

Etude des plans d'eau du programme de surveillance des bassins Rhône Méditerranée et Corse - rapport de données brutes et interprétation Retenue de Quinson – suivi annuel 2014

Octobre 2015

Angers - Technopole d'Angers - 1 avenue du Bois l'Abbé - 49070 Beaucouzé - Tél. : 02 41 22 01 01 - Fax : 02 41 48 04 14 - aqua@aquascop.fr

Montpellier - Domaine de Cécélès - 1520 route de Cécélès - 34270 Saint Mathieu de Tréviers - Tél. : 04 67 52 92 38 - Fax : 04 67 52 93 23 - aqua2@aquascop.fr

Etude des plans d'eau du programme de surveillance des bassins Rhône Méditerranée et Corse - rapport de données brutes et interprétation Retenue de Quinson – suivi annuel 2014

Octobre 2015

Version	Date	Nom et signature du (des) rédacteur(s)	Nom et signature du vérificateur
V2	octobre 2015	A. ROBE	V. BOUCHAREYCHAS
		A. CORBARIEU	
		C. BOUZIDI	
		J. WUILLOT	

Sommaire

1. PREAMBULE	5
1.1. Cadre du programme de suivi	5
1.2. Présentation du plan d'eau et localisation	6
1.3. Conditions climatiques 2014	7
2. CONTENU DU SUIVI 2014	7
2.1. Programme	7
2.2. Investigations physicochimiques	8
2.2.1. Mesures in situ	8
2.2.2. Prélèvements d'eau	8
2.2.3. Prélèvement de sédiment	9
2.2.4. Transfert et analyse des échantillons	9
2.3. Investigations biologiques	9
2.3.1. Phytoplancton	
2.3.2. Invertébrés	10
3. RESULTATS DES INVESTIGATIONS	
3.1. Investigations physicochimiques	
3.1.1. Analyses des eaux du plan d'eau	10
3.1.1.1. Evolution de la hauteur d'eau	
3.1.1.2. Profils verticaux et évolution saisonnières	
3.1.1.3. Paramètres de constitution et typologie	
3.1.1.4. Paramètres classiques	
3.1.1.5. Micropolluants minéraux	
3.1.1.6. Micropolluants organiques	
3.1.2. Analyse de sédiments	
3.1.2.1. Granulométrie	
3.1.2.2. Physicochimie du sédiment	
3.1.2.3. Micropolluants minéraux	
3.1.2.4. Micropolluants organiques	
3.2. Phytoplancton	
3.2.1. Importance de la zone euphotique	
3.2.2. Biomasse phytoplanctonique	
3.2.3. Listes floristiques et densités	19
3.2.4. Evolution saisonnière des groupes algaux	21
3.3. Invertébrés	22
3.3.1. Conditions de prélèvements	22
3.3.2. IOBL : listes faunistiques et commentaires	23
4 ANNEYES	24

4.1.	Annexe 1 : Liste des micropolluants analysés dans l'eau	25
4.2.	Annexe 2 : Liste des micropolluants analysés dans le sédiment	26
	Annexe 3 : Compte-rendus des campagnes de prélèvements (physicochimie toplancton)	
11	Anneye 4 : invertébrés – rannort d'essai	28

1. PREAMBULE

1.1. CADRE DU PROGRAMME DE SUIVI

Dans le cadre de la mise en œuvre de la Directive Cadre européenne sur l'Eau (DCE), un programme de surveillance doit être établi pour suivre l'état écologique (ou le potentiel écologique) et l'état chimique des eaux douces de surface.

Différents réseaux constituent le programme de surveillance. Parmi ceux-ci, deux réseaux sont actuellement mis en œuvre sur les plans d'eau :

- Le réseau de contrôle de surveillance (RCS) vise à donner une image globale de la qualité des eaux.
 Tous les plans d'eau naturels supérieurs à 50 ha ont été pris en compte sur les bassins Rhône-Méditerranée et Corse. Pour les plans d'eau d'origine anthropique, une sélection a été opérée parmi les plans d'eau supérieurs à 50 ha, afin de couvrir au mieux les différents types présents (grandes retenues, plans d'eau de digue, plans d'eau de creusement).
- Le contrôle opérationnel (CO) a pour but de suivre spécifiquement les masses d'eau (naturelles ou anthropiques) supérieures à 50 ha, à risque de non atteinte du bon état (ou du bon potentiel) des eaux en 2015.

Au total, 80 plans d'eau sont suivis sur les bassins Rhône-Méditerranée et Corse dans le cadre de ces deux réseaux.

Le contenu du programme de suivi concernant les plans d'eau est identique pour le RCS et le CO. Un plan d'eau concerné par le CO sera cependant suivi à une fréquence plus soutenue (tous les 3 ans) par rapport à un plan d'eau suivi dans le cadre du RCS (tous les 6 ans).

Le tableau suivant résume les différents éléments suivis par année et les fréquences d'intervention associées. Il s'agit du suivi qualitatif type mis en place pour les plans d'eau du programme de surveillance. Les différents paramètres physicochimiques analysés dans l'eau sont suivis lors de quatre campagnes calées aux différentes phases du cycle annuel de fonctionnement du plan d'eau, soit entre le mois de février et le mois d'octobre.

			<u> </u>	-				
			Paramètres	Type de prélèvements/ Mesures	HIVER	PRINTEMPS	ЕТЕ	AUTOMNE
		Mesures in situ	O2 dis. (mg/l, %sat.), pH, COND (25°C), T°C, transparence secchi	Profils verticaux	х	Х	Х	Х
		Dhysics shimis slessings	DBO5, PO4, Ptot, NH4, NKJ, NO3,	Intégré	Х	Х	Х	Х
	⊇	Physico-chimie classique	NO2, COT, COD, MEST, Turbidité, Si dissoute	Ponctuel de fond	Х	Χ	Х	Х
	Sur EAU	Substances prioritaires, autres	Micropolluants sur eau*	Intégré	Х	Х	Х	Х
	Sur	substances et pesticides	Micropolidants sur eau	Ponctuel de fond	Х	Х	Х	X
		Pigments chlorophylliens	Chlorophylle a + phéopigments	Intégré	Х	Х	Х	Х
		riginents chlorophymens	Chlorophylle a + pheopigments	Ponctuel de fond				
	Minéralisation		Ca ²⁺ , Na ⁺ , Mg ²⁺ , K ⁺ , dureté, TA,	Intégré	Χ			
		Willeransation	TAC, SO ₄ ²⁻ , Cl ⁻ , HCO ₃ ⁻	Ponctuel de fond				
S	Eau	interstitielle : Physico-chimie	PO4, Ptot, NH4					
Sur SEDIMENTS	Phase solide (<2mm)	Physico-chimie	Corg., Ptot, NKJ, Granulomètrie, perte au feu	Prélèvement au point de plus grande profondeur				X
ns	И	Substances prioritaires, autres substances et pesticides	Micropolluants sur sédiments*					
			Phytoplancton	Prélèvement Intégré (Cemagref/Utermöhl)	Х	Х	Х	Х
			Invertébrés benthiques	Lac naturel : IBLsimplifié				Χ
	HYDROBIOLOGIE et		invertebres benunques	Retenues : IOBL (NF T90-391)				Х
			Macrophytes	Norme XP T 90-328			Χ	
			Hydromorphologie	en charge de l'ONEMA			Х	
			Suivi piscicole	Protocole CEN (en charge de l'ONEMA)			Х	

^{* :} se référer à l'annexe 5 de la circulaire du 29 janvier 2013 relative à l'application de l'arrêté du 25 janvier 2010 établissant le programme de surveillance de l'état des eaux.

RCS : un passage par plan de gestion (soit une fois tous les six ans)

CO : un passage tous les trois ans

1.2. PRESENTATION DU PLAN D'EAU ET LOCALISATION

La retenue de Quinson est l'un des cinq ouvrages de la chaine hydroélectrique du Verdon (concession EDF). Elle est située en aval immédiat du barrage de Sainte-Croix à la limite entre le département des Alpes-de-Haute-Provence et celui du Var dans le Parc Naturel Régional du Verdon. Cette longue retenue s'étire sur plus de 10 km alternant entre des zones de gorges calcaires étroites et sauvages et des élargissements formant des étendues planes.

Cette retenue construite après celle de Sainte-Croix avait pour rôle initial la production d'électricité et la régulation des variations de débit induites par le fonctionnement de l'usine hydroélectrique amont. Aujourd'hui, cette retenue est également utilisée pour de nombreux usages récréatifs (baignade, activités nautiques, pêche, réserve naturelle, ...).

Carte de localisation de la retenue de Quinson (Source : Géoportail, IGN)

1.3. CONDITIONS CLIMATIQUES 2014

Les données météorologiques utilisées pour la rédaction de ce paragraphe sont issues des enregistrements des stations météorologiques de Digne-les-Bains et de Château Arnoux-Saint-Auban situées à une trentaine de kilomètres du site.

Le climat de cette région est typiquement méditerranéen avec parfois quelques influences montagnardes venant des alpes. Il se caractérise par des hivers plutôt doux et humides qui alternent avec des étés chauds et secs, accompagnés d'orages.

L'année 2014 a été dans l'ensemble plus pluvieuse que la moyenne avec des précipitations qui se sont étalées tout au long de l'année, et des cumuls de précipitations importants en début (janvier-février) et fin d'année (novembre et décembre). Les températures enregistrées ont été plus élevées que la moyenne habituellement observée sauf en juillet et août même si ces deux mois restent les plus chauds de l'année.

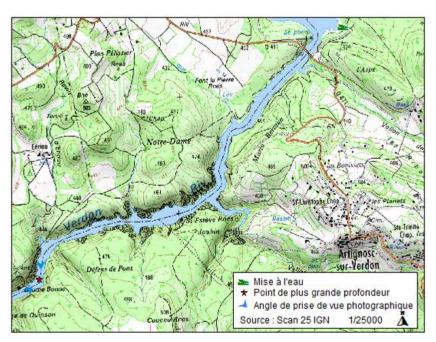
2. CONTENU DU SUIVI 2014

La retenue de Quinson est suivie dans le cadre du Réseaux de Contrôle Opérationnel (RCO). Le suivi précédent a été réalisé il y a 3 ans, en 2011.

2.1. PROGRAMME

Le tableau ci-après indique les dates des investigations réalisées en 2014 ainsi que les structures intervenantes.

Quinson (X2615003)		Phase Laboratoire				
Campagnes	1	IOBL	2	3	4	
Dates	25/03/2014	09 et 10/04/2014	22/05/2014	23/07/2014	16/09/2014	
Physicochimie eau	aquascop		aquascop	aquascop	aquascop	Labo CARSO
Physicochimie sédiment					aquascop	LDA26
Phytoplancton	aquascop		aquascop	aquascop	aquascop	aquascop
Invertébrés		Iris consultants				Iris consultants



2.2. INVESTIGATIONS PHYSICOCHIMIQUES

Les paramètres physico-chimiques analysés dans l'eau sont suivis lors de quatre campagnes calées aux différentes phases du cycle annuel de fonctionnement du plan d'eau (entre février et octobre). Les dates d'intervention sont mentionnées au paragraphe 2.1. A chaque campagne, sont réalisés au point de plus grande profondeur :

- un profil vertical des paramètres physico-chimiques de terrain : température, conductivité, oxygène dissous (en mg/l et % saturation) et pH;
- des échantillons d'eau pour analyses (physico-chimie, micropolluants, pigments chlorophylliens).

Les paramètres physicochimiques analysés dans le sédiment sont suivis lors de la campagne d'automne.

2.2.1. Mesures in situ

Lors des 4 campagnes, un relevé in situ des paramètres température, conductivité, oxygène (en concentration et en % saturation) et pH est réalisé selon un profil vertical au point de plus grande profondeur.

Ce point de mesure est généralement connu (fiche station mise à disposition du bureau d'étude par l'Agence de l'eau). Il est atteint à l'aide d'une embarcation équipée d'un échosondeur associé à un GPS. Arrivé sur site, le bateau est maintenu sur zone pendant tous les relevés (ancrage).

Les mesures sont réalisées à l'aide d'une sonde multiparamètres de marque HYDROLAB type DS5 équipée d'un câble de 100 mètres. Les relevés, réalisées tous les mètres, sont enregistrés sur un assistant numérique personnel (PDA) associé à cette sonde.

La transparence est mesurée à l'aide d'un disque de Secchi de diamètre 20 cm (dessins ¼ noir, ¼ blanc); 3 mesures sont réalisées consécutivement ; la valeur retenue est la moyenne des 3 mesures.

2.2.2. Prélèvements d'eau

Lors des 4 campagnes, on réalise des prélèvements d'eau pour les analyses chimiques :

- un échantillonnage intégré dans la zone euphotique égale à 2,5 fois la transparence mesurée avec le disque de Secchi;
- un échantillonnage de l'eau du fond (1 mètre au-dessus du fond).

Les prélèvements d'eau pour analyses physico-chimiques ont été effectués selon 2 techniques :

- utilisation d'une bouteille intégratrice de type Niskin revêtue de téflon (volume utile de 2,6 litres) pour les analyses de micropolluants (zone euphotique et fond) ou de physico-chimie classique (fond). Pour constituer l'échantillon de la zone euphotique, plusieurs prélèvements ponctuels sont répartis de manière équidistante sur la hauteur d'eau de cette zone, puis mélangés dans un seau en inox avant de remplir (à l'aide d'un entonnoir inox et d'un bécher inox) les flacons fournis par le laboratoire d'analyses (CARSO);
- utilisation d'un tuyau intégrateur pour les échantillons de physico-chimie classique (zone euphotique).

2.2.3. Prélèvement de sédiment

Les sédiments sont prélevés une fois par an lors de la 4^{ème} et dernière campagne au point de plus grande profondeur.

L'échantillonnage se fait à l'aide d'une benne Eckman en acier inoxydable, qui permet de prélever la couche superficielle du sédiment (de préférence les plus récents donc les 2 premiers centimètres). 3 à 4 « coups » de benne sont effectués sur le site de prélèvement.

Les sous-échantillons sont transférés directement dans les flacons fournis par le laboratoire d'analyses (LDA26), à l'aide d'une cuillère inox, en évitant tout contact avec les parois de l'appareil préleveur.

2.2.4. Transfert et analyse des échantillons

Les échantillons pour analyses chimiques sont stockés dans des glaciaires avec réfrigérants, fournies par les laboratoires d'analyse. Ces glaciaires sont portées le jour même¹ au dépôt du transporteur TNT le plus proche du site pour un acheminement au laboratoire CARSO ou par « Chronopost » dans le cas du laboratoire LDA26 (sédiments). Les échantillons parviennent au laboratoire d'analyses dans les 24 heures suivant le prélèvement.

Les échantillons d'eau ont été analysés par le Laboratoire CARSO à Lyon et les échantillons de sédiments par le Laboratoire Départemental d'Analyses de la Drôme (LDA 26).

2.3. INVESTIGATIONS BIOLOGIQUES

Les investigations hydrobiologiques concernant ce plan d'eau comprennent plusieurs volets :

- l'étude des peuplements phytoplanctoniques : protocole standardisé d'échantillonnage, de conservation, d'observation et de dénombrement du phytoplancton en plan d'eau pour la mise en œuvre de la DCE, v3.3.1, Cemagref, septembre 2009 ;
- l'étude des oligochètes : protocole actualisé de la diagnose rapide des plans d'eau (Barbe et al., 2003) et norme NF T90-391 relative à la détermination de l'indice oligochètes de bioindication lacustre (IOBL), 2005.

2.3.1. Phytoplancton

L'analyse du phytoplancton est réalisée à partir d'un prélèvement d'eau de la zone euphotique (même station que pour les analyses chimiques).

¹ Sauf exceptions pour quelques sites isolés.

Sur le terrain, le prélèvement d'eau intégré dans la zone euphotique se fait à l'aide d'un tuyau intégrateur :

- Une aliquote de l'échantillon sert à l'analyse du phytoplancton; elle est fixée au lugol pour la bonne conservation des algues;
- Une seconde aliquote sert à l'analyse de la *chlorophylle a* ; elle est filtrée sur site à l'aide d'une pompe à vide électrique ou manuelle (filtration sur un filtre d'acétate de cellulose de 0,7 µm de porosité) ;
- Une troisième aliquote sert à l'analyse de la physico-chimie classique.

Le dosage de la chlorophylle et des phéopigments est confié au laboratoire d'analyses CARSO (même envoi que pour les analyses chimiques d'eau).

La composition du phytoplancton est analysée dans le laboratoire Aquascop selon la norme NF EN 15204 correspondant à la méthode d'Utermohl adoptée au niveau européen et suivant les spécifications particulières du protocole standardisé mis en œuvre pour la DCE version 3.3.1, septembre 2009.

Les dénombrements sont réalisés par comptage à l'espèce dans la mesure du possible. Le comptage est effectué au microscope inversé après sédimentation dans une cuve d'Utermohl (1958). L'outil de comptage PHYTOBS est utilisé pour le dénombrement du phytoplancton, dont les résultats sont exprimés par taxon en nombre de cellules/ml et en biovolumes (mm 3/1).

L'indice planctonique IPL est calculé à partir de l'abondance des différents groupes algaux exprimée en biovolumes.

2.3.2. Invertébrés

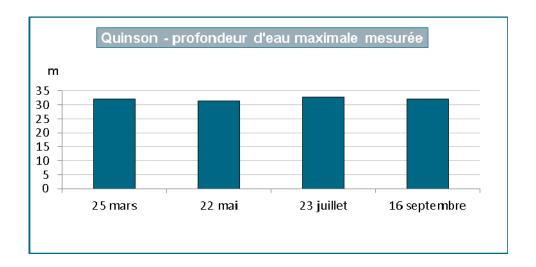
Dans les plans d'eau de type « retenue », seuls les oligochètes sont pris en compte : protocole actualisé de la diagnose rapide des plans d'eau (Barbe et al., 2003) et norme NF T90-391 relative à la détermination de l'indice oligochètes de bioindication lacustre (IOBL), 2005.

Sur le terrain, 3 échantillons de sédiment sont prélevés à l'aide d'une benne Eckman ou Ponar sur une ligne parallèle au barrage : le premier à la profondeur maximale alors que les deux autres sont réalisés de part et d'autre (vers les rives gauche et droite) à 50% de la profondeur maximale. Chaque échantillon est constitué par au moins 5 prélèvements effectués à une dizaine de mètres les uns des autres. Un premier tamisage (250 µm) est effectué sur site. Le refus du tamis est conservé et fixé au formol (solution aqueuse à 35%).

Au laboratoire, sont effectuées les opérations de tri, d'extraction des individus, de préparation des échantillons, de détermination et de comptage des oligochètes. La détermination nécessite une loupe binoculaire et/ou un microscope. Le niveau de détermination est l'espèce ou un ensemble taxonomique plus général tel que genre ou famille par exemple pour les individus immatures.

3. RESULTATS DES INVESTIGATIONS

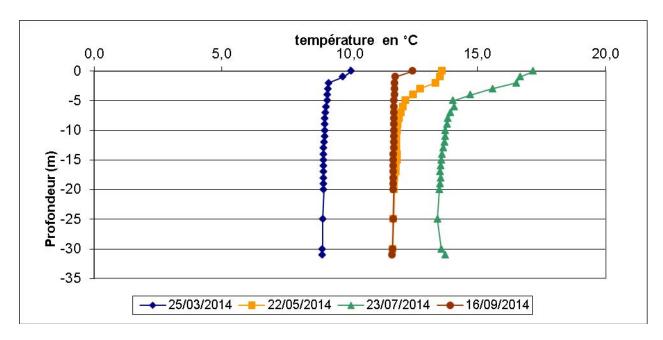
3.1. INVESTIGATIONS PHYSICOCHIMIQUES


Les compte-rendus des campagnes de prélèvements figurent en annexe 3.

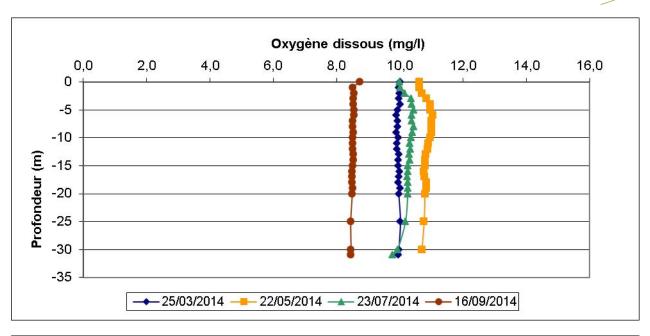
3.1.1. Analyses des eaux du plan d'eau

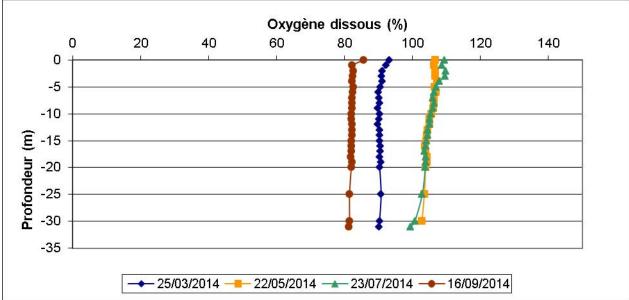
3.1.1.1. Evolution de la hauteur d'eau

La différence de hauteur d'eau entre les 4 campagnes de mesures de 2014 est inférieure à 2 mètres : hauteur de 31,5 m en mai et de 32,8 m en juillet. La profondeur maximale mesurée de ce plan d'eau évolue donc très peu.

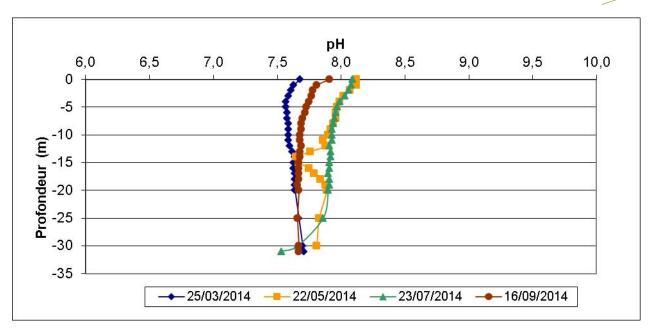


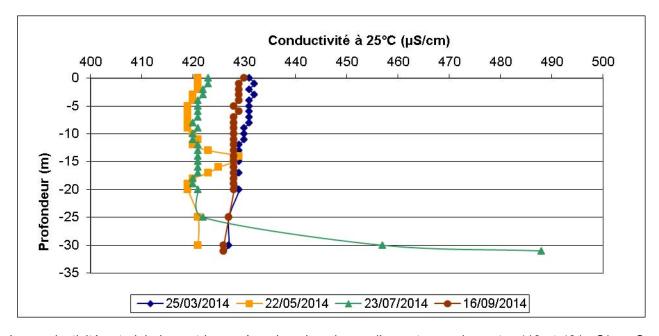
3.1.1.2. Profils verticaux et évolution saisonnières


Le suivi comprend des relevés in situ des paramètres : température, conductivité, oxygène (concentration et % saturation) et pH selon un profil vertical au point de plus grande profondeur, ceci lors de 4 campagnes.


Les graphiques regroupant ces résultats pour chaque paramètre lors des 4 campagnes sont présentés ciaprès.

Lors de chaque campagne, on observe une augmentation de la température des premiers mètres de la colonne d'eau par rapport à celle mesurée plus en profondeur. Cette observation s'amplifie avec la saison. L'effet du vent, brassant la surface et la subsurface du plan d'eau, participe aussi à ce phénomène.





Lors de toutes les campagnes, la concentration en oxygène est peu variable de la surface au fond. Les campagnes de mars et de septembre sont caractérisées par des eaux sensiblement sous-saturées en oxygène (respectivement 90 et 80%), alors que les campagnes de mai et de juillet présentent une colonne d'eau légèrement suroxygénée. Il n'y a pas de période de désoxygénation du fond de cette retenue.

L'eau est basique : les valeurs en surface varient de 7,7 à 8,1 suivant les campagnes ; au fond, le pH varie de 7,5 à 7,8. Le pH est globalement stable dans la colonne d'eau.

La conductivité est globalement homogène dans la colonne d'eau et comprise entre 419 et 431 μ S/cm. On note toutefois une augmentation de la conductivité lors de la troisième campagne a l'approche du fond de la retenue.

3.1.1.3. Paramètres de constitution et typologie

Les paramètres de minéralisation sont étudiés lors de la 1^{ère} campagne uniquement. Les résultats sont présentés dans le tableau ci-dessous :

Minéralisation - eau							
Quinson			Limita quantification	25/03/2014			
Code plan d'eau : X2615003		Limite quantification	Intégré				
Dureté totale	1345	°F	0,5	17,9			
Titre alcalimétrique .complet	1347	°F	0	16,1			
Bicarbonates	1327	mg(HCO3)/L	6,1	196			
Calcium	1374	mg(Ca)/L	0,1	63,9			
Magnésium	1372	mg(Mg)/L	0,05	4,69			
Sodium	1375	mg(Na)/L	0,2	17,6			
Potassium	1367	mg(K)/L	0,1	1,4			
Chlorures	1337	mg(CI)/L	0,1	26,6			
Sulfates	1338	mg(SO4)/L	0,2	25,9			

Les résultats mettent en évidence une eau moyennement dure et bien minéralisée, en relation avec la nature calcaire des assises géologiques locales.

3.1.1.4. Paramètres classiques

Le tableau suivant présente les résultats des analyses d'eau (hors micropolluants) lors des 4 campagnes réalisées en 2014.

Physico-chimie - eau	Physico-chimie - eau										
Quinson			Limite 25/03/201		2014	22/05/2	23/07/2	2014	16/09/2014		
Code plan d'eau : X2	615003		quantification	Intégré	Fond	Intégré	Fond	Intégré	Fond	Intégré	Fond
Turbidité	6498	NTU	0,1	0,61	0,31	0,98	0,82	0,75	0,31	0,95	0,54
MES	1305	mg/L	1	<lq< td=""><td><lq< td=""><td>1</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>1</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	1	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Carbone Organique	1841	mg(C)/L	0,2	1,3	1,1	1,3	1,2	1,3	0,8	1,3	1,1
D.C.O.	1314	mg(O2)/L	20	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
DBO5 à 20°C	1313	mg(O2)/L	0,5	0,9	0,8	<lq< td=""><td><lq< td=""><td>0,6</td><td>0,7</td><td>0,7</td><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,6</td><td>0,7</td><td>0,7</td><td><lq< td=""></lq<></td></lq<>	0,6	0,7	0,7	<lq< td=""></lq<>
Azote Kjeldahl	1319	mg(N)/L	0,5	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Ammonium	1335	mg(NH4)/L	0,01	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,01</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,01</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,01</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,01</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,01</td><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,01</td><td><lq< td=""></lq<></td></lq<>	0,01	<lq< td=""></lq<>
Nitrates	1340	mg(NO3)/L	0,5	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,8</td><td>0,7</td><td>0,6</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,8</td><td>0,7</td><td>0,6</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,8</td><td>0,7</td><td>0,6</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,8</td><td>0,7</td><td>0,6</td></lq<></td></lq<>	<lq< td=""><td>0,8</td><td>0,7</td><td>0,6</td></lq<>	0,8	0,7	0,6
Nitrites	1339	mg(NO2)/L	0,01	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Orthophosphates	1433	mg(PO4)/L	0,01	<lq< td=""><td><lq< td=""><td>0,02</td><td>0,01</td><td>0,01</td><td>0,02</td><td>0,01</td><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,02</td><td>0,01</td><td>0,01</td><td>0,02</td><td>0,01</td><td><lq< td=""></lq<></td></lq<>	0,02	0,01	0,01	0,02	0,01	<lq< td=""></lq<>
Phosphore total	1350	mg(P)/L	0,005	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,012</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,012</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,012</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,012</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,012</td><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,012</td><td><lq< td=""></lq<></td></lq<>	0,012	<lq< td=""></lq<>
Silicates	1342	mg(SiO2)/L	0,05	4,8	4,7	4,6	4,6	4,9	4,9	5	5
Chlorophylle a	1439	μg/L	1	<lq< td=""><td></td><td><lq< td=""><td></td><td><lq< td=""><td></td><td><lq< td=""><td></td></lq<></td></lq<></td></lq<></td></lq<>		<lq< td=""><td></td><td><lq< td=""><td></td><td><lq< td=""><td></td></lq<></td></lq<></td></lq<>		<lq< td=""><td></td><td><lq< td=""><td></td></lq<></td></lq<>		<lq< td=""><td></td></lq<>	
Phéopigments	1436	μg/L	1	<lq< td=""><td></td><td><lq< td=""><td></td><td><lq< td=""><td></td><td><lq< td=""><td></td></lq<></td></lq<></td></lq<></td></lq<>		<lq< td=""><td></td><td><lq< td=""><td></td><td><lq< td=""><td></td></lq<></td></lq<></td></lq<>		<lq< td=""><td></td><td><lq< td=""><td></td></lq<></td></lq<>		<lq< td=""><td></td></lq<>	

Analyses sur eau filtrée : ammonium, nitrates, nitrites, phosphates, silice et COD

Les concentrations en surface comme au fond de l'azote et du phosphore sont très faibles. Il en est de même pour la matière organique. En revanche, les teneurs en silice dissoute sont assez élevées.

La biomasse algale est très faible : les concentrations en chlorophylle a et phéopigments sont toujours inférieures aux limites de quantification.

3.1.1.5. Micropolluants minéraux

Le tableau suivant présente les résultats des analyses de micropolluants minéraux dosés dans l'eau lors des 4 campagnes réalisées en 2014.

Micropollua	Micropolluants minéraux dosés dans l'eau										
Quinson			Limita munutification	25/03/2	2014	22/05/2	2014	23/07/2	2014	16/09/	2014
Code plan d'eau : X2615003		Limite quantification	Intégré	Fond	Intégré	Fond	Intégré	Fond	Intégré	Fond	
Aluminium	1370	μg(Al)/L	2	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,8</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,8</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,8</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>2,8</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>2,8</td><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td>2,8</td><td><lq< td=""></lq<></td></lq<>	2,8	<lq< td=""></lq<>
Antimoine	1376	μg(Sb)/L	0,5	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Argent	1368	μg(Ag)/L	0,01	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Arsenic	1369	μg(As)/L	0,5	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Baryum	1396	μg(Ba)/L	0,5	37	38	41	42	36,3	34,4	37,6	37,3
Béryllium	1377	μg(Be)/L	0,01	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Bore	1362	μg(B)/L	10	13	14	16	15	10	<lq< td=""><td>10</td><td>11</td></lq<>	10	11
Cadmium	1388	μg(Cd)/L	0,01	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Chrome	1389	μg(Cr)/L	0,5	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Cobalt	1379	μg(Co)/L	0,05	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Cuivre	1392	μg(Cu)/L	0,1	0,27	0,18	0,44	0,23	0,36	0,27	0,84	0,32
Etain	1380	μg(Sn)/L	0,5	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Fer	1393	μg(Fe)/L	1	1,2	<lq< td=""><td>1,5</td><td>1,4</td><td>1,5</td><td>1,4</td><td>2,3</td><td>1,2</td></lq<>	1,5	1,4	1,5	1,4	2,3	1,2
Manganèse	1394	μg(Mn)/L	0,5	0,6	0,6	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,7</td><td>1,1</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,7</td><td>1,1</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,7</td><td>1,1</td></lq<></td></lq<>	<lq< td=""><td>0,7</td><td>1,1</td></lq<>	0,7	1,1
Mercure	1387	μg(Hg)/L	0,01	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Molybdène	1395	μg(Mo)/L	1	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Nickel	1386	μg(Ni)/L	0,5	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,7</td><td><lq< td=""><td>1</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,7</td><td><lq< td=""><td>1</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,7</td><td><lq< td=""><td>1</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,7</td><td><lq< td=""><td>1</td><td><lq< td=""></lq<></td></lq<></td></lq<>	0,7	<lq< td=""><td>1</td><td><lq< td=""></lq<></td></lq<>	1	<lq< td=""></lq<>
Plomb	1382	μg(Pb)/L	0,05	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Sélénium	1385	μg(Se)/L	0,1	0,19	0,22	0,2	0,19	0,13	0,13	0,16	0,13
Tellure	2559	μg(Te)/L	0,5	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Thallium	2555	μg(TI)/L	0,01	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Titane	1373	μg(Ti)/L	0,5	<lq< td=""><td><lq< td=""><td>0,7</td><td>0,6</td><td>0,5</td><td>0,5</td><td>0,6</td><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,7</td><td>0,6</td><td>0,5</td><td>0,5</td><td>0,6</td><td><lq< td=""></lq<></td></lq<>	0,7	0,6	0,5	0,5	0,6	<lq< td=""></lq<>
Uranium	1361	μg(U)/L	0,05	0,27	0,27	0,29	0,3	0,27	0,29	0,27	0,28
Vanadium	1384	μg(V)/L	0,1	0,17	0,18	0,15	0,17	0,2	0,23	0,18	0,18
Zinc	1383	μg(Zn)/L	1	5,33	1,67	2,36	1,43	1,64	1,21	2,98	1,68

Analyses sur eau filtrée

Des micropolluants minéraux sont détectés à des concentrations faibles dans l'eau lors de toutes les campagnes (baryum, bore, cuivre, sélénium, uranium, vanadium et zinc) ou moins systématiquement (aluminium, fer, manganèse, nickel et titane).

Treize éléments dosés dans l'eau ne sont jamais détectés (concentrations inférieures aux limites de quantification) : antimoine, argent, arsenic, béryllium, cadmium, chrome, cobalt, étain, mercure, molybdène, plomb, tellure et thallium.

3.1.1.6. Micropolluants organiques

Le tableau page suivante présente les résultats des analyses de micropolluants organiques dosés dans l'eau lors des 4 campagnes réalisées en 2014. Seuls figurent dans le tableau les micropolluants dont les concentrations sont supérieures aux limites de quantification. La liste des molécules recherchées est donnée en annexe 1.

Micropolluants organiques mis en évidence sur eau											
Quinson			Limite	25/03/	2014	22/05/2014		23/07/2014		16/09/2014	
Code plan d'eau : X261	5003		quantification	Intégré	Fond	Intégré	Fond	Intégré	Fond	Intégré	Fond
4-nonylphenols ramifiés	1958	μg/L	0,1	<lq< td=""><td><lq< td=""><td>0,11</td><td><lq< td=""><td>0,14</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,11</td><td><lq< td=""><td>0,14</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0,11	<lq< td=""><td>0,14</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	0,14	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Acide monochloroacétique	1465	μg/L	0,2 et 1 (campagne du 23/07/2014)	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,58</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,58</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,58</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,58</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,58</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,58</td></lq<></td></lq<>	<lq< td=""><td>0,58</td></lq<>	0,58
Bisphenol A	2766	μg/L	0,05	<lq< td=""><td>0,22</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0,22	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Dibutyletain cation	7074	μg/L	0,0025	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,0035</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,0035</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,0035</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,0035</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,0035</td><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,0035</td><td><lq< td=""></lq<></td></lq<>	0,0035	<lq< td=""></lq<>
Fluorure anion	7073	mg(F)/L	0,05	0,06	0,06	0,06	0,06	0,06	0,06	0,06	0,06
Indéno(1,2,3-cd)pyrène	1204	μg/L	0,0005	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,0006</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,0006</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,0006</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,0006</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,0006</td><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,0006</td><td><lq< td=""></lq<></td></lq<>	0,0006	<lq< td=""></lq<>
Naphtalène	1517	μg/L	0,005	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,006</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,006</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,006</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,006</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	0,006	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
NONYLPHENOLS	1957	μg/L	0,1	<lq< td=""><td><lq< td=""><td>0,11</td><td><lq< td=""><td>0,14</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,11</td><td><lq< td=""><td>0,14</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0,11	<lq< td=""><td>0,14</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	0,14	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>

8 composés micropolluants organiques ont été quantifiés lors d'au moins une des 4 campagnes :

- 7 composés ont été détectés en faible quantité dans 1 ou 2 prélèvements au cours du suivi,
- le fluorure anion a été détecté dans chacun des 8 prélèvements avec la même faible concentration juste supérieure au seuil de quantification.

3.1.2. Analyse de sédiments

3.1.2.1. Granulométrie

L'analyse granulométrique témoigne de la nature argilo-limoneuse du sédiment (81% des particules sont de taille inférieure à $63~\mu m$). La fraction sableuse ne représente que 19% du sédiment, principalement constituée de sable fin. La succession des barrages de la chaine du Verdon piègent une part importante des particules les plus grossières.

Sédiment : composition granulométrique (%)						
Quinson	16/09/2014					
Code plan d'eau : X2615003		10/09/2014				
Classe granulométrique (µm)	%					
Fraction <20 µm	6228	40,6				
Fraction de 20 à 63 µm	3054	40,4				
Fraction de 63 à 150 µm	7042	14,7				
Fraction de 150 à 200 µm	1,4					
Fraction >200 µm	2,8					

3.1.2.2. Physicochimie du sédiment

Les résultats des analyses de physico-chimie classique sur la fraction solide (MS de particules < 2mm) et sur l'eau interstitielle du sédiment sont présentés dans les tableaux ci-dessous.

La teneur en matière organique du sédiment est moyenne (perte au feu : 5,8%). Le rapport C/N (C_{org}/N_{Kj}) affiche une valeur moyenne de 9,6. Les concentrations en carbone organique, en azote et en phosphore sont faibles à moyennes.

Sédiment : fraction solide < 2 mm - 16/09/2014								
Quinson		Limita quantification	concentrations					
Code plan d'eau : X2615003			Limite quantification	concentrations				
Matière Sèche Minérale	5539	% MS		94,2				
Perte au feu à 550°C	6578	% MS		5,8				
Matière sèche à 105°C	1307	%		39,4				
Carbone Organique	1841	mg(C)/kg MS	1000	18300				
Ammonium	1335	mg(N)/kg MS	200	<lq< td=""></lq<>				
Azote Kjeldahl	1319	mg(N)/kg MS	1000	1900				
Phosphore total	1350	mg(P)/kg MS	1	576,2				

L'eau interstitielle contient les minéraux facilement mobilisables dans les sédiments.

Les concentrations en orthophosphates et en phosphore sont inférieures aux seuils de quantifications et celle d'ammonium est faible. Notons que la bonne oxygénation de toute la colonne d'eau, observée tout au long du suivi annuel, limite les processus d'échanges entre le sédiment et l'eau du fond.

Eau interstitielle du sédiment - 16/09/2014								
Quinson			Limite quantification	concentrations				
Code plan d'eau : X2615003	3		Limite quantification	Concentrations				
Ammonium	1335	mg(NH4)/L	0,5	0,69				
Orthophosphates	1433	mg(PO4)/L	0,015	<lq< td=""></lq<>				
Phosphore total	1350	mg(P)/L	0,1	<lq< td=""></lq<>				

3.1.2.3. Micropolluants minéraux

Les sédiments sont riches en aluminium, baryum, fer, manganèse et titane. Les concentrations mesurées ne pour les différents métaux lourds ne suggèrent pas de pollution de ces éléments métalliques sur le milieu aquatique.

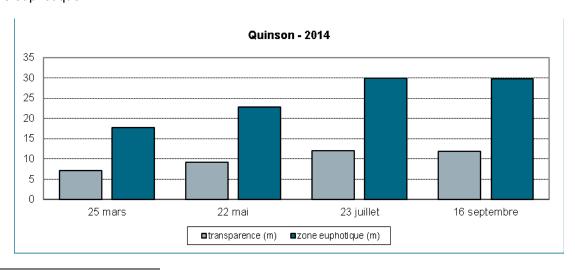
Sédiment : Micropolluants minéraux – 16/09/2014								
Quinson	Limite	concentrations						
Code plan d'eau : X2615003	quantification	concentrations						
Aluminium	1370	mg(AI)/kg MS	10	29410				
Antimoine	1376	mg(Sb)/kg MS	0,2	0,7				
Argent	1368	mg(Ag)/kg MS	0,2	<lq< td=""></lq<>				
Arsenic	1369	mg(As)/kg MS	0,2	9,9				
Baryum	1396	mg(Ba)/kg MS	0,4	204,5				
Béryllium	1377	mg(Be)/kg MS	0,2	1,3				
Bore	1362	mg(B)/kg MS	1	46,6				
Cadmium	1388	mg(Cd)/kg MS	0,2	0,2				
Chrome	1389	mg(Cr)/kg MS	0,2	49,8				
Cobalt	1379	mg(Co)/kg MS	0,2	9,6				
Cuivre	1392	mg(Cu)/kg MS	0,2	18,8				
Etain	1380	mg(Sn)/kg MS	0,2	2,2				
Fer	1393	mg(Fe)/kg MS	10	23320				
Manganèse	1394	mg(Mn)/kg MS	0,4	1142				
Mercure	1387	mg(Hg)/kg MS	0,02	0,03				
Molybdène	1395	mg(Mo)/kg MS	0,2	0,5				
Nickel	1386	mg(Ni)/kg MS	0,2	27,8				
Plomb	1382	mg(Pb)/kg MS	0,2	17,3				

Sédiment : Micropolluants minéraux – 16/09/2014 (suite)									
Quinson	Limite	concentrations							
Code plan d'eau : X2615003	quantification	concentrations							
Sélénium	1385	mg(Se)/kg MS	0,2	1,3					
Tellure	2559	mg(Te)/kg MS	0,2	<lq< td=""></lq<>					
Thallium	2555	mg(TI)/kg MS	0,2	0,4					
Titane	1373	mg(Ti)/kg MS	1	1804					
Uranium	1361	mg(U)/kg MS	0,2	1,3					
Vanadium	1384	mg(V)/kg MS	0,2	60,7					
Zinc	1383	mg(Zn)/kg MS	0,4	60,6					

3.1.2.4. Micropolluants organiques

Le tableau ci-dessous rassemble les micropolluants organiques dont la concentration est supérieure ou égale à la limite de quantification. La liste de l'ensemble des substances analysées est fournie en annexe 2.

Cinq HAP ont été détectés dans le sédiment. La concentration totale en HAP mesurés atteint $85,1~\mu g/kg~MS$, soit une valeur assez faible.


Sédiment : Micropolluants organiques détectés – 16/09/2014									
Quinson									
Code plan d'eau : X2615003			Limite quantification concentrations						
Benzo(g,h,i)pérylène	1118	μg/kg	10	12					
Benzo(b)fluoranthène	1116	μg/kg	10	24,5					
Chrysène	1476	μg/kg	10	10					
Benzo(a)pyrène	1115	μg/kg	10	14,6					
Indéno(1,2,3-cd)pyrène	1204	μg/kg	10	24					

3.2. PHYTOPLANCTON

3.2.1. Importance de la zone euphotique

L'échantillonnage du phytoplancton a été réalisé par un prélèvement intégré dans la zone euphotique².

Le graphique suivant présente l'évolution saisonnière de la transparence mesurée au disque de Secchi et de la zone euphotique.

² La zone euphotique est égale à 2,5 fois la transparence.

La transparence mesurée a été très élevée toute l'année passant de 7,1 m en mars à 12 m en juillet et septembre, pour une épaisseur de zone euphotique associée de 18 m à 30 m. On rappelle que la profondeur maximale mesurée est de 33 m. La valeur moyenne estivale de la transparence est de 11 m, ce qui correspond à une très forte transparence de l'eau..

3.2.2. Biomasse phytoplanctonique

Le tableau ci-dessous rappelle les teneurs en pigments chlorophylliens par campagne.

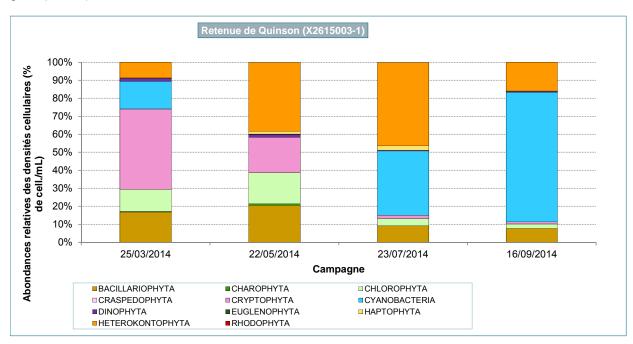
Quinson		Limite	Conce	entrations dans	l'échantillon ir	ntégré	
Code plan d'eau : X2615003		quantification	25/03/2014	22/05/2014	23/07/2014	16/09/2014	
Chlorophylle a	1439	μg/L	1	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Phéopigments	1436	μg/L	1	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>

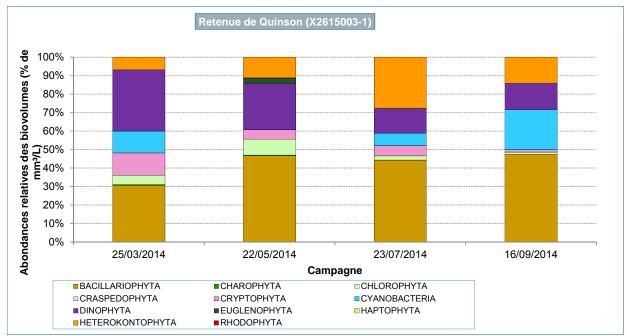
La biomasse algale (évaluée par le dosage des pigments chlorophylliens) est quasiment inexistante dans cette retenue, quelle que soit la période de l'année.

3.2.3. Listes floristiques et densités

Le tableau suivant présente la composition phytoplanctonique (taxons et densité en nombre de cellules par mL) pour les 4 campagnes.

Les valeurs affichées sont arrondies à l'entier le plus proche sauf lorsque la valeur d'origine est inférieure à 1, dans ce cas la valeur affichée est arrondie à une décimale.




		OP; déterminations A0 n densité cellulaire (co				
	Code Taxon	Code Sandre		22/05/2014	23/07/2014	16/09/201
BACILLARIOPHYTA BACILLARIOPHYCEAE						
Achnanthes	ACHSPX	9354	0,4	8,0		0,2
Amphora	AMPSPX	9470	G, :	0,8		0,2
Encyonema	ENCSPX	9378				0,2
Gomphonema	GOMSPX	8781				0,2
Navicula	NAVSPX	9430	0,4	0,4		
Nitzschia Diatomées pennées indéterminées	NIZSPX INDPEN	9804 20161		3	0,7 1	0,6
COSCINODISCOPHYCEAE	INDPEN	20161		3	'	0,6
Oyclotella	CYCSPX	9508	2			
Oyclotella cyclopuncta	CYCCYC	8617	16			
Cyclotella distinguenda	CYCDIS	9507	1			
Puncticulata balatonis	NEW035	(vide)	6			
Skeletonema potamos	SKEPOT	8735		0,8		- 0.0
Stephanodiscus hantzschii Diatomées centriques indéterminées	INDCEN	8746 20160		8	8	0,2 2
Diatomées centriques indéterminées <10 µm	INDCE5	31228		11	7	3
FRAGILARIOPHYCEAE						
Asterionella formosa	ASTFOR	4860	0,8	1		
Diatoma	DIASPX	6627				0,4
Fragilaria	FRASPX	9533		13	22	7
Fragilaria saxoplanctonica	NEW037	(vide)	7			
Unaria	ULNSPX	9549	3			0,4
Unaria ulna CHAROPHYTA	ULNULN	6849	0,4			
CONJUGATOPHYCEAE	 					
Cosmarium bioculatum	COSBIO	5321	0,4			
KLEBSORMIDIOPHYCEAE						
Elakatothrix gelatinosa	ELAGEL	5664		2		
CHLOROPHYTA						
CHLORODENDROPHYCEAE		F000				
Tetraselmis	TESSPX	5023	2			
Choricetis	CCTSPX	20074	5			
Choricystis Choricystis minor	CCTMIN	10245	Ü	3		
Monoraphidium contortum	MONCON	5731		0,4		
Monoraphidium minutum	MONMIN	5736		0,4		
Tetraedron	TEASPX	5884			0,7	
Tetraedron minimum	TEAMIN	5888	3	16	5	
Chlorococcales indéterminées	INDCHO	24395	2	5	3	0,2
Volvocales indéterminées	INDVOL	24358	1	2		
TREBOUXIOPHYCEAE						
Chlorella vulgaris Dictyosphaerium subsolitarium	CLLVUL	5933 9192	14	6	6	3
Didymocystis	DICSUB	5651	14		3	
Nephrochlamys	NECSPX	5744	-			0,4
Oocystis	OOCSPX	5752		0,4		0,4
CRYPTOPHYTA						
CRYPTOPHYCEAE						
Cryptomonas	CRYSPX	6269	1	1	4	0,2
Plagioselmis nannoplanctica	PLGNAN	9634	97	37	3	2
CYANOBACTERIA CYANOPHYCEAE						
Aphanothece	APOSPX	6346			22	
Cyanogranis	CYGSPX	33847	8			
Oscillatoria tenuis	OSCTEU	33752	21		111	116
Pseudanabaena	PSESPX	6453	4		21	11
DINOPHYTA						
DINOPHYCEAE		100=				
Gymnodinium	GYMSPX	4925	1	2	0.7	0.0
Peridinium Dinophycées indéterminées	PERSPX	6577 20162	3	1	0,7 0,7	0,6
BUGLENOPHYTA	INDUN	20102		'	0,7	
EUGLENOPHYCEAE						
Euglena	EUGSPX	6479		0,4		
HAPTOPHYTA						
COCCOLITHOPHYCEAE						
Erkenia subaequiciliata	ERKSUB	6149	0,4	3	11	0,4
HETEROKONTOPHYTA						
ChrysophyceAE	CHUSPX	6114	-	9		
Chromulina Chrysococcus	CHSSPX	9570	-	0,4		
Ohrysolykos	CYYSPX	6116		0,4	0,7	
	NEW038	(vide)			2	
Ohrysolykos calceatus						0,6
	CYYPLA	6118		3		
Onysolykos calceatus Onysolykos planctonicus Onysophycées flagellés	NEW023	(vide)		9	23	
Onysolykos calceatus Onysolykos planctoricus Onysophycées flagellés Dinobyon	NEW023 DINSPX	(vide) 6124			23 31	
O'nysolykos calceatus O'nysolykos planotoricus O'nysophycées flagellés Dinobyon O'. Dinobyon	NEW023 DINSPX DINSPX	(vide) 6124 6124		9	31	0,4
Onysolykos calceetus Onysolykos planotoricus Onysophycées flegellés Dinobyon O. Dinobyon Dinobyon bavaricum	NEW023 DINSPX DINSPX DINBAV	(vide) 6124 6124 6127	3	9	31	0,4
O'nysolykos calceatus O'nysolykos planotoricus O'nysonyoées flagellés Dinobryon O'. Dinobryon Dinobryon bavericum Dinobryon divergens	NEW023 DINSPX DINSPX DINBAV DINDIV	(vide) 6124 6124 6127 6130	3	9	31 1 37	
O'nysolykos calceatus O'nysolykos planctoricus O'nysolyhoées flagellés Dinobryon O'. Dinobryon Dinobryon bavaricum Dinobryon divergens Dinobryon elegantissimum	NEW023 DINSPX DINSPX DINBAV DINDIV DINELE	(vide) 6124 6124 6127 6130 6131		9 4	31 1 37 8	0,4
O'nysolykos calceatus O'nysolykos planotoricus O'nysonyoées flagellés Dinobryon O'. Dinobryon Dinobryon bavericum Dinobryon divergens	NEW023 DINSPX DINSPX DINBAV DINDIV	(vide) 6124 6124 6127 6130	3 0,4 0,8	9	31 1 37	
Onysolykos calceatus Onysolykos planotoricus Onysophycės flagellės Dinobryon Ö: Dinobryon Dinobryon bavaricum Dinobryon divergers Dinobryon elegantissimum Dinobryon pedforme	NEW023 DINSPX DINSPX DINSPX DINBAV DINDIV DINELE DINPED	(vide) 6124 6124 6127 6130 6131 6133	0,4	9 4	31 1 37 8 6	0,6
Chysolykos calceatus Chysolykos planotorious Chysophycées flagellés Dinobnyon Ci. Dinobnyon Dinobnyon bavarioum Dinobnyon divergens Dinobnyon elegantissimum Dinobnyon sociale Dinobnyon sociale var. stipitatum Dinobnyon sociale cf. var. stipitatum	NEW023 DINSPX DINSPX DINSPX DINBAV DINDIV DINELE DINPED DINSOC	(vide) 6124 6124 6127 6130 6131 6133 6136 6135 6135	0,4 0,8	9 4 8 0,4	31 1 37 8 6 6	0,6 5
Onysolykos calceatus Onysolykos planotoricus Onysophycées flagellés Dinobryon O: Dinobryon Dinobryon bavaricum Dinobryon divergens Dinobryon elegantissimum Dinobryon pedforme Dinobryon sociale Dinobryon sociale var. stipitatum Kephyrion	NEW023 DINSPX DINSPX DINSPX DINBAV DINBAV DINDIV DINELE DINPED DINSOC DINSTI DINSTI DINSTI	(vide) 6124 6124 6127 6130 6131 6133 6136 6136 6135 6136	0,4 0,8	9 4 8 0,4	31 1 37 8 6 6	0,6 5 11 0,6
Onysolykos calceatus Onysolykos planatoricus Onysophycės liagellės Dinobyon O. Dinobyon Dinobyon bevericum Dinobyon devergers Dinobyon elegantissimum Dinobyon sociale Dinobyon sociale var. stipitatum Dinobyon sociale ci. var. stipitatum Keptyrion Ochromonas	NEW023 DINSPX DINSPX DINSPX DINBAV DINDIV DINELE DINPED DINSOC DINSTI DINSTI KEPSPX OCHSPX	(vide) 6124 6124 6127 6130 6131 6133 6136 6136 6135 6135 6150	0,4 0,8	9 4 8 0,4 1	31 1 37 8 6 6	0,6 5
Onysolykos calceatus Onysolykos planotorious Onysolyhoes flagellés Dinobnyon Ö. Dinobnyon Dinobnyon bavarioum Dinobnyon elegantissimum Dinobnyon sociale Dinobnyon sociale Dinobnyon sociale var. stipitatum Dinobnyon sociale var. stipitatum Enobnyon sociale var. stipitatum Enobnyon sociale cf. var. stipitatum Kephyrion Ochromonas Pseudokephyrion hypermaculatum	NEW023 DINSPX DINSPX DINSPX DINBAV DINDIV DINELE DINFED DINSOC DINSTI DINSTI KEPSPX NEW031	(vide) 6124 6124 6127 6130 6131 6133 6136 6136 6136 6136 6150 6150 (vide)	0,4 0,8	9 4 8 0,4 1 3	31 1 37 8 6 6 6 9 4 29	0,6 5 11 0,6 1
Onysolykos calceatus Onysolykos planotoricus Onysolytojes flagellés Dinobryon O: Dinobryon Dinobryon bavaricum Dinobryon divergens Dinobryon elegantissimum Dinobryon pedforme Dinobryon sociale Dinobryon sociale var. stipitatum Dinobryon sociale cf. var. stipitatum Kephynion Ochromonas Pseudokephyrion hypermaculatum Pseudokephyrion pseudospirale	NEW023 DINSPX DINSPX DINSPX DINBAV DINDIV DINELE DINFED DINSOC DINSTI DINSTI KEPSPX OCHSPX NEW031 PSKPSE	(vide) 6124 6124 6127 6130 6131 6133 6136 6136 6136 6150 6188 (vide) 6163	0,4 0,8 11	9 4 8 0,4 1 3	31 1 37 8 6 6 6 9 4 29	0,6 5 11 0,6 1
Onysolykos planotoricus Onysolykos planotoricus Onysophycės flagellės Dinobyon Ö. Dinobyon Dinobyon bavericum Dinobyon elegentissimum Dinobyon pediforme Dinobyon sociale Dinobyon sociale var. stipitatum Dinobyon sociale var. stipitatum Dinobyon sociale var. stipitatum Kephyrion Ochromas Pseudokephyrion hypermaculatum Pseudokephyrion pseudospirale Pseudokephyrion striatum	NEW023 DINSPX DINSPX DINSPX DINSPX DINEAV DINDIV DINELE DINPED DINSTI DINSTI DINSTI DINSTI DINSTI NEW031 PSKPSE PSKSTR	(vide) 6124 6124 6127 6130 6131 6133 6136 6136 6135 6150 6158 (vide) 6163 35861	0,4 0,8 11	9 4 8 0,4 1 3 1 1 3	31 1 37 8 6 6 6 9 4 29	0,6 5 11 0,6 1
Chysolykos calceatus Chysolykos planotorious Chysophycées flagellés Dinobnyon Ci. Dinobnyon Dinobnyon bavarioum Dinobnyon devergens Dinobnyon elegantissimum Dinobnyon sociale Dinobnyon sociale Dinobnyon sociale ver. stipitatum Dinobnyon sociale ci. ver. stipitatum Kephyrion Ochromonas Pseudokephyrion hypermaculatum Pseudokephyrion striatum Chysophycées indeterminées	NEW023 DINSPX DINSPX DINSPX DINBAV DINDIV DINELE DINFED DINSOC DINSTI DINSTI KEPSPX OCHSPX NEW031 PSKPSE	(vide) 6124 6124 6127 6130 6131 6133 6136 6136 6136 6150 6188 (vide) 6163	0,4 0,8 11	9 4 8 0,4 1 3	31 1 37 8 6 6 6 9 4 29	0,6 5 11 0,6 1
Chysolykos calceatus Chysolykos planotoricus Chysolykos planotoricus Chysophycies flagellės Dinobyon Dinobyon bevericum Dinobyon elegentissimum Dinobyon elegentissimum Dinobyon sociale Dinobyon sociale var. stipitatum Dinobyon sociale var. stipitatum Dinobyon sociale var. stipitatum Emobyon sociale var. stipitatum Chytorion Ochronoras Pseudokęphyrion hypermaculatum Pseudokęphyrion pseudospirale Pseudokęphyrion striatum Chysophycies indéterminées DICTYOCHOPHYCEAE	NEW023 DINSPX DINSPX DINSPX DINSPX DINBAV DINDIV DINDIV DINDIV DINSTI DINSTI DINSTI DINSTI MEPSPX OCHSPX NEW031 PSKPSE PSKSTR INDCHR	(vide) 6124 6124 6127 6130 6131 6133 6136 6136 6136 6150 6158 (vide) 6163 35861 20157	0,4 0,8 11	9 4 8 0,4 1 3 1 1 3 27	31 1 37 8 6 6 6 9 4 29 13 15 2	0,6 5 11 0,6 1
Chysolykos calceetus Chysolykos planotoricus Chysophyces flegellés Dinobyon Ö. Dinobyon Dinobyon bevericum Dinobyon elegentissimum Dinobyon pedirome Dinobyon sociale Dinobyon sociale var. stipitatum Dinobyon sociale var. stipitatum Dinobyon sociale var. stipitatum Kephyrion Ochromas Pseudokephyrion hypermaculatum Pseudokephyrion hypermaculatum Pseudokephyrion striatum Chysophycese indéterminées DICTYOCHOPHYCEAE Pseudopadinalla	NEW023 DINSPX DINSPX DINSPX DINSPX DINEAV DINDIV DINELE DINPED DINSTI DINSTI DINSTI DINSTI DINSTI NEW031 PSKPSE PSKSTR	(vide) 6124 6124 6127 6130 6131 6133 6136 6136 6135 6150 6158 (vide) 6163 35861	0,4 0,8 11	9 4 8 0,4 1 3 1 1 3	31 1 37 8 6 6 6 9 4 29	0,6 5 11 0,6 1
Chysolykos calceatus Chysolykos planotoricus Chysolykos planotoricus Chysophycies flagellės Dinobyon Dinobyon bevericum Dinobyon elegentissimum Dinobyon elegentissimum Dinobyon sociale Dinobyon sociale var. stipitatum Dinobyon sociale var. stipitatum Dinobyon sociale var. stipitatum Emobyon sociale var. stipitatum Chytorion Ochronoras Pseudokęphyrion hypermaculatum Pseudokęphyrion pseudospirale Pseudokęphyrion striatum Chysophycies indéterminées DICTYOCHOPHYCEAE	NEW023 DINSPX DINSPX DINSPX DINSPX DINBAV DINDIV DINDIV DINDIV DINSTI DINSTI DINSTI DINSTI MEPSPX OCHSPX NEW031 PSKPSE PSKSTR INDCHR	(vide) 6124 6124 6127 6130 6131 6133 6136 6136 6136 6150 6158 (vide) 6163 35861 20157	0,4 0,8 11	9 4 8 0,4 1 3 1 1 3 27	31 1 37 8 6 6 6 9 4 29 13 15 2	0,6 5 11 0,6 1
Chysolykos calceatus Chysolykos calceatus Chysophyces flagellés Dinobnyon Ci. Dinobnyon Dinobnyon bavaricum Dinobnyon elegantissimum Dinobnyon sociale Dinobnyon sociale Dinobnyon sociale ver. stipitatum Dinobnyon sociale ci. ver. stipitatum Dinobnyon sociale ci. ver. stipitatum Embryon sociale ci. ver. stipitatum Prochyon sociale ci. ver. stipitatum Rephyrion Ochromonas Pseudokephyrion hypermaculatum Pseudokephyrion striatum Chysophyces indeterminées DICTYOCHOPHYCEAE Pseudopedinella INDETERMINES (classe)	NEW023 DINSPX DINSPX DINSPX DINSPX DINSPX DINEAV DINELE DINPED DINSOC DINSTI DINSTI DINSTI DINSTI DINSTI PSKPSE PSKPSE PSKPSE PSKSTR INDCHR	(vide) 6124 6124 6127 6130 6131 6133 6136 6136 6136 6136 (vide) 6163 35861 20157	0,4 0,8 11	9 4 8 0,4 1 3 1 1 3 27	31 1 37 8 6 6 6 9 4 29 13 15 2	0,6 5 11 0,6 1 1 6
Chysolykos calceatus Chysolykos planotorious Chysolykos planotorious Chysophyoées flagellés Dinobnyon Dinobnyon bavarioum Dinobnyon deergens Dinobnyon elegantissimum Dinobnyon sociale Dinobnyon sociale var. stipitatum Dinobnyon sociale var. stipitatum Dinobnyon sociale cf. var. stipitatum Kephyrion Ochromonas Pseudokephyrion hypermaculatum Pseudokephyrion pseudospirale Pseudokephyrion striatum Chysophycées indéterminées DICTYOCHOPHYCEAE Pseudopedinella INDETERMINES (classe) Stornatocyste de Chysophycées INDETERMINES (classe)	NEW023 DINSPX DINSPX DINSPX DINSPX DINSPX DINSPX DINEAV DINCLE DINPED DINSOC DINSTI DINSTI MEPSPX NEW031 PSKPSE PSKPSE PSKSTR INDCHR	(vide) 6124 6124 6127 6130 6131 6133 6136 6136 6136 6150 6150 6160 6163 38861 20157	0,4 0,8 11 0,4 4	9 4 8 0,4 1 3 1 1 1 3 27	31 1 37 8 6 6 6 9 4 29 13 15 2	0,6 5 11 0,6 1 1 6
Onysolykos paleaetus Onysolykos paleaetus Onysolykos paleaetus Onysophyoées flagellés Dinobnyon Ö. Dinobnyon Dinobnyon bevericum Dinobnyon elegantissimum Dinobnyon sociale Dinobnyon sociale Dinobnyon sociale var. stipitatum Dinobnyon sociale var. stipitatum Dinobnyon sociale var. stipitatum Kephyrion Ochronous Pseudokephyrion hypermaculatum Pseudokephyrion pseudospirale Pseudokephyrion sociale Ochronous Dictyrochophycées indéterminées Dictyrochophycées INDETERMINES (classe) Stomatocyste de Chrysophycées NDETERMINES	NEW023 DINSPX DINSPX DINSPX DINSPX DINSPX DINEAV DINELE DINPED DINSOC DINSTI DINSTI DINSTI DINSTI DINSTI PSKPSE PSKPSE PSKPSE PSKSTR INDCHR	(vide) 6124 6124 6127 6130 6131 6133 6136 6136 6136 6136 (vide) 6163 35861 20157	0,4 0,8 11	9 4 8 0,4 1 3 1 1 3 27	31 1 37 8 6 6 6 9 4 29 13 15 2	0,6 5 11 0,6 1 1 6

3.2.4. Evolution saisonnière des groupes algaux

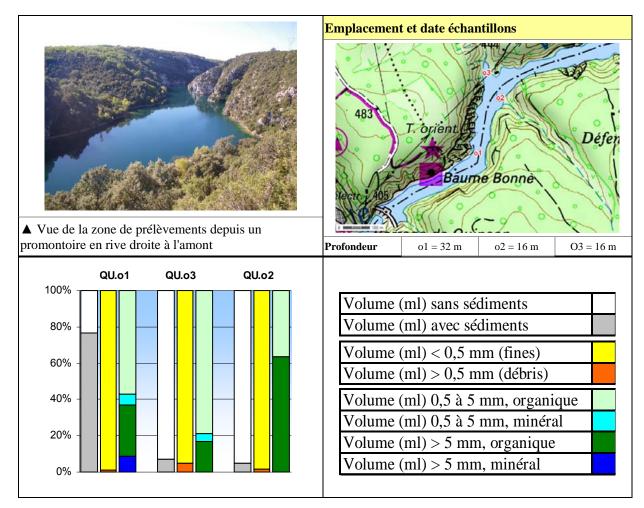
Les graphiques suivants présentent la répartition des différents groupes algaux (par embranchements et basée sur la classification du logiciel phytobs) à partir des densités cellulaires (cell./mL) et des biovolumes algaux (mm³/L).

La production cellulaire est extrèmement faible tout au long du suivi (maximum = 450 cell./mL) avec une richesse taxonomique moyenne à élevée (entre 31 et 39 taxons répertoriés).

Le 25 mars, *Plagioselmis nannoplanctica*, algue ubiquiste, est la plus abondante (44% de la densité cellulaire). Les diatomées centriques (Bacillariphyta; Coscinodiscophyceae) sont présentes aux 4 dates avec des densités relativement constantes (de 5 à 25 cell./mL).

Les densités cellulaires des Heterokontophyta, faibles en mars (200 cell./mL), s'accroissent en mai et juillet (70 cell./mL et 200 cell./mL). Elles représentent alors 38 et 45% de la densité cellulaire. Il s'agit pour

certaines d'entres elles, d'algues habituellement présentes dans des eaux oligo-mésotrophes telles que *Chrysolykos planctonicus*, *Dinobryon bavaricum*, *D. divergens*, *D. elegantissimum*, *D. sociale*, *D. sociale var stipitatum* (les côtes spécifique pour le calcul de l'IPLAC³ sont comprises entre 13,69 et 19,59 /20). La Cyanobacteria, *Oscillatoria tenuis*, algue non potentiellement toxique, est présente à la 1ère, 3ème et 4ème campagne. Le 16 septembre, elle forme jusqu'à 65% de la densité cellulaire alors qu'elle ne représente que 3% du biovolume algal total. L'importance de sa densité relative s'explique par le fait qu'il s'agit de l'une des seules algues pluricellulaires observées dans ce peuplement.


L'indice planctonique IPL est de 28, il traduit un **plan d'eau oligotrophe**. Cette valeur d'IPL correspond à une « **bonne » classe d'état** selon l'arrêté « Evaluation » du 25 janvier 2010.

En conclusion, les faibles concentrations en nutriments conduisent à un développement phytoplanctonique très faible. La richesse taxonomique est bonne avec de nombreux groupes algaux présents. Certaines Heterokontophyta, présentes aux 4 campagnes sont habituellement présentes dans des eaux oligomésotrophes. La note de l'IPL de 28 traduit un plan d'eau oligotrophe et la bonne qualité du milieu.

3.3. INVERTEBRES

3.3.1. Conditions de prélèvements

Les caractéristiques des prélèvements, réalisés les 9 et 10 avril 2014, sont précisées dans la fiche d'essai en annexe 4. Seuls quelques éléments (photo, localisation des points et caractéristiques des sédiments) sont repris ci-dessous.

³ Nouvel Indice Phytoplancton Lacustre qui remplacera l'IPL.

Le taux de remplissage de la benne est nettement meilleur sur le point central (o1) que sur les points latéraux (o2 et o3). Sur les trois points, les sédiments récoltés sont largement dominés par les fines. Les débris sont principalement constitués par la fraction organique, avec des éléments fins (< 5 mm) mieux représentés sur o1 et o3 que sur o2.

3.3.2. IOBL: listes faunistiques et commentaires

Les listes faunistiques se trouvent dans la fiche d'essai en annexe 4. Les résultats concernant les principaux indicateurs et paramètres retenus (indice IOBL, abondance, % espèces sensibles et richesse) sont repris dans le tableau ci-après.

Indicateurs et paramètres									
	o1	о3	02	Total		o1	о3	02	
Indice IOBL (selon Afnor NF T90-391)	13,2	14,3	15,5	14,1	Densité (valeur brute - log)	258 – 7,2	125 – 6,3	65 – 5,5	
% Espèces sensibles (selon LAFONT 2007)	15	14	10,7	13,7	Biovol. / surface (valeur brute - log)	3,3 – 6,4	0,5 – 1,7	0,2 – 0,9	
Richesse taxon. (nb taxons min possible)	6	8	10	7,0	Biovol. / effectif (valeur brute)	12,9	3,8	3,7	

Remarques:

- Total = $\frac{1}{2}$ o1 + $\frac{1}{4}$ o2 + $\frac{1}{4}$ o3
- % Espèces sensibles : somme des effectifs (en %) des taxons sensibles (S)
- Densité exprimée par une valeur brute (effectif pour 0,1 m²) ou par un log selon la formule [3.log₁₀ (valeur brute + 1)]
- Biovolume par unité de surface exprimé par une valeur brute (cm³ d'oligochètes par m²) ou par un log selon la formule
- $[10 \cdot \log_{10} (\text{valeur brute} + 1)]$
- Biovolume par unité d'effectifs exprimé en cm³ d'oligochètes par 10000 individus (correspond à la taille moyenne des individus)

Un certain nombre d'indicateurs varient peu d'un point à l'autre. C'est le cas de l'indice IOBL, qui est élevé, comme de la densité et du % d'espèces sensibles, qui se situent à un niveau moyen. En revanche, une différence est perceptible entre le point central (o1) et les points latéraux (o2 et o3) concernant la richesse taxonomique, plus faible sur le point central, la taille moyenne (biovolume par effectif), plus élevée sur le point central, et le biovolume par surface, également plus élevé sur le point central.

Ces éléments suggèrent une assez bonne qualité des sédiments profonds où la métabolisation s'effectue correctement.

Par rapport au précédent suivi (2011), les valeurs des paramètres caractérisant les sédiments à la profondeur maximale tels que l'indice IOBL (15,5 en 2011) et ses paramètres associés que sont la densité (7,5 unités log en 2011) et la richesse taxonomique (8 taxons en 2011) n'ont pas évolué de manière significative. En revanche, le % d'espèces sensibles (24% en 2011) est un peu plus faible en 2014.

Sur les points latéraux (50% de la profondeur maximale), la valeur IOBL est un peu plus élevée en 2014 (valeurs de 11,7 et 12,2 en 2011), ce qui suggère un meilleur potentiel métabolique des sédiments. En revanche, en ce qui concerne le % d'espèces sensibles, les différences observées entre 2011 et 2014 sont de moindre amplitude que la variabilité observée entre les deux points prospectés au cours d'une même année.

4. ANNEXES

- Annexe 1 : Liste des micropolluants analysés dans l'eau
- Annexe 2 : Liste des micropolluants analysés dans le sédiment
- Annexe 3 : Compte-rendus des campagnes de prélèvements physicochimiques et planctoniques
- Annexe 4 : Invertébrés : rapport d'essai

4.1. ANNEXE 1: LISTE DES MICROPOLLUANTS ANALYSES DANS L'EAU

LISTE DES MICROPOLLUANTS RECHERCHES SUR LE SUPPORT EAU - année 2014

LISTE DES MICR	OPOLLUANTS RECHERCHES SUR LE SUPPO	ORT EAU - année 2			
Codes sandre	Libellés des paramètres	Codes sandre	Libellés des paramètres	Codes sandre	Libellés des paramètres
2934	1-(3-chloro-4-methylphenyl)uree	2919	BDE47	1468	Chloronitrobenzène-1,3
5399	17alpha-Estradiol	2918	BDE66	1470	Chloronitrobenzène-1,4
1264	2 4 5 T	2917	BDE71	2814	Chloronitrotoluène-2,3
1141	2 4 D	7437	BDE77	1605	Chloronitrotoluène-4,2
2872	2 4 D isopropyl ester	2914	BDE85	1684	Chlorophacinone
2873	2 4 D méthyl ester	2916	BDE99	1471	Chlorophénol 2
1142 1212	2 4 DB 2 4 MCPA	1687 6391	Bénalaxyl Benalaxyl-M (cumyluron)	1651 1650	Chlorophénol-3 Chlorophénol-4
1213	2 4 MCPB	1329	Bendiocarbe	2611	Chloroprène
2011	2 6 Dichlorobenzamide	1112	Benfluraline	2065	Chloroprene-3
6022	2.4+2.5-dichloroanilines	2924	Benfuracarbe	1473	Chlorothalonil
2815	2-chloro-4-nitrotoluene	2074	Benoxacor	1602	Chlorotoluène-2
2818	2-Chloro-6-methylaniline	5512	Bensulfuron-methyl	1601	Chlorotoluène-3
3159	2-hydroxy-desethyl-Atrazine	6595	Bensulide	1600	Chlorotoluène-4
2615	2-Naphtol	1113	Bentazone	1683	Chloroxuron
2613	2-nitrotoluène	7460	Benthiavalicarbe-isopropyl	1474	Chlorprophame
6427	2-tertbutyl 4-méthylphénol	1764	Benthiocarbe	1083	Chlorpyriphos éthyl
7019	3,4,5-trichloroaniline	1114	Benzène	1540	Chlorpyriphos méthyl
5695	3,4,5-Trimethacarb	2816	Benzene, 1-chloro-2-methyl-3-nitro-	1353	Chlorsulfuron
2819	3-Chloro-2-methylaniline	1607	Benzidine	2966	Chlorthal dimethyl
2820	3-Chloro-4 méthylaniline	1082	Benzo (a) Anthracène	1813	Chlorthiamide
2823	4-Chloro-N-methylaniline	1115	Benzo (a) Pyrène	5723	Chlorthiophos
5474	4-n-nonylphénol	1116	Benzo (b) Fluoranthène	1136	Chlorion de Barrida
1958 2610	4-nonylphénols ramifiés 4-tert-butylphénol	1118 1117	Benzo (ghi) Pérylène Benzo (k) Fluoranthène	1579 2715	Chlorure de Benzyle Chlorure de Benzylidène
1959	4-tert-octylphénol	1377	Beryllium	2977	CHLORURE DE CHOLINE
2863	5,6,7,8-Tetrahydro-2-naphthol	3209	Beta cyfluthrine	1753	Chlorure de vinyle
2822	5-Chloroaminotoluene	6652	beta-Hexabromocyclododecane	1389	Chrome
2817	6-Chloro-3-méthylaniline	1119	Bifénox	1476	Chrysène
1453	Acénaphtène	1120	Bifenthrine	5481	Cinosulfuron
1622	Acénaphtylène	1502	Bioresméthrine	2978	Clethodim
1100	Acéphate	1584	Biphényle	2095	Clodinafop-propargyl
1454	Acétaldéhyde	2766	Bisphénol-A	1868	Clofentézine
5579	Acetamiprid	1529	Bitertanol	2017	Clomazone
1903	Acétochlore	7345	Bixafen	1810	Clopyralide
5581	Acibenzolar-S-Methyl	1362	Bore	2018	Cloquintocet mexyl
1465	Acide monochloroacétique	5526	Boscalid	1379	Cobalt
1521	Acide nitrilotriacétique (NTA)	1686	Bromacil	2972	Coumafène
6550	Acide perfluorodecane sulfonique (PFDS)	1859	Bromadiolone	1682	Coumaphos
6509	Acide perfluoro-decanoïque (PFDA)	1122	Bromoforme	2019	Coumatétralyl
6507	Acide perfluoro-dodecanoïque (PFDoA)	1123	Bromophos éthyl	1639	Crésol-méta
6830 5977	Acide perfluorohexanesulfonique (PFHS)	1124 1685	Bromophos méthyl Bromopropylate	1640 1638	Crésol para
5977	Acide perfluoro-n-heptanoïque (PFHpA) Acide perfluoro-n-hexanoïque (PFHxA)	1125	Bromoxynil	5724	Crésol-para Crotoxyphos
6508	Acide perfluoro-n-nonanoïque (PFNA)	1941	Bromoxynil octanoate	5725	Crufomate
6510	Acide periluoro-n-undecanoïque (PFUnA)	1860	Bromuconazole	1392	Cuivre
6560	Acide perfluorooctanesulfonique (PFOS)	7502	Bufencarbe	1137	Cyanazine
5347	Acide perfluoro-octanoïque (PFOA)	1861	Bupirimate	5726	Cyanofenphos
6547	Acide Perfluorotetradecanoique (PFTeA)	1862	Buprofézine	5568	Cycloate
1970	Acifluorfen	5710	Butamifos	2729	CYCLOXYDIME
1688	Aclonifen	1126	Butraline	1696	Cycluron
1310	Acrinathrine	1531	Buturon	1681	Cyfluthrine
1101	Alachlore	7038	Butylate	5569	Cyhalofop-butyl
1102	Aldicarbe	1855	Butylbenzène n	1138	Cyhalothrine
1807	Aldicarbe sulfone	1610	Butylbenzène sec	1139	Cymoxanil
1806	Aldicarbe sulfoxyde	1611	Butylbenzène tert	1140	Cyperméthrine
1103	Aldrine	1388	Cadmium	1680	Cyproconazole
1697	Alléthrine	1863	Cadusafos	1359	Cyprodinil
7501	Allyxycarbe	1127	Captafol	2897	Cyromazine
6651	alpha-Hexabromocyclododecane	1128	Captane	7503	Cythioate
1812 1370	Alphaméthrine Aluminium	1463 1129	Carbaryl Carbendazime	5930 2094	Daimuron Dalapon
1104	Amétryne	1333	Carbétamide	1929	DCPMU (métabolite du Diuron)
5697	Amidithion	1130	Carbofuran	1930	DCPU (métabolite Diuron)
2012	Amidosulfuron	1805	Carbofuran 3 hydroxy	1143	DDD-o,p'
5523	Aminocarbe	1131	Carbophénothion	1144	DDD-p,p'
2537	Aminochlorophénol-2,4	1864	Carbosulfan	1145	DDE-o,p'
1105	Aminotriazole	2975	Carboxine	1146	DDE-p,p'
7516	Amiprofos-methyl	2976	Carfentrazone-ethyl	1147	DDT-o,p'
1308	Amitraze	1865	Chinométhionate	1148	DDT-p,p'
1907	AMPA	7500	Chlorantraniliprole	6616	DEHP
6594	Anilofos	1336	Chlorbufame	1149	Deltaméthrine
1458	Anthracène	7010	Chlordane alpha	1550	Déméton O + S
2013	Anthraquinone	1757	Chlordane beta	1153	Déméton S méthyl
1376	Antimoine	1758	Chlordane gamma	1154	Déméton S méthyl sulfone
1368	Argent	1866	Chlordécone	1150	Déméton S
1369 1965	Arsenic Asulame	5553 1464	Chlorefenizon Chlorfenvinphos	1152 2051	Déméton-S Déséthyl-terbuméthon
1107	Atrazine	2950	Chlorfluazuron	5750	Desethylterbutylazine-2-hydroxy
1832	Atrazine 2 hydroxy	1133	Chloridazone	2980	Desmediphame
1109	Atrazine déisopropyl	5522	Chlorimuron-ethyl	2738	Desméthylisoproturon
1108	Atrazine déséthyl	1134	Chlorméphos	1155	Desmétryne
1830	Atrazine déséthyl déïsopropyl	5554	Chlormequat	1156	Diallate
2014	Azaconazole	1606	Chloro-2-p-toluidine	1157	Diazinon
2015	Azaméthiphos	1955	Chloroalcanes C10-C13	1621	Dibenzo (ah) Anthracène
2937	Azimsulfuron	1593	Chloroaniline-2	1158	Dibromochlorométhane
1110	Azinphos éthyl	1592	Chloroaniline-3	1498	Dibromoéthane-1,2
1111	Azinphos méthyl	1591	Chloroaniline-4	1513	Dibromométhane
1951	Azoxystrobine	1467	Chlorobenzène	7074	Dibutyletain cation
1396	Baryum	2016	Chlorobromuron	1480	Dicamba
6231	BDE 181	1612	Chlorodinitrobenzène-1,2,4	1679	Dichlobénil
5986	BDE 203	1135	Chloroforme (Trichlorométhane)	1159	Dichlofenthion
5997	BDE 205	2821	Chlorométhylaniline-4,2	1360	Dichlofluanide
2915	BDE100	1635	Chlorométhylphénol-2,5	1160	Dichloréthane-1,1
2913	BDE138	2759	Chlorométhylphénol-2,6	1161	Dichloréthane-1,2
2912	BDE153	1634	Chlorométhylphénol-4,2	1162	Dichloréthylène 1.2
2911	BDE154	1636	Chlorométhylphénol-4,3	1163	Dichloréthylène 1,2 cia
2921 2910	BDE17 BDE183	1603 1604	Chloronaphtalène-1 Chloronaphtalène-2	1456 1727	Dichloréthylène-1,2 cis Dichloréthylène-1,2 trans
2909	BDE183 BDE190	1341	Chloronèbe	2929	Dichlormide
1815	BDE209	1594	Chloronitroaniline-4,2	1590	Dichloroaniline-2,3
2920	BDE28	1469	Chloronitrobenzène-1,2	1589	Dichloroaniline-2,4
					, .

Codes sandre	Libellés des paramètres	Codes sandre	Libellés des paramètres	Codes sandre	Libellés des paramètres
1588	Dichloroaniline-2,5	5527	Ethoxysulfuron	2860	IMAZAQUINE
1587	Dichloroaniline-2,6	2673	Ethyl tert-butyl ether	7510	Imibenconazole
1586	Dichloroaniline-3,4	1497	Ethylbenzène	1877	Imidaclopride
1585	Dichloroaniline-3,5	5648	EthylèneThioUrée	1204	Indéno (123c) Pyrène
1165	Dichlorobenzène-1,2	6601	EthylèneUrée	5483	Indoxacarbe
1164	Dichlorobenzène-1,3	2629	Ethynyl estradiol	2741	lodocarbe
1166	Dichlorobenzène-1,4	5625	Etoxazole	2025	lodofenphos
1484	Dichlorobenzidine-3,3'	5760	Etrimfos	2563	lodosulfuron
1167	Dichlorobromométhane	2020	Famoxadone	1205	loxynil
1168	Dichlorométhane	5761	Famphur	2871	loxynil methyl ester
1617	Dichloronitrobenzène-2,3	2057	Fénamidone	1942	loxynil octanoate
1616	Dichloronitrobenzène-2,4	1185	Fénarimol	7508	Ipoconazole
1615	Dichloronitrobenzène-2,5	2742	Fénazaquin	5777	Iprobenfos
1614	Dichloronitrobenzène-3,4	1906	Fenbuconazole	1206	Iprodione
1613	Dichloronitrobenzène-3,5	2078	Fenbutatin oxyde	2951	Iprovalicarbe
2981	Dichlorophène	7513	Fenchlorazole-ethyl	1935	Irgarol
1645		1186		1976	Isazofos
	Dichlorophénol-2,3		Fenchlorphos		
1486	Dichlorophénol-2,4	2743	Fenhexamid	1836	Isobutylbenzène
1649	Dichlorophénol-2,5	1187	Fénitrothion	1207	Isodrine
1648	Dichlorophénol-2,6	5627	Fenizon	1829	Isofenphos
1647	Dichlorophénol-3,4	5763	Fenobucarb	5781	Isoprocarb
1646	Dichlorophénol-3,5	5970	Fenothiocarbe	1633	Isopropylbenzène
2081	Dichloropropane-2,2	1973	Fénoxaprop éthyl	2681	Isopropyltoluène o
1834	Dichloropropylène-1,3 Cis	1967	Fénoxycarbe	1856	Isopropyltoluène p
1835	Dichloropropylène-1,3 Trans	1188	Fenpropathrine	1208	Isoproturon
1169	Dichlorprop	1700	Fenpropidine	2722	Isothiocyanate de methyle
2544	Dichlorprop-P	1189	Fenpropimorphe	1672	Isoxaben
1170	Dichlorvos	1190	Fenthion	2807	Isoxadifen-éthyle
5349	Diclofenac	1500	Fénuron	1945	Isoxaflutol
1171	Diclofop méthyl	1701	Fenvalérate	5784	Isoxathion
1172	Dicofol	1393	Fer	7505	Karbutilate
5525	Dicrotophos	2009	Fipronil	1950	Kresoxim méthyl
2847	Didéméthylisoproturon	1840	Flamprop-isopropyl	1094	Lambda Cyhalothrine
1173	Dieldrine	6539	Flamprop-methyl	1406	Lénacile
7507	Dienestrol	1939	Flazasulfuron	1209	Linuron
1402	Diéthofencarbe	6393	Flonicamid	2026	Lufénuron
2826	Diéthylamine	2810	Florasulam	1210	Malathion
2628	Diethylstilbestrol	6545	Fluazifop	5787	Malathion-o-analog
2982	Difenacoum	1825	Fluazifop-butyl	1211	Mancozèbe
1905	Difénoconazole	2984	Fluazinam	6399	Mandipropamid
5524	Difenoxuron	2022	Fludioxonil	1705	Manèbe
2983	Difethialone	1676	Flufénoxuron	1394	Manganèse
1488	Diflubenzuron	2023	Flumioxazine	2745	MCPA-1-butyl ester
1814	Diflufénicanil	1501	Fluométuron	2746	MCPA-2-ethylhexyl ester
1870	Diméfuron	1191	Fluoranthène	2747	MCPA-butoxyethyl ester
7142	Dimepiperate	1623	Fluorène	2748	MCPA-ethyl-ester
2546	Dimétachlore	7073	Fluorures	2749	MCPA-methyl-ester
5737	Dimethametryn	5638	Fluoxastrobine	5789	Mecarbam
1678	Diméthénamide	2565	Flupyrsulfuron methyle	1214	Mécoprop
5617	Dimethenamid-P	2056	Fluquinconazole	2870	Mecoprop n isobutyl ester
1175	Diméthoate	1974	Fluridone	2750	Mecoprop-1-octyl ester
1403	Diméthomorphe	1675	Flurochloridone	2751	Mecoprop-2,4,4-trimethylphenyl ester
2773	Diméthylamine	1765	Fluroxypyr	2752	Mecoprop-2-butoxyethyl ester
6292	Dimethylaniline	2547	Fluroxypyr-meptyl	2753	Mecoprop-2-ethylhexyl ester
					Mecoprop-2-ethylnexyr ester
1641	Diméthylphénol-2,4	2024	Flurprimidol	2754	
6972	Dimethylvinphos	2008	Flurtamone	2755	Mecoprop-methyl ester
1698	Dimétilan	1194	Flusilazole	1968	Méfenacet
5748	dimoxystrobine	2985	Flutolanil	2930	Méfenpyr diethyl
1871	Diniconazole	1503	Flutriafol	2568	Mefluidide
1578	Dinitrotoluène-2,4	1192	Folpel	2987	Méfonoxam
1577	Dinitrotoluène-2,6	2075	Fomesafen	5533	Mepanipyrim
5619	Dinocap	1674	Fonofos	5791	Mephosfolan
1491	Dinosèbe	2806	Foramsulfuron	1969	Mépiquat
1176	Dinoterbe	5969	Forchlorfenuron	2089	Mépiquat chlorure
7494	Dioctyletain cation	1702	Formaldéhyde	1878	Mépronil
5743	Dioxacarb	1702	Formétanate	1510	Mercaptodiméthur
5743 5478		1504	Formothion	1804	Mercaptodimethur sulfoxyde
	Diphenylamine				
7495	Diphenyletain cation	1975	Foséthyl aluminium	1387	Mercure
1699	Diquat	2744	Fosthiazate	2578	Mesosulfuron methyle
1492	Disulfoton	1908	Furalaxyl	2076	Mésotrione
5745	Ditalimfos	2567	Furathiocarbe	6579	Meta ,Para-Cresol
1177	Diuron	7441	Furilazole	1706	Métalaxyl
1490	DNOC	6653	gamma-Hexabromocyclododecane	1796	Métaldéhyde
3383	Dodécyl phénol	1526	Glufosinate	1215	Métamitrone
2933	Dodine	2731	Glufosinate-ammonium	1670	Métazachlore
7515	DPU (Diphenylurée)	1506	Glyphosate	1879	Metconazole
5751	Edifenphos	5508	Halosulfuron-methyl	1216	Méthabenzthiazuron
1493	EDTA	2047	Haloxyfop	5792	Methacrifos
1178	Endosulfan alpha	1833	Haloxyfop-éthoxyéthyl	1671	Méthamidophos
1179	Endosulfan beta	1200	HCH alpha	1217	Méthidathion
			HCH aipna HCH beta		
1742	Endosulfan sulfate	1201		1218	Méthonyl Méthonykohloro
1181	Endrine	1202	HCH delta	1511	Méthoxychlore
	Endrine aldehyde	2046	HCH epsilon	1619	Méthyl-2-Fluoranthène
2941		1203	HCH gamma	1618	Méthyl-2-Naphtalène
1494	Epichlorohydrine	0500	Heptabromodiphényléther	2067	Metiram
1494 1873	EPN	2599			Métobromuron
1494	EPN Epoxiconazole	2599 1197	Heptachlore	1515	
1494 1873	EPN		Heptachlore Heptachlore époxyde cis	1515 1221	Métolachlore
1494 1873 1744 1182	EPN Epoxiconazole EPTC	1197 1748	Heptachlore époxyde cis	1221	Métolachlore
1494 1873 1744 1182 7504	EPN Epoxiconazole EPTC Equilin	1197 1748 1749	Heptachlore époxyde cis Heptachlore époxyde trans	1221 5796	Métolachlore Metolcarb
1494 1873 1744 1182 7504 1809	EPN Epoxiconazole EPTC Equilin Esfenvalérate	1197 1748 1749 1910	Heptachlore époxyde cis Heptachlore époxyde trans Heptenophos	1221 5796 1912	Métolachlore Metolcarb Métosulame
1494 1873 1744 1182 7504 1809 5397	EPN Epoxiconazole EPTC Equilin Esfenvalérate Estradiol	1197 1748 1749 1910 2600	Heptachlore époxyde cis Heptachlore époxyde trans Heptenophos Hexabromodiphényléther	1221 5796 1912 1222	Métolachlore Metolcarb Métosulame Métoxuron
1494 1873 1744 1182 7504 1809 5397 6446	EPN Epoxiconazole EPTC Equilin Esfenvalérate Estradiol Estriol	1197 1748 1749 1910 2600 1199	Heptachlore époxyde cis Heptachlore époxyde trans Heptenophos Hexabromodiphényléther Hexachlorobenzène	1221 5796 1912 1222 5654	Métolachlore Metolcarb Métosulame Métoxuron Metrafenone
1494 1873 1744 1182 7504 1809 5397 6446 5396	EPN Epoxiconazole EPTC Equilin Esfenvalérate Estradiol Estriol Estrone	1197 1748 1749 1910 2600 1199 1652	Heptachlore époxyde cis Heptachlore époxyde trans Heptenophos Hexabromodiphényléther Hexachlorobenzène Hexachlorobutadiène	1221 5796 1912 1222 5654 1225	Métolachlore Metolcarb Métosulame Métoxuron Metrafenone Métribuzine
1494 1873 1744 1182 7504 1809 5397 6446 5396 1380	EPN Epoxiconazole EPTC Equilin Esfenvalérate Estradiol Estriol Estrone Etain	1197 1748 1749 1910 2600 1199 1652 1656	Heptachlore époxyde cis Heptachlore époxyde trans Heptenophos Hexabromodiphényléther Hexachlorobenzène Hexachlorobutadiène Hexachloroéthane	1221 5796 1912 1222 5654 1225 1797	Métolachlore Metolicarb Métosulame Métoxuron Metrafenone Métribuzine Metsulfuron méthyl
1494 1873 1744 1182 7504 1809 5397 6446 5396 1380 5529	EPN Epoxiconazole EPTC Equilin Esfenvalérate Estradiol Estriol Estrone Etain Ethametsulfuron-methyl	1197 1748 1749 1910 2600 1199 1652 1656 1405	Heptachlore époxyde cis Heptachlore époxyde trans Heptenophos Hexabromodiphényléther Hexachlorobenzène Hexachlorobutadiène Hexachloroéthane Hexaconazole	1221 5796 1912 1222 5654 1225 1797	Métolachlore Metolcarb Métosulame Métoxuron Metrafenone Métribuzine Metsulfuron méthyl Mévinphos
1494 1873 1744 1182 7504 1809 5397 6446 5396 1380 5529 2093	EPN Epoxiconazole EPTC Equilin Esfenvalérate Estradiol Estrone Etain Ethamelsulfuron-methyl Ethamelsulfuron-methyl Ethephon	1197 1748 1749 1910 2600 1199 1652 1656 1405 1875	Heptachlore époxyde cis Heptachlore époxyde trans Heptenophos Hexabromodiphényléther Hexachlorobutadiène Hexachlorobutadiène Hexachloroéthane Hexaconazole Hexaflumuron	1221 5796 1912 1222 5654 1225 1797 1226 7143	Métolachlore Metolcarb Métosulame Métoxuron Metrafenone Métribuzine Metsulfuron méthyl Mévinphos Mexacarbate
1494 1873 1744 1182 7504 1809 5397 6446 5396 1380 5529	EPN Epoxiconazole EPTC Equilin Esfenvalérate Estradiol Estriol Estrone Etain Ethametsulfuron-methyl	1197 1748 1749 1910 2600 1199 1652 1656 1405	Heptachlore époxyde cis Heptachlore époxyde trans Heptenophos Hexabromodiphényléther Hexachlorobenzène Hexachlorobutadiène Hexachloroéthane Hexaconazole	1221 5796 1912 1222 5654 1225 1797	Métolachlore Metolcarb Métosulame Métoxuron Metrafenone Métribuzine Metsulfuron méthyl Mévinphos
1494 1873 1744 1182 7504 1809 5397 6446 5396 1380 5529 2093	EPN Epoxiconazole EPTC Equilin Esfenvalérate Estradiol Estrone Etain Ethamelsulfuron-methyl Ethamelsulfuron-methyl Ethephon	1197 1748 1749 1910 2600 1199 1652 1656 1405 1875	Heptachlore époxyde cis Heptachlore époxyde trans Heptenophos Hexabromodiphényléther Hexachlorobenzène Hexachlorobutadiène Hexachloroéthane Hexaconazole Hexaflumuron Hexazinone	1221 5796 1912 1222 5654 1225 1797 1226 7143	Métolachlore Metolcarb Métosulame Métoxuron Metrafenone Métribuzine Metsulfuron méthyl Mévinphos Mexacarbate
1494 1873 1744 1182 7504 1809 5397 6446 5396 1380 5529 2093 1763 5528	EPN Epoxiconazole EPTC Equilin Esfenvalérate Estradiol Estriol Estrone Etain Ethametsulfuron-methyl Ethephon Ethidimuron Ethidimuron Ethidimuron	1197 1748 1749 1910 2600 1199 1652 1656 1405 1875 1673 1876	Heptachlore époxyde cis Heptachlore époxyde trans Heptenophos Hexabromodiphényléther Hexachlorobenzène Hexachlorobtutadiène Hexachloroéthane Hexachloroéthane Hexaflumuron Hexazinone Hexaythiazox	1221 5796 1912 1222 5654 1225 1797 1226 7143 1707 1395	Métolachlore Metolcarb Métosulame Métoxuron Metrafenone Métribuzine Metsulfuron méthyl Mévinphos Mexacarbate Molinate Molipdène
1494 1873 1744 1182 7504 1809 5397 6446 5396 1380 5529 2093 1763 5528 6534	EPN Epoxiconazole EPTC Equilin Esfenvalérate Estradiol Estriol Estrone Etain Ethametsulfuron-methyl Ethephon Ethidimuron Ethidimuron Ethiofencarbe sulfoxyde	1197 1748 1749 1910 2600 1199 1652 1656 1405 1875 1673 1876	Heptachlore époxyde cis Heptachlore époxyde trans Heptenophos Hexabromodiphényléther Hexachlorobenzène Hexachlorobutadiène Hexachloroéthane Hexaconazole Hexaflumuron Hexazinone Hexythiazox Imazalil	1221 5796 1912 1222 5654 1225 1797 1226 7143 1707 1395 2542	Métolachlore Metolcarb Métosulame Métoxuron Metrafenone Métribuzine Metsulfuron méthyl Mévinphos Mexacarbate Molinate Molybdène Monobutyletain cation
1494 1873 1744 1182 7504 1809 5397 6446 5396 1380 5529 2093 1763 5528 6534 1183	EPN Epoxiconazole EPTC Equilin Esfenvalérate Estradiol Estrone Etain Ethametsulfuron-methyl Ethaphon Ethidimuron Ethidiencarbe sulfone Ethiofencarbe sulfoxyde Ethion	1197 1748 1749 1910 2600 1199 1652 1656 1405 1875 1673 1876 1704	Heptachlore époxyde cis Heptachlore époxyde trans Heptenophos Hexabromodiphényléther Hexachlorobenzène Hexachlorobutadiène Hexachloroéthane Hexaconazole Hexaflumuron Hexazinone Hexythiazox Imazalii Imazaméthabenz	1221 5796 1912 1222 5654 1225 1797 1226 7143 1707 1395 2542 1880	Métolachlore Metolicarb Métosulame Métoxuron Metrafenone Métribuzine Metsulfuron méthyl Mévinphos Mexacarbate Molinate Molyddène Monobutyletain cation Monocrotophos
1494 1873 1744 1182 7504 1809 5397 6446 5396 1380 5529 2093 1763 5528 6534	EPN Epoxiconazole EPTC Equilin Esfenvalérate Estradiol Estriol Estrone Etain Ethametsulfuron-methyl Ethephon Ethidimuron Ethidimuron Ethiofencarbe sulfoxyde	1197 1748 1749 1910 2600 1199 1652 1656 1405 1875 1673 1876	Heptachlore époxyde cis Heptachlore époxyde trans Heptenophos Hexabromodiphényléther Hexachlorobenzène Hexachlorobutadiène Hexachloroéthane Hexaconazole Hexaflumuron Hexazinone Hexythiazox Imazalil	1221 5796 1912 1222 5654 1225 1797 1226 7143 1707 1395 2542	Métolachlore Metolicarb Métosulame Métoxuron Metrafenone Métribuzine Metsulfuron méthyl Mévinphos Mexacarbate Molinate Molybdène Monobutyletain cation

Codes sandre	Il iballés des paramètres	Codes sandre	I iballás das paramètras	Codes sandre	Libellés des paramètres
1228	Libellés des paramètres Monuron	1664	Libellés des paramètres Procymidone	1936	Libellés des paramètres Tetrabutyletain
7475	Morpholine	1889	Profénofos Promécarbe	1270	Tétrachloréthane-1,1,1,2
1512	MTBE	1710		1271	Tétrachloréthane-1,1,2,2
6342	Musc xylène	1711	Prométon	1272	Tétrachloréthylène
1881	Myclobutanil	1254	Prométryne	2010	Tétrachlorobenzène-1,2,3,4
1516	Naled	1712	Propachlore	2536	Tétrachlorobenzène-1,2,3,5
1517	Naphtalène	6398	Propamocarb	1631	Tétrachlorobenzène-1,2,4,5
1518	Naphtol-1	1532	Propanil	1273	Tétrachlorophénol-2,3,4,5
1519	Napropamide	6964	Propaphos	1274	Tétrachlorophénol-2,3,4,6
1937	Naptalame	1972	Propaguizafop	1275	Tétrachlorophénol-2,3,5,6
1520	Néburon	1255	Propargite	1276	Tétrachlorure de C
1386	Nickel	1256	Propazine	1277	Tétrachlorvinphos
1882	Nicosulfuron	5968	Propazine 2-hydroxy	1660	Tétraconazole
2614	Nitrobenzène	1533	Propétamphos	1900	Tétradifon
1229	Nitrofène	1534	Prophame	5249	Tétraphénylétain
	Nitrophénol-2				Tetrasul
1637		1257	Propiconazole	5837	
1957	Nonylphénols	2989	Propinèbe	2555	Thallium
1669	Norflurazon	1535	Propoxur	1713	Thiabendazole
2737	Norflurazon desméthyl	5602	Propoxycarbazone-sodium	5671	Thiacloprid
1883	Nuarimol	1837	Propylbenzène	1940	Thiafluamide
2609	Octabromodiphénylether	6214	Propylene thiouree	6390	Thiamethoxam
2904	Octylphénols	1414	Propyzamide	1714	Thiazasulfuron
2027	Ofurace	7422	Proquinazid	5934	Thidiazuron
1230	Ométhoate	1092	Prosulfocarbe	1913	Thifensulfuron méthyl
1668	Oryzalin	2534	Prosulfuron	7512	Thiocyclam hydrogen oxalate
2068	Oxadiargyl	5603	Prothioconazole	1093	Thiodicarbe
1667	Oxadiazon	7442	Proximpham	1715	Thiofanox
1666	Oxadixyl	5416	Pymétrozine	5476	Thiofanox sulfone
1850	Oxamyl	6611	Pyraclofos	5475	Thiofanox sulfoxyde
5510	Oxasulfuron	2576	Pyraclostrobine	2071	Thiométon
1231	Oxydéméton méthyl	5509	Pyraflufen-ethyl	5838	Thionazin
1952	Oxydemetor metryl	1258	Pyrazophos	7514	Thiophanate-ethyl
1920	p-(n-octyl)phénol	6386	Pyrazosulfuron-ethyl	1717	Thiophanate-methyl
	Paclobutrazole				Thirame
2545		6530	Pyrazoxyfen	1718	
5806	Paraoxon	1537	Pyrène	5922	Tiocarbazil
1522	Paraquat	5826	Pyributicarb	1373	Titane
2618	Para-sec-butylphenol	1890	Pyridabène	5675	Tolclofos-methyl
1232	Parathion éthyl	5606	Pyridaphenthion	1278	Toluène
1233	Parathion méthyl	1259	Pyridate	1719	Tolylfluanide
1242	PCB 101	1663	Pyrifénox	1658	Tralométhrine
1627	PCB 105	1432	Pyriméthanil	1544	Triadiméfon
5433	PCB 114	1260	Pyrimiphos éthyl	1280	Triadiménol
1243	PCB 118	1261	Pyrimiphos méthyl	1281	Triallate
5434	PCB 123	5499	Pyriproxyfène	1914	Triasulfuron
2943	PCB 125	7340	Pyroxsulam	1901	Triazamate
1089	PCB 126	1891	Quinalphos	1657	Triazophos
1884	PCB 128	2087	Quinmerac	2990	Triazoxide
1244	PCB 138	2028	Quinoxyfen	2064	Tribenuron-Methyle
1885	PCB 149	1538	Quintozène	5840	Tributyl phosphorotrithioite
1245	PCB 153	2069	Quizalofop	2879	Tributyletain cation
2032	PCB 156	2070	Quizalofop éthyl	1847	Tributylphosphate
5435	PCB 157	2859	Resmethrine	1288	Trichlopyr
5436	PCB 167	1892	Rimsulfuron	1284	Trichloréthane-1,1,1
1090	PCB 169	2029	Roténone	1285	Trichloréthane-1,1,2
1626	PCB 170	2974	S Métolachlore	1286	Trichloréthylène
1246	PCB 180	1923	Sébuthylazine	1287	Trichlorfon
5437	PCB 189	6101	Sebuthylazine 2-hydroxy	2734	Trichloroaniline-2,3,4
1625	PCB 194	5981	Sebutylazine desethyl	7017	Trichloroaniline-2,3,5
1624	PCB 209	1262	Secbumeton	2732	Trichloroaniline-2,4,5
	PCB 28				
1239		1385	Sélénium	1595	Trichloroaniline-2,4,6
1886	PCB 31	1808	Séthoxydime	1630	Trichlorobenzène-1,2,3
1240	PCB 35	1893	Siduron	1283	Trichlorobenzène-1,2,4
2031	PCB 37	5609	Silthiopham	1629	Trichlorobenzène-1,3,5
1628	PCB 44	1539	Silvex	1195	Trichlorofluorométhane
1241	PCB 52	1263	Simazine	1644	Trichlorophénol-2,3,4
2048	PCB 54	1831	Simazine hydroxy	1643	Trichlorophénol-2,3,5
5803	PCB 66	5477	Simétryne	1642	Trichlorophénol-2,3,6
1091	PCB 77	5610	Spinosad	1548	Trichlorophénol-2,4,5
5432	PCB 81	7506	Spirotetramat Spirotetramat	1549	Trichlorophénol-2,4,6
1762	Penconazole	2664	Spiroxamine	1723	Trichlorophénol-3,4,5
1887	Pencycuron	3160	s-Triazin-2-ol, 4-amino-6-(ethylamino)-	1854	Trichloropropane-1,2,3
1234	Pendiméthaline	1541	Styrène	1196	Trichlorotrifluoroéthane-1,1,2
6394	Penoxsulam	1662	Sulcotrione	2898	Tricyclazole
1888	Pentachlorobenzène	6662	Sulfluramid (EtFOSA)	2885	Tricyclohexyletain cation
1235	Pentachlorophénol	5507	Sulfomethuron-methyl	1811	Tridémorphe
7509	Penthiopyrad	2085	Sulfosufuron	5842	Trietazine
6548	Perfluorooctanesulfonamide (PFOSA)	1894	Sulfotep	6102	Trietazine Trietazine 2-hydroxy
1523	Perméthrine Phénaminhos	5831	Sulprofos	5971	Trietazine desethyl
1499	Phénamiphos	1193	Taufluvalinate	2678	Trifloxystrobine
1524	Phénanthrène	1694	Tébuconazole	1902	Triflumuron
1236	Phenmédiphame	1895	Tébufénozide	1289	Trifluraline
2876	Phenol, 4-(3-methylbutyl)-	1896	Tébufenpyrad	2991	Triflusulfuron-methyl
5813	Phenthoate	7511	Tébupirimfos	1802	Triforine
1525	Phorate	1661	Tébutame	1857	Triméthylbenzène-1,2,3
1237	Phosalone	1542	Tébuthiuron	1609	Triméthylbenzène-1,2,4
1971	Phosmet	5413	Tecnazène	1509	Triméthylbenzène-1,3,5
1238	Phosphamidon	1897	Téflubenzuron	2096	Trinexapac-ethyl
1665	Phoxime	1953	Téfluthrine	2886	Trioctyletain cation
1708	Piclorame	2559	Tellure	6372	Triphenyletain cation
5665	Picolinafen	7086	Tembotrione	2992	Triticonazole
2669	Picoxystrobine	1898	Téméphos	7482	Uniconazole
1709	Piperonil butoxide	1659	Terbacile	1361	Uranium
5819	Piperophos	5835	Terbucarb	1290	Vamidothion
1528	Pirimicarbe	1266	Terbuméton	1384	Vanadium
5531	Pirimicarbe Desmethyl	1267	Terbuphos	1291	Vinclozoline
5532	Pirimicarbe Formamido Desmethyl	1268	Terbuthylazine	1293	Xylène-meta
1382	Plomb	2045	Terbuthylazine déséthyl	1292	Xylène-ortho
5821	p-Nitrotoluene	1954	Terbuthylazine hydroxy	1294	Xylène-para
1949	Pretilachlore	1269	Terbutryne	1383	Zinc
1253	Prochloraze	2601	Tétrabromodiphényléther	1721	Zinèbe
				2858	Zoxamide
l	•	•			

4.2. ANNEXE 2: LISTE DES MICROPOLLUANTS ANALYSES DANS LE SEDIMENT

LISTE DES MICROPOLLUANTS RECHERCHES SUR LE SUPPORT SEDIMENT - année 2014

	OPOLLUANTS RECHERCHES SUR LE SUPP		unice 2014		
Codes sandre	Libellés des paramètres	Codes sandre	Libellés des paramètres	Codes sandre	Libellés des paramètres
5474	4-n-nonylphénol	1157	Diazinon	1637	Nitrophénol-2
1958	4-nonylphénols ramifiés	1621	Dibenzo (ah) Anthracène	1957	Nonylphénols
2610	4-tert-butylphénol	1158	Dibromochlorométhane	1669	Norflurazon
1959	4-tert-octylphénol	1498	Dibromoéthane-1,2	1667	Oxadiazon
1453	Acénaphtène	7074	Dibutyletain cation	1920	p-(n-octyl)phénol
1622	Acénaphtylène	1160	Dichloréthane-1,1	1232	Parathion éthyl
1903	Acétochlore	1161	Dichloréthane-1,2	1242	PCB 101
6560	Acide perfluorooctanesulfonique (PFOS)	1162	Dichloréthylène-1,1	1627	PCB 105
1688	Aclonifen	1456	Dichloréthylène-1,2 cis	5433	PCB 114
1103	Aldrine	1727	Dichloréthylène-1,2 trans	1243	PCB 118
1812	Alphaméthrine	1590	Dichloroaniline-2,3	5434	PCB 123
1370	Aluminium	1589	Dichloroaniline-2.4	1089	PCB 126
1458	Anthracène	1588	Dichloroaniline-2,5	1244	PCB 138
1376	Antimoine	1587	Dichloroaniline-2,6	1245	PCB 153
1368	Argent	1586	Dichloroaniline-3,4	2032	PCB 156
1369	Arsenic	1585	Dichloroaniline-3,5	5435	PCB 157
1110	Azinphos éthyl	1165	Dichlorobenzène-1,2	5436	PCB 167
1951		1164	Dichlorobenzene-1,3	1090	PCB 167
	Azoxystrobine		*		
1396	Baryum	1166	Dichlorobenzène-1,4	1626	PCB 170 PCB 180
5989	BDE 196	1167	Dichlorobromométhane	1246	
5990	BDE 197	1168	Dichlorométhane	5437	PCB 189
5991	BDE 198	1617	Dichloronitrobenzène-2,3	1625	PCB 194
5986	BDE 203	1616	Dichloronitrobenzène-2,4	1624	PCB 209
5996	BDE 204	1615	Dichloronitrobenzène-2,5	1239	PCB 28
5997	BDE 205	1614	Dichloronitrobenzène-3,4	1240	PCB 35
2915	BDE100	1613	Dichloronitrobenzène-3,5	1628	PCB 44
2913	BDE138	1645	Dichlorophénol-2,3	1241	PCB 52
2912	BDE153	1486	Dichlorophénol-2,4	1091	PCB 77
2911	BDE154	1649	Dichlorophénol-2,5	5432	PCB 81
2910	BDE183	1648	Dichlorophénol-2,6	1234	Pendiméthaline
1815	BDE209	1647	Dichlorophénol-3,4	1888	Pentachlorobenzène
2920	BDE28	1646	Dichlorophénol-3,5	1235	Pentachlorophénol
2919	BDE47	1655	Dichloropropane-1,2	1524	Phénanthrène .
7437	BDE77	1654	Dichloropropane-1,3	1665	Phoxime
2916	BDE99	2081	Dichloropropane-2,2	1382	Plomb
1114	Benzène	2082	Dichloropropène-1,1	1664	Procymidone
1607	Benzidine	1487	Dichloropropylène-1,3 (cis + trans)	1414	Propyzamide
1082	Benzo (a) Anthracène	1653	Dichloropropylène-2,3	1537	Pyrène
1115	Benzo (a) Pyrène	1169	Dichlorprop	2028	Quinoxyfen
1116	Benzo (b) Fluoranthène	1170	Dichlorvos	1385	Sélénium
1118	Benzo (ghi) Pérylène	1172	Dicofol	7128	Somme de 3 Hexabromocyclododecanes
1117		1173	Dieldrine	1662	Sulcotrione
	Benzo (k) Fluoranthène	1814	Diflufénicanil	1694	Tébuconazole
1377	Beryllium				
1119	Bifénox	1403	Diméthomorphe	1661	Tébutame
1584	Biphényle	1641	Diméthylphénol-2,4	2559	Tellure
1362	Bore	1578	Dinitrotoluène-2,4	1268	Terbuthylazine
1122	Bromoforme	1577	Dinitrotoluène-2,6	1269	Terbutryne
1125	Bromoxynil	7494	Dioctyletain cation	1936	Tetrabutyletain
1941	Bromoxynil octanoate	7495	Diphenyletain cation	1270	Tétrachloréthane-1,1,1,2
1388	Cadmium	1178	Endosulfan alpha	1271	Tétrachloréthane-1,1,2,2
1464	Chlorfenvinphos	1179	Endosulfan beta	1272	Tétrachloréthylène
1134	Chlorméphos	1742	Endosulfan sulfate	2010	Tétrachlorobenzène-1,2,3,4
1955	Chloroalcanes C10-C13	1181	Endrine	2536	Tétrachlorobenzène-1,2,3,5
1593	Chloroaniline-2	1744	Epoxiconazole	1631	Tétrachlorobenzène-1,2,4,5
1592	Chloroaniline-3	1380	- Etain	1273	Tétrachlorophénol-2,3,4,5
1591	Chloroaniline-4	1497	Ethylbenzène	1274	Tétrachlorophénol-2,3,4,6
1467	Chlorobenzène	1187	Fénitrothion	1275	Tétrachlorophénol-2,3,5,6
1612	Chlorodinitrobenzène-1,2,4	1967	Fénoxycarbe	1276	Tétrachlorure de C
1135	Chloroforme (Trichlorométhane)	1393	Fer	1660	Tétraconazole
1635	Chlorométhylphénol-2,5	2022	Fludioxonil	2555	Thallium
1636	Chloromethylphenol-4,3	1191	Fluoranthène	1373	Titane
1594	Chloronitroaniline-4,2	1623	Fluorène	1278	Toluène
1469	Chloronitrobenzène-1,2	2547	Fluroxypyr-meptyl	2879	Tributyletain cation
1469	Chloronitrobenzène-1,2	1194	Flusilazole	1847	Tributylphosphate
1470	Chloronitrobenzène-1,3	1200	HCH alpha	1288	Trichlopyr
1470	Chlorophénol-2	1200	HCH beta	1284	Trichloréthane-1,1,1
1651	Chlorophénol-3	1201	HCH delta	1285	Trichlorethane-1,1,1
	Chlorophénol-4	2046			* *
1650 2611			HCH gamma	1286 2734	Trichloreaniline-2 3.4
	Chloropropine	1203	HCH gamma	7017	Trichloroaniline-2,3,4
2065	Chlorotoluène 3	1197	Heptachlore		Trichloroaniline-2,3,5
1602	Chlorotoluène-2	1748	Heptachlore époxyde cis	2732	Trichloroaniline-2,4,5
1601	Chlorotoluène-3	1749	Heptachlore époxyde trans	1595	Trichloroaniline-2,4,6
1600	Chlorotoluène-4	1199	Hexachlorobenzène	1630	Trichlorobenzène-1,2,3
1474	Chlorprophame	1652	Hexachlorobutadiène	1283	Trichlorobenzène-1,2,4
1083	Chlorpyriphos éthyl	1656	Hexachloroéthane	1629	Trichlorobenzène-1,3,5
1540	Chlorpyriphos méthyl	1405	Hexaconazole	1195	Trichlorofluorométhane
1389	Chrome	1204	Indéno (123c) Pyrène	1644	Trichlorophénol-2,3,4
1476	Chrysène	1206	Iprodione	1643	Trichlorophénol-2,3,5
2017	Clomazone	1935	Irgarol	1642	Trichlorophénol-2,3,6
1379	Cobalt	1207	Isodrine	1548	Trichlorophénol-2,4,5
1639	Crésol-méta	1633	Isopropylbenzène	1549	Trichlorophénol-2,4,6
1640	Crésol-ortho	1950	Kresoxim méthyl	1723	Trichlorophénol-3,4,5
1638	Crésol-para	1094	Lambda Cyhalothrine	1196	Trichlorotrifluoroéthane-1,1,2
1392	Cuivre	1209	Linuron	2885	Tricyclohexyletain cation
1140	Cyperméthrine	1394	Manganèse	1289	Trifluraline
1680	Cyproconazole	1387	Mercure	2736	Trinitrotoluène
1359	Cyprodinil	1619	Méthyl-2-Fluoranthène	2886	Trioctyletain cation
1143	DDD-o,p'	1618	Méthyl-2-Pidorantherie Méthyl-2-Naphtalène	6372	Triphenyletain cation
1143	DDD-0,p DDD-p,p'	1395	Molybdène	1361	Uranium
					Vanadium
1145	DDE-o,p'	2542	Monobutyletain cation	1384	
1146	DDE-p,p'	7496 7407	Monockyletain cation	1293	Xylène-meta
1147	DDT-o,p'	7497	Monophenyletain cation	1292	Xylène-ortho
1148	DDT-p,p'	1517	Naphtalène	1294	Xylène-para
6616	DEHP Determination	1519	Napropamide	1383	Zinc
1149	Deltaméthrine	1386	Nickel		

4.3. ANNEXE 3: COMPTE-RENDUS DES CAMPAGNES DE PRELEVEMENTS (PHYSICOCHIMIE ET PHYTOPLANCTON)

Plan d'eau :	Quinson	Date :	25/03/2014
Nom station :	Point de plus grande profondeur	Code station :	X2615003
Organisme / opérateur :	Aquascop / A.Robé - A.Corbarieu	Réf. dossier :	8049b

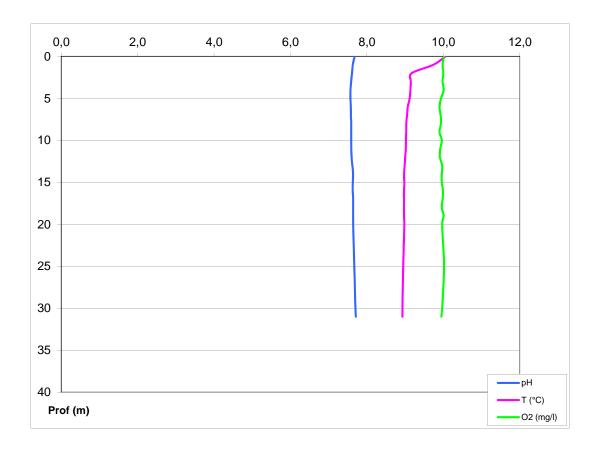
LOCALISATION PLAN D'EAU			
Commune :	Saint-Laurent-du-Verdon		
Plan d'eau marnant :	oui	Superficie du bassin versant :	km²
HER:	6 - Méditerranéen	Superficie du plan d'eau :	1,67 km²
Profondeur maximale :	33 m	Profondeur moyenne :	m
Carte : (extrait IGN 1/25 000 éme)	93 Planches . Plan Pritainer	Fort to Pictor St. District St. District	Maries 21 Militar Salt Medium 1935 Medium Grande Medium

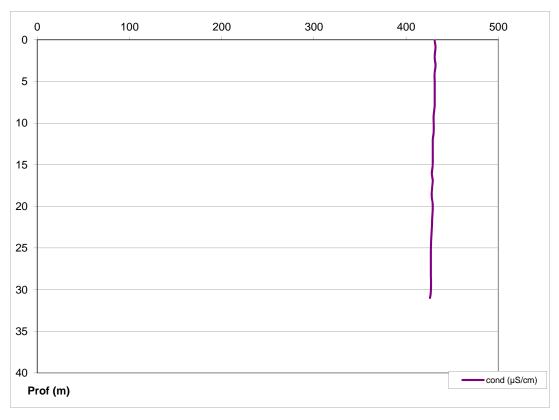
LOCALISATION STATION						
Coordonnées du point :	relevées sur :	·: GPS				
L 1 402	()	X	Y	Altitude		
Lambert 93 (système français):	(en m) 946435	946435	6293848	405		
WGS 84 (système international):	données GPS (en dms)	N		Altitude (m)		
WGS 84 (systeme international) .	donnees GPS (en ams)	03°03'26,0"	043°42'02,5"	405		
Profondeur :	32	m				

Photos du site (indiquer l'angle de prise de vue sur la carte)

Remarques et observations : Décalage du point de mesure de 9 m

Eau limpide et caractéristique du Verdon (bleu - vert)


Relevé phytoplanctonique en plan d'eau DONNEES GENERALES CAMPAGNE


Plan d'eau :	Quinson		Date :	25/03/2014		
Station ou n° d'échantillon :			Code lac :	X2615003		
Organisme / opérateur :	AQUASCOP / A.Robé - A.Corbarieu		Réf. dossier :	8049b		
STATION						
Coordonnées de la station	relevées sur :	✓ GPS	arte IGN			
Lambert 93 (système français)	(an m)	X	Y	Altitude 405,0		
Lambert 93 (systeme français)	(en m)	946435	6293848	(m):		
WCC 94 () · () · ()	données GPS (en dms)	N	E	Altitude 405,0		
WGS 84 (système international)	données GPS (en ams)	06°03'26,0"	043°42'02,5"	(m):		
Profondeur :		32	m			
	Instensité du vent :	nul	✓ faible	fort		
	météo :	temps sec ensoleillé temps humide pluie	temps sec faiblement nuageux	temps sec fortement nuageux		
Conditions d'observation :						
	Surface de l'eau :	lisse	✓ faiblement agitée	très agitée		
	Hauteur des vagues:			m		
	Bloom algal :	oui	✓ non niveau des eaux par rapport à			
Marnage:	✓ oui	non	la végétation de ceinture (plans d'eau marnant) :	1 m		
Photos	zone de prélèvement	(zmax) avec barrage 🗸 au	tre angle de prise de vue	générale depuis point haut (facultatif)		
PRELEVEMENTS						
Heure début de relevé / prélèvement :	13h15	5 / 13h15	Heure de fin de relevé/prélèvement :	13h40 / 14h40		
		u brute) / lugolé		13h40 / 14h40 bouteille intégratrice bouteille Niskin Tuyau		
	✓ phytoplancton (ea	u brute)	relevé/prélèvement :	□ bouteille intégratrice✓ bouteille Niskin		
relevé / prélèvement :	✓ phytoplancton (ea ✓ phytoplancton (file ✓ chlorophylle ☐ sédiment	u brute)	relevé/prélèvement : Matériel employé : Volume filtré pour la	bouteille intégratrice✓ bouteille Niskin✓ Tuyau		
relevé / prélèvement : Prélèvements réalisés :	✓ phytoplancton (ea ✓ phytoplancton (file ✓ chlorophylle ☐ sédiment	u brute)	relevé/prélèvement : Matériel employé : Volume filtré pour la chlorophylle (ml) : Volume de Lugol ajouté pour le	bouteille intégratrice bouteille Niskin Tuyau 1000		
relevé / prélèvement : Prélèvements réalisés :		u brute)	relevé/prélèvement : Matériel employé : Volume filtré pour la chlorophylle (ml) : Volume de Lugol ajouté pour le phytoplancton (ml) :	bouteille intégratrice bouteille Niskin Tuyau 1000		
relevé / prélèvement : Prélèvements réalisés :	phytoplancton (ea phytoplancton (file phytoplancton (file chlorophylle sédiment macrophytes Hauteur des vagues: 0,0 Pour utilisation bouteille nombre de bouteilles éch	u brute)	relevé/prélèvement : Matériel employé : Volume filtré pour la chlorophylle (ml) : Volume de Lugol ajouté pour le phytoplancton (ml) :	bouteille intégratrice bouteille Niskin Tuyau 1000		
relevé / prélèvement : Prélèvements réalisés :	phytoplancton (ea phytoplancton (file phytoplancton (file chlorophylle sédiment macrophytes Hauteur des vagues: 0,0 Pour utilisation bouteille nombre de bouteilles éch	u brute)	relevé/prélèvement : Matériel employé : Volume filtré pour la chlorophylle (ml) : Volume de Lugol ajouté pour le phytoplancton (ml) :	bouteille intégratrice bouteille Niskin Tuyau 1000 5		
relevé / prélèvement : Prélèvements réalisés :	phytoplancton (ea phytoplancton (file chlorophylle sédiment macrophytes Hauteur des vagues : 0,0 Pour utilisation bouteille nombre de bouteilles éch Profondeurs échantillom	u brute)	relevé/prélèvement : Matériel employé : Volume filtré pour la chlorophylle (ml) : Volume de Lugol ajouté pour le phytoplancton (ml) : ue	bouteille intégratrice bouteille Niskin Tuyau 1000 5 e (m): 4,4 rmédiaire (m):		
relevé / prélèvement : Prélèvements réalisés : Remarques	phytoplancton (ea phytoplancton (file chlorophylle sédiment macrophytes Hauteur des vagues: 0,0 Pour utilisation bouteille nombre de bouteilles éch Profondeurs échantillom Profondeur prélèvemen Dépôt transporteur (TN	u brute)	relevé/prélèvement : Matériel employé : Volume filtré pour la chlorophylle (ml) : Volume de Lugol ajouté pour le phytoplancton (ml) : ue Profondeur prélèvement interesses	bouteille intégratrice bouteille Niskin Tuyau 1000 5 e (m): 4,4 rmédiaire (m):		
relevé / prélèvement : Prélèvements réalisés : Remarques et observations :	phytoplancton (ea phytoplancton (file phytoplancton (file chlorophylle sédiment macrophytes Hauteur des vagues : 0,0 Pour utilisation bouteille nombre de bouteilles éch Profondeurs échantillom Profondeur prélèvement Dépôt transporteur (TN Autres remarques (condi	u brute)	relevé/prélèvement : Matériel employé : Volume filtré pour la chlorophylle (ml) : Volume de Lugol ajouté pour le phytoplancton (ml) : ue Profondeur prélèvement inter Date : 25/03/20 pect de l'eau, cote plan d'eau)	bouteille intégratrice bouteille Niskin Tuyau 1000 5 e (m): 4,4 rmédiaire (m):		
relevé / prélèvement : Prélèvements réalisés : Remarques et observations :	phytoplancton (ea phytoplancton (file phytoplancton (file chlorophylle sédiment macrophytes Hauteur des vagues : 0,0 Pour utilisation bouteille nombre de bouteilles éch Profondeurs échantillom Profondeur prélèvement Dépôt transporteur (TN Autres remarques (condi	u brute)	relevé/prélèvement : Matériel employé : Volume filtré pour la chlorophylle (ml) : Volume de Lugol ajouté pour le phytoplancton (ml) : ue Profondeur prélèvement inter Date : 25/03/20 pect de l'eau, cote plan d'eau)	bouteille intégratrice bouteille Niskin Tuyau 1000 5 e (m): 4,4 rmédiaire (m):		
Remarques et observations:	phytoplancton (ea phytoplancton (file phytoplancton (file chlorophylle sédiment macrophytes Hauteur des vagues : 0,0 Pour utilisation bouteille nombre de bouteilles éch Profondeurs échantillom Profondeur prélèvement Dépôt transporteur (TN Autres remarques (condi	u brute)	relevé/prélèvement : Matériel employé : Volume filtré pour la chlorophylle (ml) : Volume de Lugol ajouté pour le phytoplancton (ml) : ue Profondeur prélèvement inter Date : 25/03/20 pect de l'eau, cote plan d'eau)	bouteille intégratrice bouteille Niskin Tuyau 1000 5 e (m): 4,4 rmédiaire (m):		

DONNEES PHYSICO-CHIMIQUES

Plan d'eau :	Quinson	Date :	25/03/2014
Station ou n° d'échantillon :		Code lac :	X2615003
Organisme / opérateur :	AQUASCOP / A.Robe - A.Corbarieu	Réf dossier	8049b

TRANSPARENCE							
Secchi en m:		7,1		Zone euphotique (2,5 x Secchi) en m :		17,75	
		<u> </u>		(2,5 x	Secchi) en m :		
PROFIL VERTICAL							
Moyen utilisé :	✓ mesures in-situ à	chaque profond	deur		nesures en surfac		
Echantillon phytoplancton ?	Prof (m)	Temp (°C)	pН	Conductivité à	O_2	O_2	Heure
	T. (1 T. 0)			25°C (μS.cm ⁻¹)	(%)	(mg/l)	
✓	Intégré de 0 à						
	17,75 0	10.1	7.7	431	93	10.0	13:21
		10,1	7,7	431	93	10,0	
	2	9,7	7,6			10,0	13:22
	3	9,2	7,6	431	91	10,0	13:22
		9,2	7,6	432	91	10,0	13:23
	5	9,1	7,6	431	91	10,0	13:24
		9,1	7,6	431	91	9,9	13:25
	7	9,1	7,6	431	90	9,9	13:26
	8	9,1	7,6	431	90	9,9	13:27
	9	9,0	7,6	431	90	9,9	13:28
	10	9,0 9,0	7,6 7,6	430	90 90	9,9	13:29 13:29
	11	9,0	7,6	430	90	9,9	13:30
	12	9,0	7,6	430	90	9,9	13:31
	13	9,0	7,6	429	90	10,0	13:31
	14	9,0	7,6	429	90	10,0	13:34
	15	9,0	7,6	429	90	10,0	13:35
	16	9,0	7,6	428	91	10,0	13:35
	17	9,0	7,6	429	91	10,0	13:36
	18	9,0	7,6	428	90	10,0	13:36
	19	9,0	7,6	428	91	10,0	13:37
	20	9,0	7,6	429	90	10,0	13:38
	25	9,0	7,7	427	91	10,0	13:39
	30	8,9	7,7	427	90	10,0	13:40
	31	8,9	7,7	426	90	10,0	13:41
	31	0,5	-,,,	120	70	10,0	10.11
П							

Plan d'eau :	Quinson	Date :	22/05/2014
Nom station :	Point de plus grande profondeur	Code station :	X2615003
Organisme / opérateur :	Aquascop / A.Robé - A.Corbarieu	Réf. dossier :	8049b

Commune :	Saint-Laurent-du-Verdon		
Plan d'eau marnant :	oui	Superficie du bassin versant :	km²
HER:	6 - Méditerranéen	Superficie du plan d'eau :	1,67 km²
Profondeur maximale :	33 m	Profondeur moyenne:	m
Carte : (extrait IGN 1/25 000 éme)	16)	Font to Pierre Ross 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	ries Planets Cre. Ste Trinne Crep. 10 grant

LOCALISATION STATION					
Coordonnées du point :	relevées sur :	GPS			
T 1 (02)	()	X		Altitude	
Lambert 93 (système français):	(en m)	946435	6293848	405	
WGS 84 (système international):	données GPS (en dms)	N	E	Altitude (m)	
WG3 84 (systeme international) .	donnees GPS (en ams)	06°03'26,0"	06°03'26,0" 43°42'02,6"		
Profondeur :	32	m			
		<u>-</u>			

Photos du site (indiquer l'angle de prise de vue sur la carte)

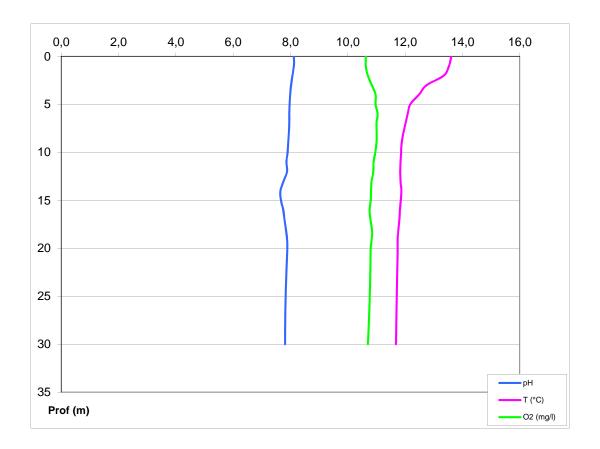
Remarques et observations

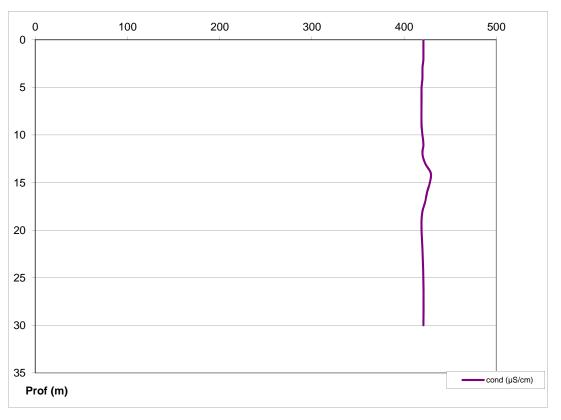
Décalage du point de mesure de 9 m

Eau très limpide

Ancrage identique à celui de la première campagne

Relevé phytoplanctonique en plan d'eau DONNEES GENERALES CAMPAGNE


Plan d'eau :	Quinson	Date :	22/05/2014
Station ou n° d'échantillon :	Point de plus grande profondeur	Code lac :	X2615003
Organisme / opérateur :	AQUASCOP / A.Robé - A.Corbarieu	Réf. dossier :	8049b


Organisme / operateur .	iiqeiiseoi / iiiitose	11.COI BUILLEU	Kei. dossiei .		00470
STATION					
Coordonnées de la station	relevées sur :	✓ GPS	arte IGN		
	TOTO YOUR BUT .	X	Y	Altitude	
Lambert 93 (système français)	(en m)	946435	6293848	(m):	405,0
WIGGOA	1 (CDG (I)	N	Е	Altitude	407.0
WGS 84 (système international)	données GPS (en dms) 43°42'02,6"		06°03'26,0"	(m) :	405,0
Profondeur :		31,5	m		
	Instensité du vent :	nul	☐ faible ✓ moyen	[fort
Conditions d'observation :	météo : temps sec ensoleillé temps humide plu		temps sec faiblement nuageux e fine orage - pluie forte	temps neige ge	sec fortement nuageux
	Surface de l'eau :	☐ lisse [✓ faiblement agitée ☐ agitée		très agitée
	Hauteur des vagues:		0,05		m
	Bloom algal:	oui	✓ non		
Marnage :	✓ oui	non	niveau des eaux par rapport à la végétation de ceinture (plans d'eau marnant) :	1,5	m
Photos	Photos zone de prélèvement (zmax) avec barrage autre angle de prise de vue vue générale depuis point haut (facultatif)				
PRELEVEMENTS					
Heure début de relevé / prélèvement :	13h10	/ 13h10	Heure de fin de relevé/prélèvement :	13	h40 / 14h30
	✓ phytoplancton (eau brute) ✓ lugolé ✓ phytoplancton (filet) ✓ lugolé ✓ chlorophylle ✓ eau		Matériel employé :		teille intégratrice teille Niskin au
Prélèvements réalisés :	sédiment macrophytes	oligochètes autres, préciser :	Volume filtré pour la chlorophylle (ml) :		1000
			Volume de Lugol ajouté pour le phytoplancton (ml) :		5
Remarques et observations :	nombre de bouteilles éch Profondeurs échantillom Profondeur prélèvemen Dépôt transporteur (TN Autres remarques (condi Eau très limpide Ancrage identiqueà celui	nées : 0 - 4,5 - 9 - 13,5 - 18 - t de fond (m) : 31 VT) - lieu : Sisteron itions météo antérieures, asp i de la première campagne ne euphotique de 13h à 13h4	22,5 interval Profondeur prélèvement inter Date : 22/05/20 pect de l'eau, cote plan d'eau)): e: 17h00

DONNEES PHYSICO-CHIMIQUES

Plan d'eau :	Quinson	Date :	22/05/2014
Station ou n° d'échantillon :	Point de plus grande profondeur	Code lac :	X2615003
Organisme / opérateur :	AQUASCOP / A.Robe - A.Corbarieu	Réf dossier	8049b

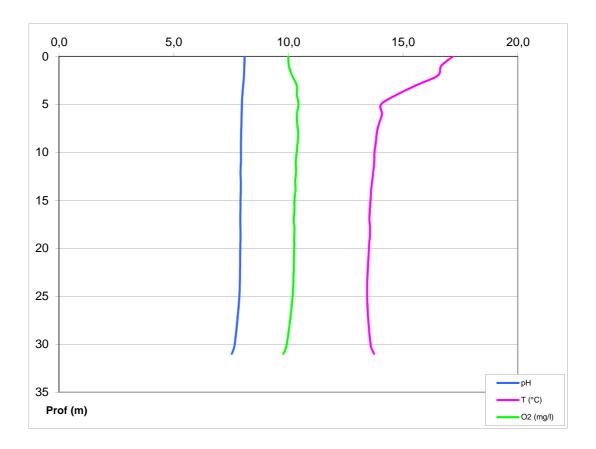
TRANSPARENCE							
Secchi en m:		9,1		Zone euphotique (2,5 x Secchi) en m :			22,75
PROFIL VERTICAL							
Moyen utilisé :	✓ mesures in-situ à	chaque profond	deur	mesures en surface dans un			
Echantillon phytoplancton ?	Prof (m)	Temp (°C)	pН	Conductivité à 25°C (µS.cm ⁻¹)	O ₂ (%)	O ₂ (mg/l)	Heure
7	Intégré de 0 à				. ,	· · · · ·	13:30
	22,75 0	13,6	8,1	421	107	10,6	13:13
	1	13,5	8,1	421	107	10,6	13:15
	2	13,4	8,1	421	107	10,7	13:18
	3	12,8	8,0	420	107	10,8	13:20
	4	12,5	8,0	420	107	11,0	13:21
	5	12,2	8,0	419	107	11,0	13:22
	6	12,1	8,0	419	107	11,0	13:23
	7	12,0	8,0	419	107	11,0	13:24
	8	11,9	7,9	419	106	11,0	13:25
	9	11,9	7,9	419	106	11,0	13:26
	10	11,9	7,9	420	106	11,0	13:27
	11	11,8	7,9	421	105	10,9	13:28
	12	11,8	7,9	420	105	10,9	13:30
	13	11,8	7,8	423	105	10,8	13:31
	14	11,9	7,7	429	104	10,8	13:32
	15	11,9	7,7	428	104	10,8	13:33
	16	11,8	7,8	425	104	10,8	13:34
	17	11,8	7,8	423	104	10,8	13:35
	18	11,8	7,8	420	104	10,8	13:36
	19	11,7	7,9	419	104	10,8	13:37
	20	11,7	7,9	419	104	10,8	13:39
	25	11,7	7,8	421	104	10,8	13:41
	30	11,7	7,8	421	103	10,7	13:43
		·	•			·	

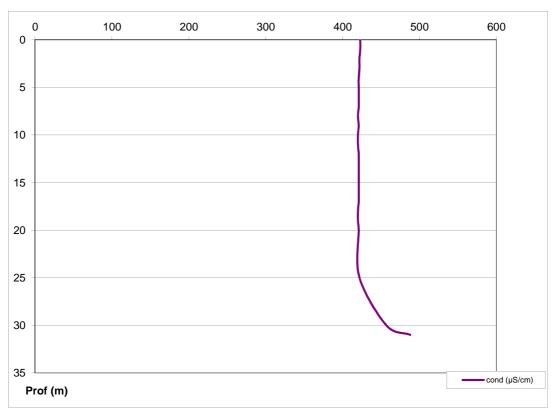
Plan d'eau :	Quinson	Date :	23/07/2014
Nom station :	Point de plus grande profondeur	Code station :	X2615003
Organisme / opérateur :	Aquascop / A.Robé - K.Teron	Réf. dossier :	8049b

LOCALISATION PLAN D'EAU			
Commune :	Saint-Laurent-du-Verdon		
Plan d'eau marnant :	oui	Superficie du bassin versant :	km²
HER:	6 - Méditerranéen	Superficie du plan d'eau :	1,67 km²
Profondeur maximale :	33 m	Profondeur moyenne:	m
Carte : (extrait IGN 1/25 000 éme)	Ented of All Notre-Dame	St. Christophy (top) Entere Hoss C Acashin (1984)	Artignosc our Verdon

LOCALISATION STATION				
Coordonnées du point :	relevées sur :		GPS	
		X	Y	Altitude
Lambert 93 (système français):	(en m)	946442	6293850	405
WGS 84 (système international):	données GPS (en dms)	N	Е	Altitude (m)
Profondeur :		43°42'02,7"	6°03'26,3"	405
110tonucui .	33	III	- Anna	
Photos du site : (indiquer l'angle de prise de vue sur la carte) Remarques et observations :				
Kemai ques et obsei vations .				

DONNEES GENERALES CAMPAGNE


Plan d'eau :	Quinson	Date :	23/07/2014
Station ou n° d'échantillon :	Point de plus grande profondeur	Code lac :	X2615003
Organisme / opérateur :	AQUASCOP / A.Robe - K.Teron	Réf. dossier :	8049b


relevées sur :	✓ GPS	carte IGN		
	X	Y	Altitude	
(en m)	946442	6293850	(m): 405,0	
1 (CDG (I)	N	Е	Altitude	
données GPS (en ams)	43°42'02,7''	6°03'26,3" (m):		
	32,8 m			
Instensité du vent :	nul	✓ faible moyen	fort	
météo :	temps sec ensoleillé temps humide pluie	temps sec faiblement nuageux e fine orage - pluie forte i	temps sec fortement nuageux neige gel crépuscule	
Surface de l'eau :	lisse [✓ faiblement agitée ☐ agitée	☐ très agitée	
Hauteur des vagues:			m	
Bloom algal:	oui	✓ non		
oui	niveau des eaux par rapport à □ oui □ oui □ non □ la végétation de ceinture (plans d'eau marnant):			
Photos zone de prélèvement (zmax) avec barrage autre angle de prise de vue vue générale depuis point haut (facultatif)				
PRELEVEMENTS				
10h25	5 / 10h20	Heure de fin de relevé/prélèvement :	11h05	
	et)	Matériel employé :	bouteille intégratrice bouteille Niskin Tuyau	
sédiment macrophytes	oligochètes autres, préciser :	Volume filtré pour la chlorophylle (ml) :		
		Volume de Lugol ajouté pour le phytoplancton (ml) :	5	
Hauteur des vagues : 0 m Pour utilisation bouteille Niskin pour zone euphotique et pour analyses des micropolluants nombre de bouteilles échantillonnées : 6 Profondeurs échantillonnées : 0 - 6 - 12 - 18 - 24 - 30 intervalle (m) : 6 Prélèvement avec le tuyau intégrateur pour analyses de la physico-chimie classique, du phytoplancton et de la chlorophylle a dans la zone euphotique Profondeur prélèvement de fond (m) : 31 Profondeur prélèvement intermédiaire (m) : Dépôt transporteur (TNT) - lieu : Marignane Date : 23/07/2014 Heure : 16h30 Autres remarques (conditions météo antérieures, aspect de l'eau, cote plan d'eau) Zone euphotique : 10h20 - 11h10 Fond : 11h15 - 12h00				
	Instensité du vent : Météo : Surface de l'eau : Hauteur des vagues: Bloom algal : oui Johe zone de prélèvement phytoplancton (file chlorophylle sédiment macrophytes Hauteur des vagues : 0 m Pour utilisation bouteille nombre de bouteilles éch Profondeurs échantillom Prélèvement avec le tuya chlorophylle a dans la zo Profondeur prélèvement Dépôt transporteur (The Autres remarques (conditation de la conditation d	A A A A A A A A A A	Surface de l'eau double l'escent (zmax) avec barrage double de prélèvement (zmax) avec barrage double de prélèvement (filet) double de phytoplancton (filet) double	

DONNEES PHYSICO-CHIMIQUES

Plan d'eau :	Quinson	Date :	23/07/2014
Station ou n° d'échantillon :	Point de plus grande profondeur	Code lac :	X2615003
Organisme / opérateur :	AQUASCOP / A.Robe - K.Teron	Réf dossier	8049b

TRANSPARENCE							
Secchi en m :		12			ne euphotique Secchi) en m :		30
PROFIL VERTICAL							
Moyen utilisé :	✓ mesures in-situ à	mesures in-situ à chaque profondeur		mesures en surface dans un			
Echantillon phytoplancton ?	Prof (m)	Temp (°C)	pН	Conductivité à 25°C (µS.cm ⁻¹)	O ₂ (%)	O ₂ (mg/l)	Heure
	Intégré de 0 à				(70)	(======================================	
V	30						
	0	17,2	8,1	423	109	10,0	10:26
	1	16,7	8,1	423	109	10,0	10:29
	2	16,5	8,1	422	110	10,2	10:32
	3	15,6	8,0	422	110	10,4	10:33
	4	14,7	8,0	421	108	10,4	10:34
	5	14,0	8,0	421	107	10,4	10:35
	6	14,1	8,0	421	106	10,4	10:37
	7	14,0	8,0	421	106	10,4	10:40
	8	13,9	7,9	420	106	10,4	10:41
	9	13,8	7,9	421	106	10,4	10:42
	10	13,8	7,9	420	106	10,4	10:43
	11	13,7	7,9	420	105	10,3	10:44
	12	13,7	7,9	421	105	10,3	10:45
	13	13,7	7,9	421	105	10,3	10:47
	14	13,6	7,9	421	105	10,3	10:48
	15	13,6	7,9	421	104	10,3	10:48
	16	13,6	7,9	421	104	10,3	10:49
	17	13,5	7,9	421	104	10,2	10:51
	18	13,6	7,9	420	104	10,3	10:52
	19	13,5	7,9	420	104	10,3	10:53
	20	13,5	7,9	421	104	10,3	10:54
	25	13,4	7,9	422	103	10,2	10:56
	30	13,6	7,7	457	101	9,9	10:58
	31	13,7	7,5	488	100	9,8	11:00
		,	<u> </u>				

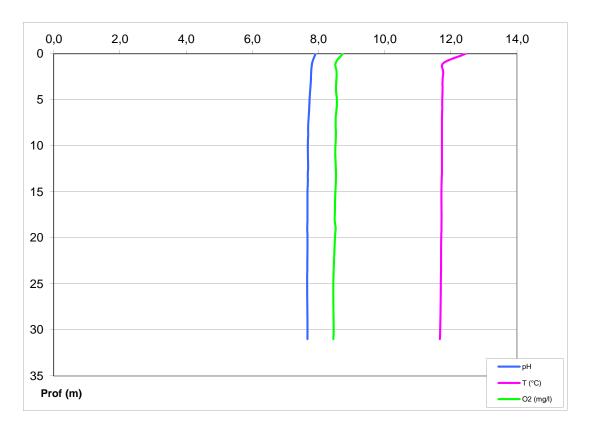
Plan d'eau :	Quinson	Date :	16/09/2014
Nom station :	Point de plus grande profondeur	Code station :	X2615003
Organisme / opérateur :	Aquascop / A.Marquis - K.Teron	Réf. dossier :	8049b

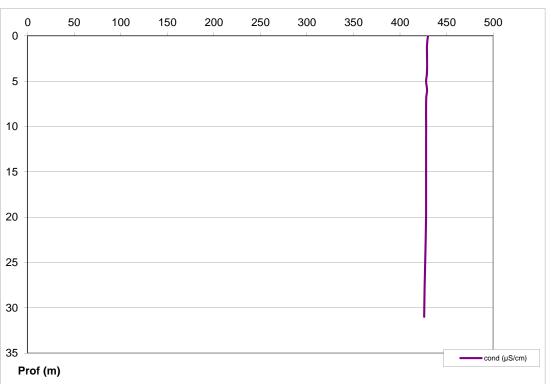
Commune :	Saint-Laurent-du-Verdon		
Plan d'eau marnant :	oui	Superficie du bassin versant :	km²
HER:	6 - Méditerranéen	Superficie du plan d'eau :	1,67 km²
Profondeur maximale :	33 m	Profondeur moyenne :	m
Carte : (extrait IGN 1/25 000 éme)	Plan Pillsser 380 Ang S 471 Serve I An Notre-Dame Lennu on An Notre-Dame 114 Serve I An Notre-Dame 115 Serve de Pont 116 Serve de Pont 117 Serve de Pont 118 Serve de Quinson Coucoulânes	➤ Mise à l'eau ★ Point de plus grande pro Angle de prise de vue pl	les Planets Com. Ste-Trinne Crap, Tea

Coordonnées du point :	relevées sur :		GPS	
Lambart 02 () S is is	()	X	Y	Altitude
Lambert 93 (système français):	(en m)	946441,98	6293850,243	405
WGS 84 (système international):	données GPS (en dms)	N	Е	Altitude (m)
		43°42'2,6''	006°3'26,3''	405
Profondeur :	32	m		
Photos du site: (indiquer l'angle de prise de vue sur la carte) Remarques et observations:				

STATION

DONNEES GENERALES CAMPAGNE


Plan d'eau :	Quinson	Date :	16/09/2014
Station ou n° d'échantillon :	Point de plus grande profondeur	Code lac :	X2615003
Organisme / opérateur :	Aquascop / A.Marquis - K.Teron	Réf. dossier :	8049b


relevées sur :	☑ GPS	☐ carte IGN				
	X	Y	Altitude	40.7.0		
(en m)	946441,98	6293850,243	(m):	405,0		
	N	Е	Altitudo			
données GPS (en dms)	43°42'2,6''	006°3'26,3''	(m):	405,0		
	32	m				
In don't de			Г	fort		
Instensité du vent :		<u> </u>				
météo :	☐ temps sec ensoleillé ☐ temps humide ☐ pluie	✓ temps sec faiblement nuageux fine ☐ orage - pluie forte ☐ n	-	ec fortement nuageux		
Surface de l'eau :	✓ lisse [☐ faiblement agitée ☐ agitée		très agitée		
Hauteur des vagues:				m		
Bloom algal:	oui	✓ non				
✓ oui	non	niveau des eaux par rapport à la végétation de ceinture (plans d'eau marnant) :	1,5	m		
zone de prélèvement	(zmax) avec barrage	re angle de prise de vue	énérale depuis	point haut (facultatif)		
PRELEVEMENTS						
		77 7 64 7				
12h10	/ 12h15	Heure de fin de relevé/prélèvement :	121	h50 / 13h30		
✓ phytoplancton (eau)	u brute) 🗾 lugolé		☐ boute	eille intégratrice		
✓ phytoplancton (file)	t) Jugolé	Matériel employé :	✓ boute	eille Niskin		
chlorophylle	✓ eau		✓ Tuya	u		
✓ sédiment ☐ macrophytes	oligochètes autres, préciser :	Volume filtré pour la chlorophylle (ml) :		1000		
		Volume de Lugol ajouté pour le phytoplancton (ml) :		5		
nombre de bouteilles éch Profondeurs échantilloni Prélèvement avec le tuya chlorophylle a dans la zo Profondeur prélèvement Dépôt transporteur (TN Autres remarques (condi	antillonnées : 6 nées : 0 - 6 - 12 - 18 - 24 - 30 u intégrateur pour analyses ne euphotique t de fond (m) : 31 WT) - lieu : Sisteron Itions météo antérieures, as	intervalle (n s de la physico-chimie classique, d Profondeur prélèvement inter Date : 16/09/2014 Heure : 16h	n) : 6 u phytoplanc médiaire (m)			
	Instensité du vent : Météo : Surface de l'eau : Hauteur des vagues: Bloom algal : Joui Jou	N	X	Altitude (en m) 946441,98 6293850,243 Altitude (m):		

DONNEES PHYSICO-CHIMIQUES

Plan d'eau :	Quinson	Date :	16/09/2014
Station ou n° d'échantillon :	Point de plus grande profondeur	Code lac :	X2615003
Organisme / opérateur :	AQUASCOP / A. Marquis K.Teron	Réf dossier	8049b

TRANSPARENCE							
Secchi en m :		11,9			ne euphotique		29,7
PROFIL VERTICAL				(2,5 X	Secchi) en m :		
Moyen utilisé :	✓ mesures in-situ à	chaque profond	eur	mesures en surface dans un			
Echantillon phytoplancton ?	Prof (m)	Temp (°C)	pН	Conductivité à 25°C (μS.cm ⁻¹)	O ₂ (%)	O ₂ (mg/l)	Heure
V	Intégré de 0 à 29,7	-			(70)	(mg/i)	
	0	12,5	7,9	430	86	8,7	12:10
	1	11,8	7,8	429	82	8,5	12:12
	2	11,8	7,8	429	83	8,6	12:13
	3	11,8	7,8	429	82	8,5	12:15
	4	11,8	7,8	429	82	8,5	12:17
	5	11,7	7,7	428	83	8,6	12:19
	6	11,7	7,7	429	83	8,6	12:21
	7	11,7	7,7	428	82	8,5	12:23
	8	11,7	7,7	428	82	8,5	12:25
	9	11,7	7,7	428	82	8,5	12:27
	10	11,7	7,7	428	82	8,5	12:29
	11	11,7	7,7	428	82	8,5	12:31
	12	11,7	7,7	428	82	8,5	12:33
	13	11,7	7,7	428	82	8,5	12:35
	14	11,7	7,7	428	82	8,5	12:37
	15	11,7	7,7	428	82	8,5	12:39
	16	11,7	7,7	428	82	8,5	12:41
	17	11,7	7,7	428	82	8,5	12:43
	18	11,7	7,7	428	82	8,5	12:45
	19	11,7	7,7	428	82	8,5	12:46
	20	11,7	7,7	428	82	8,5	12:47
	25	11,7	7,7	427	82	8,5	12:48
	30	11,7	7,7	426	82	8,5	12:49
	31	11,7	7,7	426	81	8,5	12:50
	<u> </u>	,-	. ,,			-,-	
<u> </u>		l .		ı			

Prélèvement de sédiment en plan d'eau DONNEES GENERALES CAMPAGNE

Plan d'eau : Quinson	Date :	16/09/2014
Station ou n° d'échantillon : Point de plus grande profondeur	Code lac :	X2615003
Organisme / opérateur : Aquascop / A.Marquis - K.Teron	Réf. dossier :	8049b

LOCALISATION DE LA Z	ZONE DE PRELEVI	EMENT			
Coordonnées de la station	relevées sur		GPS		
Lombout 02 (contract)	(on m)	X	Y	Altitude (m):	405,0
Lambert 93 (système français)	(en m)	946441,98	6293850,243	Ailliude (III).	405,0
WGS 84 (système international)	données GPS (en dms)	N	Е	Altitude (m):	405,0
WGS 64 (systeme international)		43°42'2,6"	006°3'26,3''	Ailliude (III) .	405,0
Profondeur (m):					

CONDITION DU MILIEU		
	Instensité du vent	faible
	météo	Temps sec nuageux
Conditions d'observation :	Surface de l'eau	lisse
	Hauteur des vagues	
	Bloom algal	non
Marnage :	oui	niveau des eaux par rapport à la végétation de ceinture (pour les plans d'eau marnant) :
Remarques :		

PRELEVEMENTS	
Heure début de relevé :	14:15
Heure de fin de relevé :	14:30
Prélèvements réalisés :	Sédiments
Matériel employé :	Benne Eckmann
Nombre de prélèvements :	3

prélèvement		1	2	3	4
Profondeur :	en m	32	32	32	
	en cm	5	5	5	
Engisseur áskentillennás .	récents (<2cm)				
Epaisseur échantillonnée :	anciens (>2cm)				
	indéterminé	X	X	X	
Couleur :		grise	grise	grise	
Odeur :		non	non	non	
	graviers				
	sables				
Granulométrie dominante :	limons	X	X	X	
	vases				
	argile				
Aspect du sédiment :	homogène	X	X	X	
Aspect du scument :	hétérogène				
Présence de débris végétaux :	oui	X	X	X	
Treschee de debris vegetada.	non				
Présence d'hydrocarbure :	oui				
resence a nyarocarbare.	non	X	X	X	
Présence de tensio-actif :	oui				
Tresence de tensio-actir.	non	X	X	X	
Dé	pôt des échantillons :				
La	Poste de Riez - 15h30				
T					
Remarques, observations:					

4.4. ANNEXE 4: INVERTEBRES - RAPPORT D'ESSAI

Rapport d'essai n°C215.01

Client payeur:

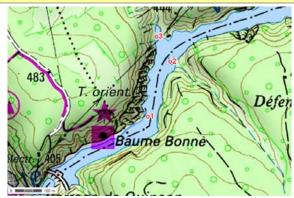
Agence de l'Eau Rhône méditerranée et Corse. 2-4 allée de Lodz, 69363 LYON cedex 07

Client demandeur (mandataire):

Aquascop, Agence de Montpellier. Domaine de Cécéles, 1520 route de Cécéles 34270 St Mathieu de Treviers

Oligochètes en plan d'eau Quinson (QU – X2615003, avril 2014)

Intervenant(s)


J.Wuillot1

L.Faure¹, J.Wuillot¹

L.Faure¹, J.Wuillot¹

▲ Vue de la zone de prélèvements depuis un promontoire en rive droite à l'amont

Emplacement et date échantillons

15:30
uche
37
81

Type de masse d'eau (selon circulaire du 29/01/13)

A3 (retenue de moyenne montagne calcaire profonde)

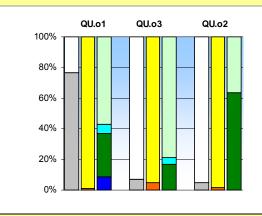
Descriptif des échantillons

12/04/2014

11/11/2014

17/11/2014

Personnel permanent d'Iris consultants


Opérateurs
Phase travail Date fin

Terrain

Bureau

Laboratoire

	QU.o1	QU.o3	QU.o2
Prélèvements			
Profondeur (m)	32	16	16
Type de benne	Ekman	Ponar	Ponar
Nombre de bennes	5	5	5
Surface prospectée (m²)	0,105	0,13	0,13
Sédiments			
Couleur	gris, beige	gris-noir	gris-beige
Odeur	faible	faible	faible
Cohésion	moyen	moyen	faible
Volume (ml) sans sédiments	4221	11911	12172
Volume (ml) avec sédiments	13650	889	628
Volume (ml) < 0,5 mm (fines)	13475	845	617
Volume (ml) > 0,5 mm (débris)	175	45	11
Volume (ml) 0,5 à 5 mm, organique	100	35	4
Volume (ml) 0,5 à 5 mm, minéral	10	2	0
Volume (ml) > 5 mm, organique	50	8	7
Volume (ml) > 5 mm, minéral	15	0	0

Remarques (conditions extérieures particulières, écart au protocole...)

Rien à signaler

Principaux référentiels méthodologiques

Norme NF T90-391 (phase terrain, phase labo et indice IOBL)*, note de Lafont 2007 (Interprétation de l'indice lacustre oligochètes IOBL et son intégration dans un système d'évaluation de l'état écologique. Rapp. CEMAGREF / MEDAD : 18p.), document interne IT08

Rapport d'essai n°C215.01

Client payeur:

Agence de l'Eau Rhône méditerranée et Corse. 2-4 allée de Lodz, 69363 LYON cedex 07

Client demandeur (mandataire):

Aquascop, Agence de Montpellier. Domaine de Cécéles, 1520 route de Cécéles 34270 St Mathieu de Treviers

Liste faunistique (effectifs / 0,1 m²)

Groupe	Taxon	Code Sandre	Identif.	Sensibilité	QU.o1	QU.o3	QU.o2
Lumbriculidae sl	Lumbriculidae	934	a				0,8
	Lumbriculus variegatus	2979	a	P			0,8
Naididae ASC	Aulodrilus japonicus	20747	a		7,8	3,8	6,9
	Aulodrilus pluriseta	19316	a	D		11,3	7,7
	Potamothrix bavaricus	9838	m		2,6		
	Potamothrix bedoti	19319	m				1,5
	Potamothrix heuscheri	9837	m	P		2,5	
	Psammoryctides barbatus	2988	a	S	20,6	6,3	0,8
	Stylaria lacustris	960	a	S			0,8
	Tubificinae avec soies capillaires	5231	a		87,8	85,1	33,1
	Vejdovskyella intermedia	19315	a	S	18,1	7,5	3,1
Naididae SSC	Limnodrilus hoffmeisteri	2991	m	P	2,6		
	Ophidonais serpentina	3006	a	S		1,3	2,3
	Potamothrix moldaviensis	2987	a		98,1		
	Tubificinae sans soies capillaires	29901	a		20,6	5	7,7
	Uncinais uncinata	3002	a	S		2,5	

Nombre d'oligochètes comptés	100	100	85
Fraction observée de l'échantillon	36,9	61,5	100,0

Remarques:

- "Identif." comporte les modalités "a" = taxon identifiable à tous les stades et "m" = taxon identifiable seulement au stade mature (présence des organes de reproduction)
- "Sensibilité" comporte les modalités "S" = espèces sensibles à la pollution organique et toxique, "I" = espèces caractérisant un état intermédiaire, "D" = espèces indicatrices d'une impasse trophique naturelle (dystrophie) quand elles sont dominantes, "P" = espèces indicatrices d'un état de forte pollution quand elles sont dominantes, "H" = espèces indicatrices d'échanges hydriques entre les eaux superficielles et souterraines et "R" = espèces probablement liées à un réchauffement climatique (source : Lafont 2007).

Indicateurs et paramètres								
	o1	о3	ο2	Total		o1	03	02
Indice IOBL (selon Afnor NF T90-391)	13,2	14,3	15,5	14,1	Densité (valeur brute - log)	258 – 7,2	125 – 6,3	65 – 5,5
% Espèces sensibles (selon LAFONT 2007)	15	14	10,7	13,7	Biovol. / surface (valeur brute - log)	3,3 – 6,4	0,5 – 1,7	0,2 – 0,9
Richesse taxon. (nb taxons min possible)	6	8	10	7,0	Biovol. / effectif (valeur brute)	12,9	3,8	3,7

Remarques:

- Total = $\frac{1}{2}$ o1 + $\frac{1}{4}$ o2 + $\frac{1}{4}$ o3
- % Espèces sensibles : somme des effectifs (en %) des taxons sensibles (S)
- Densité exprimée par une valeur brute (effectif pour 0,1 m²) ou par un log selon la formule [3.log₁₀ (valeur brute + 1)]
- Biovolume par unité de surface exprimé par une valeur brute (cm³ d'oligochètes par m²) ou par un log selon la formule
- [10 . \log_{10} (valeur brute +1)]
- Biovolume par unité d'effectifs exprimé en cm³ d'oligochètes par 10000 individus (correspond à la taille moyenne des individus)

Signé électroniquement par Jean Wuillot, Directeur du laboratoire, signataire autorisé

