campagne. Quatre paramètres sont mesurés : la température, la conductivité, l'oxygène (en concentration et en % saturation) et le pH. Les graphiques regroupant ces résultats pour chaque paramètre lors des 4 campagnes sont affichés dans ce chapitre.

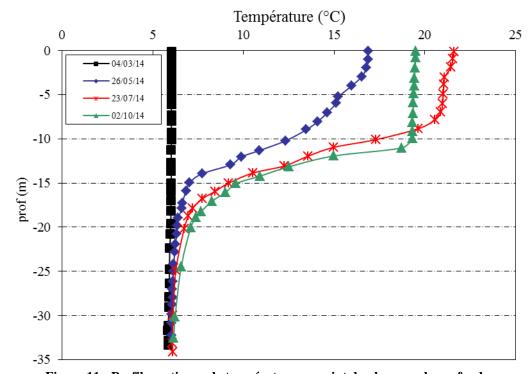


Figure 11 : Profils verticaux de température au point de plus grande profondeur

Lors de la 1^{ère} campagne, la température est homogène sur la colonne d'eau à 6,0°C.

Au printemps, la stratification thermique se met en place : l'épilimnion s'est fortement réchauffé (16,9°C) alors que les eaux hypolimniques restent froides, proches de 6,0°C. La thermocline se situe ainsi entre -2 m et -15 m avec un différentiel thermique déjà important (11,0°C).

L'amplitude thermique augmente au cours de la période estivale : la température au fond demeure proche de 6°C alors que les eaux de surface atteignent 21,6°C le 23/07/2014 puis 19,5°C le 02/10/2014. **La thermocline** reste stable durant cette même période, elle **est établie entre 8 et 18 m** de profondeur en campagne 3 puis entre 10 et 18 m de profondeur en campagne 4.

La stratification thermique est donc très marquée sur le lac de Paladru dès la campagne printanière.

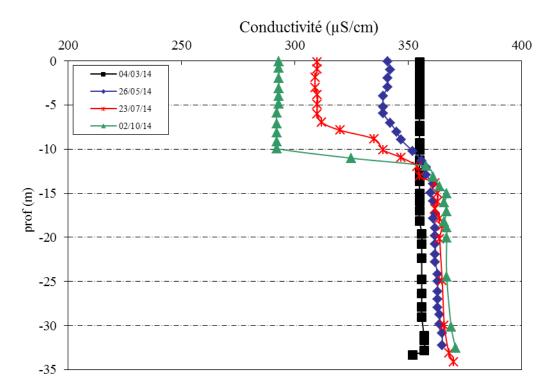


Figure 12 : Profils verticaux de conductivité au point de plus grande profondeur

La conductivité indique une eau moyennement minéralisée, typiquement en lien avec la nature calcaire des substrats. Elle est homogène sur toute la colonne d'eau lors de la 1ère campagne, proche de 355 μ S/cm. Durant la période estivale, la conductivité diminue progressivement dans l'épilimnion jusqu'à atteindre 340 μ S/cm le 26/05/2014, 310 μ S/cm le 23/07/2014 et enfin 290 μ S/cm le 02/10/2014 : les minéraux sont utilisés pour la production biologique. A l'inverse, la conductivité augmente très légèrement et progressivement en profondeur (365 μ S/cm en campagne 2 puis 370 μ S/cm en campagnes 3 et 4), en lien avec les processus de minéralisation de la matière organique.

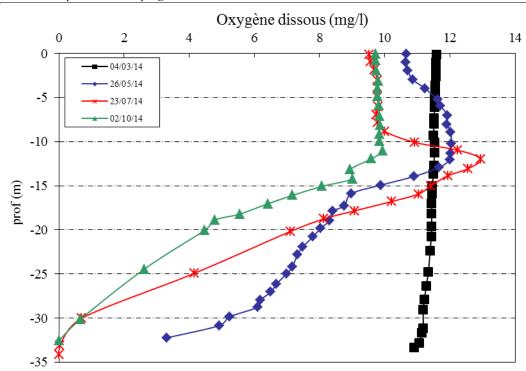


Figure 13: Profils verticaux d'oxygène (mg/l) au point de plus grande profondeur

Figure 14: Profils verticaux d'oxygène (% sat.) au point de plus grande profondeur

En fin d'hiver, l'oxygène dissous est quasiment homogène sur l'ensemble de la colonne d'eau (92 à 98% de saturation).

Les campagnes suivantes sont caractérisées par une activité photosynthétique plus ou moins marquée dans l'épilimnion puisqu'on observe des sursaturations en oxygène :

- $\geq 107\%$ jusqu'à -13 m le 26/05/2014 avec un maximum de 124% à -7 m;
- $\geq 106\%$ jusqu'à -15 m le 23/07/2014 avec un maximum de 133% à -12 m ;

 \geq 111% jusqu'à -11 m le 02/10/2014 avec un maximum de 112% entre -3 et -11 m.

Au fond, on note une consommation importante en oxygène pour dégrader la matière organique qui s'intensifie au fil du temps. Les eaux du fond sont ainsi anoxiques lors des campagnes 3 et 4, entrainant ainsi une réduction du potentiel de minéralisation à l'interface eau/sédiment.

Comme en 2008 et 2011, le lac de Paladru présente une désoxygénation marquée de l'hypolimnion dès la seconde campagne.

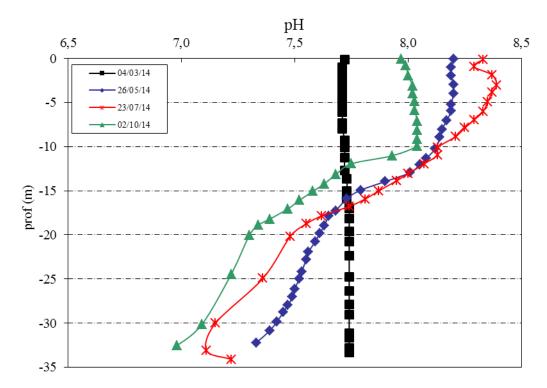


Figure 15: Profils verticaux de pH au point de plus grande profondeur

Le pH est compris entre 7,0 et 8,4. En fin d'hiver, le pH est homogène sur toute la colonne d'eau à 7,7. Dans l'épilimnion, il augmente lors des campagnes suivantes pour atteindre 8,2 en campagne 2, 8,4 en campagne 3 et 8,0 en campagne 4 en lien avec l'activité photosynthétique. Simultanément, il diminue dans la couche profonde avec les processus de respiration et de décomposition (7,3 en campagne 2, 7,1 en campagne 3 et 7,0 en campagne 4).

1.1.2 PARAMETRES DE CONSTITUTION ET TYPOLOGIE DU LAC

N.B. pour tous les tableaux suivants : LQ = limite de quantification.

Les paramètres de minéralisation sont étudiés lors de la 1^{ère} campagne uniquement. Les résultats sont présentés dans le tableau 4.

Tableau 4 : Résultats des paramètres de minéralisation lors de la $1^{\text{\`e}re}$ campagne

La	c de Paladru	limite	04/03/2014
code plan d'eau :	W3125023	quantification	Intégré
Dureté calculée	°F	0,5	17,7
T.A.C.	°F		16,30
HCO ₃	mg(HCO3)/l	6,1	199,0
Calcium	mg(Ca)/l	0,1	68,7
Magnésium	mg(Mg)/l	0,05	1,29
Sodium	mg(Na)/l	0,2	5,3
Potassium	mg(K)/l	0,1	1,4
Chlorures	mg(Cl)/l	0,1	11,4
Sulfates	mg(SO4)/l	0,2	8,2

Les résultats indiquent une eau riche en hydrogénocarbonates, de dureté moyenne conformément à la nature calcaire du bassin versant (molasses du Miocène). Les eaux du lac sont également riches en calcium.

1.1.3 Analyses physicochimiques des eaux (hors micropolluants)

Tableau 5 : Résultats des paramètres de physico-chimie classique sur eau.

Physico-chimie sur ear	Physico-chimie sur eau										
Lac	de Paladru	limite	04/03/	2014	26/05/	2014	23/07/	2014	02/10/	2014	
code plan d'eau :	W3125023	quantification	Intégré	Fond	Intégré	Fond	Intégré	Fond	Intégré	Fond	
Turbidité	NTU	0,1	0,40	0,30	0,94	0,73	0,78	5,20	1,40	3,10	
M.E.S.	mg/l	1	2,0	<lq< td=""><td>1,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,0</td><td>2,6</td></lq<></td></lq<></td></lq<></td></lq<>	1,0	<lq< td=""><td><lq< td=""><td><lq< td=""><td>2,0</td><td>2,6</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>2,0</td><td>2,6</td></lq<></td></lq<>	<lq< td=""><td>2,0</td><td>2,6</td></lq<>	2,0	2,6	
C.O.D.	mg(C)/l	0,2	1,9	1,9	2,3	2,0	2,4	2,0	3,6	1,8	
D.B.O.5	mg(O2)/l	0,5	1,1	0,5	1,4	0,7	1,0	0,6	1,7	<lq< td=""></lq<>	
D.C.O.	mg(O2)/l	20	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>	
Azote Kjeldahl	mg(N)/l	0,5	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,4</td><td><lq< td=""><td>14,9</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,4</td><td><lq< td=""><td>14,9</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>1,4</td><td><lq< td=""><td>14,9</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>1,4</td><td><lq< td=""><td>14,9</td></lq<></td></lq<></td></lq<>	<lq< td=""><td>1,4</td><td><lq< td=""><td>14,9</td></lq<></td></lq<>	1,4	<lq< td=""><td>14,9</td></lq<>	14,9	
NH ₄ ⁺	mg(NH4)/l	0,01	0,02	0,02	0,01	<lq< td=""><td>0,02</td><td>0,17</td><td>0,02</td><td>0,56</td></lq<>	0,02	0,17	0,02	0,56	
NO_3	mg(NO3)/1	0,5	6,7	6,5	6,2	5,9	5,2	3,1	4,6	2,3	
NO_2	mg(NO2)/l	0,01	0,01	0,02	0,04	<lq< td=""><td>0,04</td><td>0,21</td><td>0,04</td><td>1,10</td></lq<>	0,04	0,21	0,04	1,10	
PO ₄	mg(PO4)/l	0,01	<lq< td=""><td>0,01</td><td><lq< td=""><td>0,02</td><td><lq< td=""><td>0,03</td><td><lq< td=""><td>0,10</td></lq<></td></lq<></td></lq<></td></lq<>	0,01	<lq< td=""><td>0,02</td><td><lq< td=""><td>0,03</td><td><lq< td=""><td>0,10</td></lq<></td></lq<></td></lq<>	0,02	<lq< td=""><td>0,03</td><td><lq< td=""><td>0,10</td></lq<></td></lq<>	0,03	<lq< td=""><td>0,10</td></lq<>	0,10	
Phosphore Total	mg(P)/l	0,005	0,010	0,010	0,005	0,005	0,006	0,260	<lq< td=""><td>0,041</td></lq<>	0,041	
Silicates	mg(SiO2)/l	0,05	2,50	2,90	0,54	5,90	0,40	7,50	0,80	8,30	
Chl. A	μg/l	1	2,0		<lq< td=""><td></td><td>1,0</td><td></td><td>2,0</td><td></td></lq<>		1,0		2,0		
Indice phéopigments	μg/l	1	1,0		1,0		1,0		<lq< td=""><td></td></lq<>		

Les analyses des fractions dissoutes ont été réalisées sur eau filtrée (COD, NH4, NO3, NO2, PO4, Si).

Les concentrations en carbone organique sont généralement faibles à moyennes lors des 4 campagnes, comprises entre 1,8 et 2,4 mg/l, hormis dans le prélèvement de zone euphotique de campagne 4 (3,6 mg/l). Les eaux du lac de Paladru sont globalement peu turbides (0,30 à 1,40

NTU) et présentent peu de matières en suspension (≤ 2,6 mg/l). La turbidité est toutefois plus élevée dans les échantillons de fond de campagnes 3 et 4 (respectivement 5,2 et 3,1 NTU).

En fin d'hiver, les concentrations en nutriments disponibles sont élevées pour l'azote (6,7 mg/l de nitrates) et faibles pour les orthophosphates ($[PO_4^{3-}] = < 0,01$ mg/l) dans l'échantillon intégré. Le rapport N/P⁵ est donc très important (> 100) lors de la campagne de fin d'hiver. Le phosphore est donc le facteur limitant pour la production végétale par rapport à l'azote.

On observe une diminution des concentrations en nitrates au cours de l'année :

- dans le fond (6,5 mg/l en C1, 5,9 mg/l en C2, 3,1 mg/l en C3 et 2,3 mg/l en C4). En conditions anoxiques, les bactéries hétérotrophes du sédiment utilisent les nitrates comme support de respiration et produisent de l'ammonium (processus de réduction des nitrates en ammonium) d'où les concentrations plus élevées en ammonium dans les échantillons de fond des campagnes 3 et 4 (respectivement 0,17 et 0,56 mg/l).
- dans la zone euphotique (6,7 mg/l en C1, 6,2 mg/l en C2, 5,2 mg/l en C3 et 4,6 mg/l en C4). Dans les couches superficielles, les nitrates sont vraisemblablement consommés par le phytoplancton.

En conditions anoxiques (campagnes 3 et 4), les concentrations en phosphore total, en orthophosphates, en ammonium et en nitrites sont plus élevées dans les échantillons de fond que dans les échantillons intégrés. Elles suggèrent un potentiel relargage de ces éléments à l'interface eau/sédiment.

La très forte concentration mesurée en azote Kjeldahl sur l'échantillon de fond de la dernière campagne paraît excessive au regard des autres résultats physico-chimiques obtenus sur ce plan d'eau et d'après les suivis antérieurs. Cette valeur est à considérer comme incertaine.

La concentration en silicates est moyenne en fin d'hiver dans l'ensemble de la colonne d'eau (2,5 mg/l dans l'échantillon intégré et 2,9 mg/l dans l'échantillon de fond). Elle évolue ensuite significativement :

- elle diminue dans la zone euphotique car les silicates sont consommés par les diatomées (0,4 à 0,8 mg/l lors des 3 campagnes estivales);
- elle augmente au fond en rapport avec la dégradation des frustules de diatomées qui décantent dans le fond du lac (5,9 mg/l en C2, 7,5 mg/l en C3 et 8,3 mg/l en C4).

La production chlorophyllienne est faible dans le lac de Paladru au vu de la teneur en chlorophylle a ($\leq 2,0~\mu g/l$).

⁵ le rapport N/P est calculé à partir de [Nminéral]/ [P-PO₄³⁻] avec N minéral = [N-NO₃⁻]+[N-NO₂⁻]+[N-NH₄⁺] sur la campagne de fin d'hiver.

1.1.4 MICROPOLLUANTS MINERAUX

Tableau 6 : Résultats d'analyses de métaux sur eau

Micropolluants mir	Micropolluants minéraux sur eau										
Lac	Lac de Paladru limite					2014	23/07/	2014	02/10/	2014	
code plan d'eau :	W3125023	quantification	Intégré	Fond	Intégré	Fond	Intégré	Fond	Intégré	Fond	
Aluminium	μg(Al)/l	2	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>	
Antimoine	μg(Sb)/l	0,5	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>	
Argent	μg(Ag)/l	0,01	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>	
Arsenic	μg(As)/l	0,5	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>	
Baryum	μg(Ba)/l	0,5	15,0	16,0	15,0	14,5	13,5	17,1	15,5	18,3	
Beryllium	μg(Be)/l	0,01	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>	
Bore	μg(B)/l	10	14	14	15	15	28	12	15	13	
Cadmium	μg(Cd)/l	0,01	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>	
Chrome	μg(Cr)/l	0,5	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>	
Cobalt	μg(Co)/l	0,05	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,07</td><td><lq< td=""><td>0,14</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,07</td><td><lq< td=""><td>0,14</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,07</td><td><lq< td=""><td>0,14</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	0,07	<lq< td=""><td>0,14</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	0,14	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>	
Cuivre	μg(Cu)/l	0,1	0,31	0,32	0,25	0,22	0,26	0,17	0,40	0,45	
Etain	μg(Sn)/l	0,5	<lq< td=""><td><lq< td=""><td>1,3</td><td>1,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>1,3</td><td>1,0</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	1,3	1,0	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>	
Fer	μg(Fe)/l	1	1,3	1,3	2,2	4,6	1,6	15,6	1,5	13,3	
Manganèse	μg(Mn)/l	0,5	<lq< td=""><td><lq< td=""><td><lq< td=""><td>74,0</td><td><lq< td=""><td>210,0</td><td><lq< td=""><td>0,8</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>74,0</td><td><lq< td=""><td>210,0</td><td><lq< td=""><td>0,8</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>74,0</td><td><lq< td=""><td>210,0</td><td><lq< td=""><td>0,8</td></lq<></td></lq<></td></lq<>	74,0	<lq< td=""><td>210,0</td><td><lq< td=""><td>0,8</td></lq<></td></lq<>	210,0	<lq< td=""><td>0,8</td></lq<>	0,8	
Mercure	μg(Hg)/l	0,01	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>	
Molybdène	μg(Mo)/l	1	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>	
Nickel	μg(Ni)/l	0,5	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>	
Plomb	μg(Pb)/l	0,05	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>	
Sélénium	μg(Se)/l	0,1	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>	
Tellure	μg(Te)/l	0,5	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>	
Thallium	μg(Tl)/l	0,01	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>	
Titane	μg(Ti)/l	0,5	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,8</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,8</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,8</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,8</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,8</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	0,8	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>	
Uranium	μg(U)/l	0,05	0,32	0,31	0,32	0,34	0,27	0,28	0,31	0,27	
Vanadium	μg(V)/l	0,1	0,17	0,15	0,18	0,14	0,21	<lq< td=""><td>0,15</td><td><lq< td=""></lq<></td></lq<>	0,15	<lq< td=""></lq<>	
Zinc	μg(Zn)/l	1	<lq< td=""><td><lq< td=""><td><lq< td=""><td>1,04</td><td><lq< td=""><td>2,54</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>1,04</td><td><lq< td=""><td>2,54</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>1,04</td><td><lq< td=""><td>2,54</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	1,04	<lq< td=""><td>2,54</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	2,54	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>	

Les analyses sur les métaux ont été effectuées sur eau filtrée.

Les eaux du lac de Paladru sont globalement pauvres en micropolluants minéraux :

- le baryum, le bore, l'uranium et le vanadium sont régulièrement quantifiés à des teneurs faibles à modérées ;
- le cobalt, l'étain et le titane sont ponctuellement quantifiés, à des teneurs faibles.

Les concentrations en fer et manganèse sont faibles mais augmentent significativement dans les échantillons de fond des campagnes 2, 3 et 4, attestant ainsi de conditions de désoxygénation entrainant un relargage de ces éléments depuis les sédiments (modéré pour le fer et plus important pour le manganèse).

Parmi les métaux lourds, on note la présence :

- de cuivre dans les 8 échantillons, à des concentrations modérées (0,17 à 0,45 μg/l);
- de zinc dans 2 des 8 échantillons, à des concentrations modérées (1,04 à 2,54 μg/l).

Ces concentrations ne suggèrent pas de pollution particulière.

1.1.5 MICROPOLLUANTS ORGANIQUES

Le tableau 7 indique les micropolluants organiques qui ont été quantifiés lors des campagnes de prélèvements. La liste de l'ensemble des substances analysées est fournie en annexe 1.

Micropolluants organiques mis en évidence sur eau										
Lac de Paladru limite 04/03/2014 26/05/2014 23/07/2014 02/10/2014										2014
code plan d'eau :	W3125023	quantification	Intégré	Fond	Intégré	Fond	Intégré	Fond	Intégré	Fond
Acide monochloroacétique	μg/l	0,2	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,78</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,78</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,78</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,78</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,78</td><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,78</td><td><lq< td=""></lq<></td></lq<>	0,78	<lq< td=""></lq<>
Méthyl-2-Naphtalène	μg/l	0,005	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,007</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,007</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,007</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,007</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,007</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,007</td></lq<></td></lq<>	<lq< td=""><td>0,007</td></lq<>	0,007
Naphtalène	μg/l	0,005	0,007	0,006	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,011</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,011</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,011</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,011</td></lq<></td></lq<>	<lq< td=""><td>0,011</td></lq<>	0,011

Tableau 7 : Résultats d'analyses de micropolluants organiques présents sur eau

Deux composés de la famille des hydrocarbures aromatiques polycycliques (HAP) ont été quantifiés dans les eaux du lac de Paladru :

- ✓ le méthyl-2-naphtalène dans l'échantillon de fond de campagne 4 ;
- ✓ le naphtalène dans les échantillons de campagne 1 et l'échantillon de fond de campagne 4.

Un autre micropolluant organique a été mis en évidence dans l'échantillon de zone euphotique de campagne 4 : l'acide monochloroacétique.

L'atrazine déséthyl (produit de dégradation de l'atrazine), systématiquement quantifiée lors des deux précédents suivis de 2008 et 2011 sur chacun des échantillons d'eau (en faibles concentrations : 0,02 à 0,03 $\mu g/l$), n'a pas été quantifiée durant ce suivi (LQ similaire lors des différents suivis : 0,02 $\mu g/l$).

1.2 ANALYSES DES SEDIMENTS

1.2.1 Analyses physicochimiques des sediments (hors micropolluants)

Le tableau 8 fournit la synthèse de l'analyse granulométrique menée sur les sédiments prélevés.

Tableau 8 : Synthèse granulométrique sur le sédiment du point de plus grande profondeur

Sédiment	Sédiment : composition granulométrique (%)						
	-	Lac de Paladru	02/10/2014				
code pla	n d'e	02/10/2014					
classe gran	nulon	nétrique (µm)	%				
0	à	20	28,6				
20	à	63	48,0				
63	à	150	19,6				
150	à	200	1,6				
> 200			2,3				

Il s'agit de sédiments fins, de nature sablo-limoneuse de 0 à 200 μm à 97,7 % (exempts de débris grossiers).

Les analyses de physico-chimie classique menées sur la fraction solide et sur l'eau interstitielle du sédiment sont rapportées au tableau 9.

Tableau 9 : Analyse de sédiments

Eau interstitielle du sédiment : Physico-chimie								
Lac de	Paladru	limite						
code plan d'eau :	W3125023	quantification	02/10/2014					
NH ₄ ⁺	mg(NH4)/l	0,5	4,32					
PO ₄	mg(PO4)/l	0,015	0,051					
Phosphore Total	mg(P)/l	0,1	0,64					

Sédiment : Physico-chimie	Sédiment : Physico-chimie									
Lac de	Paladru	limite								
code plan d'eau :	W3125023	quantification	02/10/2014							
Matières sèches minérales	% MS		95,2							
Perte au feu	% MS		4,8							
Matières sèches totales	%		37,0							
Carbone organique	mg(C)/kg MS	1000	23600							
Azote Kjeldahl	mg(N)/kg MS	1000	2250							
NH ₄ ⁺	mg(N)/kg MS	200	<lq< td=""></lq<>							
Phosphore Total	mg(P)/kg MS	1	306,2							

Dans les sédiments, la teneur en matière organique est faible avec seulement 4,8 % de perte au feu. La concentration en azote organique est moyenne (environ 2,2 g/kg MS). Le rapport C/N est de 10,5, il indique que la matière organique récemment déposée est à prédominance macrophytique en voie de dégradation. La concentration en phosphore est faible, proche de 0,3 g/kg MS.

L'eau interstitielle contient les minéraux facilement mobilisables dans les sédiments. La concentration moyenne en ammonium (4,32 mg/l) et la teneur élevée en phosphore total (0,64 mg/l) suggèrent un relargage de ces éléments à l'interface eau/sédiment en conditions anoxiques. Ce constat est confirmé par les concentrations observées dans les eaux du fond lors des campagnes 3 et 4.

1.2.2 MICROPOLLUANTS MINERAUX

Ils ont été dosés sur la fraction solide du sédiment.

Tableau 10 : Résultats d'analyses de micropolluants minéraux sur sédiment

Sédiment : Micropolluan	ts minéraux		
Lac de	Paladru	limite	
code plan d'eau :	W3125023	quantification	02/10/2014
Aluminium	mg(Al)/kg MS	10	1026
Antimoine	mg(Sb)/kg MS	0,2	0,5
Argent	mg(Ag)/kg MS	0,2	<lq< td=""></lq<>
Arsenic	mg(As)/kg MS	0,2	2,2
Baryum	mg(Ba)/kg MS	0,4	13,5
Beryllium	mg(Be)/kg MS	0,2	<lq< td=""></lq<>
Bore	mg(B)/kg MS	1	4,1
Cadmium	mg(Cd)/kg MS	0,2	<lq< td=""></lq<>
Chrome	mg(Cr)/kg MS	0,2	5,4
Cobalt	mg(Co)/kg MS	0,2	1,1
Cuivre	mg(Cu)/kg MS	0,2	6,5
Etain	mg(Sn)/kg MS	0,2	<lq< td=""></lq<>
Fer	mg(Fe)/kg MS	10	2093
Manganèse	mg(Mn)/kg MS	0,4	103,8
Mercure	mg(Hg)/kg MS	0,02	0,02
Molybdène	mg(Mo)/kg MS	0,2	<lq< td=""></lq<>
Nickel	mg(Ni)/kg MS	0,2	3,2
Plomb	mg(Pb)/kg MS	0,2	4,7
Sélénium	mg(Se)/kg MS	0,2	0,4
Tellure	mg(Te)/kg MS	0,2	<lq< td=""></lq<>
Thallium	mg(Th)/kg MS	0,2	<lq< td=""></lq<>
Titane	mg(Ti)/kg MS	1	180,6
Uranium	mg(U)/kg MS	0,2	0,4
Vanadium	mg(V)/kg MS	0,2	6,8
Zinc	mg(Zn)/kg MS	0,4	22,3

Les concentrations en micropolluants minéraux sont très faibles dans les sédiments du lac de Paladru et ne suggèrent donc pas de pollution particulière de ce compartiment.

1.2.3 MICROPOLLUANTS ORGANIQUES

Le tableau 11 indique les micropolluants organiques qui ont été quantifiés dans les sédiments lors de la campagne de prélèvements. La liste de l'ensemble des substances analysées est fournie en annexe 2.

Sédiment : Micropolluants organiques mis en évidence									
Lac de	Paladru	limite quantification							
code plan d'eau :	W3125023	minte quantification	02/10/2014						
Benzo (a) Anthracène	μg/kg MS	10	16						
Benzo (a) Pyrène	μg/kg MS	10	26						
Benzo (b) Fluoranthène	μg/kg MS	10	32						
Benzo (ghi) Pérylène	μg/kg MS	10	32						
Benzo (k) Fluoranthène	μg/kg MS	10	15						
Chrysène	μg/kg MS	10	26						

Tableau 11 : Résultats d'analyses de micropolluants organiques présents sur sédiment

Plusieurs hydrocarbures aromatiques polycycliques (HAP) ont été quantifiés dans les sédiments du lac de Paladru pour une concentration totale faible de **147** µg/kg.

2 PHYTOPLANCTON

2.1 Prelevements integres

Les prélèvements intégrés destinés à l'analyse du phytoplancton ont été réalisés en même temps que les prélèvements pour analyses physicochimiques classiques. Sur le lac de Paladru, la zone euphotique et la transparence mesurées sont représentées par le graphique de la figure 16. La zone euphotique varie entre 11,0 et 15,8 m sur les quatre campagnes réalisées. La transparence est globalement élevée (4,4 à 6,3 m selon les campagnes).

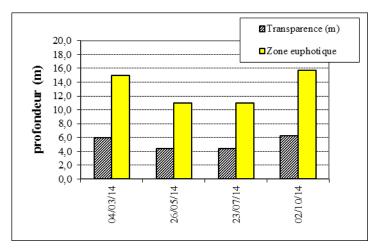


Figure 16 : Evolution de la transparence et de la zone euphotique aux 4 campagnes

La liste des espèces de phytoplancton par plan d'eau a été établie selon la méthodologie développée par l'IRSTEA: *Protocole standardisé d'échantillonnage, de conservation, d'observation et de dénombrement du phytoplancton en plan d'eau pour la mise en œuvre de la DCE*, Mars 2009.

La diversité taxonomique N correspond au nombre de taxons identifiés à l'espèce, à l'exclusion des groupes et familles, ainsi que des taxons identifiés au genre quand une espèce du même genre est présente et déterminée à l'espèce. Le nombre N' correspond à la diversité taxonomique totale incluant tous les taxons aux différents niveaux d'identification (nombre le plus probable).

2.2 LISTE FLORISTIQUE

Tableau 12: Liste taxonomique du phytoplancton (en nombre de cellules/ml)*

	1	Lac de Paladru	Date prélèvement				
Classe	Code Sandre	Nom Taxon	04/03/2014	26/05/2014	23/07/2014	02/10/2014	
Chlorophycées	5596	Ankyra judayi		11			
	5933	Chlorella vulgaris		57	920	1764	
	20153	Chlorophycées flagellées indéterminées diam 2-5µm			11	11	
	20154	Chlorophycées flagellées indéterminées diam 5-10µm			2		
	20155	Chlorophycées indéterminées		17	32	130	
	10245	Choricystis minor			39	40	
	20091	Coenochloris hindakii			36		
	5633	Crucigenia tetrapedia			9	23	
	5664	Elakatothrix gelatinosa			7		
	5720	Lanceola spatulifera		11	2		
	5735	Monoraphidium komarkovae		6			
	5736	Monoraphidium minutum	2	6	5	57	
	5738	Monoraphidium skujae	109	6			
	5745	Nephrochlamys rostrata		11			
	5757	Oocystis lacustris			59	51	
	19395	Phacotus lendneri	2		164	51	
	6000	Planctonema lauterbornii				747	
	1136	Scenedesmus sp.				11	
	5880	Sphaerocystis schroeteri			91		
	5888	Tetraedron minimum			2	11	
	5981	Tetraselmis cordiformis				11	
	9300	Tetrastrum triangulare			45	124	
	35881	Willea rectangularis			18	90	
Chrysophycées	20157	Chrysophycées indéterminées	54	17	2		
	6130	Dinobryon divergens		4219	1147	102	
	6149	Erkenia subaequiciliata	215	418	2	266	
	6150	Kephyrion sp.		119			
	6209	Mallomonas sp.	14		2	6	
Cryptophycées	6269	Cryptomonas sp.	27	45	25	62	
J1 1 J	6273	Cryptomonas marssonii			5		
	9634	Plagioselmis nannoplanctica	505	124	161	311	
Cyanobactéries	6307	Aphanocapsa sp.			82	8155	
- 5	6312	Aphanocapsa holsatica	199			4434	
	6346	Aphanothece sp.			1181		
	6349	Aphanothece clathrata			-	26399	
	6358	Chroococcus limneticus				735	
	31975		59		9		
	6455	Pseudanabaena arcuata		51			
	6459	Pseudanabaena limnetica	59				
Desmidiacées	5529	Closterium acutum			2		
	5363	Cosmarium pygmaeum			_	23	
	5443	Spondylosium planum			5		

Étude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Lac de Paladru (38)

Diatomées	9356	Achnanthidium sp.	2			
	4860	Asterionella formosa	43	23		
	20160	Diatomées centriques indéterminées	84			57
	31228	Diatomées centriques indéterminées <10µm	722	68	20	294
	9533	Fragilaria sp.	2			
	6666	Fragilaria crotonensis	315			
	19116	Ulnaria delicatissima var. angustissima	2			
Dinoflagellés	6553	Ceratium hirundinella		6	5	
	6558	Gymnodinium helveticum	2			
	6577	Peridinium sp.				6
	6589	Peridinium willei			2	
	Abondance cellulaire totale (nb cellules/ml)		2416	5214	4094	43970
	Diversité taxonomique N		14	15	25	24
		Diversité N'	19	18	31	27

^{*:} les valeurs affichées sont arrondies à l'entier le plus proche sauf lorsque la valeur d'origine est $\leq 0,4$, dans ce cas la valeur non arrondie est affichée.

Tableau 13: Liste taxonomique du phytoplancton (en mm³/l)

		Lac de Paladru		Date prélèvement					
Classe	Code Sandre	Nom Taxon	04/03/2014	26/05/2014	23/07/2014	02/10/2014			
Chlorophycées	5596	Ankyra judayi		0,0012					
	5933	Chlorella vulgaris		0,0057	0,0920	0,1764			
	20153	Chlorophycées flagellées indéterminées diam 2-5µm			0,0005	0,0005			
	20154	Chlorophycées flagellées indéterminées diam 5-10µm			0,0012				
	20155	Chlorophycées indéterminées		0,0076	0,0143	0,0585			
	10245	Choricystis minor			0,0003	0,0004			
	20091	Coenochloris hindakii			0,0012				
	5633	Crucigenia tetrapedia			0,0012	0,0031			
	5664	Elakatothrix gelatinosa			0,0013				
	5720	Lanceola spatulifera		0,0033	0,0007				
	5735	Monoraphidium komarkovae		0,0009	ŕ				
	5736	Monoraphidium minutum	0,0002	0,0005	0,0004	0,0053			
	5738	Monoraphidium skujae	0,0026	0,0001	,	ŕ			
	5745	Nephrochlamys rostrata	,	0,0009					
	5757	Oocystis lacustris		,	0,0063	0,0054			
	19395	Phacotus lendneri	0,0009		0,0671	0,0209			
	6000	Planctonema lauterbornii	,		,	0,1075			
	1136	Scenedesmus sp.				0,0009			
	5880	Sphaerocystis schroeteri			0,0347	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
	5888	Tetraedron minimum			0,0008	0,0040			
	5981	Tetraselmis cordiformis			,	0,0225			
	9300	Tetrastrum triangulare			0,0030	0,0081			
	35881	Willea rectangularis			0,0017	0,0086			
Chrysophycées	20157	Chrysophycées indéterminées	0,0057	0,0018	0,0002				
y y y	6130	Dinobryon divergens		0,8818	0,2398	0,0213			
	6149	Erkenia subaequiciliata	0,0097	0,0188	0,0001	0,0120			
	6150	Kephyrion sp.	.,	0,0075	.,	-,-			
	6209	Mallomonas sp.	0,0363	-,	0,0061	0,0151			
Cryptophycées	6269	Cryptomonas sp.	0,0481	0,0802	0,0443	0,1102			
J F J J	6273	Cryptomonas marssonii		-,	0,0055	- ,			
	9634	Plagioselmis nannoplanctica	0,0353	0,0087	0,0113	0,0218			
Cyanobactéries	6307	Aphanocapsa sp.	.,	-,	0,0002	0,0163			
- j	6312	Aphanocapsa holsatica	0,0002		~,~~~	0,0044			
	6346	Aphanothece sp.	-,		0,0118	-,			
	6349	Aphanothece clathrata			-,	0,0528			
	6358	Chrococcus limneticus				0,1985			
	31975	Cyanobactéries indéterminées	0,0066		0,0010	3,1733			
	1//-	1 - 2	1 2,3000		-,				

Étude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Lac de Paladru (38)

	6455	Pseudanabaena arcuata		0,0002		
	6459	Pseudanabaena limnetica	0,0006			
Desmidiacées	5529	Closterium acutum			0,0016	
	5363	Cosmarium pygmaeum				0,0093
	5443	Spondylosium planum			0,0035	
Diatomées	9356	Achnanthidium sp.	0,0002			
	4860	Asterionella formosa	0,0112	0,0059		
	20160	Diatomées centriques indéterminées	0,0450			0,0304
	31228	Diatomées centriques indéterminées <10 µm	0,0794	0,0075	0,0022	0,0323
	9533	Fragilaria sp.	0,0055			
	6666	Fragilaria crotonensis	0,0944			
	19116	Ulnaria delicatissima var. angustissima	0,0084			
Dinoflagellés	6553	Ceratium hirundinella		0,2262	0,1817	
	6558	Gymnodinium helveticum	0,0386			
	6577	Peridinium sp.				0,0520
	6589	Peridinium willei			0,0750	
		Biovolume total (mm ³ /l)	0,429	1,259	0,811	0,998
	•	Diversité taxonomique N	14	15	25	24
	•	Diversité N'	19	18	31	27

2.3 EVOLUTIONS SAISONNIERES DES GROUPEMENTS PHYTOPLANCTONIQUES

Les échantillons destinés à la détermination du phytoplancton sont constitués d'un prélèvement intégré sur la zone euphotique (équivalant à 2,5 fois la transparence lors de la campagne). Les graphiques suivants présentent la répartition du phytoplancton par groupe algal à partir des résultats exprimés en cellules/ml d'une part et à partir des biovolumes (mm³/l) d'autre part.

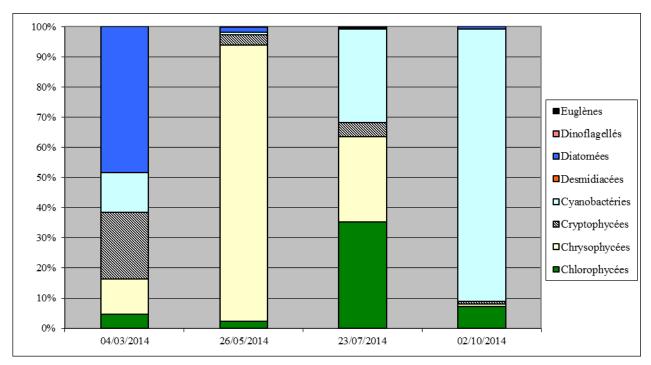
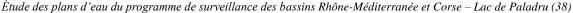



Figure 17 : Répartition du phytoplancton sur le lac de Paladru à partir des abondances (cellules/ml)

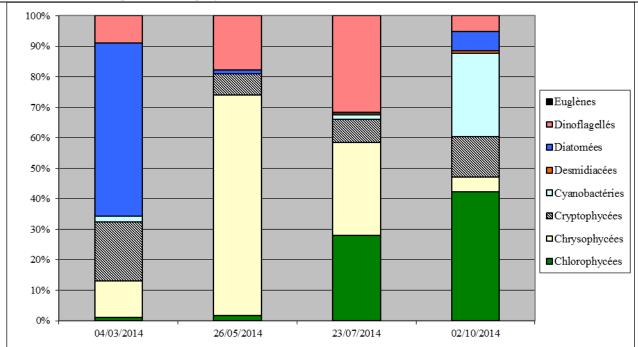


Figure 18 : Répartition du phytoplancton sur le lac de Paladru à partir des biovolumes (mm³/l)

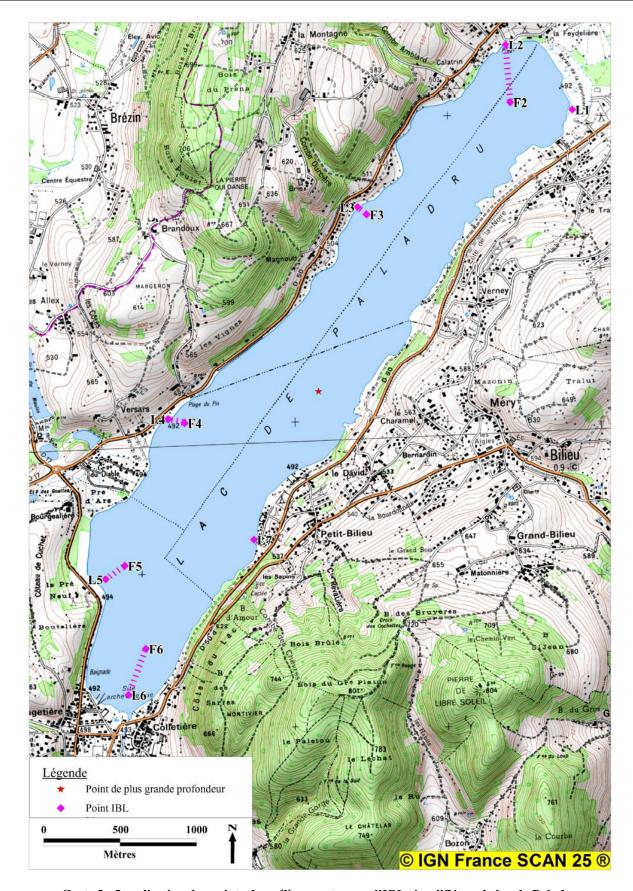
Le peuplement phytoplanctonique présente une abondance et un biovolume faible aux différentes dates d'échantillonnage excepté au mois d'octobre où une augmentation importante de l'abondance est constatée. En effet, au mois de mars, la concentration cellulaire est d'environ 2500 cellules/ml, puis elle double en mai (5200 cellules/ml environ), se maintient en juillet (4100 cellules/ml) et atteint son maximum en octobre avec une concentration d'environ 44 000 cellules/ml. En ce qui concerne le biovolume, il est faible en mars (0,4 mm³/l) puis il augmente légèrement et fluctue entre 0,8 et 1,2 mm³/l au cours de la période de production biologique.

Au mois de mars, le peuplement phytoplanctonique est dominé par les diatomées qui représentent près de 50% de l'abondance phytoplanctonique totale. Ce sont de petites diatomées centriques qui sont majoritaires, elles sont accompagnées de l'espèce coloniale *Fragilaria crotonensis*, typiquement planctonique, formant souvent de longues chaines. De la même manière, les diatomées contribuent largement au biovolume cellulaire puisqu'elles représentent plus de 50% du biovolume phytoplanctonique total.

Au mois de mai, on constate une augmentation de l'abondance et du biovolume. Les chrysophycées dominent la communauté phytoplanctonique avec notamment l'espèce *Dinobryon divergens* qui contribue, à elle seule, à 80% de l'abondance phytoplanctonique totale. Cette espèce est fréquente dans le phytoplancton d'été dans les milieux pauvres en nutriments. Les chrysophycées constituent également environ 72% du biovolume phytoplanctonique total, l'espèce citée précédemment représentant à elle seule 70% du peuplement.

Au cours de l'été (23/07/2014), l'abondance se maintient mais la communauté phytoplanctonique est beaucoup plus hétérogène. Les chlorophycées, les cyanobactéries et les chrysophycées se retrouvent en proportion équivalente et représentent près de 95% de l'abondance cellulaire totale. Les chlorophycées sont majoritairement représentés par l'espèce *Chlorella vulgaris*, les cyanobactéries par une espèce du genre Aphanothece et les chrysophycées par l'espèce *Dinobryon divergens*. Les cyanobactéries majoritaires ayant un très faible biovolume, elles ne contribuent que très peu au biovolume cellulaire total. A l'inverse, les dinoflagellés sont peu nombreux mais ayant un biovolume cellulaire élevé, ils contribuent à plus de 30% du biovolume phytoplanctonique. Les

chlorophycées et les chrysophycées contribuent également à près de 60% du biovolume phytoplanctonique total.


Finalement, l'abondance phytoplanctonique atteint son maximum à l'automne (02/10/2014) avec une concentration cellulaire de 43970 cellules/ml. Les cyanobactéries sont majoritaires à cette date et sont essentiellement représentées par une espèce du genre Aphanothece et d'autres espèces du genre Aphanocapsa. Ces cyanobactéries sont coloniales, très petites et caractéristiques des eaux mésotrophes à eutrophes. Par contre, elles ont un très petit biovolume et contribuent dans une moindre proportion au biovolume phytoplanctonique total. Les chlorophycées, quant à elles, représentent plus de 40 % du biovolume phytoplanctonique total.

L'indice phytoplanctonique (IPL) calculé à partir de l'abondance cellulaire est de 55,3, qualifiant le milieu d'eutrophe. Cependant, ce calcul est biaisé par la forte abondance de cyanobactéries en campagne 4 alors que leur contribution en termes de biovolume est beaucoup moins importante. L'indice calculé à partir du biovolume semble plus cohérent au regard des données historiques du lac, en qualifiant le milieu de mésotrophe (39,3).

3 INVERTEBRES BENTHIQUES (IBL SIMPLIFIE)

Les prélèvements pour l'étude des peuplements d'invertébrés benthiques ont été réalisés le 31 mars 2014.

3.1 CARTE DE LOCALISATION DES POINTS DE PRELEVEMENTS

 $Carte\ 2: Localisation\ des\ points\ de\ pr\'el\`evements\ pour\ l'IBL\ simplifi\'e\ sur\ le\ lac\ de\ Paladru$

3.2 CARACTERISTIQUES DES POINTS DE PRELEVEMENTS

Tableau 14 : Caractéristiques des points de prélèvements en zone littorale

Echantillon	L1	L2	L3	L4	L5	L6	L7
Date	31/03/2014	31/03/2014	31/03/2014	31/03/2014	31/03/2014	31/03/2014	31/03/2014
Profondeur (en m)	3,5	2,7	3,0	2,8	2,7	3,0	3,2
Substrat	Limon	Sable fin	Sable fin	Limon	Limon	Limon	Limon
Surface prospectée (en cm²)	675	675	675	675	675	675	675
Coordonnées X (L93)	899 760	899 332	898 356	897 107	896 688	896 831	897 661
Coordonnées Y (L93)	6 488 723	6 489 149	6 488 094	6 486 721	6 485 676	6 484 922	6 485 929

Tableau 15 : Caractéristiques des points de prélèvements en zone profonde

Echantillon	F2	F3	F4	F5	F6
Date	31/03/2014	31/03/2014	31/03/2014	31/03/2014	31/03/2014
Profondeur (en m)	26,0	28,0	26,6	27,0	26,6
Substrat	Vase	Vase	Vase	Vase	Vase
Surface prospectée (en cm²)	675	675	675	675	675
Coordonnées X (L93)	899 360	898 415	897 213	896 815	896 948
Coordonnées Y (L93)	6 488 772	6 488 045	6 486 694	6 485 767	6 485 222

3.3 LISTE FAUNISTIQUE IBLS

Tableau 16 : Liste faunistique pour le calcul de l'IBLs (nombre d'individus / échantillon)

		Nombre d'individus dénombrés						Code Sandre					
	Littoral				Fond								
Liste des taxons identifiés*	L1	L2	L3	L4	L5	L6	L7	F2	F3	F4	F5	F6	Sandic
Caenis	20		20	12	8	1	22						457
Ephemera			15										502
Ceratopogoninae	9	7	1	3	12	2	2						822
Chaoborus					1			44	57	13	36	37	792
Ablabesmyia		1	3				11						2781
Chironomus									61	45	5		817
Cladopelma	2			1			3						19278
Cladotanytarsus	30		3	4	775	36							2862
Cryptochironomus	13	6	5	6	17	4	16						2835
Dicrotendipes	2			1		1	36						2839
Endochironomus							3						2842
Epoicocladius			6										2807
Nilothauma			1				3						19279
Paracladopelma			1										2852
Paratanytarsus												1	2865
Paratrissocladius		1											19179

Polypedilum	2	2				2	3	1,100,11			50 20		2856
Procladius	17	5	52	11	8		14	11	80	57	51	25	2788
Psectrocladius					8		3						2825
Tanytarsus	126	3	35	31	58	9	186		1				2869
Athripsodes		2	7				3						311
Mystacides		1											312
Limnephilus		1											3163
Cyrnus			1				4						224
Tinodes							5						245
Platambus			1										556
Corbicula	12	6	42	11	5	5							1051
Dreissena		1					4						1046
Pisidium	33	8	5	3	9	2	3				1		1043
Potamopyrgus	17	38		12	62	2							978
Valvata	5				7								972
Dugesia	1						2						1056
Aulodrilus japonicus	15		24										20747
Bothrioneurum		5											19217
Branchiura sowerbyi	5	23	29		3								952
Ilyodrilus templetoni			4				2						2995
Limnodrilus claparedeanus		9					1						2992
Limnodrilus hoffmeisteri	70	165	28	82	54	69	27						2991
Limnodrilus udekemianus				5									2989
Potamothrix hammoniensis							9						9795
Potamothrix heuscheri	7		15		3	21	5	52	50	67	77	63	9837
Potamothrix moldaviensis		46											2987
Psammoryctides barbatus	20	9	15		10	11	7						2988
Slavina appendiculata	7												3008
Specaria josinae				3									19314
Stylaria lacustris	5												960
Tubifex tubifex		32				2			7		7	2	946
Tubificinae avec soies capillaires	20	50	26		26	23	13	197	314	370	297	167	5231
Tubificinae sans soies capillaires	117	137	59	172	172	113	50		7				29901
Uncinais uncinata		5	2				8						3002
Vejdovskyella intermedia					3								19315
Cristatella				1	2								3103
Hydracarien							1						906
Nemathelmintha				1									3111

3.4 Interpretation des resultats

L'observation du peuplement oligochètes permet de constater que le potentiel métabolique est élevé en zone littorale et moyen en zone profonde sur le lac de Paladru. Le pourcentage d'espèces sensibles est nul en zone profonde (absence d'espèce sensible sur tous les points) et faible en zone littorale (1 à 12% d'espèces sensibles selon les points), ce qui suggère une altération de la qualité des sédiments.

La zone profonde se caractérise donc par un potentiel métabolique moyen et une absence d'espèce sensible à la pollution organique et toxique. Hormis les *Tubificinae* non identifiés au genre, le peuplement est largement dominé par l'espèce *Potamothrix heuscheri*, indicatrice d'une forte pollution. *Tubifex tubifex* est la seule autre espèce identifiée en zone profonde (sur les points F3, F5 et F6), elle est indicatrice d'une impasse trophique naturelle lorsqu'elle est dominante.

La zone littorale se caractérise par un fort potentiel métabolique et donc par la présence d'espèces sensibles à la pollution organique et toxique, notamment *Psammoryctides barbatus* (avec un effectif total de 72 individus sur 6 points de prélèvements), mais également *Slavina appendiculata* (en L1), *Specaria josinae* (en L4), *Stylaria lacustris* (en L1) et *Vejdovskyella intermedia* (en L5). Les espèces indicatrices d'un état de forte pollution sont cependant largement dominantes sur l'ensemble des points littoraux (*Limnodrilus hoffmeisteri*, *Potamothrix heuscheri*, etc.). Notons enfin les présences de *Tubifex tubifex* en L2 et L6 et de *Branchiura sowerbyi* en L1, L2, L3 et L5, espèce probablement lié à un réchauffement climatique.

Concernant le peuplement de mollusques, seul un individu du genre *Pisidium* a été recensé en zone profonde. Cette quasi absence de mollusques est à mettre en relation avec les conditions anoxiques du milieu qui interviennent chaque fin d'été. Le peuplement de mollusques est un peu plus riche et diversifié en zone littorale (2 à 4 taxons selon les points de prélèvements). Les genres *Pisidium*, *Corbicula* et *Potamopyrgus* sont notamment représentés sur une majorité de points de prélèvements. Notons la présence de *Dreissena polymorpha*, espèce invasive, dans les prélèvements des points L1, L2, L4, L5 et L6.

Concernant le peuplement de chironomidae, la richesse taxonomique est plus élevée en zone littorale qu'en zone profonde (moyenne de 6,7 taxons en zone littorale contre 2,0 taxons en zone profonde). Les prélèvements de zone profonde se caractérisent notamment par l'abondance du genre *Procladius* sur l'ensemble des points de prélèvements (56 à 100% du peuplement selon les points), par la bonne représentation du genre *Chironomus* sur les points F3 et F4 et par la présence quasi exclusive de taxons de polluo-sensibilité faible (*Chironomus* et *Procladius*). Notons le recensement d'un individu du genre *Paratanytarsus* en F6 et d'un individu du genre *Tanytarsus* en F3.

En zone littorale, on constate une plus grande diversité. On recense de nombreux individus du genre *Tanytarsus* sur les 7 points de prélèvements. Le genre *Cryptochironomus* est également observé sur tous les points. Enfin, les genres *Cladotanytarsus* et *Procladius* sont également bien représentés sur une majorité de points :

- *Cladotanytarsus* est présent sur 5 points de prélèvements avec de nombreux individus en L5 notamment ;
- *Procladius* est présent sur 6 points de prélèvements.

En conclusion, le peuplement est dominé par des taxons relativement polluo-tolérants en zone littorale comme en zone profonde.

Concernant les autres groupes faunistiques, on peut remarquer que la richesse taxonomique est nettement plus importante en zone littorale qu'en zone profonde. En zone profonde, le seul fait

remarquable est l'abondance du genre *Chaoborus* sur l'ensemble des points. En effet, aucun autre taxon n'a été recensé.

En zone littorale, les taxons suivants ont été identifiés :

- des éphéméroptères du genre *Caenis* sur 6 points de prélèvements ;
- des éphéméroptères du genre Ephemera sur le point L3;
- des diptères de la sous-famille *Ceratopogoninae* sur les 7 points de prélèvements ;
- des trichoptères des genres *Athripsodes* (3 points), *Mystacides* (1 point), *Limnephilus* (1 point), *Cyrnus* (2 points) et *Tinodes* (1 point) regroupés sur les points de prélèvements L2, L3 et L7;
- et plus localement un diptère *Chaoborus*, un coléoptère *Platambus*, des turbellariés *Dugesia*, un hydracarien, un némathelminthe et des statoblastes de *Cristatella*.

Parmi ces taxons, le genre Ephemera et les trichoptères présentent une polluo-sensibilité élevée.

En conclusion, le potentiel métabolique est moyen à élevé sur le lac de Paladru. La richesse taxonomique est nettement plus importante en zone littorale qu'en zone profonde, ce qui s'explique vraisemblablement par les conditions anoxiques régnant dans la couche profonde en fin de saison estivale.

4 MACROPHYTES

Les inventaires pour l'étude des peuplements de macrophytes ont été réalisés du 6 au 8 août 2014.

4.1 CHOIX DES UNITES D'OBSERVATION

Le lac de Paladru a déjà fait l'objet d'un suivi des populations de macrophytes en 2011 par S.T.E. pour l'agence de l'eau Rhône-Méditerranée et Corse. En 2014, comme en 2011, le protocole suivi par S.T.E. respecte la norme AFNOR XP T90-328 (Décembre 2010) normalisant le protocole de l'IRSTEA intitulé « Méthodologie d'étude des communautés de macrophytes en plans d'eau ».

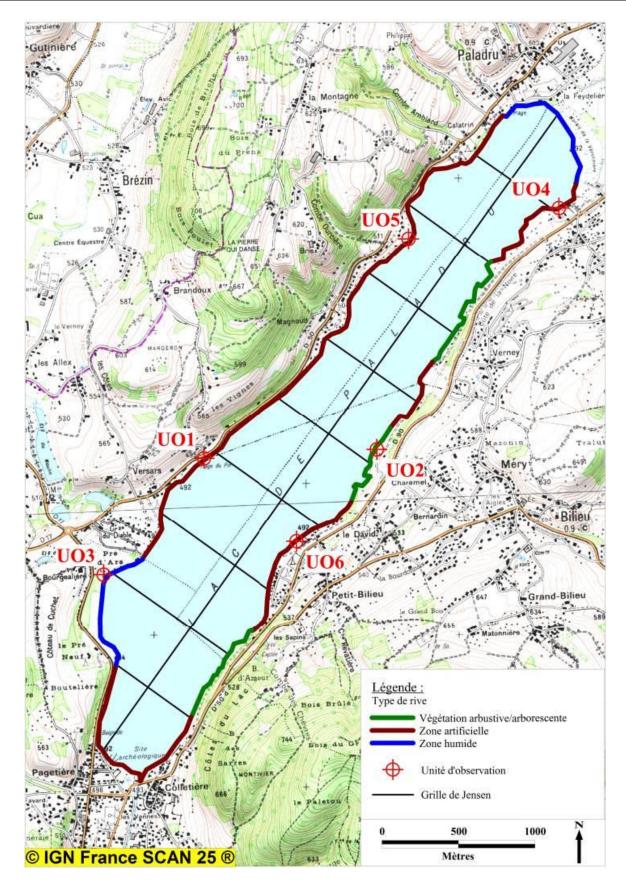
Le positionnement des unités d'observation est déterminé avec la méthode de Jensen. Pour le lac de Paladru, 9 profils perpendiculaires à la plus grande longueur du plan d'eau ont été représentés, soit 18 points contacts potentiels auxquels s'ajoutent les 2 points correspondant aux points de départ et d'arrivée de cette ligne de base.

Le protocole d'échantillonnage s'appuie sur :

- les différents types de rives recensés sur le plan d'eau pour la sélection des unités d'observation (UO) à prospecter ;
- la pente des fonds et la transparence des eaux pour définir la limite de profondeur des profils perpendiculaires à explorer sur chaque UO (définition de la zone potentiellement colonisée par les végétaux).

Sur le lac de Paladru, 3 types de rives ont été observés. Une appréciation du recouvrement est donnée en % du périmètre total :

- Type 1; zones humides caractéristiques : 10 %;
- Type 2 ; zones rivulaires colonisées par une végétation arbustive ou arborescente non humide : 15 % ;
- Type 4 ; zones artificialisées ou subissant des pressions anthropiques visibles : 75 %.


La superficie du plan d'eau étant de 382 ha, 6 unités d'observation ont été sélectionnées selon leur représentativité d'un type de rive soit : quatre unités de type 4, une unité de type 2 et une unité de type 1.

Les unités d'observation ainsi sélectionnées sont :

- UO 1 : unité de type 4 ;
- UO 2 : unité de type 2 ;
- UO 3 : unité de type 1 ;
- UO 4 : unité de type 4 ;
- UO 5 : unité de type 4 ;
- UO 6 : unité de type 4.

Pour chaque unité d'observation, le choix a porté sur un secteur constitué d'un seul type de rive (sur 100 m minimum), accessible, à l'exclusion des arrivées de tributaires et des singularités. La sélection a porté sur les secteurs suivis lors de la campagne de suivi 2011, elle-même basée sur celle de 2008 (ancienne méthodologie) afin de pouvoir suivre l'évolution temporelle des peuplements de macrophytes, ce qui explique l'existence d'un léger décalage par rapport au positionnement théorique.

4.2 CARTE DE LOCALISATION DES UNITES D'OBSERVATION

Carte 3 : Localisation des unités d'observation pour l'étude des macrophytes sur le lac de Paladru

4.3 VEGETATION AQUATIQUE IDENTIFIEE

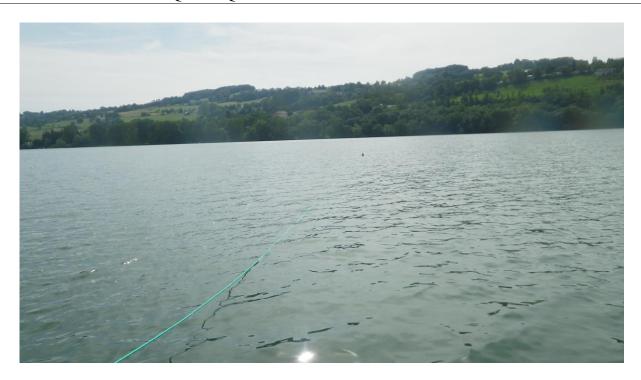


Photo 1 : Vue générale du lac de Paladru

Les rives du lac sont fortement urbanisées (résidences, villas, routes). Il existe de rares formations naturelles dont quelques boisements (principalement à l'Est) et un marais au Nord.

Le recouvrement global en macrophytes sur le lac est assez faible et estimé à moins de 10% de sa surface. Ces macrophytes sont répartis de manière très hétérogène. Le lac abrite notamment de nombreux herbiers aquatiques de phanérogames et de characées. Les roselières sont en revanche plus rares et surtout très localisées.

Photo 2 : Observation d'herbiers de characées

4.3.1 Unite d'observation n°1

Photo 3: Vue sur l'UO1 du lac de Paladru

L'unité d'observation 1 est localisée à l'Ouest du lac, dans une zone urbanisée au niveau de la plage du Pin.

La zone littorale, relativement étroite, présente un talus de taille moyenne (absence de plage). La zone littorale submergée est relativement pauvre en espèces. Les hélophytes dominent avec *Schoenoplectus lacustris*, *Polygonium amphibium* et *Lythrum salicaria*. Viennent ensuite les algues qui sont également très présentes et très diversifiées (*Vaucheria sp.*, *Spirogyra sp.*, *Zygnema sp.*, etc. pour les algues vertes ; *Tolypothrix sp.*, *Lyngbya sp.* et *Oscillatoria sp.*, etc. pour les cyanobactéries).

Sur les profils perpendiculaires, on retrouve pour les premiers points les espèces d'algues citées cidessus, puis, à partir de 2 à 3 m de profondeur et jusqu'à 12 m (ponctuellement 15 m), diverses espèces de characées : majoritairement *Chara contraria*, plus ponctuellement *Chara globularis* et *Chara intermedia* (ces deux taxons sont très présents sur le profil perpendiculaire droit). Les hydrophytes trachéophytes sont très ponctuels sur cette unité d'observation, puisque seules *Najas marina* et *Najas minor* ont été observées (uniquement sur le profil perpendiculaire droit). Notons enfin que le profil perpendiculaire gauche est bien plus pauvre en macrophytes que les deux autres.

4.3.2 Unite d'observation n°2

Photo 4: Vue sur l'UO2 du lac de Paladru

L'unité d'observation 2 est positionnée dans la partie centrale de la rive Est du lac. La zone riveraine est largement occupée par une forêt de feuillus non hygrophile et plus ponctuellement par des roselières, des bois marécageux et de la prairie. On note également la présence d'habitations (cabanes avec jardins), particulièrement au centre de l'unité d'observation.

La zone littorale présente un faible talus, une absence de plage et une largeur relativement faible. Dominée par *Phragmites australis*, elle est pauvre en espèces. Citons pour les bryophytes *Fissidens rufulus* et *Amblystegium riparium*, et pour les algues vertes les genres *Zygnema, Spirogyra, Mougeotia, Oedogonium*, accompagnées par les cyanobactéries des genres *Phormidium* et *Melosira*.

Les profils perpendiculaires sont globalement pauvres en macrophytes. Ils sont caractérisés par des roselières de 0,5 à 2 m de profondeur et par la présence ponctuelle des bryophytes et des algues citées ci-dessus à faible profondeur (< 1 m). Le profil perpendiculaire droit présente une diversité plus importante, avec notamment l'apparition d'un herbier de *Chara contraria* entre 6 et 8,5 m de profondeur. Une algue du genre *Chaetophora* est également recensée entre 1,2 et 5 m de profondeur sur les profils perpendiculaires droit et central.

4.3.3 Unite d'observation n°3

Photo 5 : Vue sur l'UO3 du lac de Paladru

L'unité d'observation 3 est localisée sur la rive Ouest, au Sud du lac. La rive est caractérisée par une végétation « naturelle » dominée par des marais ouverts et des bois marécageux. Le talus et la plage sont absents, les niveaux d'eau étant relativement hauts.

La zone littorale, bien que peu large, est relativement diversifiée. Les hélophytes dominent avec notamment *Phragmites australis* et *Polygonum amphibium*, accompagnés par diverses espèces des roselières (*Cladium mariscus*, *Lysimachia vulgaris*, *Schoenoplectus lacustris*, etc.), des mégaphorbiaies (*Calystegia sepium*, etc.) ou des prairies hygrophiles (*Carex hirta*, etc.). Une espèce protégée en Rhône-Alpes, *Teucrium scordium*, a également été observée. Les hydrophytes sont plus faiblement représentées par quelques espèces de trachéophytes comme *Najas marina*. Le recouvrement des algues est assez important (notamment *Rhizoclonium sp.* et *Oedogonium sp.*). Les herbiers occupent de grandes surfaces au sein de cette unité d'observation.

Le long des profils perpendiculaires, l'espèce d'hydrophyte trachéophyte dominante est *Najas minor*, accompagnée plus ponctuellement par *Potamogeton pectinatus* et *Potamogeton trichoides* jusqu'à 8,5 m de profondeur. Ces espèces sont accompagnées par un lot important de characées

(majoritairement *Chara contraria* et *Chara globularis*, fréquemment accompagnées par *Chara major*). Ces herbiers sont présents de 1,5 à 11 m de profondeur. Une autre characée, *Nitellopsis obtusa*, a été observée uniquement sur le profil perpendiculaire droit de 2,8 à 8 m de profondeur.

N.B.: pour le profil perpendiculaire droit, la profondeur explorée est inférieure à la profondeur théorique à explorer en raison de la présence d'une île à proximité qui a limité l'exploration.

Photo 6: Cladiaie

4.3.4 Unite d'observation n°4

Photo 7: Vue sur l'UO4 du lac de Paladru

L'unité d'observation 4 est située au Nord du lac, sur sa rive Est. Cette rive est caractérisée par la forte présence de résidences, un talus assez important et une plage inexistante.

La zone littorale prospectée est assez étroite et présente une richesse spécifique faible. Les algues, notamment *Zygnema sp.* et *Lyngbya sp.*, dominent. Viennent ensuite quelques hélophytes (*Polygonum lapathifolium*, *Epilobium sp.*) et quelques bryophytes (*Amblystegium riparium*, *Fontinalis antipyretica* et *Rhychostegium riparioides*).

Cette unité d'observation est caractérisée par la présence de *Najas marina* et plus ponctuellement *Najas minor* entre 2 et 7,5 m de profondeur (profils perpendiculaires gauche et central). De nombreuses characées sont présentes à toutes profondeurs, principalement *Chara globularis*. Des

herbiers à *Nitella mucronata* sont également présents de 7,5 à 16 m de profondeur. Ponctuellement, des bryophytes (*Amblystegium riparium*) accompagnent ce cortège. Le profil perpendiculaire droit se démarque des 2 autres par sa pauvreté. En effet, excepté *Chara globularis*, noté en un point, les seuls taxons recensés sont des algues (celles de la zone littorale, *Hydrodiction sp.* et plus ponctuellement *Tribonema sp.* le long du profil perpendiculaire) et *Amblystegium riparium*.

N.B.: Compte tenu de la présence de plusieurs espèces de plantes jusqu'à 16 m de profondeur sur le profil perpendiculaire gauche (soit au-delà de la zone euphotique théorique fixée par la norme), les profondeurs explorées ont été augmentées (écarts à la norme) sur chacun des profils perpendiculaires afin de rendre compte de cette diversité et donc de ne pas sous-échantillonner les espèces présentes.

4.3.5 Unite d'observation n°5

Photo 8 : Vue sur l'UO5 du lac de Paladru

L'unité d'observation 5 est localisée sur la rive Ouest du lac, dans sa partie Nord. La rive est caractérisée par la présence de jardins résidentiels plus ou moins masqués par un alignement d'arbres le long de la berge. Le talus est d'une taille moyenne et la plage est absente certainement à cause d'un niveau d'eau élevé.

En conséquence, la zone littorale prospectée est relativement faible. Celle-ci est caractérisée floristiquement par une forte présence des cyanobactéries (*Lyngbya sp.* et *Tolypotrix sp.*) et un moindre recouvrement des bryophytes (*Amblystegium tenax*). Les trachéophytes sont seulement représentées par des hélophytes, avec une forte présence de *Phragmites australis* accompagnée de *Lythrum salicaria* et *Lysimachia vulgaris*.

Les profils perpendiculaires sont également très pauvres en espèces. Outre des algues filamenteuses relevées ponctuellement sur le profil central (*Spirogyra sp.* et *Oedogonium sp.*), seules les hélophytes citées en zone littorale ont été observées.

N.B.: Compte tenu de la pente relativement importante des fonds, la profondeur théorique à explorer sur chacun des profils perpendiculaires a été dépassée dans le but de respecter les prescriptions de la norme, à savoir une longueur minimale de profil de 20 m.

4.3.6 Unite d'observation n°6

Photo 9: Vue sur l'UO6 du lac de Paladru

L'unité d'observation 6 est située au Sud du lac, sur la rive Est. La rive, caractérisée par la forte présence d'espaces urbanisés (résidences), présente un faible talus, une absence de plage et une zone littorale plutôt étroite (5 m de large). Celle-ci est caractérisée par une forte diversité d'algues vertes (principalement *Spirogyra sp.*, *Oedogonium sp.* et *Zygnema sp.*), de cyanobactéries (*Oscillatoria sp.*) et diverses espèces d'hélophytes comme *Lythrum salicaria*, *Phragmites australis* ou encore *Mentha aquatica*.

Globalement, l'unité d'observation est caractérisée par une forte présence d'algues vertes filamenteuses (les plus présentes étant *Spirogyra sp.*, *Rhizoclonium sp.* et *Zygnema sp.*) et de cyanobactéries (*Tolypothrix sp.*, *Phormidium sp.*, *Lyngbya sp.* et *Diatoma sp.* le long du profil gauche) jusqu'à 1,6 m de profondeur environ. Les hydrophytes trachéophytes sont représentées majoritairement par *Najas minor* et plus ponctuellement par *Myriophyllum spicatum* entre 1,9 et 5 m de profondeur. Elles sont fréquemment accompagnées par des characées, principalement *Chara globularis* (entre 1,9 à 14,5 m de profondeur) et *Chara contraria* (entre 1,8 et 4 m de profondeur, exceptionnellement jusqu'à 9 m).

N.B.: pour le profil perpendiculaire droit, la profondeur explorée est supérieure à la profondeur théorique à explorer dans le but d'être homogène avec les 2 autres profils de cette unité d'observation (maintien de la longueur du profil à 30 m malgré la pente plus importante).

4.4 LISTE DES ESPECES PROTEGEES ET ESPECES INVASIVES

Aucune espèce invasive n'a été observée sur le plan d'eau en 2014.

Les deux espèces de naïade, *Najas marina* et *Najas minor*, sont protégées en Rhône-Alpes. Il s'agit des deux hydrophytes phanérogames les plus contactées sur le plan d'eau, ce qui laisse penser que leurs populations se portent bien. *Teucrium scordium*, également protégée en Rhône-Alpes, a été observée dans la zone littorale de l'unité d'observation 3.

4.5 APPROCHE DU NIVEAU TROPHIQUE DU PLAN D'EAU

Les communautés de macrophytes observées sont constituées principalement de roselières (majoritairement des phragmitaies) et d'herbiers aquatiques. Les communautés d'hélophytes et

d'hydrophytes flottantes (Phragmitaies, Cladiaies, herbiers à Renouée aquatique (*Polygonum amphibium*)) sont assez réduites en surface et plutôt localisées. En revanche, les herbiers aquatiques sont globalement bien présents malgré une forte variabilité entre les unités d'observation (unités d'observation 2 et 5 très pauvres, unités d'observation 1, 3, 4 et 6 plus riches et diversifiées).

Malgré une transparence assez faible (environ 3,4 m), des macrophytes ont été récoltés jusqu'à 16 m de profondeur (*Nitella mucronata* sur le profil gauche de l'unité d'observation 4).

Les herbiers de phanérogames sont caractérisés par la forte présence des Naïades (*Najas marina* et *Najas minor*), espèces plutôt mésotrophes. Les autres espèces rencontrées sont *Potamogeton pectinatus* (espèce caractéristique des eaux eutrophes), plus ponctuellement *Potamogeton trichoides* (espèce caractéristique des eaux mésotrophes) et *Myriophyllum spicatum* (espèce polluo-tolérante caractéristique des eaux plutôt eutrophes).

De la même manière, les herbiers de characées dominés par *Chara contraria* et *Chara globularis* (espèces plutôt mésotrophes à eutrophes) sont indicateurs d'eaux méso-eutrophes. Les espèces plus rares comme *Chara major* (eaux méso-eutrophes), *Chara intermedia* (eaux mésotrophes) et *Nitellopsis obtusa* (eaux méso-eutrophes) confirment cette tendance générale méso-eutrophe du plan d'eau. Concernant les characées, 6 espèces ont donc été observées sur le lac.

Le lac de Paladru présente un cortège très diversifié d'algues microscopiques. Si on retrouve fréquemment à faible profondeur les genres Zygnema, Mougeotia, Spirogyra et Oedogonium, les genres les plus polluo-tolérants comme Vaucheria, Cladophora et Rhizoclonium restent assez limités. Les cyanobactéries caractéristiques d'eaux riches comme Lyngbia sp., Oscillatoria sp. ou encore Phormidium sp., dominent. Remarquons la présence du genre Tolypotrhix (présent ponctuellement au sein de l'unité d'observation 6), caractéristique d'eaux non polluées.

Les communautés de macrophytes sont réparties de manière assez inégale sur le plan d'eau. Les unités d'observation 2, 5 et 6 situées dans la partie Nord du plan d'eau sont plus pauvres en macrophytes (en nombre d'espèces et en nombre d'individus) que les autres unités d'observation, indépendamment de la nature de la rive :

- l'unité d'observation 2 présente une rive « naturelle » et est pauvre en macrophytes ;
- l'unité d'observation 1 présente une rive anthropisée et est riche en macrophytes ;
- l'unité d'observation 3 présente une rive « naturelle » et est riche en macrophytes ;
- l'unité d'observation 5 présente une rive anthropisée et est pauvre en macrophytes.

En revanche, on observe une corrélation nette entre la présence de macrophytes et la nature du substrat. Les unités d'observation pauvres en espèces présentent des substrats minéraux grossiers (cailloux voire blocs) tandis que les unités d'observation riches présentent des substrats plutôt sablo-vaseux.

En conclusion, nous pouvons dire que les communautés de macrophytes sont caractéristiques d'un milieu méso-eutrophe.

4.6 COMPARAISON AVEC LE SUIVI 2011

Concernant l'unité d'observation 1, le profil perpendiculaire central est plus riche en espèces en 2014 qu'en 2011. Des herbiers de *Chara contraria* (accompagné ponctuellement de *Chara globularis*), non observés en 2011, se développent entre 3,7 et 11 m de profondeur. Ces deux taxons étaient néanmoins recensés sur le profil perpendiculaire droit en 2011. *Najas marina* et *Najas minor* font leur apparition sur cette unité d'observation en 2014.

Concernant l'unité d'observation 2, la zone littorale est plus pauvre en espèces en 2014 qu'en 2011, en raison vraisemblablement de l'absence de plage en 2014 (niveau des eaux plus élevé qu'en 2011 lors de la prospection).

Concernant l'unité d'observation 3, notons la présence de *Teucrium scordium* en 2014, espèce protégée en Rhône-Alpes, non observée en 2011. Les évolutions suivantes peuvent également être soulignées : *Najas marina* a disparu au profit de *Najas minor* ; *Nitellopsis obtusa* a fait une large apparition sur le profil perpendiculaire droit. À l'inverse, les algues vertes filamenteuses ont régressé et se cantonnent désormais aux eaux peu profondes.

Concernant l'unité d'observation 4, les herbiers de *Najas marina*, *Chara globularis* et *Chara contraria* semblent plus fréquents qu'en 2011. À l'inverse, *Potamogeton lucens*, recensé en 2011, n'a pas été observé en 2014. Notons en revanche l'apparition de *Nitella mucronata*, espèce à large amplitude écologique.

Concernant l'unité d'observation 5, comme en 2011, elle s'avère extrêmement pauvre en macrophytes.

Concernant l'unité d'observation 6, une extension des herbiers à *Chara contraria* et *Chara globularis* a été observée en 2014 : ils sont globalement mieux représentés et plus fréquents. *Najas minor*, absente en 2011, est fréquemment observée en 2014.

Globalement, les espèces pionnières (*Najas marina*, *Najas minor* et les différentes algues du genre *Chara*) sont plus présentes en 2014 qu'en 2011 (unités d'observation 1, 4 et 6). Ces espèces sont dites pionnières car elles peuvent s'installer sur des substrats relativement pauvres (ici préférentiellement sablo-vaseux). À noter également l'apparition de *Nitella mucronata*.

4.7 Releves des unites d'observation

Les relevés des 6 unités d'observations réalisés ont été reportés dans le formulaire de saisie version 4 élaboré par l'IRSTEA. Les 6 fichiers sont présentés en annexe 4.

	- ANNEX	EC	
	- AIVIVEA	<u>ES -</u>	

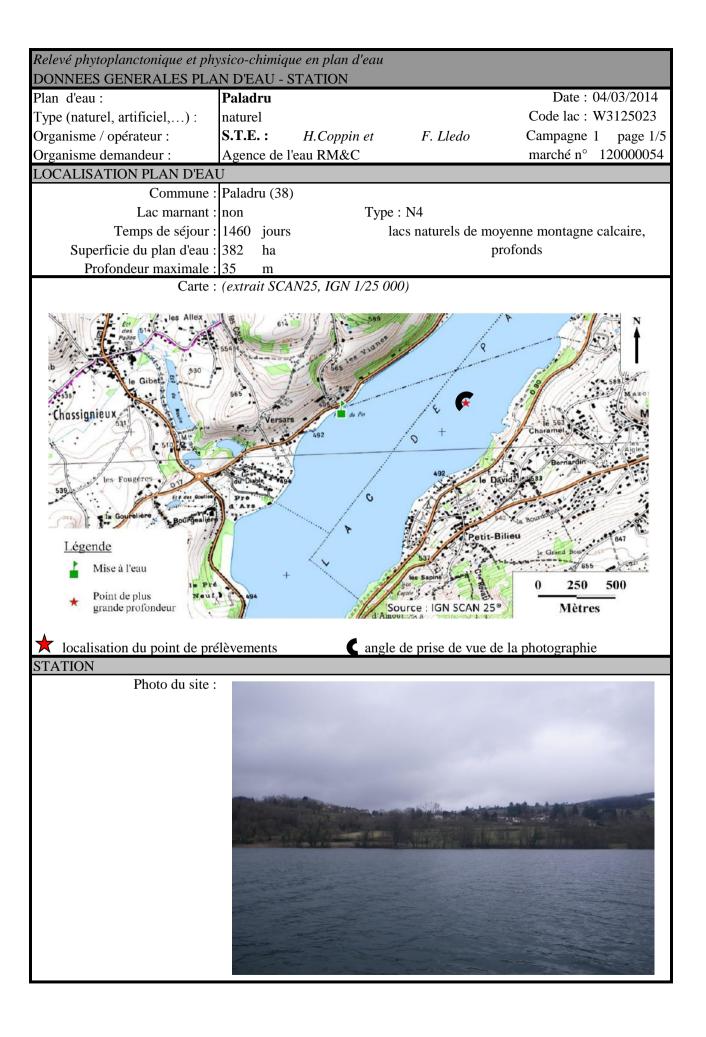
Agence de l'Eau Rhône Mé	diterranée Corse
Etude des pl	ans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Lac de Paladru (38
Annexe 1.	LISTE DES MICROPOLLUANTS ANALYSES SUR EAU

	Etude des plans d'eau du prog	-	le surveillance des bassins Rhone-l		née et Corse – Lac de Paladru (38 ₎
Code SANDRE	Libellé paramètre	Code SANDRE	Libellé paramètre	Code SANDRE	Libellé paramètre
2934	1-(3-chloro-4-methylphenyl)uree	1965	Asulame	7038	Butylate
5399	17alpha-Estradiol	1107	Atrazine	1855	Butylbenzène n
1264	245T	1832	Atrazine 2 hydroxy	1610	Butylbenzène sec
1141	2 4 D	1109	Atrazine déisopropyl	1611	Butylbenzène tert Cadmium
2872 2873	2 4 D isopropyl ester 2 4 D méthyl ester	1108 1830	Atrazine déséthyl Atrazine déséthyl déïsopropyl	1388 1863	Cadmum
1142	2 4 DB	2014	Azaconazole	1127	Captafol
1212	2 4 MCPA	2015	Azaméthiphos	1128	Captane
1213	2 4 MCPB	2937	Azimsulfuron	1463	Carbaryl
2011	2 6 Dichlorobenzamide	1110	Azinphos éthyl	1129	Carbendazime
6022	2.4+2.5-dichloroanilines	1111	Azinphos méthyl	1333	Carbétamide
2815	2-chloro-4-nitrotoluene	1951	Azoxystrobine	1130	Carbofuran
2818 3159	2-Chloro-6-methylaniline	1396 6231	Baryum	1805	Carbofuran 3 hydroxy
2615	2-hydroxy-desethyl-Atrazine 2-Naphtol	5986	BDE 181 BDE 203	1131 1864	Carbophénothion Carbosulfan
2613	2-nitrotoluène	5997	BDE 205	2975	Carboxine
6427	2-tertbutyl 4-méthylphénol	2915	BDE100	2976	Carfentrazone-ethyl
7019	3,4,5-trichloroaniline	2913	BDE138	1865	Chinométhionate
5695	3,4,5-Trimethacarb	2912	BDE153	7500	Chlorantraniliprole
2819	3-Chloro-2-methylaniline	2911	BDE154	1336	Chlorbufame
2820	3-Chloro-4 méthylaniline	2921	BDE17	7010	Chlordane alpha
2823 5474	4-Chloro-N-methylaniline 4-n-nonylphénol	2910 2909	BDE183 BDE100	1757	Chlordane deta
1958	4-n-nonyiphenoi 4-nonylphénois ramifiés	1815	BDE190 BDE209	1758 1866	Chlordane gamma Chlordécone
2610	4-tert-butylphénol	2920	BDE28	5553	Chlorefenizon
1959	4-tert-octylphénol	2919	BDE47	1464	Chlorfenvinphos
2863	5,6,7,8-Tetrahydro-2-naphthol	2918	BDE66	2950	Chlorfluazuron
2822	5-Chloroaminotoluene	2917	BDE71	1133	Chloridazone
2817	6-Chloro-3-méthylaniline	7437	BDE77	5522	Chlorimuron-ethyl
1453	Acénaphtène	2914	BDE85	1134	Chlorméphos
1622 1100	Acénaphtylène Acéphate	2916 1687	BDE99 Bénalaxyl	5554 1606	Chlornequat Chloro-2-p-toluidine
1454	Acétaldéhyde	6391	Benalaxyl-M (cumyluron)	1955	Chloroalcanes C10-C13
5579	Acetamiprid	1329	Bendiocarbe	1593	Chloroaniline-2
1903	Acétochlore	1112	Benfluraline	1592	Chloroaniline-3
5581	Acibenzolar-S-Methyl	2924	Benfuracarbe	1591	Chloroaniline-4
1465	Acide monochloroacétique	2074	Benoxacor	1467	Chlorobenzène
1521	Acide nitrilotriacétique (NTA)	5512	Bensulfuron-methyl	2016	Chlorobromuron
6550	Acide perfluorodecane sulfonique (PFDS)	6595	Bensulide	1612	Chlorodinitrobenzène-1,2,4
6509 6507	Acide perfluoro-decanoïque (PFDA) Acide perfluoro-dodecanoïque (PFDoA)	1113 7460	Bentazone Benthiavalicarbe-isopropyl	1135 2821	Chloroforme (Trichlorométhane) Chlorométhylaniline-4,2
6830	Acide perfluorohexanesulfonique (PFHS)	1764	Benthiocarbe	1635	Chlorométhylphénol-2,5
5977	Acide perfluoro-n-heptanoïque (PFHpA)	1114	Benzène	2759	Chlorométhylphénol-2,6
5978	Acide perfluoro-n-hexanoïque (PFHxA)	2816	Benzene, 1-chloro-2-methyl-3-nitro-	1634	Chlorométhylphénol-4,2
6508	Acide perfluoro-n-nonanoïque (PFNA)	1607	Benzidine	1636	Chlorométhylphénol-4,3
6510	Acide perfluoro-n-undecanoïque (PFUnA)	1082	Benzo (a) Anthracène	1603	Chloronaphtalène-1
6560	Acide perfluorooctanesulfonique (PFOS)	1115	Benzo (a) Pyrène	1604	Chloronaphtalène-2
5347	Acide perfluoro-octanoïque (PFOA)	1116	Benzo (b) Fluoranthène	1341	Chloronèbe
6547 1970	Acide Perfluorotetradecanoique (PFTeA) Acifluorfen	1118 1117	Benzo (ghi) Pérylène Benzo (k) Fluoranthène	1594 1469	Chloronitroaniline-4,2 Chloronitrobenzène-1,2
1688	Aclonifen	1377	Beryllium	1468	Chloronitrobenzène-1,3
1310	Acrinathrine	3209	Beta cyfluthrine	1470	Chloronitrobenzène-1,4
1101	Alachlore	6652	beta-Hexabromocyclododecane	2814	Chloronitrotoluène-2,3
1102	Aldicarbe	1119	Bifénox	1605	Chloronitrotoluène-4,2
1807	Aldicarbe sulfone	1120	Bifenthrine	1684	Chlorophacinone
1806	Aldicarbe sulfoxyde Aldrine	1502	Bioresméthrine Biphényle	1471	Chlorophénol 2
1103 1697	Alléthrine	1584 2766	Bisphénol-A	1651 1650	Chlorophénol-3 Chlorophénol-4
7501	Allyxycarbe	1529	Bitertanol	2611	Chloroprène
6651	alpha-Hexabromocyclododecane	7345	Bixafen	2065	Chloropropène-3
1812	Alphaméthrine	1362	Bore	1473	Chlorothalonil
1370	Aluminium	5526	Boscalid	1602	Chlorotoluène-2
1104	Amétryne	1686	Bromacil	1601	Chlorotoluène-3
5697	Amidithion	1859	Bromadiolone	1600	Chlorotoluène 4
2012 5523	Amidosulfuron Aminocarbe	1122 1123	Bromorhos éthyl	1683 1474	Chloroxyonhama
2537	Aminocaroe Aminochlorophénol-2,4	1123	Bromophos éthyl Bromophos méthyl	1083	Chlorprophame Chlorpyriphos éthyl
1105	Aminotriazole	1685	Bromopropylate	1540	Chlorpyriphos methyl
7516	Amiprofos-methyl	1125	Bromoxynil	1353	Chlorsulfuron
1308	Amitraze	1941	Bromoxynil octanoate	2966	Chlorthal dimethyl
1907	AMPA	1860	Bromuconazole	1813	Chlorthiamide
6594	Anilofos	7502	Bufencarbe	5723	Chlorthiophos
1458	Anthracène	1861	Bupirimate	1136	Chlortoluron
2013 1376	Anthraquinone Antimoine	1862 5710	Buprofézine Butamifos	1579 2715	Chlorure de Benzyle
1368	Antimoine Argent	1126	Butraline	2977	Chlorure de Benzylidène CHLORURE DE CHOLINE
1369	Arsenic	1531	Buturon	1753	Chlorure de vinyle
2307		2001		2.55	

Code		Code		Code	née et Corse – Lac de Paladru (38 ₎
SANDRE	Libellé paramètre	SANDRE	Libellé paramètre	SANDRE	Libellé paramètre
1389 1476	Chrome	1586 1585	Dichloroaniline-3,4 Dichloroaniline-3,5	1179 1742	Endosulfan beta Endosulfan sulfate
5481	Chrysène Cinosulfuron	1165	Dichlorobenzène-1,2	1181	Endrine
2978	Clethodim	1164	Dichlorobenzène-1,3	2941	Endrine aldehyde
2095	Clodinafop-propargyl	1166	Dichlorobenzène-1,4	1494	Epichlorohydrine
1868 2017	Clorentézine	1484 1167	Dichlorobenzidine-3,3' Dichlorobromométhane	1873 1744	EPN Enguisareale
1810	Clomazone Clopyralide	1168	Dichlorométhane	1182	Epoxiconazole EPTC
2018	Cloquintocet mexyl	1617	Dichloronitrobenzène-2,3	7504	Equilin
1379	Cobalt	1616	Dichloronitrobenzène-2,4	1809	Esfenvalérate
2972	Coumafène	1615	Dichloronitrobenzène-2,5	5397	Estradiol
1682 2019	Coumaphos Coumatétralyl	1614 1613	Dichloronitrobenzène-3,4 Dichloronitrobenzène-3,5	6446 5396	Estriol Estrone
1639	Crésol-méta	2981	Dichlorophène	1380	Etain
1640	Crésol-ortho	1645	Dichlorophénol-2,3	5529	Ethametsulfuron-methyl
1638	Crésol-para	1486	Dichlorophénol-2,4	2093	Ethephon
5724 5725	Crotoxyphos Crufomate	1649 1648	Dichlorophénol-2,5 Dichlorophénol-2,6	1763 5528	Ethidimuron Ethiofencarbe sulfone
1392	Cuivre	1647	Dichlorophénol-3,4	6534	Ethiofencarbe sulfoxyde
1137	Cyanazine	1646	Dichlorophénol-3,5	1183	Ethion
5726	Cyanofenphos	2081	Dichloropropane-2,2	1874	Ethiophencarbe
5568 2729	Cycloate CYCLOXYDIME	1834 1835	Dichloropropylène-1,3 Cis	1184	Ethorrowhos Ethorrowhos
1696	Cycluron	1169	Dichloropropylène-1,3 Trans Dichlorprop	1495 5527	Ethoprophos Ethoxysulfuron
1681	Cyfluthrine	2544	Dichlorprop-P	2673	Ethyl tert-butyl ether
5569	Cyhalofop-butyl	1170	Dichlorvos	1497	Ethylbenzène
1138	Cyhalothrine	5349	Diclofenac	5648	EthylèneThioUrée
1139 1140	Cymoxanil Cyperméthrine	1171 1172	Diclofop méthyl Dicofol	6601 2629	EthylèneUrée Ethynyl estradiol
1680	Cyproconazole	5525	Dicrotophos	5625	Etoxazole
1359	Cyprodinil	2847	Didéméthylisoproturon	5760	Etrimfos
2897	Cyromazine	1173	Dieldrine	2020	Famoxadone
7503 5930	Cythioate Daimuron	7507 1402	Dienestrol Diéthofencarbe	5761 2057	Famphur Fénamidone
2094	Dalapon	2826	Diéthylamine	1185	Fénarimol
1929	DCPMU (métabolite du Diuron)	2628	Diethylstilbestrol	2742	Fénazaquin
1930	DCPU (métabolite Diuron)	2982	Difenacoum	1906	Fenbuconazole
1143 1144	DDD-o,p'	1905 5524	Difénoconazole Difenoxuron	2078 7513	Fenbutatin oxyde Fenchlorazole-ethyl
1144	DDD-p,p' DDE-o,p'	2983	Difethialone	1186	Fenchlorphos
1146	DDE-p,p'	1488	Diflubenzuron	2743	Fenhexamid
1147	DDT-o,p'	1814	Diflufénicanil	1187	Fénitrothion
1148 6616	DDT-p,p' DEHP	1870 7142	Diméfuron	5627 5763	Fenizon Fenobucarb
1149	Deltaméthrine	2546	Dimepiperate Dimétachlore	5970	Fenothiocarbe
1550	Déméton O + S	5737	Dimethametryn	1973	Fénoxaprop éthyl
1153	Déméton S méthyl	1678	Diméthénamide	1967	Fénoxycarbe
1154	Déméton S méthyl sulfone	5617	Dimethenamid-P	1188	Fenpropathrine
1150 1152	Déméton-O Déméton-S	1175 1403	Diméthoate Diméthomorphe	1700 1189	Fenpropidine Fenpropimorphe
2051	Déséthyl-terbuméthon	2773	Diméthylamine	1190	Fenthion
5750	Desethylterbutylazine-2-hydroxy	6292	Dimethylaniline	1500	Fénuron
2980	Desmediphame	1641	Diméthylphénol-2,4	1701	Fenvalérate
2738 1155	Desméthylisoproturon Desmétryne	6972 1698	Dimethylvinphos Dimetilan	1393 2009	Fer Fipronil
1156	Diallate	5748	dimoxystrobine	1840	Flamprop-isopropyl
1157	Diazinon	1871	Diniconazole	6539	Flamprop-methyl
1621	Dibenzo (ah) Anthracène	1578	Dinitrotoluène-2,4	1939	Flazasulfuron
1158 1498	Dibromochlorométhane Dibromoéthane-1,2	1577 5619	Dinitrotoluène-2,6 Dinocap	6393 2810	Flonicamid Florasulam
1513	Dibromométhane	1491	Dinosèbe	6545	Fluazifop
7074	Dibutyletain cation	1176	Dinoterbe	1825	Fluazifop-butyl
1480	Dicamba	7494	Dioctyletain cation	2984	Fluazinam
1679 1159	Dichlobénil Dichlofenthion	5743 5478	Dioxacarb Diphenylamine	2022 1676	Fludioxonil Flufénoxuron
1360	Dichlofluanide	7495	Diphenylamine Diphenyletain cation	2023	Flumioxazine
1160	Dichloréthane-1,1	1699	Diquat	1501	Fluométuron
1161	Dichloréthane-1,2	1492	Disulfoton	1191	Fluoranthène
1162	Dichloréthylène-1,1	5745	Ditalimfos Divers	1623	Fluorène
1163 1456	Dichloréthylène-1,2 Dichloréthylène-1,2 cis	1177 1490	Diuron DNOC	7073 5638	Fluorures Fluoxastrobine
1727	Dichloréthylène-1,2 trans	3383	Dodécyl phénol	2565	Flupyrsulfuron methyle
2929	Dichlormide	2933	Dodine	2056	Fluquinconazole
1590	Dichloroaniline-2,3	7515	DPU (Diphenylurée)	1974	Fluridone
1589 1588	Dichloroaniline-2,4 Dichloroaniline-2,5	5751 1493	Edifenphos EDTA	1675 1765	Flurochloridone Fluroxypyr
1587	Dichloroaniline-2,6	1178	Endosulfan alpha	2547	Fluroxypyr-meptyl

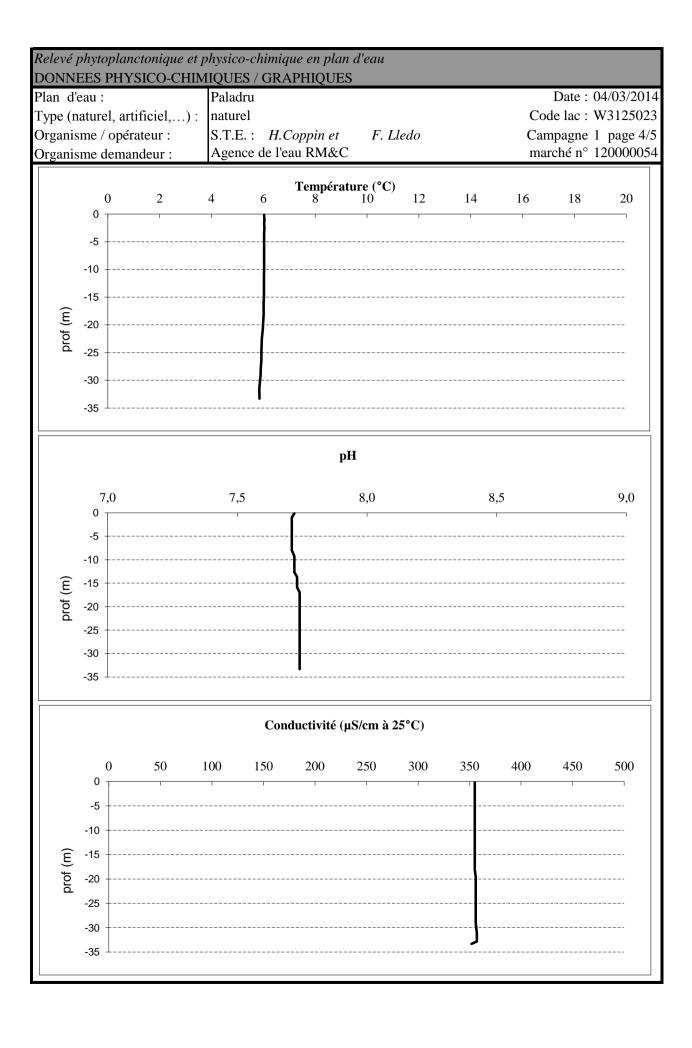
Code	Etuae aes pians a eau au prog	Code	le surveillance des bassins Rhône-l		nee et Corse – Lac de Paladru (38 ₎
SANDRE	Libellé paramètre	SANDRE	Libellé paramètre	Code SANDRE	Libellé paramètre
2024	Flurprimidol	5784	Isoxathion	1881	Myclobutanil
2008 1194	Flurtamone Flusilazole	7505 1950	Karbutilate Kresoxim méthyl	1516 1517	Naled Naphtalène
2985	Flutolanil	1094	Lambda Cyhalothrine	1517	Naphtol-1
1503	Flutriafol	1406	Lénacile	1519	Napropamide
1192	Folpel	1209	Linuron	1937	Naptalame
2075	Fomesafen	2026	Lufénuron	1520	Néburon
1674 2806	Fonofos Foramsulfuron	1210 5787	Malathion Malathion-o-analog	1386 1882	Nickel Nicosulfuron
5969	Forchlorfenuron	1211	Mancozèbe	2614	Nitrobenzène
1702	Formaldéhyde	6399	Mandipropamid	1229	Nitrofène
1703	Formétanate	1705	Manèbe	1637	Nitrophénol-2
1504	Formothion	1394	Manganèse	1957	Nonylphénols
1975 2744	Foséthyl aluminium Fosthiazate	2745 2746	MCPA-1-butyl ester MCPA-2-ethylhexyl ester	1669 2737	Norflurazon Norflurazon desméthyl
1908	Furalaxyl	2747	MCPA-butoxyethyl ester	1883	Nuarimol
2567	Furathiocarbe	2748	MCPA-ethyl-ester	2609	Octabromodiphénylether
7441	Furilazole	2749	MCPA-methyl-ester	2904	Octylphénols
6653	gamma-Hexabromocyclododecane	5789	Mecarbam	2027	Ofurace
1526	Glufosinate	1214	Mécoprop	1230	Ométhoate
2731 1506	Glufosinate-ammonium Glyphosate	2870 2750	Mecoprop n isobutyl ester Mecoprop-1-octyl ester	1668 2068	Oryzalin Oxadiargyl
5508	Halosulfuron-methyl	2751	Mecoprop-2,4,4-trimethylphenyl ester	1667	Oxadiazon
2047	Haloxyfop	2752	Mecoprop-2-butoxyethyl ester	1666	Oxadixyl
1833	Haloxyfop-éthoxyéthyl	2753	Mecoprop-2-ethylhexyl ester	1850	Oxamyl
1200	HCH alpha	2754	Mecoprop-2-octyl ester	5510	Oxasulfuron
1201 1202	HCH beta HCH delta	2755 1968	Mecoprop-methyl ester Méfenacet	1231 1952	Oxydéméton méthyl Oxyfluorfène
2046	HCH epsilon	2930	Méfenpyr diethyl	1920	p-(n-octyl)phénol
1203	HCH gamma	2568	Mefluidide	2545	Paclobutrazole
2599	Heptabromodiphényléther	2987	Méfonoxam	5806	Paraoxon
1197	Heptachlore	5533	Mepanipyrim	1522	Paraquat
1748 1749	Heptachlore époxyde cis Heptachlore époxyde trans	5791 1969	Mephosfolan Mépiquat	2618 1232	Para-sec-butylphenol Parathion éthyl
1910	Heptenophos	2089	Mépiquat chlorure	1232	Parathion methyl
2600	Hexabromodiphényléther	1878	Mépronil	1242	PCB 101
1199	Hexachlorobenzène	1510	Mercaptodiméthur	1627	PCB 105
1652	Hexachlorobutadiène	1804	Mercaptodiméthur sulfoxyde	5433	PCB 114
1656 1405	Hexachloroéthane Hexaconazole	1387 2578	Mercure Mesosulfuron methyle	1243 5434	PCB 118 PCB 123
1875	Hexaflumuron	2076	Mésotrione	2943	PCB 125
1673	Hexazinone	6579	Meta ,Para-Cresol	1089	PCB 126
1876	Hexythiazox	1706	Métalaxyl	1884	PCB 128
1704	Imazalil	1796	Métaldéhyde	1244	PCB 138
1695 1911	Imazaméthabenz Imazaméthabenz méthyl	1215 1670	Métamitrone Métazachlore	1885 1245	PCB 149 PCB 153
2986	Imazamethaoenz methyl Imazamox	1879	Metconazole	2032	PCB 156
2090	Італьный	1216	Méthabenzthiazuron	5435	PCB 157
2860	IMAZAQUINE	5792	Methacrifos	5436	PCB 167
7510	Imibenconazole	1671	Méthamidophos	1090	PCB 169
1877	Imidaclopride	1217	Méthidathion	1626	PCB 170
1204 5483	Indéno (123c) Pyrène Indoxacarbe	1218 1511	Méthomyl Méthoxychlore	1246 5437	PCB 180 PCB 189
2741	Iodocarbe	1619	Méthyl-2-Fluoranthène	1625	PCB 194
2025	Iodofenphos	1618	Méthyl-2-Naphtalène	1624	PCB 209
2563	Iodosulfuron	2067	Metiram		PCB 28
1205	Ioxynil Ioxynil mathyl actor	1515	Métobromuron Métobobloro		PCB 31
2871 1942	Ioxynil methyl ester Ioxynil octanoate	1221 5796	Métolachlore Metolcarb	1240 2031	PCB 35 PCB 37
7508	Ipoconazole	1912	Métosulame	1628	PCB 44
5777	Iprobenfos	1222	Métoxuron	1241	PCB 52
1206	Iprodione	5654	Metrafenone	2048	PCB 54
2951	Iprovalicarbe	1225	Métribuzine	5803	PCB 66
1935 1976	Irgarol Isazofos	1797 1226	Metsulfuron méthyl Mévinphos	1091 5432	PCB 77 PCB 81
1836	Isobutylbenzène	7143	Mexacarbate	1762	Penconazole
1207	Isodrine	1707	Molinate	1887	Pencycuron
1829	Isofenphos	1395	Molybdène	1234	Pendiméthaline
5781	Isoprocarb	2542	Monobutyletain cation	6394	Penoxsulam
1633 2681	Isopropylbenzène	1880 1227	Monocrotophos Monolinuron	1888 1235	Pentachlorobenzène Pentachlorophénal
1856	Isopropyltoluène o Isopropyltoluène p	7496	Monolinuron Monooctyletain cation	7509	Pentachlorophénol Penthiopyrad
1208	Isoproturon	7497	Monophenyletain cation	6548	Perfluorooctanesulfonamide (PFOSA)
2722	Isothiocyanate de methyle	1228	Monuron	1523	Perméthrine
1672	Isoxaben	7475	Morpholine	1499	Phénamiphos
2807	Isoxadifen-éthyle	1512	MTBE	1524	Phénanthrène Phonyadinhama
1945	Isoxaflutol	6342	Musc xylène	1236	Phenmédiphame

Code SANDRE	Libellé paramètre	Code SANDRE	Libellé paramètre	Code SANDRE	Libellé paramètre
2876	Phenol, 4-(3-methylbutyl)-	1262	Secbumeton	1373	Titane
5813	Phenthoate	1385	Sélénium	5675	Tolclofos-methyl
1525	Phorate	1808	Séthoxydime	1278	Toluène
1237	Phosalone	1893	Siduron	1719	Tolylfluanide
1971	Phosmet	5609	Silthiopham	1658	Tralométhrine
1238	Phosphamidon	1539	Silvex	1544	Triadiméfon
1665 1708	Phoxime Piclorame	1263 1831	Simazine	1280 1281	Triadiménol Triallate
5665	Picolinafen	5477	Simazine hydroxy Simétryne	1914	Triasulfuron
2669	Picoxystrobine	5610	Spinosad	1901	Triazamate
1709	Piperonil butoxide	7506	Spirotetramat	1657	Triazophos
5819	Piperophos	2664	Spiroxamine	2990	Triazoxide
1528	Pirimicarbe	3160	s-Triazin-2-ol, 4-amino-6-(ethylamino)-	2064	Tribenuron-Methyle
5531	Pirimicarbe Desmethyl	1541	Styrène	5840	Tributyl phosphorotrithioite
5532	Pirimicarbe Formamido Desmethyl	1662	Sulcotrione	2879	Tributyletain cation
1382	Plomb	6662	Sulfluramid (EtFOSA)	1847	Tributylphosphate
5821 1949	p-Nitrotoluene Pretilachlore	5507 2085	Sulfomethuron-methyl Sulfosufuron	1288 1284	Trichlopyr Trichloréthane-1,1,1
1253	Prochloraze	1894	Sulfotep	1285	Trichloréthane-1,1,2
1664	Procymidone	5831	Sulprofos	1286	Trichloréthylène
1889	Profénofos	1193	Taufluvalinate	1287	Trichlorfon
1710	Promécarbe	1694	Tébuconazole	2734	Trichloroaniline-2,3,4
1711	Prométon	1895	Tébufénozide	7017	Trichloroaniline-2,3,5
1254	Prométryne	1896	Tébufenpyrad	2732	Trichloroaniline-2,4,5
1712	Propachlore	7511	Tébupirimfos	1595	Trichloroaniline-2,4,6
6398	Propamocarb	1661	Tébutame	1630	Trichlorobenzène-1,2,3
1532	Propanil	1542	Tébuthiuron	1283	Trichlorobenzène-1,2,4
6964 1972	Propaghos Propaguizafop	5413 1897	Tecnazène	1629	Trichlorobenzène-1,3,5 Trichlorofluorométhane
1255	Propargite Propargite	1953	Téflubenzuron Téfluthrine	1195 1644	Trichlorophénol-2,3,4
1256	Propagne	2559	Tellure	1643	Trichlorophénol-2,3,5
5968	Propazine 2-hydroxy	7086	Tembotrione	1642	Trichlorophénol-2,3,6
1533	Propétamphos	1898	Téméphos	1548	Trichlorophénol-2,4,5
1534	Prophame	1659	Terbacile	1549	Trichlorophénol-2,4,6
1257	Propiconazole	5835	Terbucarb	1723	Trichlorophénol-3,4,5
2989	Propinèbe	1266	Terbuméton	1854	Trichloropropane-1,2,3
1535	Propoxur	1267	Terbuphos	1196	Trichlorotrifluoroéthane-1,1,2
5602	Propoxycarbazone-sodium	1268	Terbuthylazine	2898	Tricyclazole
1837 6214	Propylene thiouree	2045 1954	Terbuthylazine déséthyl Terbuthylazine hydroxy	2885 1811	Tricyclohexyletain cation Tridémorphe
1414	Propyzamide	1269	Terbutryne	5842	Trietazine
7422	Proquinazid	2601	Tétrabromodiphényléther	6102	Trietazine 2-hydroxy
1092	Prosulfocarbe	1936	Tetrabutyletain	5971	Trietazine desethyl
2534	Prosulfuron	1270	Tétrachloréthane-1,1,1,2	2678	Trifloxystrobine
5603	Prothioconazole	1271	Tétrachloréthane-1,1,2,2	1902	Triflumuron
7442	Proximpham	1272	Tétrachloréthylène	1289	Trifluraline
5416	Pymétrozine	2010	Tétrachlorobenzène-1,2,3,4	2991	Triflusulfuron-methyl
6611	Pyraclofos	2536	Tétrachlorobenzène-1,2,3,5	1802	Triforine
2576 5509	Pyraclostrobine	1631 1273	Tétrachlorobenzène-1,2,4,5 Tétrachlorophénol-2,3,4,5	1857 1609	Triméthylbenzène-1,2,3 Triméthylbenzène-1,2,4
1258	Pyraflufen-ethyl Pyrazophos	1274	Tétrachlorophénol-2,3,4,5	1509	Triméthylbenzène-1,3,5
6386	Pyrazosulfuron-ethyl	1275	Tétrachlorophénol-2,3,5,6	2096	Trinexapac-ethyl
6530	Pyrazoxyfen	1276	Tétrachlorure de C	2886	Trioctyletain cation
1537	Ругѐпе	1277	Tétrachlorvinphos	6372	Triphenyletain cation
5826	Pyributicarb	1660	Tétraconazole	2992	Triticonazole
1890	Pyridabène	1900	Tétradifon	7482	Uniconazole
5606	Pyridaphenthion	5249	Tétraphénylétain	1361	Uranium
1259	Pyridate	5837	Tetrasul	1290	Vamidothion
1663	Pyrifénox Phyrinéthanil	2555	Thallium Thisbonderale	1384	Vanadium
1432 1260	Pyriméthanil Pyrimiphos éthyl	1713 5671	Thiabendazole Thiacloprid	1291 1293	Vinclozoline Xvlène-meta
1260	Pyrimiphos méthyl	1940	Thiafluamide	1293	Xylène-ortho
5499	Pyriproxyfène	6390	Thiamethoxam	1294	Xylène-para
7340	Pyroxsulam	1714	Thiazasulfuron	1383	Zinc
1891	Quinalphos	5934	Thidiazuron	1721	Zinèbe
2087	Quinmerac	1913	Thifensulfuron méthyl	2858	Zoxamide
2028	Quinoxyfen	7512	Thiocyclam hydrogen oxalate		
1538	Quintozène	1093	Thiodicarbe	1	
2069	Quizalofop	1715	Thiofanox	1	
2070	Quizalofop éthyl	5476	Thiofanox sulfone	1	
2859 1892	Resmethrine Rimsulfuron	5475 2071	Thiofanox sulfoxyde	+	
2029	Roténone	5838	Thiométon Thionazin	†	
2974	S Métolachlore	7514	Thiophanate-ethyl	†	
1923	Sébuthylazine	1717	Thiophanate-méthyl	†	
6101	Sebuthylazine 2-hydroxy	1718	Thirame	1	
5981	Sebutylazine desethyl	5922	Tiocarbazil	1	

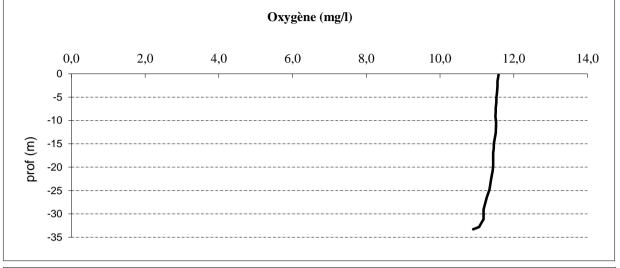

Annexe 2. LISTE DES MICROPOLLUANTS ANALYSES SUR SEDIMENT

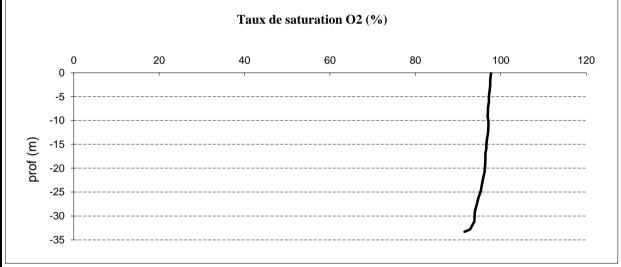
Code	Plane des plans d'eau du programme de sur reman	Code	Rhône-Méditerranée et Corse – Lac de Paladru (38
SANDRE	Libellé paramètre	SANDRE	Libellé paramètre
	4-n-nonylphénol		Bromoxynil octanoate
	4-nonylphénols ramifiés		Cadmium
	4-tert-butylphénol		Chlorfenvinphos
	4-tert-octylphénol		Chlorméphos
	Acénaphtène		Chloroalcanes C10-C13
	Acénaphtylène		Chloroaniline-2
	Acétochlore		Chloroaniline-3
	Acide perfluorooctanesulfonique (PFOS)	1591	Chloroaniline-4
1688	Aclonifen	1467	Chlorobenzène
1103	Aldrine	1612	Chlorodinitrobenzène-1,2,4
1812	Alphaméthrine	1135	Chloroforme (Trichlorométhane)
1370	Aluminium	1635	Chlorométhylphénol-2,5
1458	Anthracène	1636	Chlorométhylphénol-4,3
1376	Antimoine	1594	Chloronitroaniline-4,2
1368	Argent	1469	Chloronitrobenzène-1,2
1369	Arsenic	1468	Chloronitrobenzène-1,3
1110	Azinphos éthyl	1470	Chloronitrobenzène-1,4
1951	Azoxystrobine	1471	Chlorophénol-2
	Baryum	1651	Chlorophénol-3
	BDE 196		Chlorophénol-4
	BDE 197		Chloroprène
	BDE 198		Chloropropène-3
	BDE 203		Chlorotoluène-2
	BDE 204		Chlorotoluène-3
	BDE 205		Chlorotoluène-4
	BDE100	+	Chlorprophame
	BDE138		Chlorpyriphos éthyl
	BDE153		Chlorpyriphos méthyl
	BDE154		Chrome
	BDE183		Chrysène
	BDE209	+	Clomazone
	BDE28		Cobalt
	BDE47		Crésol-méta
	BDE77		Crésol-ortho
	BDE99		Crésol-para
	Benzène		Cuivre
	Benzidine		Cyperméthrine
	Benzo (a) Anthracène		Cyproconazole
	Benzo (a) Pyrène		Cyprodinil
	Benzo (b) Fluoranthène		DDD-o,p'
	Benzo (ghi) Pérylène		DDD-p,p'
	Benzo (k) Fluoranthène		DDE-o,p'
	Beryllium		DDE-p,p'
	Bifénox		DDT-o,p'
	Biphényle		DDT-0,p
	Bore		DEHP
	Bromoforme		Deltaméthrine
	Bromoxynil		Diazinon
1125	DIOMONYIM	113/	DIGZIIIOII

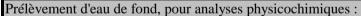
Code	Etiac des plans à éda da programme de sur ventant	Code	Rhöne-Méditerranée et Corse – Lac de Paladru (38)
SANDRE	Libellé paramètre	SANDRE	Libellé paramètre
	Dibenzo (ah) Anthracène		Endosulfan alpha
	Dibromochlorométhane		Endosulfan beta
	Dibromoéthane-1,2		Endosulfan sulfate
	Dibutyletain cation		Endrine
	Dichloréthane-1,1		Epoxiconazole
	Dichloréthane-1,2		Etain
	Dichloréthylène-1,1		Ethylbenzène
	Dichloréthylène-1,2 cis		Fénitrothion
	Dichloréthylène-1,2 trans		Fénoxycarbe
	Dichloroaniline-2,3	1393	
	Dichloroaniline-2,4		Fludioxonil
	Dichloroaniline-2,5		Fluoranthène
	Dichloroaniline-2,6		Fluorène
	Dichloroaniline-3,4		Fluroxypyr-meptyl
	Dichloroaniline-3,5		Flusilazole
	Dichlorobenzène-1,2		HCH alpha
	Dichlorobenzène-1,3		HCH beta
	Dichlorobenzène-1,4		HCH delta
	Dichlorobromométhane		HCH epsilon
	Dichlorométhane		HCH gamma
	Dichloronitrobenzène-2,3		Heptachlore
	Dichloronitrobenzène-2,4		Heptachlore époxyde cis
	Dichloronitrobenzène-2,5		Heptachlore époxyde trans
	Dichloronitrobenzène-3,4		Hexachlorobenzène
	Dichloronitrobenzène-3,5		Hexachlorobutadiène
	Dichlorophénol-2,3		Hexachloroéthane
	Dichlorophénol-2,4		Hexaconazole
	Dichlorophénol-2,5		Indéno (123c) Pyrène
	Dichlorophénol-2,6		Iprodione
	Dichlorophénol-3,4		Irgarol
	Dichlorophénol-3,5		Isodrine
	Dichloropropane-1,2		Isopropylbenzène
	Dichloropropane-1,3		Kresoxim méthyl
	Dichloropropane-2,2		Lambda Cyhalothrine
	Dichloropropène-1,1		Linuron
	Dichloropropylène-1,3 (cis + trans)		Manganèse
	Dichloropropylène-2,3		Mercure
	Dichlorprop		Méthyl-2-Fluoranthène
	Dichlorvos		Méthyl-2-Naphtalène
	Dicofol		Molybdène
	Dieldrine		Monobutyletain cation
	Diflufénicanil		Monooctyletain cation
	Diméthomorphe		Monophenyletain cation
	Diméthylphénol-2,4		Naphtalène
	Dinitrotoluène-2,4		Napropamide
	Dinitrotoluène-2,6		Nickel
	Dioctyletain cation		Nitrophénol-2
7495	Diphenyletain cation	1957	Nonylphénols


Code		Code	knone-meatierranee ei Corse – Lac ae Fataaru (56)
SANDRE	Libellé paramètre	SANDRE	Libellé paramètre
1669	Norflurazon	1272	Tétrachloréthylène
1667	Oxadiazon	2010	Tétrachlorobenzène-1,2,3,4
1920	p-(n-octyl)phénol	2536	Tétrachlorobenzène-1,2,3,5
	Parathion éthyl		Tétrachlorobenzène-1,2,4,5
1242	PCB 101		Tétrachlorophénol-2,3,4,5
1627	PCB 105		Tétrachlorophénol-2,3,4,6
5433	PCB 114		Tétrachlorophénol-2,3,5,6
1243	PCB 118		Tétrachlorure de C
5434	PCB 123	1660	Tétraconazole
1089	PCB 126	2555	Thallium
	PCB 138	1373	Titane
	PCB 153		Toluène
	PCB 156		Tributyletain cation
	PCB 157		Tributylphosphate
5436	PCB 167		Trichlopyr
	PCB 169		Trichloréthane-1,1,1
1626	PCB 170	1285	Trichloréthane-1,1,2
	PCB 180		Trichloréthylène
	PCB 189		Trichloroaniline-2,3,4
	PCB 194		Trichloroaniline-2,3,5
	PCB 209		Trichloroaniline-2,4,5
	PCB 28		Trichloroaniline-2,4,6
	PCB 35		Trichlorobenzène-1,2,3
	PCB 44		Trichlorobenzène-1,2,4
	PCB 52		Trichlorobenzène-1,3,5
	PCB 77		Trichlorofluorométhane
	PCB 81		Trichlorophénol-2,3,4
	Pendiméthaline		Trichlorophénol-2,3,5
	Pentachlorobenzène		Trichlorophénol-2,3,6
	Pentachlorophénol		Trichlorophénol-2,4,5
	Phénanthrène		Trichlorophénol-2,4,6
	Phoxime		Trichlorophénol-3,4,5
	Plomb		Trichlorotrifluoroéthane-1,1,2
	Procymidone		Tricyclohexyletain cation
	Propyzamide		Trifluraline
	Pyrène		Trinitrotoluène
	Quinoxyfen		Trioctyletain cation
	Sélénium		Triphenyletain cation
	Somme de 3 Hexabromocyclododecanes		Uranium
	Sulcotrione		Vanadium
	Tébuconazole		Xylène-meta
	Tébutame		Xylène-ortho
	Tellure		Xylène-para
	Terbuthylazine	1383	Zinc
	Terbutryne		
	Tetrabutyletain		
	Tétrachloréthane-1,1,1,2		
1271	Tétrachloréthane-1,1,2,2		

Annexe 3. COMPTES RENDUS DES CAMPAGNES PHYSICO-CHIMIQUES ET PHYTOPLANCTONIQUES



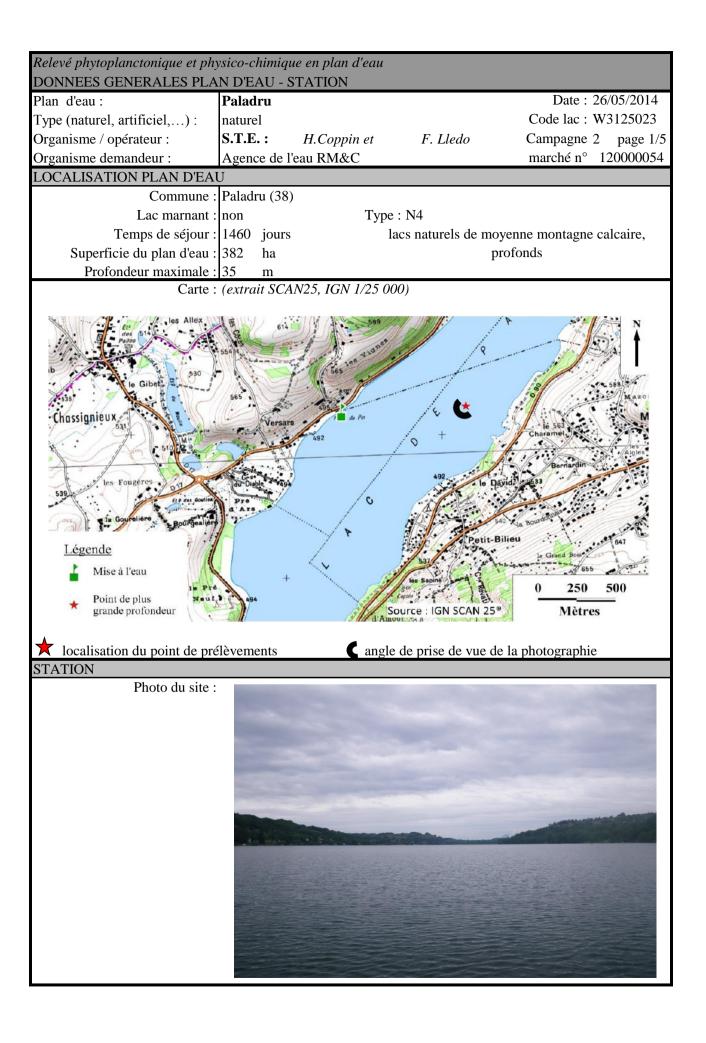

Relevé phytoplanctonique et phy	ysico-chimique en plan d'eau	
DONNEES GENERALES CAN	MPAGNE	
Plan d'eau:	Paladru	Date: 04/03/2014
Type (naturel, artificiel,):	naturel	Code lac: W3125023
Organisme / opérateurs :	S.T.E.: H.Coppin et F. Lled	o Campagne 1 page 2/5
Organisme demandeur:	Agence de l'eau RM&C	marché n° 120000054
STATION		
Coordonnées de la station	relevées sur : GPS	
Lambert 93	X:898090	Y: 6486896 alt.: 500 m
WGS 84 (systinternational)	GPS (en dms) X:	Y: alt.: m
Profondeur :	35,0 m	
	Vent: moyen	
	Météo: humide	
Conditions d'observation :	Surface de l'eau : agitée	
	Hauteur des vagues : 0,10 m	P atm standard: 953 hPa
	Bloom algal: non	Pression atm. : 960 hPa
Marnage:	non Hauteu	r de la bande: 0 m
Campagne :	campagne de fin d'hiver : homother de l'activité biologique	mie du plan d'eau avant démarrage
PRELEVEMENTS ZONE EUP		
Heure de début du relevé :		
Prélèvements pour analyses :	eau pour µpoll matériel empl heure : 11:30	oyé : pompe
Prélèvements pour analyses :	eau pour phy-chi matériel empl	oyé : bouteille intégratrice
	chloro + phyto heure : 11:00	
	Prélèvement pour analyses de la physico-c	chimie classique, du phytoplancton
	et de la chlorophylle effectué avec une clo	che Pelletier sur une zone
	euphotique de 15 m	
	Filtration pour analyse de chlorophylle sur	place : vol filtré : 1000 ml
	Echantillon phytoplancton : ajout de 7 ml	de lugol
Gestion :	Société du lac de Paladru	
Gestion :	Société du lac de Paladru Mise à l'eau à l'ouest du plan d'eau au nive	au du lieu-dit "plage du pin"
		1 0 1
	Mise à l'eau à l'ouest du plan d'eau au nive	1 0 1
	Mise à l'eau à l'ouest du plan d'eau au nive	1 0 1
	Mise à l'eau à l'ouest du plan d'eau au nive	1 0 1
Contact préalable :	Mise à l'eau à l'ouest du plan d'eau au nive	
Contact préalable :	Mise à l'eau à l'ouest du plan d'eau au nive Garde du lac (Mr. Prieto) : 06.32.11.48.26	
Contact préalable :	Mise à l'eau à l'ouest du plan d'eau au nive Garde du lac (Mr. Prieto) : 06.32.11.48.26	
Contact préalable :	Mise à l'eau à l'ouest du plan d'eau au nive Garde du lac (Mr. Prieto) : 06.32.11.48.26	
Contact préalable :	Mise à l'eau à l'ouest du plan d'eau au nive Garde du lac (Mr. Prieto) : 06.32.11.48.26	, , , , , , , , , , , , , , , , , , ,


Relevé phytoplanctonique et p	hysico-ch	imique en	plan d'e	гаи			
DONNEES PHYSICO-CHIM	IQUES						
Plan d'eau:	Paladru					Date:	04/03/2014
Type (naturel, artificiel,):	naturel					Code lac:	W3125023
Organisme / opérateur :	S.T.E. :	H.Coppin	n et	F. Lledo		Campagne	1 page 3/5
Organisme demandeur :	Agence d	gence de l'eau RM&C marché n° 120000				120000054	
TRANSPARENCE							
Secchi en m:	6,0	6,0 Z euphotique (2,5 x Secchi): 15,0 m					m
PROFIL VERTICAL		, 10,0 M					
Moyen de mesure utilisé :	X	in-situ à c	haque pro	of.		en surface dan	s un récipient
	Prof.	Temp.	pН	Cond.	O_2	O_2	Heure
prof prélèvements Phy-chi	(m)	(°C)		(µS/cm 25°)	(%)	(mg/l)	
	-0,2	6,0	7,7	355	98	11,6	11:20
	-1,0	6,0	7,7	355	98	11,6	
	-1,6	6,0	7,7	355	98	11,6	
	-2,6	6,0	7,7	355	98	11,6	
	-3,6	6,0	7,7	355	97	11,6	
prélèvement intégré PC	-4,4	6,0	7,7	355	97	11,5	
	-5,1	6,0	7,7	355	97	11,5	
	-6,1	6,0	7,7	355	97	11,5	
	-7,4	6,0	7,7	355	97	11,5	
	-8,0	6,0	7,7	355	97	11,5	
	-9,3	6,0	7,7	355	97	11,5	
	-10,1	6,0	7,7	355	97	11,5	
	-11,2	6,0	7,7	355	97	11,5	
	-12,7	6,0	7,7	355	97	11,5	
	-13,7	6,0	7,7	355	97	11,5	
	-15,0	6,0	7,7	355	97	11,5	
	-15,9	6,0	7,7	355	97	11,5	
	-17,0	6,0	7,7	355	96	11,4	
	-18,1	6,0	7,7	355	96	11,4	
	-19,6	6,0	7,7	356	96	11,4	
	-20,7	6,0	7,7	356	96	11,4	
	-22,4	5,9	7,7	356	96	11,4	
	-24,8	5,9	7,7	356	95	11,3	
	-26,4	5,9	7,7	356	95	11,3	
	-27,9	5,9	7,7	356	94	11,2	
	-29,1	5,9	7,7	356	94	11,2	
	-31,2	5,9	7,7	357	94	11,2	
	-31,7	5,8	7,7	357	94	11,1	
(1)(1 C 1DC	-32,8	5,9	7,7	357	93	11,1	11.22
prélèvement de fond PC	-33,3	5,9	7,7	352	92	10,9	11:23
							
							
		ļ	ļ				

heure de prélèvement : 13:00 moyen utilisé : pompe et tuyaux téflon

Distance au fond : 1.0 m soit à Zf = 34.0 m

Remarques et observations :


Remise des échantillons :

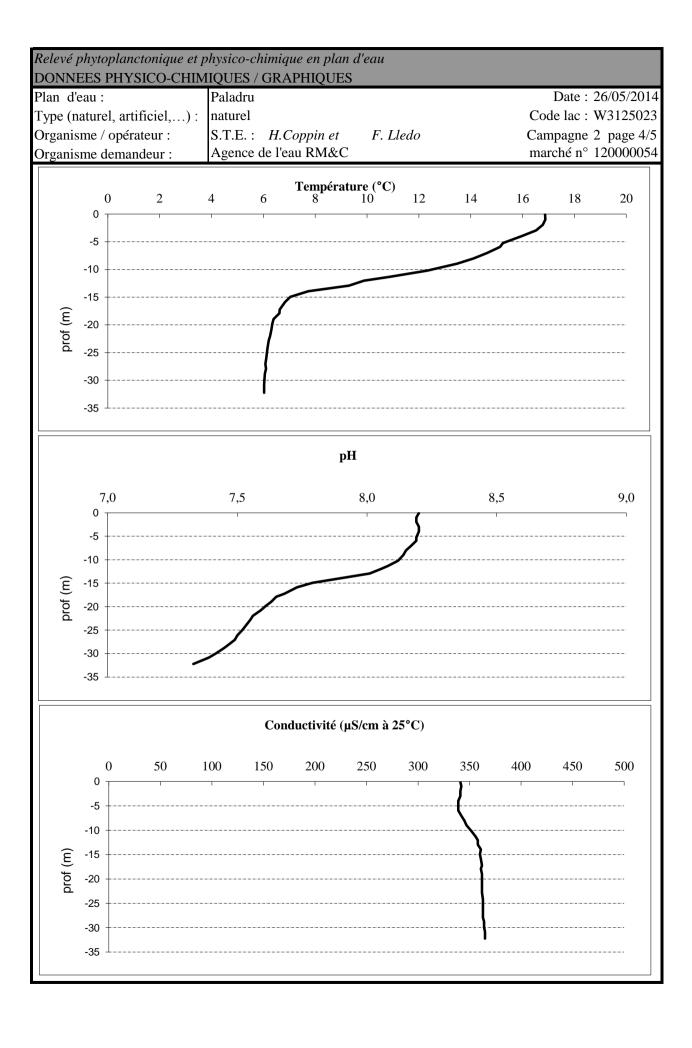
Echantillons pour analyses physicochimiques (Laboratoire CARSO)

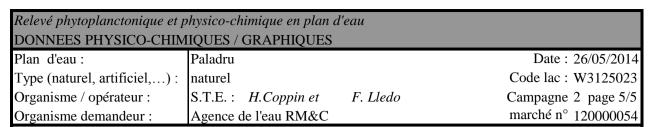
échantillon intégré n° echantillon de fond n° **274104** bon transport 693101100341 9357 bon transport 693101100341 9311

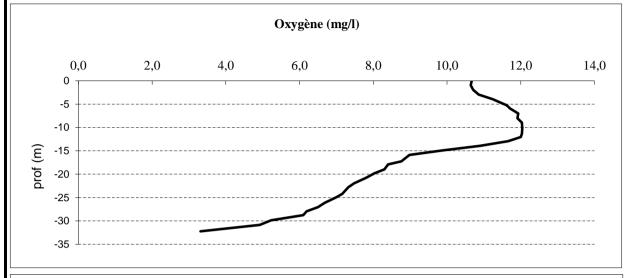
Au transporteur : TNT le 04/03/14 à 17h 00
Arrivée au laboratoire CARSO dans la matinée du : 05/03/14

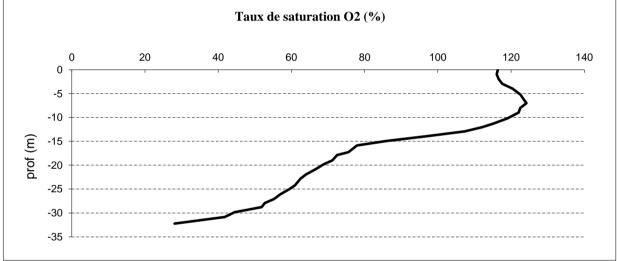
Echantillons pour analyses phytoplanctoniques à BECQ'EAU, le 31/03/14

Relevé phytoplanctonique et ph	ysico-chimique en plan d'eau
DONNEES GENERALES CAN	
Plan d'eau :	Paladru Date : 26/05/2014
Type (naturel, artificiel,):	naturel Code lac: W3125023
Organisme / opérateurs :	S.T.E.: H.Coppin et F. Lledo Campagne 2 page 2/5
Organisme demandeur:	Agence de l'eau RM&C marché n° 120000054
STATION	
Coordonnées de la station	relevées sur : GPS
Lambert 93	X:898090 Y: 6486896 alt.: 500 m
WGS 84 (systinternational)	GPS (en dms) X: Y: alt.: m
Profondeur :	33,0 m
	Vent: nul
	Météo: sec fortement nuageux
Conditions d'observation :	Surface de l'eau : lisse
	Hauteur des vagues : 0,00 m P atm standard : 953 hPa
	Bloom algal: non Pression atm.: 955 hPa
Marnage:	non Hauteur de la bande : 0 m
Campagne:	campagne printanière de croissance du phytoplancton : mise en place de la thermocline
PRELEVEMENTS ZONE EUP	MOTIONE
Heure de début du relevé :	
	Heure de fin du relevé : 13:30
Heure de début du relevé :	Heure de fin du relevé : 13:30 eau pour μpoll matériel employé : pompe heure : 12:00
Heure de début du relevé : Prélèvements pour analyses :	Heure de fin du relevé : 13:30 eau pour μpoll matériel employé : pompe heure : 12:00
Heure de début du relevé : Prélèvements pour analyses :	Heure de fin du relevé : 13:30 eau pour μpoll matériel employé : pompe heure : 12:00 eau pour phy-chi matériel employé : bouteille intégratrice
Heure de début du relevé : Prélèvements pour analyses :	Heure de fin du relevé : 13:30 eau pour μpoll matériel employé : pompe heure : 12:00 eau pour phy-chi chloro + phyto matériel employé : bouteille intégratrice heure : 11:30
Heure de début du relevé : Prélèvements pour analyses :	Heure de fin du relevé : 13:30 eau pour μpoll matériel employé : pompe heure : 12:00 eau pour phy-chi chloro + phyto heure : 11:30 Prélèvement pour analyses de la physico-chimie classique, du phytoplancton
Heure de début du relevé : Prélèvements pour analyses :	Heure de fin du relevé : 13:30 eau pour μpoll matériel employé : pompe heure : 12:00 eau pour phy-chi chloro + phyto matériel employé : bouteille intégratrice chloro + phyto heure : 11:30 Prélèvement pour analyses de la physico-chimie classique, du phytoplancton et de la chlorophylle effectué avec une cloche Pelletier sur une zone
Heure de début du relevé : Prélèvements pour analyses :	Heure de fin du relevé : 13:30 eau pour μpoll matériel employé : pompe heure : 12:00 eau pour phy-chi chloro + phyto heure : 11:30 Prélèvement pour analyses de la physico-chimie classique, du phytoplancton et de la chlorophylle effectué avec une cloche Pelletier sur une zone euphotique de 11 m
Heure de début du relevé : Prélèvements pour analyses :	Heure de fin du relevé : 13:30 eau pour μpoll matériel employé : pompe heure : 12:00 eau pour phy-chi chloro + phyto heure : 11:30 Prélèvement pour analyses de la physico-chimie classique, du phytoplancton et de la chlorophylle effectué avec une cloche Pelletier sur une zone euphotique de 11 m Filtration pour analyse de chlorophylle sur place : vol filtré : 1000 ml
Heure de début du relevé : Prélèvements pour analyses : Prélèvements pour analyses :	Heure de fin du relevé : 13:30 eau pour μpoll matériel employé : pompe heure : 12:00 eau pour phy-chi chloro + phyto heure : 11:30 Prélèvement pour analyses de la physico-chimie classique, du phytoplancton et de la chlorophylle effectué avec une cloche Pelletier sur une zone euphotique de 11 m Filtration pour analyse de chlorophylle sur place : vol filtré : 1000 ml
Heure de début du relevé : Prélèvements pour analyses : Prélèvements pour analyses :	eau pour μpoll matériel employé : pompe heure : 12:00 eau pour phy-chi chloro + phyto heure : 11:30 Prélèvement pour analyses de la physico-chimie classique, du phytoplancton et de la chlorophylle effectué avec une cloche Pelletier sur une zone euphotique de 11 m Filtration pour analyse de chlorophylle sur place : vol filtré : 1000 ml Echantillon phytoplancton : ajout de 8 ml de lugol
Heure de début du relevé : Prélèvements pour analyses : Prélèvements pour analyses : Gestion :	eau pour μpoll matériel employé : pompe heure : 12:00 eau pour phy-chi chloro + phyto heure : 11:30 Prélèvement pour analyses de la physico-chimie classique, du phytoplancton et de la chlorophylle effectué avec une cloche Pelletier sur une zone euphotique de 11 m Filtration pour analyse de chlorophylle sur place : vol filtré : 1000 ml Echantillon phytoplancton : ajout de 8 ml de lugol
Heure de début du relevé : Prélèvements pour analyses : Prélèvements pour analyses : Gestion :	eau pour μpoll matériel employé : pompe heure : 12:00 eau pour phy-chi chloro + phyto heure : 11:30 Prélèvement pour analyses de la physico-chimie classique, du phytoplancton et de la chlorophylle effectué avec une cloche Pelletier sur une zone euphotique de 11 m Filtration pour analyse de chlorophylle sur place : vol filtré : 1000 ml Echantillon phytoplancton : ajout de 8 ml de lugol Société du lac de Paladru Mise à l'eau à l'ouest du plan d'eau au niveau du lieu-dit "plage du pin"
Heure de début du relevé : Prélèvements pour analyses : Prélèvements pour analyses : Gestion :	eau pour μpoll matériel employé : pompe heure : 12:00 eau pour phy-chi chloro + phyto heure : 11:30 Prélèvement pour analyses de la physico-chimie classique, du phytoplancton et de la chlorophylle effectué avec une cloche Pelletier sur une zone euphotique de 11 m Filtration pour analyse de chlorophylle sur place : vol filtré : 1000 ml Echantillon phytoplancton : ajout de 8 ml de lugol Société du lac de Paladru Mise à l'eau à l'ouest du plan d'eau au niveau du lieu-dit "plage du pin"
Heure de début du relevé : Prélèvements pour analyses : Prélèvements pour analyses : Gestion :	eau pour μpoll matériel employé : pompe heure : 12:00 eau pour phy-chi chloro + phyto heure : 11:30 Prélèvement pour analyses de la physico-chimie classique, du phytoplancton et de la chlorophylle effectué avec une cloche Pelletier sur une zone euphotique de 11 m Filtration pour analyse de chlorophylle sur place : vol filtré : 1000 ml Echantillon phytoplancton : ajout de 8 ml de lugol Société du lac de Paladru Mise à l'eau à l'ouest du plan d'eau au niveau du lieu-dit "plage du pin"
Heure de début du relevé : Prélèvements pour analyses : Prélèvements pour analyses : Gestion : Contact préalable :	eau pour μpoll matériel employé : pompe heure : 12:00 eau pour phy-chi chloro + phyto heure : 11:30 Prélèvement pour analyses de la physico-chimie classique, du phytoplancton et de la chlorophylle effectué avec une cloche Pelletier sur une zone euphotique de 11 m Filtration pour analyse de chlorophylle sur place : vol filtré : 1000 ml Echantillon phytoplancton : ajout de 8 ml de lugol Société du lac de Paladru Mise à l'eau à l'ouest du plan d'eau au niveau du lieu-dit "plage du pin"
Heure de début du relevé : Prélèvements pour analyses : Prélèvements pour analyses : Gestion : Contact préalable :	eau pour µpoll matériel employé : pompe heure : 12:00 eau pour phy-chi chloro + phyto matériel employé : bouteille intégratrice chloro + phyto heure : 11:30 Prélèvement pour analyses de la physico-chimie classique, du phytoplancton et de la chlorophylle effectué avec une cloche Pelletier sur une zone euphotique de 11 m Filtration pour analyse de chlorophylle sur place : vol filtré : 1000 ml Echantillon phytoplancton : ajout de 8 ml de lugol Société du lac de Paladru Mise à l'eau à l'ouest du plan d'eau au niveau du lieu-dit "plage du pin" Garde du lac (Mr. Prieto) : 06.32.11.48.26
Heure de début du relevé : Prélèvements pour analyses : Prélèvements pour analyses : Gestion : Contact préalable :	eau pour µpoll matériel employé : pompe heure : 12:00 eau pour phy-chi chloro + phyto matériel employé : bouteille intégratrice chloro + phyto heure : 11:30 Prélèvement pour analyses de la physico-chimie classique, du phytoplancton et de la chlorophylle effectué avec une cloche Pelletier sur une zone euphotique de 11 m Filtration pour analyse de chlorophylle sur place : vol filtré : 1000 ml Echantillon phytoplancton : ajout de 8 ml de lugol Société du lac de Paladru Mise à l'eau à l'ouest du plan d'eau au niveau du lieu-dit "plage du pin" Garde du lac (Mr. Prieto) : 06.32.11.48.26
Heure de début du relevé : Prélèvements pour analyses : Prélèvements pour analyses : Gestion : Contact préalable :	eau pour µpoll matériel employé : pompe heure : 12:00 eau pour phy-chi chloro + phyto matériel employé : bouteille intégratrice chloro + phyto heure : 11:30 Prélèvement pour analyses de la physico-chimie classique, du phytoplancton et de la chlorophylle effectué avec une cloche Pelletier sur une zone euphotique de 11 m Filtration pour analyse de chlorophylle sur place : vol filtré : 1000 ml Echantillon phytoplancton : ajout de 8 ml de lugol Société du lac de Paladru Mise à l'eau à l'ouest du plan d'eau au niveau du lieu-dit "plage du pin" Garde du lac (Mr. Prieto) : 06.32.11.48.26
Heure de début du relevé : Prélèvements pour analyses : Prélèvements pour analyses : Gestion : Contact préalable :	eau pour µpoll matériel employé : pompe heure : 12:00 eau pour phy-chi chloro + phyto matériel employé : bouteille intégratrice chloro + phyto heure : 11:30 Prélèvement pour analyses de la physico-chimie classique, du phytoplancton et de la chlorophylle effectué avec une cloche Pelletier sur une zone euphotique de 11 m Filtration pour analyse de chlorophylle sur place : vol filtré : 1000 ml Echantillon phytoplancton : ajout de 8 ml de lugol Société du lac de Paladru Mise à l'eau à l'ouest du plan d'eau au niveau du lieu-dit "plage du pin" Garde du lac (Mr. Prieto) : 06.32.11.48.26


Relevé phytoplanctonique et physico-chimique en plan d'eau


DONNEES PHYSICO-CHIMIQUES


Plan d'eau : Paladru Date : 26/05/2014
Type (naturel, artificiel,...) : naturel Code lac : W3125023


Organisme / opérateur : S.T.E. : *H.Coppin et F. Lledo* Campagne 2 page 3/5
Organisme demandeur : Agence de l'eau RM&C marché n° 120000054

En ANGRA DENIGE	U						
TRANSPARENCE							
Secchi en m :	4,4		Z eupho	otique (2,5 x S	lecchi):	11,0	m
PROFIL VERTICAL							
Moyen de mesure utilisé :	X	in-situ à c	haque pr	of.		en surface dans	s un récipient
prof prélèvements Phy-chi	Prof.	Temp.	pН	Cond.	O_2	O_2	Heure
prof prefevements i ny em	(m)	(°C)		(µS/cm 25°)	(%)	(mg/l)	
	-0,1	16,9	8,2	341	116	10,7	11:18
	-1,0	16,9	8,2	342	116	10,6	
	-2,0	16,8	8,2	341	117	10,7	
	-3,0	16,5	8,2	341	118	10,9	
	-4,0	16,0	8,2	339	120	11,2	
prélèvement intégré PC	-5,3	15,2	8,2	339	123	11,6	
prefevement integre i e	-5,9	15,1	8,2	339	123	11,7	
	-7,0	14,6	8,2	342	124	11,9	
	-8,0	14,1	8,2	345	123	11,9	
	-9,0	13,5	8,1	347	122	12,0	
	-10,2	12,3	8,1	352	119	12,0	
	-11,3	10,9	8,1	356	115	12,0	
	-12,0	9,9	8,1	358	112	12,0	
	-12,9	9,3	8,0	358	107	11,7	
	-13,9	7,7	7,9	361	97	10,9	
	-14,9	7,0	7,8	360	86	9,9	
	-15,9	6,8	7,7	361	78	9,0	
	-17,3	6,6	7,7	362	76	8,8	
	-17,9	6,6	7,7	361	73	8,4	
	-19,0	6,4	7,6	362	71	8,3	
	-19,8	6,3	7,6	362	69	8,0	
	-20,8	6,3	7,6	362	67	7,8	
	-21,9	6,3	7,6	362	64	7,5	
	-22,8	6,2	7,6	362	63	7,3	
	-24,2	6,2	7,5	363	61	7,2	
	-25,0	6,1	7,5	363	60	7,0	
	-26,1	6,1	7,5	363	57	6,7	
	-27,1	6,1	7,5	363	55	6,5	
	-27,9	6,1	7,5	363	53	6,2	
	-28,8	6,1	7,5	364	52	6,1	
	-29,9	6,0	7,4	364	45	5,2	
	-30,9	6,0	7,4	365	42	4,9	
prélèvement de fond PC	-32,2	6,0	7,3	365	28	3,3	11:26
						ŕ	

Prelevement d'eau de fond,	pour	analyses	pn	ysicochimiqi	ues :

heure de prélèvement : 13:00 moyen utilisé : pompe et tuyaux téflon

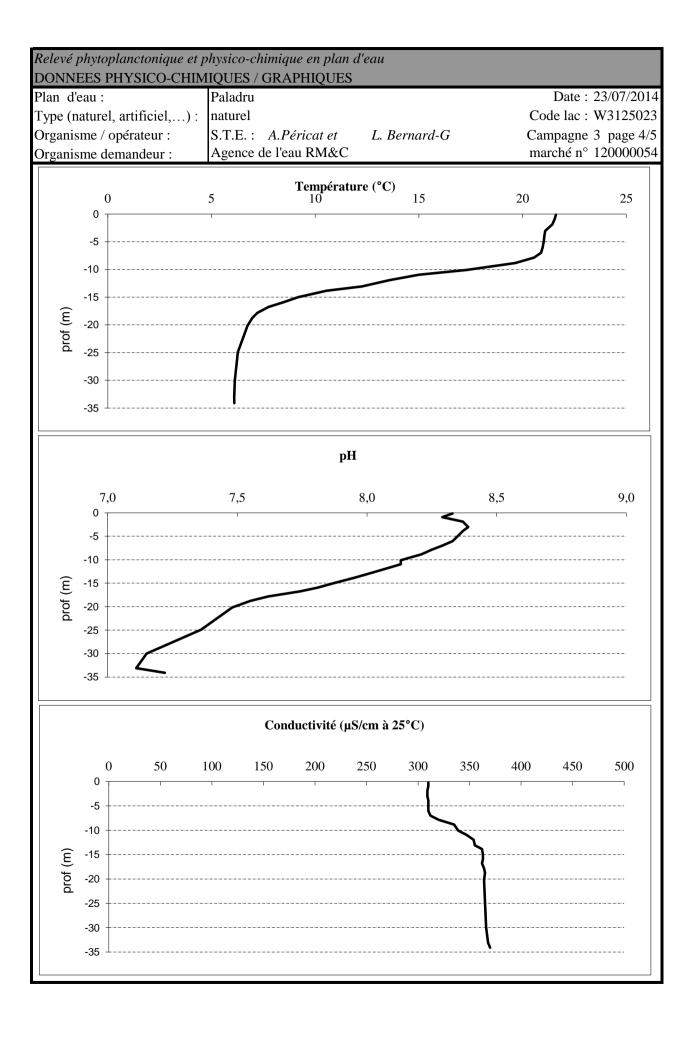
Distance au fond : 1.0 m soit à Zf = 32.0 m

Remarques et observations :

Remise des échantillons :

Echantillons pour analyses physicochimiques (Laboratoire CARSO)

échantillon intégré n° **274105** bon transport 693101100350 2445 échantillon de fond n° **274125** bon transport 693101100350 2388

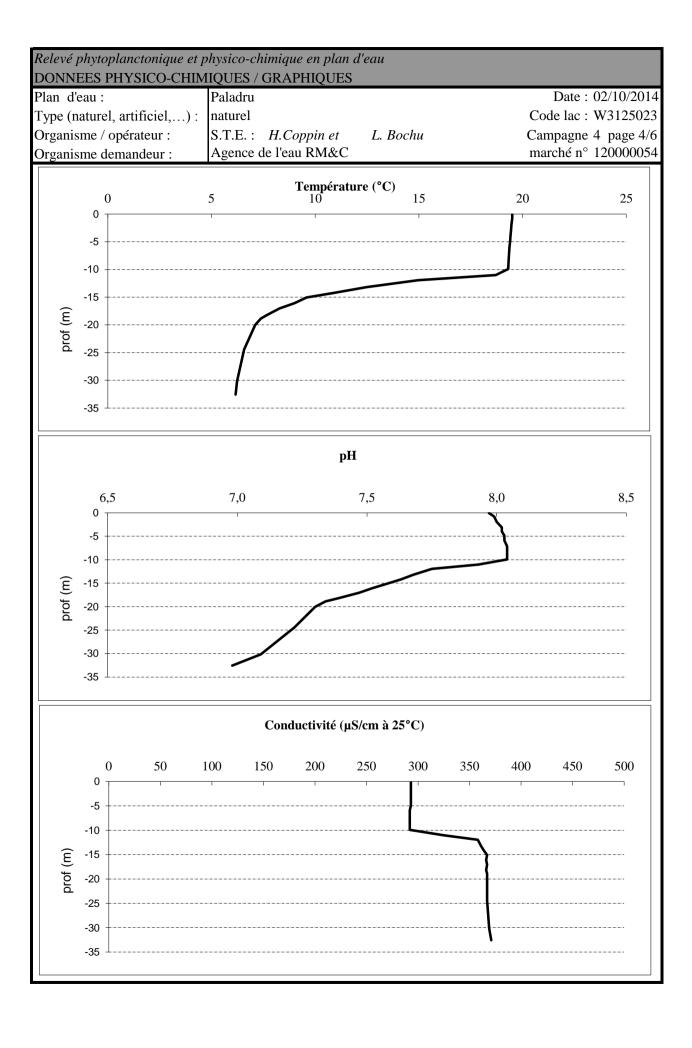

Au transporteur : TNT le 26/05/14 à 17h 00
Arrivée au laboratoire CARSO dans la matinée du : 27/05/14

Echantillons pour analyses phytoplanctoniques à BECQ'EAU, le envoi groupé fin juin

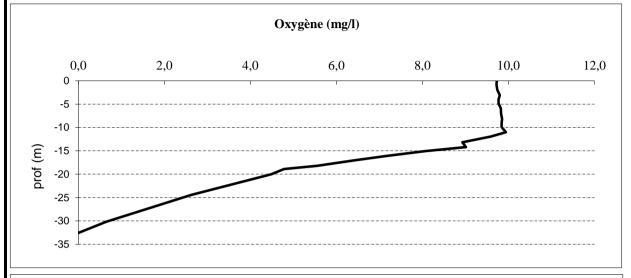
Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES GENERALES PLAN D'EAU - STATION Plan d'eau: Paladru Date: 23/07/2014 Type (naturel, artificiel,...): naturel Code lac: W3125023 **S.T.E.** : Organisme / opérateur : A.Péricat et L. Bernard-G Campagne 3 page 1/5 marché n° 12000054 Organisme demandeur: Agence de l'eau RM&C LOCALISATION PLAN D'EAU Commune: Paladru (38) Type: N4 Lac marnant: non lacs naturels de moyenne montagne calcaire, Temps de séjour : 1460 jours Superficie du plan d'eau: 382 ha profonds Profondeur maximale: Carte: (extrait SCAN25, IGN 1/25 000) hassignieux Mise à l'eau 500 Point de plus grande profondeur Source : IGN SCAN 25° Mètres **C** angle de prise de vue de la photographie localisation du point de prélèvements STATION Photo du site:

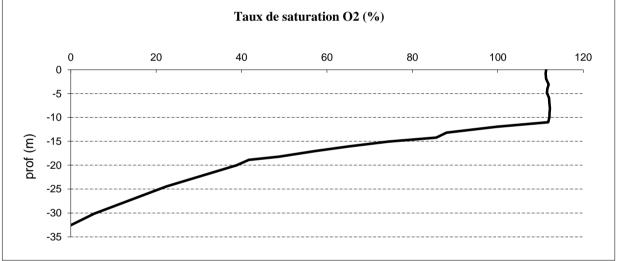
Relevé phytoplanctonique et phy	* *
DONNEES GENERALES CAN	
Plan d'eau :	Paladru Date : 23/07/2014
Type (naturel, artificiel,):	naturel Code lac: W3125023
Organisme / opérateurs :	S.T.E.: A.Péricat et L. Bernard-G Campagne 3 page 2/5
Organisme demandeur:	Agence de l'eau RM&C marché n° 120000054
STATION	
Coordonnées de la station	relevées sur : GPS
Lambert 93	X:898090 Y: 6486896 alt.:500 m
WGS 84 (systinternational)	GPS (en dms) X: Y: alt.: m
Profondeur:	
Trotonacur	Vent: faible
	Météo : sec fortement nuageux
	victeo. see fortement nuageux
Canditiana diabaamatian	Conformation de l'access
Conditions d'observation :	Surface de l'eau : faiblement agitée
	H. 4 1
	Hauteur des vagues : 0,05 m P atm standard : 953 hPa
	Bloom algal: non Pression atm.: 955 hPa
Marnage :	non Hauteur de la bande : 0 m
Campagne :	campagne estivale : thermocline bien installée, 2ème phase de croissance du phytoplancton
	NOTION D
PRELEVEMENTS ZONE EUP	
Heure de début du relevé :	
Prélèvements pour analyses :	eau pour µpoll matériel employé : pompe heure : 15:40
Prélèvements pour analyses :	eau pour phy-chi matériel employé : bouteille intégratrice
	chloro + phyto heure : 16:30
	Prélèvement pour analyses de la physico-chimie classique, du phytoplancton
	et de la chlorophylle effectué avec une cloche Pelletier sur une zone
	euphotique de 11 m
	Filtration pour analyse de chlorophylle sur place : vol filtré : 1000 ml
	Echantillon phytoplancton: ajout de 5 ml de lugol
	Denantinon phytopianeton , ajout de 3 mi de jugoi
Gastion :	Société du lac de Paladru
Gestion:	
	Mise à l'eau à l'ouest du plan d'eau au niveau du lieu-dit "plage du pin"
Contact prealable:	Garde du lac (Mr. Prieto): 06.32.11.48.26
Remarques, observations:	Mesure in situ à l'aide d'une sonde multiparamètre MS5 en profondeur

Relevé phytoplanctonique et p		iimique en	plan d'e	eau			
DONNEES PHYSICO-CHIM	, `						22/25/22
'lan d'eau:	Paladru						23/07/20
Type (naturel, artificiel,):	naturel					Code lac:	
Organisme / opérateur :		A.Périca		L. Bernard-G	7	Campagne	
Organisme demandeur :	Agence of	de l'eau RN	Л&C			marché n°	12000003
TRANSPARENCE							
Secchi en m :	4,4		Z eupho	otique (2,5 x S	ecchi):	11,0	m
ROFIL VERTICAL		1		-		1	
Moyen de mesure utilisé :		in-situ à c			_	en surface dan	
prof prélèvements Phy-chi	Prof.	Temp.	pН	Cond.	O_2	O_2	Heure
1 1 7	(m)	(°C)		(μS/cm 25°)	(%)	(mg/l)	
	-0,1	21,6	8,3	310	116	9,5	15:59
	-0,9	21,6	8,3	310	116	9,6	
	-1,9	21,4	8,4	309	117	9,7	
prélèvement intégré PC	-3,1	21,1	8,4	309	118	9,8	
	-3,9	21,1	8,4	310	118	9,8	
	-4,9	21,0	8,4	310	118	9,8	
	-6,0	21,0	8,3	310	118	9,8	
	-7,0	20,9	8,3	312	117	9,8	
	-7,9	20,6	8,3	320	116	9,8	
	-8,8	19,6	8,2	335	117	10,0	
	-10,1	17,3	8,1	339	122	10,9	
	-11,0	15,0	8,1	347	131	12,2	
	-12,0	13,6	8,1	354	133	12,9	
	-13,1	12,3	8,0	355	125	12,6	
	-13,9	10,5	8,0	362	115	11,9	
	-15,0	9,2	7,9	363	106	11,4	
	-15,9	8,4	7,8	363	101	11,0	
	-16,8	7,8	7,7	362	92	10,2	
	-17,8	7,2	7,6	364	80	9,1	
	-18,8	7,0	7,6	365	72	8,1	
	-20,2	6,7	7,5	364	62	7,1	
	-24,9	6,3	7,4	365	36	4,2	
	-30,0	6,1	7,2	366	6	0,7	
	-33,1	6,1	7,1	368	0	0,0	
prélèvement de fond PC	-34,1	6,1	7,2	370	0	0,0	16:11



Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES Date: 23/07/2014 Plan d'eau: Paladru Type (naturel, artificiel,...): naturel Code lac: W3125023 Organisme / opérateur : S.T.E.: A.Péricat et L. Bernard-G Campagne 3 page 5/5 marché n° 120000054 Organisme demandeur: Agence de l'eau RM&C Oxygène (mg/l) 0,0 2,0 4,0 6,0 8,0 10,0 12,0 14,0 0 -10 prof (m) -15 -20 -25 -30 -35 Taux de saturation O2 (%) 20 0 40 60 80 100 120 140 -5 -10 prof (m) -15 -20 -25 -30 -35 Prélèvement d'eau de fond, pour analyses physicochimiques : heure de prélèvement : 17h00 moyen utilisé: pompe et tuyaux téflon soit à Zf = 34,0 m Distance au fond: 1,0 m Remarques et observations : Remise des échantillons : Echantillons pour analyses physicochimiques (Laboratoire CARSO) échantillon intégré n° 274106 bon transport échantillon de fond n° 274126 bon transport Dépôt au laboratoire CARSO dans la matinée du : 24/07/14 Echantillons pour analyses phytoplanctoniques à BECQ'EAU, le 08/08/14


Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES GENERALES PLAN D'EAU - STATION Paladru Date: 02/10/2014 Plan d'eau: Type (naturel, artificiel,...): naturel Code lac: W3125023 Organisme / opérateur : **S.T.E.**: H.Coppin et L. Bochu Campagne 4 page 1/6 120000054 Organisme demandeur: Agence de l'eau RM&C marché n° LOCALISATION PLAN D'EAU Commune: Paladru (38) Type: N4 Lac marnant: non lacs naturels de moyenne montagne calcaire, Temps de séjour : 1460 jours Superficie du plan d'eau: 382 ha profonds Profondeur maximale: Carte: (extrait SCAN25, IGN 1/25 000) hassignieux Mise à l'eau 250 500 Point de plus grande profondeur Source : IGN SCAN 25 Mètres localisation du point de prélèvements **C** angle de prise de vue de la photographie STATION Photo du site: Absence de photo


Releve phylopianelonique el ph	ysico-chimique en plan d'eau
DONNEES GENERALES CAN	MPAGNE
Plan d'eau:	Paladru Date: 02/10/2014
Type (naturel, artificiel,):	naturel Code lac: W3125023
Organisme / opérateurs :	S.T.E.: H.Coppin et L. Bochu Campagne 4 page 2/6
Organisme demandeur:	Agence de l'eau RM&C marché n° 120000054
STATION	
Coordonnées de la station	relevées sur : GPS
Lambert 93	X:898090 Y: 6486896 alt.: 500 m
WGS 84 (systinternational)	GPS (en dms) X: Y: alt.: m
Profondeur :	34,0 m
	Vent: faible
	Météo: ensoleillé sec
Conditions d'observation :	: Surface de l'eau : faiblement agitée
	Hauteur des vagues : 0,10 m P atm standard : 953 hPa
	Bloom algal: non Pression atm.: 967 hPa
Marnage:	: non Hauteur de la bande : 0,0 m
Campagne :	temperature
PRELEVEMENTS ZONE EUP	
Heure de début du relevé :	
Prélèvements pour analyses :	eau pour μpoll matériel employé : pompe heure : 11:30
D., 21\(\Sigma_1\)	
Prélèvements pour analyses :	eau pour phy-chi matériel employé : tuyau intégrateur 30 m
Prelevements pour analyses :	eau pour phy-chi matériel employé : tuyau intégrateur 30 m chloro + phyto heure : 13:30
Prelevements pour analyses :	
Prelevements pour analyses :	chloro + phyto heure : 13:30
Prelevements pour analyses :	chloro + phyto heure : 13:30 Prélèvement pour analyses de la physico-chimie classique, du phytoplancton
Prelevements pour analyses:	chloro + phyto heure : 13:30 Prélèvement pour analyses de la physico-chimie classique, du phytoplancton et de la chlorophylle effectué avec un tuyau intégrateur sur une zone
Prelevements pour analyses:	chloro + phyto heure : 13:30 Prélèvement pour analyses de la physico-chimie classique, du phytoplancton et de la chlorophylle effectué avec un tuyau intégrateur sur une zone euphotique de 16 m
Prelevements pour analyses :	chloro + phyto heure : 13:30 Prélèvement pour analyses de la physico-chimie classique, du phytoplancton et de la chlorophylle effectué avec un tuyau intégrateur sur une zone euphotique de 16 m Filtration pour analyse de chlorophylle sur place : vol filtré : 1000 ml
Ŷ	chloro + phyto heure : 13:30 Prélèvement pour analyses de la physico-chimie classique, du phytoplancton et de la chlorophylle effectué avec un tuyau intégrateur sur une zone euphotique de 16 m Filtration pour analyse de chlorophylle sur place : vol filtré : 1000 ml
Ŷ	chloro + phyto heure : 13:30 Prélèvement pour analyses de la physico-chimie classique, du phytoplancton et de la chlorophylle effectué avec un tuyau intégrateur sur une zone euphotique de 16 m Filtration pour analyse de chlorophylle sur place : vol filtré : 1000 ml Echantillon phytoplancton : ajout de 7 ml de lugol
Gestion:	chloro + phyto heure : 13:30 Prélèvement pour analyses de la physico-chimie classique, du phytoplancton et de la chlorophylle effectué avec un tuyau intégrateur sur une zone euphotique de 16 m Filtration pour analyse de chlorophylle sur place : vol filtré : 1000 ml Echantillon phytoplancton : ajout de 7 ml de lugol : Société du lac de Paladru
Gestion:	chloro + phyto heure : 13:30 Prélèvement pour analyses de la physico-chimie classique, du phytoplancton et de la chlorophylle effectué avec un tuyau intégrateur sur une zone euphotique de 16 m Filtration pour analyse de chlorophylle sur place : vol filtré : 1000 ml Echantillon phytoplancton : ajout de 7 ml de lugol : Société du lac de Paladru Mise à l'eau à l'ouest du plan d'eau au niveau du lieu-dit "plage du pin"
Gestion:	chloro + phyto heure : 13:30 Prélèvement pour analyses de la physico-chimie classique, du phytoplancton et de la chlorophylle effectué avec un tuyau intégrateur sur une zone euphotique de 16 m Filtration pour analyse de chlorophylle sur place : vol filtré : 1000 ml Echantillon phytoplancton : ajout de 7 ml de lugol : Société du lac de Paladru Mise à l'eau à l'ouest du plan d'eau au niveau du lieu-dit "plage du pin"
Gestion:	chloro + phyto heure : 13:30 Prélèvement pour analyses de la physico-chimie classique, du phytoplancton et de la chlorophylle effectué avec un tuyau intégrateur sur une zone euphotique de 16 m Filtration pour analyse de chlorophylle sur place : vol filtré : 1000 ml Echantillon phytoplancton : ajout de 7 ml de lugol : Société du lac de Paladru Mise à l'eau à l'ouest du plan d'eau au niveau du lieu-dit "plage du pin"
Gestion : Contact préalable :	chloro + phyto heure : 13:30 Prélèvement pour analyses de la physico-chimie classique, du phytoplancton et de la chlorophylle effectué avec un tuyau intégrateur sur une zone euphotique de 16 m Filtration pour analyse de chlorophylle sur place : vol filtré : 1000 ml Echantillon phytoplancton : ajout de 7 ml de lugol : Société du lac de Paladru Mise à l'eau à l'ouest du plan d'eau au niveau du lieu-dit "plage du pin"
Gestion : Contact préalable :	chloro + phyto heure: 13:30 Prélèvement pour analyses de la physico-chimie classique, du phytoplancton et de la chlorophylle effectué avec un tuyau intégrateur sur une zone euphotique de 16 m Filtration pour analyse de chlorophylle sur place: vol filtré: 1000 ml Echantillon phytoplancton: ajout de 7 ml de lugol : Société du lac de Paladru Mise à l'eau à l'ouest du plan d'eau au niveau du lieu-dit "plage du pin" : Garde du lac (Mr. Prieto): 06.32.11.48.26
Gestion : Contact préalable :	chloro + phyto heure: 13:30 Prélèvement pour analyses de la physico-chimie classique, du phytoplancton et de la chlorophylle effectué avec un tuyau intégrateur sur une zone euphotique de 16 m Filtration pour analyse de chlorophylle sur place: vol filtré: 1000 ml Echantillon phytoplancton: ajout de 7 ml de lugol : Société du lac de Paladru Mise à l'eau à l'ouest du plan d'eau au niveau du lieu-dit "plage du pin" : Garde du lac (Mr. Prieto): 06.32.11.48.26
Gestion : Contact préalable :	chloro + phyto heure: 13:30 Prélèvement pour analyses de la physico-chimie classique, du phytoplancton et de la chlorophylle effectué avec un tuyau intégrateur sur une zone euphotique de 16 m Filtration pour analyse de chlorophylle sur place: vol filtré: 1000 ml Echantillon phytoplancton: ajout de 7 ml de lugol : Société du lac de Paladru Mise à l'eau à l'ouest du plan d'eau au niveau du lieu-dit "plage du pin" : Garde du lac (Mr. Prieto): 06.32.11.48.26
Gestion : Contact préalable :	chloro + phyto heure: 13:30 Prélèvement pour analyses de la physico-chimie classique, du phytoplancton et de la chlorophylle effectué avec un tuyau intégrateur sur une zone euphotique de 16 m Filtration pour analyse de chlorophylle sur place: vol filtré: 1000 ml Echantillon phytoplancton: ajout de 7 ml de lugol : Société du lac de Paladru Mise à l'eau à l'ouest du plan d'eau au niveau du lieu-dit "plage du pin" : Garde du lac (Mr. Prieto): 06.32.11.48.26

Relevé phytoplanctonique et p	•	imique en	plan d'e	rau			
DONNEES PHYSICO-CHIM	_						
Plan d'eau :	Paladru						02/10/2014
Type (naturel, artificiel,):	naturel					Code lac:	W3125023
Organisme / opérateur :	S.T.E.:	H.Coppin	ı et	L. Bochu		Campagne	4 page 3/6
Organisme demandeur:	Agence d	le l'eau RN	Л&С			marché n°	120000054
TRANSPARENCE							
Secchi en m :	6,3		Z eupho	otique (2,5 x S	Secchi):	15,8	m
PROFIL VERTICAL							
Moyen de mesure utilisé :	X	in-situ à c	haque pro	of.		en surface dans	s un récipient
prof prélèvements Phy-chi	Prof.	Temp.	pН	Cond.	O_2	O_2	Heure
prof prefevenients I by em	(m)	(°C)		(μS/cm 25°)	(%)	(mg/l)	
	-0,1	19,5	8,0	293	111	9,7	11:06
	-0,8	19,5	8,0	293	111	9,7	
	-1,9	19,5	8,0	293	111	9,7	
	-3,1	19,4	8,0	293	112	9,8	
	-4,0	19,4	8,0	293	112	9,8	
	-4,9	19,4	8,0	293	112	9,8	
	-5,9	19,4	8,0	292	112	9,8	
	-7,1	19,4	8,0	292	112	9,8	
prélèvement intégré PC	-8,1	19,3	8,0	292	112	9,9	
	-9,2	19,3	8,0	292	112	9,8	
	-9,9	19,3	8,0	292	112	9,8	
	-11,0	18,7	7,9	325	112	9,9	
	-11,9	15,0	7,8	358	100	9,6	
	-13,2	12,5	7,7	361	88	8,9	
	-14,2	10,9	7,6	364	86	9,0	
	-15,1	9,6	7,6	367	74	8,1	
	-16,1	9,0	7,5	366	65	7,2	
	-17,0	8,3	7,5	367	57	6,4	
	-18,2	7,7	7,4	366	49	5,6	
	-18,9	7,4	7,3	367	42	4,8	
	-20,0	7,1	7,3	367	39	4,5	
	-24,4	6,6	7,2	367	22	2,6	
	-30,2	6,2	7,1	369	6	0,7	
prélèvement de fond	-32,6	6,2	7,1	371	0	0,0	11:12
prete vement de fond	32,0	0,2	7,0	371	· ·	0,0	11.12
	<u> </u>	<u> </u>					
	<u> </u>	<u> </u>					
	 	 					
	 	 					
	 	 					
] 				
] 				

Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES Plan d'eau: Type (naturel, artificiel,...): Organisme / opérateur: S.T.E.: H.Coppin et L. Bochu Campagne 4 page 5/6 Organisme demandeur: Agence de l'eau RM&C Date: 02/10/2014 Code lac: W3125023 Campagne 4 page 5/6 marché n° 120000054

Prélèvement d'eau de fond, pour analyses physicochimiques :

heure de prélèvement : 12:30 moyen utilisé : pompe et tuyaux téflon

Distance au fond : 1.0 m soit à Zf = 33.0 m

Remarques et observations :

Remise des échantillons :

Echantillons pour analyses physicochimiques (Laboratoire CARSO)

Echantillons pour analyses phytoplanctoniques à BECQ'EAU, le

échantillon intégré n° **274107** bon transport 693101100340 4585 échantillon de fond n° **274127** bon transport 693101100340 4614

Au transporteur : TNT le 02/10/14 à 16h 00 Arrivée au laboratoire CARSO dans la matinée du : 03/10/14

10/10/14

Prélèvements de se	•	•			ENTEC		
DONNEES GENE			- PRELEVEMI	ENT DE SEDIM	ENIS	D : 00/	10/2014
Plan d'eau :		ladru				Date : 02/	
Type (naturel, artif	1	turel				Code lac: W3	
Organisme / opéra	teur: S.	T.E.	H.Coppin et		L. Bochu		ire: 14:00
Organisme demand	deur: Ag	gence de l'ea	u RM&C			marché n° 120)000054
						pag	ge 6/6
Conditions de mil	ieu						
chaud, ensoleillé	X pé	riode estimée favorable à : débits des affluent					
couvert	me	ort et sédimentation du plancton					
pluie, neige	sé	dimentation	de MES de tout	e nature	>>	turbidité af	fluent
vent						Secchi (m)	6,3
						2000 (III)	
Matériel					-		
drague fond plat	pe	lle à main		benne X	piège	car	ottier
Localisation géné	rale de la z	one de prél	èvements (en p	articulier, X Y I	ambert 93)		
Point de plus grand	de profonde	eur (Cf. camp	pagne 4) X:	898090		Y: 648689	96
Prélèvements			1	2	3		
profondeur (en m)	1		34	34	34		
épaisseur échantil			34	34	34	-	+
			X	X	X		_
récents (Λ	Λ	Λ		+
anciens (
indéterm			2	2	2		
	r, en cm :		2	2	2		
gran <u>ulomérie dom</u>	iinante						
graviers							+
sables							
limons							
vases			X	X	X		
argile							_
aspect du sédimen							
homogèi			77	77	***		
hétérogè	ne		X	X	X		
couleur			noir / beige	noir / beige	noir / beige	;	
odeur		17	non	non	non		
présence de débris			non	non	non		
présence d'hydroc		sations)	non	non	non		
présence d'autres	debris		non	non	non		
Remarques génér							
Remise des échan				TD 100			
Echantillons pour a éc		ysicochimiq 1° eau inster		e LDA26)	sédimen	t: /	
remise	e par S.T.E.		le		à		
	ransporteur	·: Chro	nopost le	02/10/2014	l à	16h 00	
		arrivée au	laboratoire LD	A 26 le matin du	:	03/10/2014	Į.

Annexe 4. Releves de l'etude des peuplements de macrophytes

UNITE D'OBSERVATION MACROPHYTES			DESCRIPTION GENERALE				
Nom du plan d'eau :		PALADR	U	Code:	W3125023		
Organisme :	Mosaïque En	vironnement	Opérateur :	A. BALLA	YDIER et E. BOUCARD		
N°Unité d'observation :	1		jj/mm/aaaa) :		07/08/2014		
Heure début (hh:mm) :	9:0	00	Heure de fin (hh:mm) :	12:30		
Coordonnées GPS du F	Point central d	le l'unité :	Lambert 93				
				x :	897266,874		
				y:	6486858,950		
Transparence mesurée au Orientation / vents domina		chi (m) :	3,70 sans objet	Niveaux des	s eaux (m) :		
	Typologie o	des rives au	niveau de l'unité d'o	bservation			
Noter la fréquence des élé	ments observ		are,2, rare, 3 , présen préciser	t, 4 abondant,	5, très abondant, "autre" : à		
Numéro du type de rive do		1 : "Zones h	4 umides caractéristic	ques"			
Tourbières							
Landes tourbeuses / humid	les						
Marais / Marécages							
Plan d'eau proche (<50m d	e la rive)						
Prairies inondées / humides	s						
Mégaphorbiaie / Végétation	n hélophyte en	touradons					
Forêt hygrophile / Bois mar	écageux (aulna	aie-saussaie)					
Autre**							
Type 2 : "Zones riv	ulaires coloni	sées par une	végétation arbusti	ve et arbores	cente non humide"		
Forêts feuillus et mixtes			<u> </u>				
Forêts de conifères							
Arbustes et buissons			ļ				
Lande / Lande à Ericacées							
Autre**							
Type 3 : "Zones rivula	aires non colo	nisées par u	ne végétation arbus	stive et arbore	escente non humide"		
Friches							
Hautes herbes							
Rives rocheuses							
Plages / Sol nu							
Autre**							
I							

Type 4 : "Zones artificia	Type 4 : "Zones artificialisées ou subissant des pressions anthropiques visibles"						
Ports							
Mouillages							
Jetées							
Urbanisation							
Entretien de la végétation rivulaire							
Zones déboisées							
Litière							
Décharge							
Remblais							
Murs							
Digues							
Revêtements artificiels	2						
Plages aménagées							
Zone de baignade							
Chemins et routes							
Ouvrages de génie civil							
Agriculture							
Autre**		Habitations / Zone de résidences (4)					
Pourcentage du linéaire tota	al de rive repré	senté par ce type sur l'ensemble du plan d'eau :					
Type 1 (%): 10		Type 3 (%):					
Type 2 (%) : 15		Type 4 (%): 75					
Largeur de la zone littorale "euphotique" :							
Commentaires / Précisions							

UNITE D'OBSERVAT	ION MACROP	HYTES	DESCRIPTION LOCALE			
Nom du plan d'eau :		PALADRU		Code :	W3125023	
Organisme :	Mosaïque En	vironnement	Opérateur :	A. BALLA	YDIER et E. BOUCARD	
N°Unité d'observation :	1	Date (jj/	mm/aaaa) :		07/08/2014	
Heure début (hh:mm) :	9:0		Heure de fir	(hh:mm) :	12:30	
Coordonnées GPS du Poi	nt central de l	'unité ∶	Lambert 93			
				X:	897266,874	
				y:	6486858,95	
		Conditions	d'observation			
Vant.		CONTUNIONIC	u obool valion			
Vent : nul	-					
Météo : très nuageux			_			
Surface de l'eau :	faibleme		Hauteur des va	igues (m) :	0,00	
			on de la rive			
Description de la zone rive	eraine (Cf. Fic	ne 1/1)				
Occupation du sol dominant	Occupation du sol dominante :					
Végétation dominante :				Herbacée		
Description de la berge (C	f. Fiche 1/1)					
Decription du talus :						
Hauteur (m) :	1,70					
Impacts humains visibles :	oui					
Indices d'érosion :	non					
Type de substrat dominant :				В		
Type de végétation dominar	nte:			Herbacée		
Substrats: [V : Vase; T					lloux, pierres, galets ; B :	
Description de la plage	RIO	cs, dalles ; D	<mark>Débris organiqu:</mark> Abse			
			Vnse	ine		
Largeur (m) : Impacts humains visibles :		Type de subs	trat dominant :			
Indices d'érosion :			tation dominante) :		
		- 71 3-				
Description de la zone litte						
Largeur explorée (m):		Type de subti	rat dominant :		С	
Impacts humains visibles :	oui					
ı				ı		
T d			h 41h-4			
Type de végétation aquatiqu	le dominante :		hélophytes			
		Commentair	es / Précisions			

Étude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Lac de Paladru (38)

Ende des plans à cau au programme de survemance des bussins Mione Mediterrance et corse. End de l'addata (50)					
UNITE D'OBSERVATION	I MACROPHYTES		RELEVE (DE RIVE	
Nom du plan d'eau :	PALADRI	J	Code :	W3125023	
Organisme :	Mosaïque Environnemen	Opérateur :	erateur: A. BALLAYDIER et E. BOUCA		
N°Unité d'observation :	1 Date ((jj/mm/aaaa): 07/08/201		07/08/2014	
Heure début (hh:mm) :	11:00	11:00 Heure de fin (hh:m		11:40	
Coordonnées GPS du début :		Lambert 93			
Correspondant aux coordonnées d	u Profil gauche (début)		X : V:	897303,485 6486885,950	
Largeur de la zone exploré	e (m) :	3 Substrat	dominant sur l	,	
Commentaires / Précisions					
Longueur explorée = 100 m					

Coordonnées GPS du fin :	Lambert 93		
Correspondant aux coordonnées du Profil droit (début)		X:	897206,591
Correspondant aux coordonnees du Fiolii dioit (debut)		y:	6486840,870

* indiquer la superficie de (des) l'herbier(s), la profondeur, le type de subtrat, la présence de fleurs, de fruits, etc. Substrat dominant : [V : vase; T: Terre, argile, marne, tourbe; S: Sables, graviers; C: Cailloux, pierres, galets; B : Blocs, dalles; D : Débris organiques] TAXONS Abondance Observations complémentaires (*) polamp pollap 1 3 scilac lytsal carhir 1 ulospx melspx diaspx oedspx vauspx 1 zygspx spispx lynspx 1 oscspx toyspx mouspx 1 rhispx ambflu claspx 1 Gomphoneis sp.

					(
	TION MACROPHYTES		PROFIL G	SAUCHE		
Nom du plan d'eau :	PALADRU	PALADRU		W3125023		
Organisme :	Mosaïque Environnement	Opérateur :	A. BALLAYDIER et E. BOUCARD			
N°Unité d'observation :	1 Date (jj/mm/aaaa) :		07/08/2014			
Heure début (hh:mm) :	11:50 Matériel utilisé		:	grappin		
Coordonnées GPS de déb	out :	Lambert 93				
Heure fin (hh:mm):	12:30		X:	897303	3,485	
		•	y:	648688	35,950	
Profondeur maximale de	e colonisation observée durai	nt le relevé sur l'	ensemble du p	orofil (m):	11,5	
Commentaires / Précisions						
du profil perpendiculaire = 4	5 m ; Distance du début du p	rofil au point cer	ntral de l'UO =	50 m ; PC1 à F	C4 : Gompho	
Coordonnées GPS de fin		Lambert 93				
			x:	89733	0,459	
			V.	640604	•	

Points contacts	Profondeur (m)		dominant	Taxons	Abondance
1	0,5	С		spispx	3
				zygspx	1
				mouspx	1
				oedspx	1
				claspx	2
2	0,9	С		spispx	3
	- 1-			zygspx	1
				mouspx	1
				oedspx	1
				claspx	2
				carspx	1
3	1,1	С		spispx	2
	,			zygspx	1
				mouspx	1
				oedspx	1
				claspx	2
4	1,4	С		spispx	2
	.,.	_		zygspx	1
				mouspx	1
				oedspx	1
				claspx	2
5	1,6	С		na	_
6	1,8			na	
7	2,1			na	
8	2,1	С		na	
9	2,4			na	
10	2,6			na	
11	3	С		na	
12				na	
13		С		na	
14		С	d	na	
15		С		na	
16				na	
17			С	na	
18			С	chacon	2
19				na	
20				na	
21	13,5			na	
22	13,5			na	
23				na	
24				na	
25				na	
26		С		na	
27		С		na	
28		С		na	
29		С		na	
30		С		na	

Étude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Lac de Paladru (38)

UNITE D'OBSERVATION MACROPHYTES PROFIL CENTRAL PALADRU Code: Nom du plan d'eau : W3125023 Organisme: Mosaïque Environnement Opérateur : A. BALLAYDIER et E. BOUCARD N°Unité d'observation : Date (jj/mm/aaaa): 07/08/2014 Heure début (hh:mm) : 9:00 Matériel utilisé : grappin Coordonnées GPS de début Lambert 93 9:50 Heure fin (hh:mm): 897266,874 Χ: 6486858,95 y: Profondeur maximale de colonisation observée durant le relevé sur l'ensemble du profil (m) 15 Commentaires / Précisions Longueur du profil perpendiculaire = 35 m ; Distance du début du profil au point central de l'UO = 0 m Coordonnées GPS de fin : Lambert 93 897281,736

X :

6486832,240

Points contacts	Profondeur (m)	Substrat of	dominant	Taxons	Abondance
1	1,5	С		lynspx	1
				oscspx	1
				phospx	1
2	1,8	С		lynspx	1
				oscspx	1
				phospx	1
3	1,9	С		lynspx	1
				oscspx	1
				phospx	1
4	2,3	С		na	
5	2,5			na	
6		С		na	
7	3,7	V	С	chacon	3
8	4,5	V	С	chacon	3
9	5,5		С	chacon	3
10	5,5	V	С	na	
11	6	V	С	chacon	2
12	8,5	V	С	chaglo	2
				chacon	1
				diaspx	1
13	7	V	С	chacon	1
				rhispx	1
				diaspx	1
14	8	V	S	chacon	1
15	9,5	V	S	na	
16	10	С	S	chacon	1
17	11		S	chacon	1
18	11	С	S	na	
19	12	С	S	na	
20	12	С	S	na	
21	13	C	S	na	
22	13	С	S	na	
23			S	na	
24	15		S	na	
25			S	na	
26			S	na	
27	15	C	S	chacon	1
28		C	S	na	
29		C	S	na	
30	17	C	S	na	

· · · · · · · · · · · · · · · · · · ·	1 8				
UNITE D'OBSERVAT		PROFIL	DROIT		
Nom du plan d'eau :	PALADRU		Code :	W312	25023
Organisme :	Mosaïque Environnement	A. BALLAYDIER et E. BOUCARD			
N°Unité d'observation :	1 Date (jj/r	07/08/2014			
Heure début (hh:mm) :	10:00	Matériel utilisé	:	grappin	
Coordonnées GPS de déb	ut:	Lambert 93			
Heure fin (hh:mm):	10:50		X:	89720	06,591
		•	y:	64868	40,870
Profondeur maximale d	e colonisation observée dura	nt le relevé sur l'	ensemble du p	rofil (m) :	12,5
	Commentair	es / Précisions			
Longueur du profil perpendiculaire = 50 m ; Distance du début du profil au point central de l'UO = 50 m					
			,		
Coordonnées GPS de fin :		Lambert 93			
l			х.	89728	31 736

6486832,240

	Profondeur (m)		Substrat	dominant	Taxons	Abondance
1	0,6	С			na	
2	0,7	С			polamp	1
3	0,9	d		s	spispx	1
					zygspx	1
					mouspx	1
					ulospx	1
4	1	d		s	spispx	1
					zygspx	1
					mouspx	1
					ulospx	1
5	1,2	С		s	spispx	1
	,				zygspx	1
					mouspx	1
					ulospx	1
6	1,3	С		S	na	
7	1,5	С		S	spispx	1
	.,-				zygspx	1
					mouspx	1
					ulospx	1
8	16	C		S	na	'
9	1,6 1,8	C		S	spispx	2
	1,0			3	zygspx	1
		Н			mouspx	1
		Н			ulospx	2
10	2	_		s	spispx	1
10		L		5	zygspx	1
		Н				1
		Н			mouspx	1
11	2,1	_		•	ulospx	1
11	Ζ, Ι	C		S	najmar	1
40	2.2	_			chacon	2
12	2,2			S	chacon	
13	2,6	٧		s	najmin	1
		⊢			chacon	4
4.4	0.7			-	chaglo	2
14	2,7	٧		S	chacon	3
		H			najmin	1
45	0.7	L			chaglo	1
15	2,7	٧		S	chacon	5
16	2,8	٧		S	chacon	3
17	3,1	٧		S	chacon	4
					chaint	2
18	3,3	٧		S	chacon	4 3
19	3,9	٧		S	chacon	3
					chaglo	1
20	5,5	٧		S	chaglo	2
					chacon	4
21	6	٧		s	chaglo	2
					chaint	4
22	6,5	٧		s	chaglo	2
					chaint	4
23	8	٧		S	chaglo	4 2 5
					chaint	5
24	9			S	chaint	3
25	9,5			s	chaglo	1
					chaint	4
26	10,5	٧		s	chaglo	4
27	12,5	٧		s	chaglo	5
28	12,5	٧		s	na	
	-1-					
29	14	٧		S	na	

Unité d'observation des macrophytes		Résultats des profils		
Nom de plan d	l'eau :		Lac de P	aladru
Organisme:	ST	ΓE	N° d'UO :	1

	D. Cl	D. C. O C	Des Clarities	110
	Profil gauche	Profil Central	Profil droit	UO
TAXON	Ma _{gi} =∑a _i /30	Ma _{ci} =∑a _i /30	Ma _{di} =∑a _i /30	$Ma_i=(Ma_{gi}+Ma_{ci}+Ma_{di})/3$
CARSPX	0,03	0,00	0,00	0,01
CHACON	0,07	0,57	1,17	0,60
CHAGLO	0,00	0,07	0,73	0,27
CHAINT	0,00	0,00	0,73	0,24
CLASPX	0,27	0,00	0,00	0,09
DIASPX	0,00	0,07	0,00	0,02
LYNSPX	0,00	0,10	0,00	0,03
MOUSPX	0,13	0,00	0,20	0,11
NAJMAR	0,00	0,00	0,03	0,01
NAJMIN	0,00	0,00	0,07	0,02
OEDSPX	0,13	0,00	0,00	0,04
OSCSPX	0,00	0,10	0,00	0,03
PHOSPX	0,00	0,10	0,00	0,03
POLAMP	0,00	0,00	0,03	0,01
RHISPX	0,00	0,03	0,00	0,01
SPISPX	0,33	0,00	0,23	0,19
ULOSPX	0,00	0,00	0,23	0,08
ZYGSPX	0,13	0,00	0,20	0,11

 Ma_{ki} : abondance moyenne du taxon i sur le profil k

 a_i : indice d'abondance du taxon i estimé sur un point contact du profil k

Mai: abondance moyenne du taxon i sur l'UO

Étude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Lac de Paladru (38)

UNITE D'OBSERVAT	DESCRIPTION GENERALE							
Nom du plan d'eau :	Paladru		Code:	W3125023				
Organisme :	Mosaïque Environnement	Opérateur :	A. BALLA	YDIER et E. BOUCARD				
N°Unité d'observation :	2 Date	(jj/mm/aaaa) :		08/08/2014				
Heure début (hh:mm) :	11:30	Heure de fin (hh:mm) :	15:00				
Coordonnées GPS du F	oint central de l'unité :	Lambert 93						
			X:	898401,701				
			y:	6486907,740				
Transparence mesurée au	disque de Secchi (m):	3,40	Niveaux des	s eaux (m):				
Orientation / vents domina		sans objet	1					
Typologie des rives au niveau de l'unité d'observation								
Noter la fréquence des élé	ments observés : 1, très ra	are,2, rare, 3 , préser	it, 4 abondant,	5, très abondant, "autre" : à				
		préciser						
Numéro du type de rive do		2						
	Type 1 : "Zones h	umides caractéristi	ques"					
Tourbières								
Landes tourbeuses / humid	es							
Marais / Marécages								
Plan d'eau proche (<50m d	e la rive)							
Prairies inondées / humides	S							
Mégaphorbiaie / Végétation	n hélophyte en touradons							
	écageux (aulnaie-saussaie)		2					
Autre**				Roselières (2)				
Type 2 · "7ones riv	ulaires colonisées par une	e végétation arbusti	ve et arbores	cente non humide"				
Forêts feuillus et mixtes	4		TO OT UI DOI OO	oonto non namao				
Forêts de conifères		†						
Arbustes et buissons		†						
Lande / Lande à Ericacées		1						
Autre**			Prairie (1)					
T								
Type 3 : "Zones rivula	aires non colonisées par u	ne vegetation arbus	stive et arbore	scente non numide"				
Friches								
Hautes herbes								
Rives rocheuses								
Plages / Sol nu								
Autre**								

Type 4 : "Zones artificial	isées ou subi	ssant des pressions anthropiques visibles"				
Ports						
Mouillages						
Jetées						
Urbanisation	3					
Entretien de la végétation rivulaire						
Zones déboisées						
Litière						
Décharge						
Remblais						
Murs						
Digues						
Revêtements artificiels						
Plages aménagées						
Zone de baignade						
Chemins et routes						
Ouvrages de génie civil						
Agriculture						
Autre**						
Pourcentage du linéaire total Type 1 (%): 10 Type 2 (%): 15 Largeur de la zone littorale "euphotique		senté par ce type sur l'ensemble du plan d'eau : Type 3 (%) : Type 4 (%) : 75				
	Commenta	ires / Précisions				
Urbanis	ation = habitat	ions, zone de résidences (4)				

UNITE D'OBSER	VATION MACRO		DESCRIPTION LOCALE					
Nom du plan d'eau :		Paladru		Code :	W3125023			
Organisme :		nvironnement						
N°Unité d'observation		:30 Date (jj/	mm/aaaa) : Heure de fir	(bb:mm):	08/08/2014 15:00			
Heure début (hh:mm) : Coordonnées GPS du			Lambert 93	1 (1111.111111) . 1	15.00			
Coordonnees Gr 3 du	Point Central de	runite .	Lambert 95					
				x :	898401,701			
			y:	6486907,74				
Conditions d'observation								
		Containionio	a obcorvation					
Vent : nul								
Météo : soleil			_					
Surface de l'eau :	lis	sse	Hauteur des va	agues (m) :	0,00			
			on de la rive					
Description de la zone	eriveraine (Cf. Fig	he 1/1)						
Occupation du sol domi				orêt de feuillus				
Végétation dominante :			ı	Arborescente				
Description de la berg	e (Cf. Fiche 1/1)							
Decription du talus :								
Hauteur (m) :	0,20							
Impacts humains visible	es : <mark>oui</mark>							
Indices d'érosion :	oui							
Type de substrat domina	ant :			Т				
Type de végétation dom	inante :		ı	Arborescente				
Substrats : [V : Vas	, , ,		oe ; S : Sables, g : Débris organiqu		lloux, pierres, galets; B:			
Description de la pla	ge		Abse	ente				
Largeur (m):								
Impacts humains visible	es:	Type de subs	trat dominant :					
Indices d'érosion :		Type de végé	tation dominante) :				
Description de la zone	littorale							
Largeur explorée (m):		Type de subt	rat dominant :		С			
Impacts humains visible		1 "		l				
Type de végétation aquatique dominante : hélophytes								
		Commentair	es / Précisions					

Étude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Lac de Paladru (38)

	ta p. 58. amme tre sui re				ei Corse – Luc de I didara (56
UNITE D'OBSERVATION	I MACROPHYTES			RELEVE [DE RIVE
Nom du plan d'eau :		ladru		Code:	W3125023
Organisme :	Mosaïque Environne	ement	Opérateur :	A. BALLA	YDIER et E. BOUCARD
N°Unité d'observation :	2 Date (jj/mm/		mm/aaaa) :		08/08/2014
Heure début (hh:mm) :	11:30		Heure de fir	n (hh:mm) :	12:00
Coordonnées GPS du début :			Lambert 93		
Correspondant aux coordonnées d	u Profil gaucho (dóbu	+\		X:	898374,608
Correspondant aux coordonnees d	u Fiolii gaucile (uebu	i)		y:	6486871,720
Largeur de la zone exploré	e (m) :	3	Substrat o	dominant sur l	a zone : C
Commentaires / Précisions					
Longueur explorée = 100 m					

Coordonnées GPS du fin :	Lambert 93		
Correspondant aux coordonnées du Profil droit (début)	•	X:	898450,808
Correspondant aux coordonnees du From droit (debut)		y:	6486948,920

* indiquer la superficie de (des) l'herbier(s), la profondeur, le type de subtrat, la présence de fleurs, de fruits, etc. Substrat dominant : [V : vase; T : Terre, argile, marne, tourbe; S : Sables, graviers; C : Cailloux, pierres, galets; B : Blocs, dalles; D : Débris organiques] TAXONS Abondance Observations complémentaires (*) phraus 5 ambrip 1 fisruf 1 agrsto zygspx mouspx spispx phospx 1 oedspx melspx

UNITE D'OBSERVATION MACROPHYTES PROFIL GAUCHE Nom du plan d'eau : Paladru Code: W3125023 Organisme: Mosaïque Environnement A. BALLAYDIER et E. BOUCARD Opérateur : N°Unité d'observation : Date (jj/mm/aaaa): 08/08/2014 2 14:10 Heure début (hh:mm): Matériel utilisé : grappin Coordonnées GPS de début : Lambert 93 Heure fin (hh:mm) 14:50 898374,608 X 6486871,720 Profondeur maximale de colonisation observée durant le relevé sur l'ensemble du profil (m) 1.9 Commentaires / Précisions Longueur du profil perpendiculaire = 30 m ; Distance du début du profil au point central de l'UO = 50 m

Coordonnées GPS de fin :	Lambert 93		
		X:	898357,857
		y:	6486889,760

Points contacts	Profondeur (m)	Substrat	dominant	Taxons	Abondance
1	0,5	S		phraus	5
2	0,7	S		phraus	5
3	0,9	S		phraus	5
4	1,1			phraus	5
5	1,3			phraus	5
6	1,5			phraus	5
7	1,7			phraus	5
8	1,9			phraus	2
9		S		NA	
10	2,1			NA	
11	2,5			NA	
12	3,3			NA	
13	3,6	S		NA	
14		S		NA	
15	5,5			NA	
16	6,5			NA	
17		S		NA	
18		S		NA	
19		S		NA	
20		S		NA	
21	8,5			NA	
22	10			NA	
23	10			NA	
24	10			NA	
25	11			NA	
26	10,5	S		NA	
27	12			NA	
28	12			NA	
29	12			NA	
30	12	S		NA	

	1 0				
UNITE D'OBSERVAT		PROFIL C	ENTRAL		
Nom du plan d'eau :	Paladru		Code :	W312	25023
Organisme :	Mosaïque Environnement	A. BALLAYDIER et E. BOUCARD			
N°Unité d'observation :	2 Date (jj/r	mm/aaaa) :	08/08/2014		
Heure début (hh:mm) :	11:45	Matériel utilisé	:	grappin	
Coordonnées GPS de déb	out :	Lambert 93			
Heure fin (hh:mm):	12:25		X:	89840	01,701
			y:	64869	907,74
Profondeur maximale de	e colonisation observée dura	nt le relevé sur l'	ensemble du p	orofil (m) :	5
	Commentair	es / Précisions			
Longueur du profil pe	erpendiculaire = 30 m ; Distar	nce du début du	profil au point	central de l'UC) = 0 m
Coordonnées GPS de fin		Lambert 93			
			x:	89838	34,930
			10		24.000

Points contacts	Profondeur (m)	Substrat	dominant	Taxons	Abondance
1	0,3		d	na	
2	0,5	V	С	fisruf	1
3	0,7	V	С	na	
4	0,8	٧	С	na	
5	1	٧	С	na	
6		٧	b	phraus	4
7	1,1	v	b	phraus	5
8	1,4	v	b	phraus	5
9	1,6	٧	b	phraus	4
10	1,8		b	phraus	3
11	1,9		b	phraus	1
12	2,1		b	phraus	1
13	2,2	٧	b	phraus	1
14	2,3		b	na	
15			b	na	
16				na	
17	2,9			na	
18	3,8			na	
19	5			na	
20	5		d	chespx	1
21	6			na	
22	7	С		na	
23	7	С		na	
24	8			na	
25	8			na	
26				na	
27	9			na	
28	10			na	
29				na	
30	12	C		na	

UNITE D'OBSERVAT	ce des oussus Ma	PROFIL		ac r anam (50)		
Nom du plan d'eau :	Paladru		Code :	W312	25023	
Organisme :	Mosaïque Environnement		A. BALLA	YDIER et E. E	BOUCARD	
N°Unité d'observation :	2 Date (jj/r	08/08/2014				
Heure début (hh:mm) :	13:20	Matériel utilisé	: grappin		ppin	
Coordonnées GPS de déb	ut:	Lambert 93				
Heure fin (hh:mm):	14:00		X:	89845	50,808	
		-	y:	64869	48,920	
Profondeur maximale de	e colonisation observée dura	nt le relevé sur l'	ensemble du p	orofil (m) :	8,5	
Commentaires / Précisions						
perpendiculaire = 30 m ; Di	stance du début du profil au	point central de	100 = 50 m; F	2C1 : Potentilla	a reptans 2 et (
Coordonnées GPS de fin		Lambert 93				
		_	X:	89843	33,163	
			y:	64869	67,500	

Points contacts	Profondeur (m)	Substrat	dominant	Taxons	Abondance
1	0,2	b		agrsto	2
				zygspx	4
				mouspx	1
				spispx	1
				phospx	1
				oedspx	1
				melspx	1
2	0,3	b		zygspx	3
				mouspx	1
				spispx	1
				phospx	1
				oedspx	1
				melspx	1
3	0,9	С	b	na	
4	1,1	С	b	na	
5	1,2	b	S	chespx	2
6	1,3	С	S	na	
7	1,3	С		na	
8	1,5	С	S	phraus	2
9	1,6	С	S	phraus	2
10	1,6	С	S	phraus	1
11	1,8	b	S	phraus	2
				chespx	2
12	1,8	b	S	na	
13			S	na	
14	2	b	S	chespx	1
15	2,1	b	S	na	
16	2,3	b	S	na	
17	2,3	b	S	na	
18	,		S	na	
19	2,9	b	S	na	
20	3,3	b	S	na	
21		b	S	na	
22	6	S		chacon	3
23				chacon	2
24		S		chacon	2
25		S		chacon	2
26		s		na	
27				chacon	1
28				na	
29				na	
30	13	S		na	

Unité d'observation des macrophytes			Résultats des profils		
Nom de plan d	l'eau :		Lac de Paladru		
Organisme:	ST	ΓE	N° d'UO :	2	

	Profil gauche	Profil Central	Profil droit	UO
TAXON	Ma _{gi} =∑a _i /30	Ma _{ci} =∑a _i /30	Ma _{di} =∑a _i /30	$Ma_i=(Ma_{gi}+Ma_{ci}+Ma_{di})/3$
AGRSTO	0,00	0,00	0,07	0,02
CHACON	0,00	0,00	0,33	0,11
CHESPX	0,00	0,03	0,17	0,07
FISRUF	0,00	0,03	0,00	0,01
MELSPX	0,00	0,00	0,07	0,02
MOUSPX	0,00	0,00	0,07	0,02
OEDSPX	0,00	0,00	0,07	0,02
PHOSPX	0,00	0,00	0,07	0,02
PHRAUS	1,23	0,80	0,23	0,76
SPISPX	0,00	0,00	0,07	0,02
ZYGSPX	0,00	0,00	0,23	0,08

Ma_{ki}: abondance moyenne du taxon i sur le profil k

 a_i : indice d'abondance du taxon i estimé sur un point contact du profil k

Mai: abondance moyenne du taxon i sur l'UO

UNITE D'OBSERVAT	DE	SCRIPTION G	SENERALE	
Nom du plan d'eau :	Paladru	i	Code :	W3125023
Organisme :	Mosaique Environnement	Opérateur :	A. BALLA	YDIER et E. BOUCARD
N°Unité d'observation :	3 Date (jj/mm/aaaa) :		07/08/2014
Heure début (hh:mm) :	13:00	Heure de fin (hh:mm) :	17:20
Coordonnées GPS du F	Point central de l'unité :			
			x:	896602,445
			y:	6486103,610
Transparence mesurée au Orientation / vents domina		3,50 sans objet	Niveaux des	s eaux (m) :
	Typologie des rives au i	niveau de l'unité d'o	bservation	
Noter la fréquence des élé	<mark>ements observés :</mark> 1, très ra		it, 4 abondant,	5, très abondant, "autre" : à
		oréciser I	ı .	
Numéro du type de rive do		L 1 umides caractéristic	l lues"	
Tourbières	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1	
Landes tourbeuses / humid	les			
Marais / Marécages	3			
Plan d'eau proche (<50m d	le la rive)			
Prairies inondées / humides	s			
Mégaphorbiaie / Végétation	n hélophyte en touradons			
Forêt hygrophile / Bois mar	récageux (aulnaie-saussaie)		4	
Autre**				
Type 2 : "Zones riv	vulaires colonisées par une	végétation arbusti	ve et arbores	cente non humide"
Forêts de conifères		†		
Arbustes et buissons		†		
Lande / Lande à Ericacées		†		
Autre**				
Type 3 : "Zones rivula	aires non colonisées par u	ne végétation arbus	stive et arbore	escente non humide"
Friches				
Hautes herbes				
Rives rocheuses				
Plages / Sol nu				
Autre**				

Type 4 : "Zones artificialisées ou s	<u>subi</u> ssant des pressions anthropiques visibles"
Ports	
Mouillages	
Jetées	
Urbanisation	
Entretien de la végétation rivulaire	
Zones déboisées	
Litière	
Décharge	
Remblais	
Murs	
Digues	
Revêtements artificiels	
Plages aménagées	
Zone de baignade	
Chemins et routes	
Ouvrages de génie civil	
Agriculture	
Autre**	
Pourcentage du linéaire total de rive re	eprésenté par ce type sur l'ensemble du plan d'eau :
Type 1 (%): 10	Type 3 (%):
Type 2 (%): 15	Type 4 (%): 75
Largeur de la zone littorale "euphotique" :	
Commo	entaires / Précisions

UNITE D'OBSERVATION MACROPHYTES				DESCRIPTION	NLOCALE			
Nom du plan		ION MACKOF	Paladru	DESCRIPTION LOCALE Code : W3125023				
Organisme :	a oua .	Mosaigue Er	vironnement	Opérateur :		YDIER et E. BOUCARD		
N°Unité d'ob	servation :	3		mm/aaaa) :		07/08/2014		
Heure début	(hh:mm):		:00	Heure de fin	(hh:mm) :	17:20		
Coordonnée	s GPS du Poi	nt central de l	'unité ∶	Lambert 93				
					X:	896602,445		
					y:	6486103,61		
Conditions d'observation								
Vent :	nul							
	très nuageux	10 =		T		0.00		
Surface de l'	eau :	IIS	Se Descripti	Hauteur des va on de la rive	igues (m):	0,00		
Description (de la zone rive	raine (Cf. Fic.		on de la rive				
•	u sol dominant	Ì	171)	Fo	orêt hygrophile			
Végétation de					Arborescente			
	de la berge (C	f. Fiche 1/1)						
Decription d				Abse	ent			
Hauteur (m) :								
Impacts hum	ains visibles :							
Indices d'éros	sion :							
Type de subs	trat dominant :							
Type de végé	tation dominan	ite:						
Substrate	· [V · \/asp· T	· Terre ardile	marne tourh	no : S : Sahlos in	raviers C · Cai	lloux, pierres, galets ; B :		
Oubstrats	. [v . vase, i			: Débris organiqu		iloux, pierres, guiets , D .		
Description	de la plage			Abse	nte			
Largeur (m):								
Impacts hum	ains visibles :		Type de subs	trat dominant :				
Indices d'éros	sion :		Type de végé	tation dominante):			
December 11	1-1							
	de la zone litto		Typo do cubt	rot dominant :		V		
Largeur explorée (m) : 5 Type de subtrat dominant : V Impacts humains visibles : oui								
Type de végétation aquatique dominante : hélophytes								
			Commentair	es / Précisions				
			Pente fai	ble (10-20°)				

UNITE D'OBSERVATION	MACROPHYT	ES		RELEVE [DE RIVE
Nom du plan d'eau :		Paladru		Code :	W3125023
Organisme :	Mosaique Env	/ironnement	Opérateur :	A. BALLA	YDIER et E. BOUCARD
N°Unité d'observation :	3	Date (jj/	mm/aaaa) :		07/08/2014
Heure début (hh:mm) :	13:0	00	Heure de fir	n (hh:mm) :	14:00
Coordonnées GPS du début :			Lambert 93		
Correspondant aux coordonnées d	u Profil gauche	(début)		X:	896684,170
conceptinating aux coordonnees a	a i ioni gaaciio	(dobdt)		y:	6486105,990
Largeur de la zone exploré	e (m) :	5	Substrat of	dominant sur l	a zone : V
Commentaires / Précisions					
Longueur explorée = 100 m					

Coordonnées GPS du fin :	Lambert 93		
Correspondant aux coordonnées du Profil droit (début)		X:	896573,583
Correspondent aux coordonnees du Froiii droit (debut)		y:	6486006,620

* indiquer la superficie de (des) l'herbier(s), la profondeur, le type de subtrat, la présence de fleurs, de fruits, etc. Substrat dominant : [V : vase; T : Terre, argile, marne, tourbe; S : Sables, graviers; C : Cailloux, pierres, galets; B : Blocs, dalles; D : Débris organiques]

B : Blocs, dalles; D : Debris organiques]					
TAXONS	Abondance	Observations complémentaires (*)			
nuplut	3				
phraus	5				
lysvul	2				
scilac	2				
menaqu	2				
lyceur	2				
agrsto	2				
caysep	2				
galpal	2				
lysnum	1				
carhir	2				
ranrep	2				
teusco	1				
iripse	1				
carela	2				
najmar	2				
polamp	4				
lytsal	2				
	1	Plantago major subsp. pleiosperma Pilg.			
cldmar	3				
oscspx	1				
rhispx	3				
oedspx	2				
zygspx	1				
spispx	1				
ulospx	1				
phospx	1				
		Potentilla reptans L.			
	2	Prunella vulgaris L.			

Ende des plans à étal du programme de surventance des oussins knone-mediterrance et Corse – Lac de l'additi (50					
UNITE D'OBSERVAT	ION MACROPHYTES		PROFIL G	AUCHE	
Nom du plan d'eau :	Paladru		Code :	W312	5023
Organisme :	Mosaique Environnement	Opérateur :	A. BALLA	YDIER et E. BO	OUCARD
N°Unité d'observation :	3 Date (jj/r	nm/aaaa) :	07/08/2014		
Heure début (hh:mm) :	16:40	Matériel utilisé	:	grappin	
Coordonnées GPS de débi	ut:	Lambert 93			
Heure fin (hh:mm):	17:20		X:	896684	4,170
			y:	648610	5,990
Profondeur maximale de	colonisation observée durar	nt le relevé sur l'e	ensemble du p	rofil (m) :	11
Commentaires / Précisions					
Longueur du profil perpendiculaire = 45 m ; Distance du début du profil au point central de l'UO = 50 m					

Coordonnées GPS de fin :	Lambert 93		
		X:	896708,429
		V:	6486071,750

Points contacts	Profondeur (m)	Substrat	dominant	Taxons	Abondance
1	0,3		s	phraus	1
	ŕ			cldmar	1
				lytsal	1
				menaqu	1
				carela	2
2	0,5	v	S	carela	3
	5,0	•		lysvul	1
				menaqu	1
3	0,9	v	s	phraus	3
4	1,1	V	s	na	
5	1,3		s	na	
6	1,5	V	S	na	
7	1,7	V	S	chacon	2
	1,1	v	3	najmin	1
8	1,9	V	c	chacon	1
9	1,9		s s	chacon	3
				chacon	3
10	2,2	V	S	chacon	
	0.7			najmin	1
11	2,7	V		chacon	2
12	2,9	V	d	chacon	1
				oscspx	1
				rhispx	3
				oedspx	2
				zygspx	1
				spispx	1
13	3,1	V		chacon	3
				najmin	2
				pottri	2
14	3,5	V		pottri	2
				najmin	2
				chacon	2
15	3,5	V		chacon	1
16	5	v		najmin	1
				chacon	2
17	5,5	v		chacon	3
				chaglo	2
				najmin	1
18	6,5	v		najmin	1
19	7,5	v		najmin	3
10	.,0			chacon	3
				chaglo	1
20	8	V		najmin	
20				chacon	2 3
				chaglo	3
21	8,5	V		najmin	3
21	6,5	•		chacon	2 2 2
					2
22	0.5	v		chaglo	
	9,5	V		chaglo	1
23	9,5	V		na	-
24	10			chaglo	5
25	10			chaglo	5
26	10			chaglo	5
27	10,5	٧		chaglo	5
28	10,5	V		chaglo	5
29	11			chaglo	5
30	11	V		chaglo	5

UNITE D'OBSERVATION MACROPHYTES PROFIL CENTRAL Nom du plan d'eau : Paladru Code: W3125023 Organisme : Mosaique Environnement Opérateur : A. BALLAYDIER et E. BOUCARD N°Unité d'observation : 3 07/08/2014 Date (jj/mm/aaaa) Heure début (hh:mm) 13:20 Matériel utilisé grappin Coordonnées GPS de début Lambert 93 Heure fin (hh:mm) 14:30 896602,445 Χ 6486103,61 Profondeur maximale de colonisation observée durant le relevé sur l'ensemble du profil (m) Commentaires / Précisions perpendiculaire = 70 m ; Distance du début du profil au point central de l'UO = 0 m ; PC1 : Plantago major subsp. ; Coordonnées GPS de fin : Lambert 93 896650,812 **X** : 6486057,350 V:

Points contacts	Profondeur (m)	Substrat dominant	Taxons	Abondance
1	0,1	С	phraus	1
			lytsal	1
			carspx	1
2	1	S	phraus	2
			nuplut	2
			lytsal	2
3	1,2	S	na	
4	1,3		na	
5	1,5	S	na	
6	1,6		na	
7		S	najmin	2
8	1,8	S	na	
9		S	najmin	1
10	2,2	S	najmin	1
			potpec	2
11	2,3	S	potpec	2
12	2,5	S	potpec	2
13			na	
14			potpec	1
15	3,1	S	chamaj	5
16	3,1	S	chamaj	5
17	3,5	S	chamaj	5
18	4,1	S	chamaj	5
19		S	chamaj	5
20	5,5	S	najmin	1
21	5,5	S	najmin	2
			chaglo	1
			chamaj	2
			chacon	1
22		S	na	
23		S	chaglo	5
24	8	S	chaglo	
25	9	V	chaglo	5 5
26		V	chaglo	5
27	9,5	V	chaglo	5
28			chaglo	5
29		V	chaglo	5
30	10	V	na	

Enac aes pians a	eau au programme ae surveniar	ice des bassins ini	one meanerrane	ce et corse La	e de Ladara (50
UNITE D'OBSERVAT		PROFIL	DROIT		
Nom du plan d'eau :	Paladru	Opérateur :	Code:		25023
Organisme :	Mosaique Environnement	A. BALLAYDIER et E. BOUCARD			
N°Unité d'observation :		mm/aaaa) :		07/08/2014	
Heure début (hh:mm) :	14:55	Matériel utilisé	:	gra	ppin
Coordonnées GPS de déb		Lambert 93			
Heure fin (hh:mm):	16:15		X :	89657	73,583
	•	•	y:	64860	06,620
Profondeur maximale de	e colonisation observée dura	nt le relevé sur l'	ensemble du p	orofil (m) :	8
	Commentair	es / Précisions			
	= 50 m ; Prof. explorée < pro		plorer en raiso	n de la présen	nce d'une île à
Coordonnées GPS de fin :		Lambert 93			
			X :		54,955
			V:	64860	00,360

Points contacts	Profondeur (m)	Substrat	dominant	Taxons	Abondance
1	0,2	v	d	na	
2	0,5	t	d	phraus	2
				carela	2 3 2
				polamp	
				caysep	1
				menaqu ulospx	1 2 4 3 2 1
				phospx	1
3	0,7	s	d	phraus	3
	5,.		_	lytsal	2
				caysep	1
4	1	s		phraus	1
				polamp	1
5	1,1	s		phraus	1
				spispx	1 2 1
				rhispx	2
				zygspx mouspx	1
				lynspx	1
				oedspx	4
6	1,1	S		spispx	1 4 1 2 1 1 1 4 1 1 2 2 1 1
	-,,,			rhispx	2
				zygspx	1
				mouspx	1
				lynspx	1
_				oedspx	4
7	1,3	S		phraus	1
				spispx	1
				rhispx	2
				zygspx mouspx	1
				lynspx	1
				oedspx	4
8	1,4	s	d	na	-
9	1,4	S		na	
10	1,5	v		na	
11	1,7	V	d	chacon	1
12	1,8	V	s	chacon	1
13	1,8	V	S	chacon	1 1 2 1 2 3 2 3 1 1 3 3 3
14	1,9	V	s	chacon	2
15 16	1,9	V	s	chacon	1
16	2	v	s s	chacon chacon	2
- 17		V	5	potpec	2
18	2,1	v	s	chacon	3
	2,.			potpec	1
19	2,1	v	s	chacon	3
20	2,2	v	s	chacon	3
20		٧	s	najmin	1
21	2,2	٧	s	chacon	3
				najmin	1
22	2,2	V	s	chacon	3
23	2,3	V	S	chacon	4
				najmin potpec	1
24	2,6	v	s	potpec	1
24	2,0			chacon	3
25	2,8	v	s	najmin	2
	2,0			chacon	3
				potpec	2
				nieobt	1
26	3	٧	s	najmin	1
				potpec	1
				chacon	3
07				nieobt	1
27	4	V	S	chaglo	1
				chamaj nieobt	3 1 3 4 1 1 1 3 2 3 2 1 1 1 3 3 2 2 1 1 3 3 2 2 4 1 1 1 3 3 2 2 4 4 4 5 6 7 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8
28	4,5	V		najmin	2
20	4,5			chaglo	2
				nieobt	4
				toyspx	1
29	8	٧		nieobt	5
30	8	٧		nieobt	1
				chaglo	1

Unité d'observation des macrophytes		Résultats des profils		
Nom de plan d	l'eau :		Lac de Paladru	
Organisme:	ST	STE		3

	Profil gauche	Profil Central	Profil droit	UO
TAXON	Ma _{gi} =∑a _i /30	Ma _{ci} =∑a _i /30	Ma _{di} =∑a _i /30	Ma _i =(Ma _{gi} +Ma _{ci} +Ma _{di})/3
CARELA	0,17	0,00	0,10	0,09
CARSPX	0,00	0,03	0,00	0,01
CAYSEP	0,00	0,00	0,07	0,02
CHACON	1,03	0,03	1,30	0,79
CHAGLO	1,47	1,20	0,13	0,93
CHAMAJ	0,00	0,90	0,10	0,33
CLDMAR	0,03	0,00	0,00	0,01
LYNSPX	0,00	0,00	0,10	0,03
LYSVUL	0,03	0,00	0,00	0,01
LYTSAL	0,03	0,10	0,07	0,07
MENAQU	0,07	0,00	0,03	0,03
MOUSPX	0,00	0,00	0,10	0,03
NAJMIN	0,53	0,23	0,27	0,34
NIEOBT	0,00	0,00	0,47	0,16
NUPLUT	0,00	0,07	0,00	0,02
OEDSPX	0,07	0,00	0,40	0,16
OSCSPX	0,03	0,00	0,00	0,01
PHOSPX	0,00	0,00	0,13	0,04
PHRAUS	0,13	0,10	0,27	0,17
POLAMP	0,00	0,00	0,10	0,03
POTPEC	0,00	0,23	0,27	0,17
POTTRI	0,13	0,00	0,00	0,04
RHISPX	0,10	0,00	0,20	0,10
SPISPX	0,03	0,00	0,10	0,04
TOYSPX	0,00	0,00	0,03	0,01
ULOSPX	0,00	0,00	0,07	0,02
ZYGSPX	0,03	0,00	0,10	0,04

Maki: abondance moyenne du taxon i sur le profil k

a_i : indice d'abondance du taxon i estimé sur un point contact du profil k

Mai: abondance moyenne du taxon i sur l'UO

UNITE D'OBSERVAT	DE	SCRIPTION G	ENERALE	
Nom du plan d'eau :	Paladru		Code :	W3125023
Organisme :	Mosaïque Environnement			YDIER et E. BOUCARD
N°Unité d'observation :		jj/mm/aaaa) :		06/08/2014
Heure début (hh:mm) :	13:30	Heure de fin (hh:mm) :	17:30
Coordonnées GPS du F	oint central de l'unité :	Lambert 93		
			X:	899604,822
			y:	6488481,070
Transparence mesurée au	disque de Secchi (m) :	3,00	Niveaux des	s eaux (m):
Orientation / vents domina	ants :	sans objet		
	Typologie des rives au i	niveau de l'unité d'o	bservation	
Noter la fréquence des élé		re,2, rare, 3 , présen préciser	t, 4 abondant,	5, très abondant, "autre" : à
November de trans de vive de		,		
Numéro du type de rive do		L 4 umides caractéristic	ues"	
Tourbières				
Landes tourbeuses / humid	es			
Marais / Marécages				
Plan d'eau proche (<50m d	e la rive)			
Prairies inondées / humides	S			
Mégaphorbiaie / Végétation	n hélophyte en touradons			
Forêt hygrophile / Bois mar	écageux (aulnaie-saussaie)			
Autre**				
Type 2 : "Zones riv	rulaires colonisées par une	végétation arbusti	ve et arbores	cente non humide"
Forêts feuillus et mixtes		Ī		
Forêts de conifères		İ		
Arbustes et buissons		İ		
Lande / Lande à Ericacées				
Autre**				
Type 3 : "Zones rivula	aires non colonisées par u	ne végétation arbus	stive et arbore	escente non humide"
Friches				
Hautes herbes				
Rives rocheuses				
Plages / Sol nu				
Autre**				
I				

Type 4 : "Zones artificialisées ou subissant des pressions anthropiques visibles"					
Ports					
Mouillages					
Jetées					
Urbanisation	5				
Entretien de la végétation rivulaire					
Zones déboisées					
Litière					
Décharge					
Remblais					
Murs					
Digues					
Revêtements artificiels					
Plages aménagées					
Zone de baignade					
Chemins et routes					
Ouvrages de génie civil					
Agriculture					
Autre**					
Pourcentage du linéaire tota	l de rive repré	senté par ce type sur l'ensemble du plan d'eau :			
Type 1 (%): 10		Type 3 (%):			
Type 2 (%): 15		Type 4 (%): 75			
Largeur de la zone littorale "euphotique" :					
Commentaires / Précisions					

UNITE D'OBSERVATION MACROPHYTES			DESCRIPTION			
	ION MACROPE	Paladru		DESCRIPTION CODE:	W3125023	
Nom du plan d'eau : Organisme :	Mosaïque Env		Opérateur :		YDIER et E. BOUCARD	
N°Unité d'observation :	Wosaique Life		mm/aaaa):	A. DALLA	06/08/2014	
Heure début (hh:mm) :	13:3		Heure de fin	(hh.mm) .	17:30	
Coordonnées GPS du Poi			Lambert 93			
				x:	899604,822	
			y:	6488481,07		
		Conditions	d'observation			
		Conditions	u observation			
Vent : nul						
Météo : soleil						
Surface de l'eau :	lisse		Hauteur des va	igues (m) :	0,00	
			on de la rive			
Description de la zone rive	eraine (Cf. Fiche	e 1/1)				
Occupation du sol dominant	e:		Jardins _I	privatifs (résid	ences)	
Végétation dominante :				Herbacée		
Description de la berge (C	f. Fiche 1/1)					
Decription du talus :						
Hauteur (m) :	2,00					
Impacts humains visibles :	oui					
Indices d'érosion :	oui					
Type de substrat dominant :				Т		
Type de végétation dominar	nte:			Herbacée		
Substrats : [V : Vase; T			oe ; S : Sables, gr : Débris organiqu		lloux, pierres, galets ; B :	
Description de la plage			Abse	nte		
Largeur (m):						
Impacts humains visibles :	Т	ype de subs	trat dominant :			
Indices d'érosion :	T	ype de végé	tation dominante) :		
Description de la zone litte	oralo					
Largeur explorée (m):		vne de subti	rat dominant :		С	
Impacts humains visibles :		ypo do saba	at dominant .		Ü	
Type de végétation aguatiqu	Type de végétation aquatique dominante : hydrophytes					
Typo do vogotation aquatiqu	Nyarephytee					
	(Commentair	es / Précisions			

Etude des plans à édu l	u programme de	sur ventunce	ues oussins Knon	t-mediterrance	et Corse – Euc de Taldara (50	
UNITE D'OBSERVATION	N MACROPHYT	ES		RELEVE I	DE RIVE	
Nom du plan d'eau :	Paladru			Code :	W3125023	
Organisme :	Mosaïque Environnement Opérateur :			A. BALLAYDIER et E. BOUCARD		
N°Unité d'observation :	4 Date (jj/mm/aaaa) :			06/08/2014		
Heure début (hh:mm) :	13:3	0	Heure de fir	n (hh:mm) :	14:00	
Coordonnées GPS du début :			Lambert 93			
Correspondant aux coordonnées du Profil gauche (début)				X:	899568,022	
Correspondant aux coordonnees du Proin gauche (debut)				y:	6488453,600	
Largeur de la zone explorée (m) : 4 Substrat dominant sur la zone : C				la zone : C		
Commentaires / Précisions						
Longueur explorée = 100 m						

Coordonnées GPS du fin :	Lambert 93		
Correspondent aux coordennées du Drofil droit (début)	•	X:	899647,944
Correspondant aux coordonnées du Profil droit (début)		y:	6488509,160

* indiquer la superficie de (des) l'herbier(s), la profondeur, le type de subtrat, la présence de fleurs, de fruits, etc. Substrat dominant : [V : vase; T : Terre, argile, marne, tourbe; S : Sables, graviers; C : Cailloux, pierres, galets; B : Blocs, dalles; D : Débris organiques]					
TAXONS	Abondance	Observations complémentaires (*)			
pollap	1				
epispx	1				
zygspx	3				
spispx	1				
diaspx	1				
lynspx	2				
oscspx	1				
phospx	1				
hyglur	2				
fonant	1				
ambrip	1				
mouspx	1				
vauspx	1				
rhispx	1				
rhyrip	1				
	1	Gomphoneis sp.			

Etiace des pians à eau au programme de survemance des bassins Knone-Mediterrance et Corse – Lac de l'addair (50					
UNITE D'OBSERVAT	PROFIL GAUCHE				
Nom du plan d'eau :	Paladru	Code :	W3125023		
Organisme :	Mosaïque Environnement	A. BALLAYDIER et E. BOUCARD			
N°Unité d'observation :	4 Date (jj/mm/aaaa):		06/08/2014		
Heure début (hh:mm) :	14:50 Matériel utilisé		:	grappin	
Coordonnées GPS de déb	Lambert 93				
Heure fin (hh:mm):	16:20		X:	899568,022	
		-	y:	648845	53,600
Profondeur maximale de colonisation observée durant le relevé sur l'ensemble du profil (m) : 16					
Commentaires / Précisions = 50 m ; Prof. explorée > prof. théorique à explorer en raison de la présence de plusieurs espèces de plantes jusqu'					
, , , , , , , , , , , , , , , , , , , ,					
Coordonnées GPS de fin :		Lambert 93			
			X:	89954	8,085
				0.40054	20.000

Points contacts	Profondeur (m)			Taxons	Abondance
1	0,9	h	I	mouspx	2
	0,0	D		vauspx	2
				zygspx	1
				lynspx	3
				rhispx	1
				phospx	1
2	1,9	h		na	'
3	2,1			na	
4	2,3		S	na	
5	2,5	c	S	na	
6	2,6		S	na	
7	2,6		d	najmar	2
8	2,9		d	na	۷
9	3,1		d	najmar	4
9	3,1	V	u	chacon	2
10	3,6	V		najmar	3
11	3,0	V		najmar	3
12	5,5	V		najmar	2
13	6,5			na	2
14		V		na	
15					4
16	5,5 6	V	d	ambrip	1
17	5,5		d	najmar	1
18			d	najmar	1
10	6,5	V	u	najmar	1
19	7.5	.,		chaglo	2
19	7,5	V		najmar	5
				chaglo nitmuc	1
20	0.5	v			5
20	9,5	V		chaglo	5
21	9,5	V		nitmuc	5
21	9,5	V		chaglo	1
22	10	.,		nitmuc	
	10	V		chaglo	3
22	0.5			nitmuc	2
23	8,5	V		chaglo	2 2 3
0.4	0	v		nitmuc	
24	8	V		najmar	1
25	0	.,		chaglo	1
25	8	V		chaglo	3 3
20	40			nitmuc	
26	10	V		nitmuc	4
0.7	44.5	.,		chaglo	1
27	11,5 13,5	V		nitmuc	5
28	13,5	V		rhispx	2
				hyispx	1
				nitmuc	4
00	44.5			chaglo	2
29	14,5	V		chacon	1
00				nitmuc	2
30	16	V		nitmuc	1

UNITE D'OBSERVATION MACROPHYTES PROFIL CENTRAL Nom du plan d'eau : Paladru Code: W3125023 A. BALLAYDIER et E. BOUCARD Organisme: Mosaïque Environnement Opérateur : 06/08/2014 N°Unité d'observation : Date (jj/mm/aaaa): Heure début (hh:mm) : Matériel utilisé grappin Coordonnées GPS de début Lambert 93 Heure fin (hh:mm): 14:45 899604,822 6488481,07 y: Profondeur maximale de colonisation observée durant le relevé sur l'ensemble du profil (m) Commentaires / Précisions = 0 m ; Prof. explorée > prof. théorique à explorer en raison de la présence de plusieurs espèces de plantes jusqu'a Coordonnées GPS de fin Lambert 93 899588,397 Χ: 6488520,010

Points contacts	Profondeur (m)	Substrat	dominant	Taxons	Abondance
1	0,5			epispx	1
2	0,8	С	d	na	
3	1,1	С	d	na	
4	2	٧		najmin	2
				spispx	1
				lynspx	1
				oscspx	1
5	3,1	٧	S	najmar	4
				najmin	2
				chacon	1
6	3,7	V		najmin	1
				najmar	3
				chaglo	1
7	5,5		d	chaglo	4
8	6	٧		chaglo	4
				chacon	1
9	7,5	٧		chaglo	3
10	7,5	V		chaglo	4
11		V		chaglo	1
12	9	V		nitmuc	3
				chaglo	4
				chacon	3
13				nitmuc	3
14	10			na	
15	,			na	
16				na	
17	11,5	V		na	
18		V		na	
19	12	V		na	
20	12,5			na	
21	12			na	
22	12			na	
23				na	
24				na	
25				na	
26				na	
27	14			na	
28				na	
29				na	
30	14	٧		na	

Enac des pians d	e eau au programme ac sur venuar	tee des bassins tin	one meanerrane	te er corse Eur	e ac ranami (50
UNITE D'OBSERVATION MACROPHYTES			PROFIL	DROIT	
Nom du plan d'eau :	Paladru		Code :		25023
Organisme :	Mosaïque Environnement	Opérateur :	A. BALLA	YDIER et E. E	BOUCARD
N°Unité d'observation :	4 Date (jj/r	mm/aaaa) :	06/08/2014		
Heure début (hh:mm) :	16:50	Matériel utilisé	é: grappin		
Coordonnées GPS de déb	ut:	Lambert 93			
Heure fin (hh:mm):	17:30		X:	89964	47,944
		_	y:		09,160
Profondeur maximale de	e colonisation observée dura	nt le relevé sur l'	ensemble du p	orofil (m) :	10,5
	Commentair	es / Précisions			
	a explorer en raison de la prés		ırs espèces de	plantes jusqu	'à 16 m de pro
Coordonnées GPS de fin		Lambert 93		0000	27 470
			X :		37,173
			V:	64885	57.450

Points contacts	Profondeur (m)	Substrat	dominant	Taxons	Abondance
1	0,5	b		mouspx	1
				vauspx	1
				rhispx	1
				zygspx	1
				spispx	1
2	1	b		mouspx	1
				vauspx	1
				rhispx	1
				zygspx	2
				spispx	1
3	1,6	b	d	na	
4		С	b	na	
5	3,1	С	b	na	
6	3,7	С	b	na	
7	5	V	b	chaglo	1
8		С	b	na	
9	7,5	С	b	na	
10	7,5	V		na	
11	9,5	V		na	
12	10	С	b	ambrip	2
13	13	С		ambrip	2
				hyispx	1
14	10,5	С		trispx	1
				ambrip	1
				hyispx	1
15	10,5	С		na	
16	10	С		na	
17	10	С		na	
18		С		na	
19				na	
20	10	С		na	
21	11,5	С		na	
22		С		na	
23		С		na	
24				na	
25				na	
26	11			na	
27	11			na	
28				na	
29				na	
30	11	С		na	

Unité d'observation des macrophytes			Résultats des profils			
Nom de plan d	om de plan d'eau :			Lac de Paladru		
Organisme:	ST	ГЕ	N° d'UO :	4		

	Profil gauche	Profil Central	Profil droit	UO
TAXON	Ma _{gi} =∑a _i /30	Ma _{ci} =∑a _i /30	Ma _{di} =∑a _i /30	Ma _i =(Ma _{gi} +Ma _{ci} +Ma _{di})/3
AMBRIP	0,03	0,00	0,17	0,07
CHACON	0,10	0,17	0,00	0,09
CHAGLO	0,97	0,70	0,03	0,57
EPISPX	0,00	0,03	0,00	0,01
HYISPX	0,03	0,00	0,07	0,03
LYNSPX	0,10	0,03	0,00	0,04
MOUSPX	0,07	0,00	0,07	0,04
NAJMAR	0,63	0,23	0,00	0,29
NAJMIN	0,00	0,17	0,00	0,06
NITMUC	1,03	0,20	0,00	0,41
OSCSPX	0,00	0,03	0,00	0,01
PHOSPX	0,03	0,00	0,00	0,01
RHISPX	0,10	0,00	0,07	0,06
SPISPX	0,00	0,03	0,07	0,03
TRISPX	0,00	0,00	0,03	0,01
VAUSPX	0,07	0,00	0,07	0,04
ZYGSPX	0,03	0,00	0,10	0,04

Maki: abondance moyenne du taxon i sur le profil k

a_i : indice d'abondance du taxon i estimé sur un point contact du profil k

Mai: abondance moyenne du taxon i sur l'UO

Étude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Lac de Paladru (38)

UNITE D'OBSERVATION MACROPHYTES			DESCRIPTION GENERALE			
Nom du plan d'eau :		Paladru		Code:	W3125023	
Organisme :			Opérateur :	A. BALLA	YDIER et E. BOUCARD	
N°Unité d'observation :	5		(jj/mm/aaaa) :		06/08/2014	
Heure début (hh:mm) :	9:0	00	Heure de fin (hh:mm) :	12:30	
Coordonnées GPS du F	Point central d	le l'unité :	Lambert 93			
				X :	898621,262	
				y:	6488286,340	
T	diamus da Cas	ahi (m) :	2.20	l Nissaus dan	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
Transparence mesurée au	-	CHI (III) .	3,20	Niveaux des	s eaux (III) .	
Orientation / vents domina	ants :		sans objet	J		
	Tomostonio					
			niveau de l'unité d'o		5 1 2 1 1 1 1 1 1 2	
Noter la fréquence des élé	ements observ		are,2, rare, 3 , présen préciser	it, 4 abondant,	5, tres abondant, "autre" : a	
Numéro du type de rive do		1 : "Zones h	4 umides caractéristic	ques"		
Tourbières						
Landes tourbeuses / humid	les					
Marais / Marécages						
Plan d'eau proche (<50m d	e la rive)					
Prairies inondées / humides	s					
Mégaphorbiaie / Végétation	n hélophyte en	touradons				
Forêt hygrophile / Bois mar	écageux (aulna	aie-saussaie)				
Autre**						
Type 2 : "Zones riv	ulaires coloni	sées par une	végétation arbusti	ve et arbores	cente non humide"	
Forêts feuillus et mixtes						
Forêts de conifères			[
Arbustes et buissons						
Lande / Lande à Ericacées						
Autre**						
Type 3 : "Zones rivula	aires non colo	nisées par u	ne végétation arbus	stive et arbore	escente non humide"	
Friches						
Hautes herbes						
Rives rocheuses						
Plages / Sol nu						
Autre**						
I						

Type 4 : "Zones artificial	lisées ou subissant des pressions anthropiques visibles"				
Ports					
Mouillages					
Jetées					
Urbanisation					
Entretien de la végétation rivulaire					
Zones déboisées					
Litière					
Décharge					
Remblais					
Murs					
Digues					
Revêtements artificiels					
Plages aménagées					
Zone de baignade					
Chemins et routes					
Ouvrages de génie civil					
Agriculture					
Autre**	Parc - jardins 5				
Pourcentage du linéaire tota	ıl de rive représenté par ce type sur l'ensemble du plan d'eau :				
Type 1 (%) : 10	Type 3 (%):				
Type 2 (%) : 15	Type 4 (%): 75				
Largeur de la zone littorale "euphotique" :					
Commentaires / Précisions					
	Jardins d'habitations				
	Caramo a habitationo				

1	1 0				,			
UNITE D'OBSERVAT	ION MACROP	HYTES		DESCRIPTIO	N LOCALE			
Nom du plan d'eau :		Paladru		Code :	W3125023			
Organisme :	Mosaïque En	vironnement	Opérateur :	rateur: A. BALLAYDIER et E. BOUCA				
N°Unité d'observation :	5		mm/aaaa) :		06/08/2014			
Heure début (hh:mm) :	9:0		Heure de fir	(hh:mm) :	12:30			
Coordonnées GPS du Poi	nt central de l	'unité ː	Lambert 93					
				x :	898621,262			
				y:	6488286,34			
	Conditions d'observation							
V								
Vent : faible	1							
Météo : soleil			_					
Surface de l'eau :	faibleme		Hauteur des va	agues (m):	0,00			
			on de la rive					
Description de la zone riv	eraine (Cf. Fict	ne 1/1)						
Occupation du sol dominant		F	Parc et jardins					
Végétation dominante :				Herbacée				
Description de la berge (C	f. Fiche 1/1)							
Decription du talus :								
Hauteur (m) :	1,50							
Impacts humains visibles :	oui							
Indices d'érosion :	oui							
Type de substrat dominant :	:			Т				
Type de végétation dominar	nte :		ı	Arborescente				
Substrats : [V : Vase; 1			oe ; S : Sables, g : Débris organiqu		lloux, pierres, galets ; B :			
Description de la plage			Abse					
Largeur (m) :								
Impacts humains visibles :		Type de subs	trat dominant :					
Indices d'érosion :		Type de végé	tation dominante	e:				
December de la secondist								
Description de la zone litt Largeur explorée (m):		Tuno do oubt	rat dominant :		С			
Impacts humains visibles :		Type de Subi	rat dominant .		C			
Type de végétation aquatique dominante : hydrophytes								
	Commentaires / Précisions							

Étude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Lac de Paladru (38)

_					·
UNITE D'OBSERVATION	N MACROPHY	TES		RELEVE I	DE RIVE
Nom du plan d'eau :		Paladru		Code :	W3125023
Organisme :	Mosaïque En	vironnement	Opérateur :	A. BALLA	YDIER et E. BOUCARD
N°Unité d'observation :	5	Date (jj/i	mm/aaaa) :		06/08/2014
Heure début (hh:mm) :	9:0	00	Heure de fir	n (hh:mm) :	9:30
Coordonnées GPS du début :			Lambert 93		
Correspondant aux coordonnées d	u Profil gauche	(début)		X:	898649,784 6488337,570
Largeur de la zone exploré	e (m) :	2	Substrat o	dominant sur	
Commentaires / Précisions					
	Lo	ongueur explo	rée = 100 m		

Coordonnées GPS du fin :	Lambert 93		
Correspondant aux coordonnées du Profil droit (début)	•	X:	898552,513
Correspondant aux coordonnees du Front droit (debut)		y:	6488234,550

Etuae aes pians a	eau au programme ae surveillai	ice aes bassins kno	one-meanterrane	ee et Corse – Lac ae Pa	naaru (50
UNITE D'OBSERVATION MACROPHYTES			PROFIL G	SAUCHE	
Nom du plan d'eau :	Paladru		Code :	W3125023	
Organisme :	Mosaïque Environnement	Opérateur :	A. BALLA	YDIER et E. BOUCA	ARD
N°Unité d'observation :	5 Date (jj/r	mm/aaaa) :	06/08/2014		
Heure début (hh:mm) :	10:50	Matériel utilisé	: grappin		
Coordonnées GPS de déb	out :	Lambert 93			
Heure fin (hh:mm):	11:30		X:	898649,784	
			y:	6488337,570	0
Profondeur maximale de	e colonisation observée dura	nt le relevé sur l'	ensemble du p	orofil (m) :	0,5
		es / Précisions			ente imp
Coordonnées GPS de fin	-	Lambert 93			
Coordonnees GPS de fin	-	Lambert 93	v ·	898664,659	
			X:	640004,038	

Points contacts	Profondeur (m)	Substrat	dominant	Taxons	Abondance
1	0,5	С	В	Lysvul	1
2		В		NA	
3	1,6	С		NA	
4	1,8		D	NA	
5		С		NA	
6	2	С	D	NA	
7	2,3	С	D	NA	
8	2,7	С		NA	
9	3,1	С		NA	
10	4	С	D	NA	
11	4,3	С	D	NA	
12	4	С		NA	
13	4,3	С		NA	
14		С	D	NA	
15	5,5	С		NA	
16	7	С		NA	
17	7	С		NA	
18	7	С		NA	
19	7	С		NA	
20	8			NA	
21	8,5			NA	
22	9	С		NA	
23	10	С		NA	
24	10,5	С		NA	
25	11			NA	
26	11			NA	
27	11			NA	
28	12			NA	
29	12			NA	
30	13,5	С		NA	

UNITE D'OBSERVATION MACROPHYTES PROFIL CENTRAL Nom du plan d'eau : Paladru Code: W3125023 Organisme : Mosaïque Environnement A. BALLAYDIER et E. BOUCARD Opérateur : N°Unité d'observation : 5 06/08/2014 Date (jj/mm/aaaa) 9:30 Heure début (hh:mm) : Matériel utilisé grappin Coordonnées GPS de début : Lambert 93 Heure fin (hh:mm) 10:20 898621,262 Χ 6488286,34 y: Profondeur maximale de colonisation observée durant le relevé sur l'ensemble du profil (m) 2,9 Commentaires / Précisions début du profil au point central de l'UO = 0 m ; Prof. explorée > prof. théorique à explorer en raison de la pente impo Coordonnées GPS de fin : Lambert 93 898634,909 X : 6488271,670 V:

Points contacts	Profondeur (m)	Substrat	dominant	Taxons	Abondance
1	0,6			lytsal	1
1				lysvul	1
2	1,2	С		na	
3	1,8			na	
4	2,1		D	na	
5	2,3	С		na	
6	2,5	С		na	
7	2,9		D	spispx	1
				oedspx	1
8	3,1	С	D	na	
9		С	D	na	
10	5,5	С	D	na	
11	5,5	С	D	na	
12	6,5	С		na	
13	7	С		na	
14	9	С		na	
15	9,5	С		na	
16				na	
17	13	С		na	
18				na	
19	15	С		na	
20	15,5	С		na	
21	17	С		na	
22	18	С		na	
23	19			na	
24	20	С		na	
25	21	С		na	
26	22	С		na	
27	22	С		na	
28	22,5	С		na	
29				na	
30	23,5	С		na	

	1 0				
UNITE D'OBSERVAT		PROFIL	DROIT		
Nom du plan d'eau :	Paladru		Code: W3125023		
Organisme :	Mosaïque Environnement	Opérateur :	A. BALLA	YDIER et E. B	OUCARD
N°Unité d'observation :	5 Date (jj/r	mm/aaaa) :	06/08/2014		
Heure début (hh:mm) :	11:40	Matériel utilisé	é: grappin		
Coordonnées GPS de déb	ut :	Lambert 93			
Heure fin (hh:mm):	12:20		X:	89855	52,513
			y:		34,550
Profondeur maximale de	e colonisation observée dura	nt le relevé sur l'	ensemble du p	orofil (m) :	0
	Commentair	es / Précisions			
	ral de l'UO = 50 m ; Prof. exp		orique à explo	rer en raison d	le la pente imp
Coordonnées GPS de fin		Lambert 93		00050	20.000
			X :		68,268
			٧.	64882	17 520

Points contacts	Profondeur (m)	Substrat	dominant	Taxons	Abondance
1	0,4	С	D	na	
2	0,7	С	D	na	
3			D	na	
4	1	С	D	na	
5	1,1	С		na	
6				na	
7	1,4			na	
8	,			na	
9	,			na	
10	1,8			na	
11	2,1	С		na	
12	2,1			na	
13	2,3			na	
14	2,3			na	
15				na	
16				na	
17	3,2			na	
18				na	
19		С		na	
20		С		na	
21	7			na	
22	7,5			na	
23	8,5			na	
24	9,5			na	
25				na	
26	10			na	
27	10			na	
28				na	
29				na	
30	13,5	С		na	

Unité d'observation des macrophytes		Résultats des profils			
Nom de plan d	l'eau :		Lac de Paladru		
Organisme:	ST	ΓE	N° d'UO :	5	

	Profil gauche	Profil Central	Profil droit	UO
TAXON	Ma _{gi} =∑a _i /30	Ma _{ci} =∑a _i /30	Ma _{di} =∑a _i /30	Ma _i =(Ma _{gi} +Ma _{ci} +Ma _{di})/3
LYSVUL	0,03	0,03	0,00	0,02
LYTSAL	0,00	0,03	0,00	0,01
OEDSPX	0,00	0,03	0,00	0,01
SPISPX	0,00	0,03	0,00	0,01

Ma_{ki}: abondance moyenne du taxon i sur le profil k
a_i: indice d'abondance du taxon i estimé sur un point contact du profil k

Ma_i: abondance moyenne du taxon i sur l'UO

Étude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Lac de Paladru (38)

UNITE D'OBSERVATION MACROPHYTES		DESCRIPTION GENERALE			
Nom du plan d'eau :	Paladru		Code:	W3125023	
Organisme :	Mosaïque Environnement		A. BALLA	YDIER et E. BOUCARD	
N°Unité d'observation :		jj/mm/aaaa) :		08/08/2014	
Heure début (hh:mm) :	9:10	Heure de fin (hh:mm) :	12:00	
Coordonnées GPS du F	Point central de l'unité :	Lambert 93			
			x :	897872,707	
			y:	6486311,100	
Transparence mesurée au	disque de Secchi (m):	3,80	Niveaux des	s eaux (m) :	
Orientation / vents dominants : sans objet					
			•		
	Typologie des rives au	niveau de l'unité d'o	bservation		
Noter la fréquence des élé	ments observés : 1, très ra	are,2, rare, 3 , présen	t, 4 abondant,	5, très abondant, "autre" : à	
		oréciser			
Numéro du type de rive do		4 umides caractéristic	""		
Tourbières	Type 1. Zones in	umides caracteristic	lues		
Landes tourbeuses / humid	les				
Marais / Marécages					
Plan d'eau proche (<50m d	e la rive)				
Prairies inondées / humides					
Mégaphorbiaie / Végétation	n hélophyte en touradons				
Forêt hygrophile / Bois mar	écageux (aulnaie-saussaie)				
Autre**					
Type 2 : "Zones riv	rulaires colonisées par une	végétation arbusti	ve et arhores	cente non humide"	
Forêts feuillus et mixtes	dianes colonisces par une		ve et arbores	cente non numae	
Forêts de conifères		†			
Arbustes et buissons		t			
Lande / Lande à Ericacées		İ			
Autre**					
Type 3 : "Zones rivula	aires non colonisées par u	ne végétation arbus	stive et arbore	escente non humide"	
Friches					
Hautes herbes					
Rives rocheuses					
Plages / Sol nu					
Autre**					

Type 4 : "Zones artificialisées ou subissant des pressions anthropiques visibles"					
Ports					
Mouillages					
Jetées	2				
Urbanisation	3				
Entretien de la végétation rivulaire					
Zones déboisées					
Litière					
Décharge					
Remblais					
Murs					
Digues					
Revêtements artificiels					
Plages aménagées					
Zone de baignade					
Chemins et routes					
Ouvrages de génie civil					
Agriculture					
Autre**		Parcs et Jardins (4)			
Pourcentage du linéaire total	l de rive repré	senté par ce type sur l'ensemble du plan d'eau :			
Type 1 (%) : 10		Type 3 (%):			
Type 2 (%) : 15		Type 4 (%): 75			
Largeur de la zone littorale "euphotique" :					
Commentaires / Précisions					
Début le 0)7/08/2014 à 1	7:45, fin le 08/08/2014 à 12:00			

UNITE D'OBSERVA	TION MACROP	HYTES		DESCRIPTIO	N LOCALE	
Nom du plan d'eau :		Paladru		Code:	W3125023	
Organisme :	Mosaïque En		•	A. BALLA	YDIER et E. BOUCARD	
N°Unité d'observation :	6		mm/aaaa) :		08/08/2014	
Heure début (hh:mm) :	9:1		Heure de fin	i (hh:mm) :	12:00	
Coordonnées GPS du Po	int central de l'	unite :	Lambert 93			
				x:	897872,707	
				y:	6486311,1	
				y.	0400011,1	
		Conditions	d'observation			
Vent : nul						
	1					
Météo : très nuageux					0.00	
Surface de l'eau :	liss	-	Hauteur des va on de la rive	igues (m) :	0,00	
Description de la zone riv	eraine (Cf. Fich		on de la rive			
Occupation du sol dominan	, I	ie i/ i/	Hah	itations / Jardi	ns	
Végétation dominante :			Tido	Herbacée	110	
Description de la berge (Cf. Fiche 1/1)			110124000		
Decription du talus :						
Hauteur (m) :	0,50					
Impacts humains visibles :	,					
Indices d'érosion :	non					
Type de substrat dominant				В		
Type de végétation domina	- 1		Herb	oacée, sinon m	nur	
,, ,	•			,		
Substrats: [V : Vase;			oe ; S : Sables, gr : Débris organiqu		lloux, pierres, galets ; B :	
Description de la plage	Biot	, dalios , D	Abse			
Largeur (m):						
Impacts humains visibles :		Type de subs	trat dominant :			
Indices d'érosion :		Type de végé	tation dominante) :		
December 1						
Description de la zone litt		Transa da avalat				
Largeur explorée (m) : Impacts humains visibles :		Type de subi	rat dominant :		С	
ı				•		
Type de végétation aquatique dominante : hydrophytes						
Type de vegetation aquatiq	de dominante .		nydropnytes			
		Commentair	es / Précisions			
		Berge béton	née dominante			

	F - G				ei Corse – Luc de I diddru (50
UNITE D'OBSERVATION	N MACROPHY	TES		RELEVE (DE RIVE
Nom du plan d'eau :		Paladru		Code :	W3125023
Organisme :	Mosaïque Environnement Opérateur :			A. BALLA	YDIER et E. BOUCARD
N°Unité d'observation :	6	Date (jj/	mm/aaaa) :	08/08/2014	
Heure début (hh:mm) :	17:	50	Heure de fii	n (hh:mm) :	18:30
Coordonnées GPS du début :			Lambert 93		
Correspondant aux coordonnées d	u Drofil goucho	(dábut)		X:	897830,107
Correspondant aux coordonnees d	u Fiolii gaucile	(debut)		y:	6486270,310
Largeur de la zone exploré	e (m) :	5	Substrat	dominant sur l	a zone : C
Commentaires / Précisions					
Relevé effectué le 07/08/2014 ; Longueur explorée = 100 m					

Coordonnées GPS du fin :	Lambert 93		
Correspondent aux coordonnées du Profil droit (début)	•	X:	897908,477
Correspondant aux coordonnées du Profil droit (début)		y:	6486334,310

* indiquer la superficie de (des) l'herbier(s), la profondeur, le type de subtrat, la présence de fleurs, de fruits, etc. Substrat dominant : [V : vase; T : Terre, argile, marne, tourbe; S : Sables, graviers; C : Cailloux, pierres, galets; B : Blocs, dalles; D : Débris organiques]

TAXONS	Abondance	Observations complémentaires (*)
lytsal	2	
spispx	3	
mouspx	2	
rhispx	1	
zygspx	2	
oscspx	2	
oedspx	3	
caysep	1	
polamp	1	
phraus	2	
phaaru	2	
menaqu	3	
agrsto	3	
stapal	2	
puldys	2	
bidtri	2	
equpal	2	
eupcan	2	
carhir	1	
diaspx	2	
ulospx	1	
vauspx	1	
micspx	1	
		Potentilla reptans
	2	Gomphoneis sp.

Bittae aes pians a	edu du programme de sur ventur	ice des oussins tin	one meanerrane	e et corse <u>B</u> ae	ac I alaarii (50
	TON MACROPHYTES		PROFIL G	SAUCHE	
Nom du plan d'eau :	Paladru		Code:	W312	25023
Organisme :	Mosaïque Environnement	Opérateur :	A. BALLA	YDIER et E. B	OUCARD
N°Unité d'observation :	6 Date (jj/r	mm/aaaa) :		08/08/2014	
Heure début (hh:mm) :	9:10	Matériel utilisé	:	grap	ppin
Coordonnées GPS de déb	ut:	Lambert 93			•
Heure fin (hh:mm):	10:20		x:	89783	30,107
•		•	y:	64862	70,310
Profondeur maximale de	e colonisation observée dura	nt le relevé sur l'	ensemble du p	rofil (m) :	9
du profil perpendiculaire = 3	Commentair 0 m ; Distance du début du p	es / Précisions rofil au point cer			PC7 : Gompho
Coordonnées GPS de fin :		Lambert 93			
		-	X:		10,696
			V:	64862	96,480

Points contacts	Profondeur (m)	Substrat	dominant	Taxons	Abondance
1	0,5		dominant	diaspx	2
	0,5			zygspx	1
				spispx	3
				mouspx	3 1
				carspx	2
				lytsal	2 1 3 2 2 2 1 3 3
				agrsto	3
2	0,7	С		lytsal	2
_	5,.			diaspx	2
				zygspx	1
				spispx	3
				mouspx	1
3	0,9	С		lytsal	1
				diaspx	2
				zygspx	2
				spispx	3
				mouspx	1
4	1	С		diaspx	2
				zygspx	1
				spispx	3
				mouspx	1
5	1,2	С		diaspx	2 1 3 1 2 1 2 1
	-,-			zygspx	1
				spispx	2
				mouspx	1
				ulospx	1
				toyspx	2
6	1,5	С		na	_
7	1,6		С	oedspx	1
	1,0			lynspx	2
8	1,6	c		na	
9	1,8	c		na	
10	1,9	С		najmin	3
11	1,9	c		najmin	2
	1,0			chaglo	2
				chacon	3 2 2 2 3 3 2 4 1 1 2 3 3 2
12	2,2	c	s	najmin	3
	2,2			chaglo	2
				chacon	4
13	2,7	h		najmin	1
10	2,1			chaglo	2
				chacon	3
14	2,7	s		najmin	2
	2,.			chaglo	1
				chacon	
15	3,1	s		chaglo	1
	0,1			chacon	2
16	3,5	С		najmin	3 1 2 3 1 4 4 2
10	3,3	_		chacon	1
17	1	s		najmin	1
- 17	4			chaglo	2
				chacon	3
18	5	s		na	3
19	5.5	9	С	chaglo	3
20	5,5	9	Ĭ	chaglo	3
20	6,5	S		chaglo	2
20 21 22	5,5 6,5 6,5 7,5 8,5	S		chaglo	3 3 2 2
23	8.5	s	d	na	2
24	0,5	s	C	chaglo	1
24	3		Ĭ	claspx	1
				spispx	1
				toyspx	1
				lynspx	1
25	0	s	С	na	1
26	10	S	-	na	
27	10.5	s		na	
28	10 10,5 11,5 12,5	s		na	
29	12.5	s		na	
30	14	S		na	
30	14	-		rici	

Binac aes pians a	can an programme ac surveniar	ice des odssins tin	one meanerrane	ee et corse Eu	e de 1 diddrii (5e
UNITE D'OBSERVAT	TION MACROPHYTES		PROFIL C	ENTRAL	
Nom du plan d'eau :	Paladru		Code:	W312	25023
Organisme :	Mosaïque Environnement	Opérateur :	A. BALLA	YDIER et E. B	BOUCARD
N°Unité d'observation :	6 Date (jj/r	mm/aaaa) :		08/08/2014	
Heure début (hh:mm) :	17:50	Matériel utilisé	grappin		
Coordonnées GPS de déb	ut :	Lambert 93			
Heure fin (hh:mm):	18:30		X:	89787	72,707
		•	y:	6486	311,1
Profondeur maximale de	nt le relevé sur l'	ensemble du p	orofil (m) :	14,5	
	Commentair	es / Précisions			
08/2014 ; Longueur du profil	perpendiculaire = 30 m ; Dis	tance du début d	du profil au poi	nt central de l'	UO = 0 m ; P0
			X:	89785	53,884
			V.	64863	36 120

Points contacts	Profondeur (m)	Substrat	dominant	Taxons	Abondance
1	0,6	С		spispx	2
				ulospx	1
				zygspx	2
				rhispx	2
				vauspx	1
				mouspx	1
				oedspx	1
2	1	С		lytsal	1
				spispx	2
				ulospx	1
				zygspx	2
				rhispx	2
				vauspx	1
				mouspx	1
				oedspx	1
3	1,3	С		rhispx	4
				phospx	1
4	1,6			na	
5	1,8	С		chacon	2
6	2,1	С	d	chacon	3
				najmin	1
				chaglo	2
7	2,4	С	V	chacon	4
				najmin	2
				chaglo	2 3
8		С	V	chacon	
9	3,6	٧	С	chacon	3
10	5	V		na	
11	6	V	d	na	
12	7	V	d	na	
13	8	V	d	chaglo	4
14	8	V	d	chaglo	4
15	8		d	chaglo	3
16	8		d	chaglo	1
17	8,5	V	d	chaglo	3
18	9	V	d	chaglo	5 3
				chacon	3
19	11		d	chaglo	3
20	8		d	chaglo	5
21	9,5	V	d	na	
22	9,5		d	na	
23	10			na	
24	11			na	
25	12,5	V		na	
26	11,5 11,5	V		na	
27	11,5	V		na	
28	14		С	na	
29	13,5	V	С	na	
30	14,5	V		chaglo	1

Ettae aes pians a	eau au programme ae sur veniar	ice des bassins ini	one meanerane	e er corse Bac	ac ramara (50
UNITE D'OBSERVAT	TION MACROPHYTES		PROFIL	DROIT	
Nom du plan d'eau :	Paladru	-	Code :	W312	25023
Organisme :	Mosaïque Environnement	Opérateur :	A. BALLA	YDIER et E. B	OUCARD
N°Unité d'observation :	6 Date (jj/r	mm/aaaa) :		08/08/2014	
Heure début (hh:mm) :	10:30	Matériel utilisé	e: grappin		
Coordonnées GPS de déb	out:	Lambert 93			
Heure fin (hh:mm):	11:20		X:	897908,477	
		y:		34,310	
Profondeur maximale de	nt le relevé sur l'	ensemble du p	orofil (m) :	9	
	Commentair	es / Précisions			
de l'UO = 50 m ; Prof. explor Coordonnées GPS de fin :	ée > prof. théorique dans le t	out d'être homog Lambert 93	ène avec les 2	2 autres profils	de cette unité
			X:	89788	34,229
			V.	64863	66 170

	Profondeur (m)			Taxons	Abondance
1	0,7	b		spispx	1
				rhispx	1
				micspx	3
2	1,5	b	d	spispx	1
				rhispx	1
				myrspi	1
3	2	С	b	na	
4	2,7	b		na	
5		С	s	na	
6	5,5			na	
7	5,5			myrspi	2
				toyspx	2
				phospx	1
8	6,5	С		toyspx	2
				phospx	1
9	7	С		toyspx	1
				phospx	1
10	9	С		toyspx	1
				phospx	1
11		С		na	
12		С		na	
13	10	С		na	
14	10	С		na	
15	9,5	С		na	
16	11	С		na	
17	12			na	
18	12	С		na	
19	13	С		na	
20	14			na	
21	14	С		na	
22	15			na	
23				na	
24	16			na	
25				na	
26				na	
27	16,5			na	
28				na	
29		С		na	
30	17	С		na	

Unité d'observation des macrophytes			Résultats des profils		
Nom de plan d'eau :		Lac de Paladru			
Organisme : STE		N° d'UO :	6		

	Profil gauche	Profil Central	Profil droit	UO
TAXON	Ma _{gi} =∑a _i /30	Ma _{ci} =∑a _i /30	Ma _{di} =∑a _i /30	Ma _i =(Ma _{gi} +Ma _{ci} +Ma _{di})/3
AGRSTO	0,10	0,00	0,00	0,03
CARSPX	0,07	0,00	0,00	0,02
CHACON	0,60	0,60	0,00	0,40
CHAGLO	0,70	1,10	0,00	0,60
CLASPX	0,03	0,00	0,00	0,01
DIASPX	0,33	0,00	0,00	0,11
LYNSPX	0,10	0,00	0,00	0,03
LYTSAL	0,13	0,03	0,00	0,06
MICSPX	0,00	0,00	0,10	0,03
MOUSPX	0,17	0,07	0,00	0,08
MYRSPI	0,00	0,00	0,10	0,03
NAJMIN	0,60	0,10	0,00	0,23
OEDSPX	0,03	0,07	0,00	0,03
PHOSPX	0,00	0,03	0,13	0,06
RHISPX	0,00	0,27	0,07	0,11
SPISPX	0,50	0,13	0,07	0,23
TOYSPX	0,10	0,00	0,20	0,10
ULOSPX	0,03	0,07	0,00	0,03
VAUSPX	0,00	0,07	0,00	0,02
ZYGSPX	0,17	0,13	0,00	0,10

Ma_{ki}: abondance moyenne du taxon i sur le profil k

a_i: indice d'abondance du taxon i estimé sur un point contact du profil k

Ma_i: abondance moyenne du taxon i sur l'UO