

Agence de l'Eau Rhône-Méditerranée et Corse

ETUDE DES PLANS D'EAU DU PROGRAMME DE SURVEILLANCE DES BASSINS RHONE-MEDITERRANEE ET CORSE - RAPPORT DE DONNEES BRUTES ET **INTERPRETATION** - RETENUE DE VILLENEUVE-DE-LA-RAHO -SUIVI ANNUEL 2012

Rapport n° 08-283/2013-PE2012-24 – Septembre 2013

Maître d'Ouvrage :	Agence de l'Eau Rhône Méditerranée et Corse (AERMC) Direction des Données et Redevances 2-4, allée de Lodz 69363 Lyon cedex 09				
	Interlocuteur: Mr Imbert Loïc				
	Coordonnées : loic.imbert@eaurmc.fr				

Titre du Rapport	ETUDE DES PLANS D'EAU DU PROGRAMME DE SURVEILLANCE DES				
	BASSINS RHONE-MEDITERRANEE ET CORSE				
Résumé	Le rapport rend compte de l'ensemble des données collectées sur la retenue de Villeneuve-de-la-Raho lors des campagnes de suivi 2012. Une présentation du plan d'eau et du cadre d'intervention est menée puis les résultats des investigations sont développés dans la suite du document.				
Mots-clés	Géographiques : Bassins Rhône-Méditerranée et Corse - Pyrénées-Orientales (66) - Retenue de Villeneuve-de-la-Raho				
	Inematiques : Resea	ux de surveillance - Etat trophique - Pla	n a eau		
Date	Septembre 2013	Statut du rapport	Définitif		
Defend d'en en en	1	D'66	T:		
Présent tirage en exemplaire (s)	1	Diffusion informatique au Maître d'Ouvrage	OU1		

Auteur	Sciences et Techniques de l'Environnement – B.P. 374 17, Allée du Lac d'Aiguebelette - Savoie Technolac 73372 Le Bourget du Lac cedex tél.: 04 79 25 08 06; tcp: 04 79 62 13 22
Rédacteur(s)	Hervé Coppin / Sylvain Meistermann
Chef de projet – contrôle qualité	Eric Bertrand / Audrey Péricat

SOMMAIRE

PREAMBULE	1
1 CADRE DU PROGRAMME DE SUIVI	
1.1 INVESTIGATIONS PHYSICOCHIMIQUES	4
1.2 INVESTIGATIONS HYDROMORPHOLOGIQUES ET HYDROI	BIOLOGIQUES 5
2 Presentation du plan d'eau et localisation	6
3 CONTENU DU SUIVI 2012	7
RESULTATS DES INVESTIGATIONS	9
1 Investigations physicochimiques	
1.1 ANALYSES DES EAUX DU LAC	
1.2 ANALYSES DE SEDIMENTS	19
2 PHYTOPLANCTON	22
2.1 Prelevements integres	
2.2 LISTE FLORISTIQUE (NOMBRE DE CELLULES/ML)	
2.3 ÉVOLUTIONS SAISONNIERES DES GROUPEMENTS PHYTO	PLANCTONIQUES24
INTERPRETATION GLOBALE DES RESULTATS	
ANNEXES	29
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Agence de l'Eau Rhône - Méditerranée & Corse Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Retenue de Villeneuve (66)
<b>PREAMBULE</b>

# CADRE DU PROGRAMME DE SUIVI

Dans le cadre de la mise en œuvre de la Directive Cadre européenne sur l'Eau (DCE), un programme de surveillance doit être établi pour suivre l'état écologique (ou le potentiel écologique) et l'état chimique des eaux douces de surface.

Différents réseaux constituent le programme de surveillance. Parmi ceux-ci, deux réseaux sont actuellement mis en œuvre sur les plans d'eau :

- Le réseau de contrôle de surveillance (RCS) vise à donner une image globale de la qualité des eaux. Tous les plans d'eau naturels supérieurs à 50 ha ont été pris en compte sur les bassins Rhône-Méditerranée et Corse. Pour les plans d'eau d'origine anthropique, une sélection a été opérée parmi les plans d'eau supérieurs à 50 ha, afin de couvrir au mieux les différents types présents (grandes retenues, plans d'eau de digue, plans d'eau de creusement).
- Le contrôle opérationnel (CO) vise à suivre spécifiquement les masses d'eau (naturelles ou anthropiques) supérieures à 50 ha, à risque de non atteinte du bon état (ou du bon potentiel) des eaux en 2015.

Au total, 80 plans d'eau sont suivis sur les bassins Rhône-Méditerranée et Corse dans le cadre de des deux réseaux RCS et CO.

Le contenu du programme de suivi sur les plans d'eau est identique pour le RCS et le CO. Un plan d'eau concerné par le CO sera cependant suivi à une fréquence plus soutenue (tous les 3 ans) comparativement à un plan d'eau strictement visé par le RCS (tous les 6 ans).

Le tableau 1 résume les différents éléments suivis sur une année et les fréquences d'intervention associées. Il s'agit du suivi qualitatif type mis en place sur les plans d'eau concernés par le RCS et le CO. Pour chaque plan d'eau, selon leur typologie et l'historique de leur suivi, ce programme peut faire l'objet d'ajustements concernant l'hydrobiologie et l'hydromorphologie.

Un suivi « allégé » a été mené sur quatorze plans d'eau identifiés en tant que masses d'eaux DCE mais non intégrés aux réseaux RCS et CO. Ce suivi s'inscrit dans le cadre de la préparation du nouvel état des lieux du bassin Rhône-Méditerranée afin de préciser l'état de ces plans d'eau en l'absence de données milieux disponibles. Neuf plans d'eau ont ainsi été suivis en 2011 et cinq en 2012.

Le contenu du programme de suivi de ces plans d'eau est dit « allégé » puisqu'ils ne font pas l'objet de prélèvements d'eau de fond et seule l'étude du peuplement phytoplanctonique est réalisée concernant l'hydrobiologie et l'hydromorphologie. Le contenu du suivi est ainsi restreint aux seuls éléments permettant à ce jour de définir l'état écologique et chimique des plans d'eau selon l'arrêté "Surveillance" du 25 janvier 2010.

Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Retenue de Villeneuve (66)

Tableau 1 : synoptique générique des investigations menées sur une année de suivi d'un plan d'eau

			Paramètres	Type de prélèvements/ Mesures	HIVER	PRINTEMPS	ЕТЕ	AUTOMNE
		Mesures in situ	O2 dis. (mg/l, %sat.), pH, COND (25°C), T°C, transparence secchi	Profils verticaux	Х	Х	х	Х
	2	Physico-chimie classique	DBO5, PO4, Ptot, NH4, NKJ, NO3, NO2, COT, COD, MEST, Turbidité, Si dissoute	Prélèvement intégré et prélèvement ponctuel de fond	Х	Х	Х	х
	Sur EAU	Substances prioritaires, autres substances et pesticides	Micropolluants*	Prélèvement intégré et prélèvement ponctuel de fond	Х	Х	Х	Х
		Pigments chlorophylliens	Chlorophylle a + phéopigments	Prélèvement intégré	х	X	х	Х
		Minéralisation	Ca ²⁺ , Na ⁺ , Mg ²⁺ , K ⁺ , dureté, TA, TAC, SO ₄ ²⁻ , Cl ⁻ , HCO ₃ ⁻	Prélèvement intégré	Х			
<b>~</b>	Eau	interstitielle : Physico-chimie	PO4, Ptot, NH4					
Sur SEDIMENTS	Physico-chimie  Physico-chimie  Substances prioritaires, autres substances et pesticides		Corg., Ptot, NKJ, Granulomètrie, perte au feu	Prélèvement ponctuel au point de plus grande profondeur				Х
nS			Micropolluants*					
HYDROBIOLOGIE et			Phytoplancton	Prélèvement intégré (Cemagref/Utermöhl)	Х	Х	Х	Х
			Oligochètes	IOBL				Χ
		HYDROBIOLOGIE et	Mollusques	IMOL				Х
		YDROMORPHOLOGIE	Macrophytes	Protocole Cemagref (nov.2007)			Χ	
			Hydromorphologie	A partir du Lake Habitat Survey (LHS)			Х	
			Suivi piscicole	Protocole CEN (en charge de l'ONEMA)			Х	

^{* :} se référer à l'annexe 5 de la circulaire DCE 2006/16, analyses à réaliser sur les paramètres pertinents à suivre sur le support concerné

# 1.1 INVESTIGATIONS PHYSICOCHIMIQUES

Les différents paramètres physico-chimiques analysés sur l'eau sont suivis lors de quatre campagnes calées aux différentes phases du cycle annuel de fonctionnement du plan d'eau, soit entre le mois de février et le mois d'octobre. Les dates d'intervention sont mentionnées dans le tableau 2, au paragraphe 3.

A chaque campagne, sont réalisées au point de plus grande profondeur, toutes ou partie des investigations suivantes (en fonction du type de réseau) :

- 1. un profil vertical des paramètres physico-chimiques de terrain : température, conductivité, oxygène dissous (en mg/l et % saturation) et pH;
- 2. des échantillons d'eau pour analyses (physico-chimie, micropolluants, pigments chlorophylliens), il s'agit :
  - ✓ d'un prélèvement intégré sur la colonne d'eau (constitué à partir du mélange de prélèvements ponctuels réalisés tous les mètres entre la surface et 2,5 fois la transparence mesurée avec le disque de Secchi);
  - ✓ d'un prélèvement de fond (réalisé généralement à un mètre du fond).

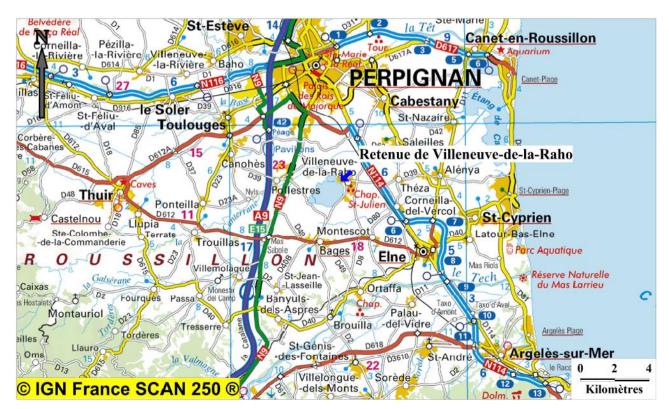
Les sédiments sont prélevés une fois par an lors de la 4^{ème} et dernière campagne au point de plus grande profondeur.

Les échantillons d'eau et de sédiments ont été transmis au Laboratoire Départemental d'Analyses de la Drôme (LDA 26) en charge des analyses.

#### 1.2 Investigations hydromorphologiques et hydrobiologiques

Les investigations hydromorphologiques et hydrobiologiques ont été réalisées à des périodes adaptées aux objectifs des méthodes utilisées.

L'évaluation morphologique du lac est établie en suivant le protocole du Lake Habitat Survey (LHS) dans sa version 3.1 (mai 2006).


Les investigations hydrobiologiques comprennent plusieurs volets :

- 1 l'étude des peuplements phytoplanctoniques à partir du protocole standardisé d'échantillonnage, de conservation, d'observation et de dénombrement du phytoplancton en plan d'eau pour la mise en œuvre de la DCE (CEMAGREF INRA; version 3.3 de mars 2009);
- 2 l'étude des peuplements d'oligochètes à travers la détermination de l'Indice Oligochètes de Bio-indication Lacustre : IOBL (Norme AFNOR NF T90-391, mars 2005), les prélèvements suivent ce protocole.
- l'étude des peuplements de mollusques avec la détermination de l'Indice Mollusques : IMOL (Mouthon, J. (1993) Un indice biologique lacustre basé sur l'examen des peuplements de mollusques. Bull. Franç. Pêche Pisc., 331 : 397-406) ;
- 4 l'étude des peuplements de macrophytes sur le lac s'appuie sur la méthode mise au point par le CEMAGREF et décrite au sein de la norme AFNOR XP T90-328 : « Echantillonnage des communautés de macrophytes en plans d'eau », décembre 2010.

## 2 Presentation du plan d'eau et localisation

La retenue de Villeneuve-de-la-Raho est située dans le département des Pyrénées-Orientales (66) sur les communes de Villeneuve-de-la-Raho et de Montescot. La gestion des eaux (apports) s'effectue par l'intermédiaire du canal de Perpignan, qui dérive une partie des eaux excédentaires de la Têt. Elle sert de réservoir d'eau pour l'irrigation du Sud de la plaine du Roussillon mais constitue également un lieu de tourisme (sports nautiques) et une réserve d'eau pour l'écopage dans le cadre de la lutte contre les incendies de forêts.

La superficie de la retenue de Villeneuve-de-la-Raho est de 161 ha pour une profondeur maximale mesurée en 2012 de 11,0 m. Sa localisation dans un couloir à vent induit un brassage des eaux régulier et donc une homogénéisation des paramètres physico-chimiques sur la colonne d'eau. Deux plans d'eau de superficie plus faible jouxtent le plan d'eau principal au Nord (dédié aux usages touristiques dont la baignade) et au Sud (dédié à la conservation du patrimoine écologique). La gestion de cette retenue est assurée par BRL. Elle est la propriété du Conseil Général des Pyrénées-Orientales.



Carte 1 : localisation de la retenue de Villeneuve-de-la-Raho (Pyrénées-Orientales)

# 3 CONTENU DU SUIVI 2012

La retenue de Villenuve-de-la-Raho est suivie afin de préciser son état écologique et son état chimique en l'absence de données milieux disponibles. Seuls les éléments permettant à l'heure actuelle de définir l'état du plan d'eau selon l'arrêté du 25/01/2010 ont été réalisés. Ainsi, concernant les investigations hydrobiologiques et hydromorphologiques précitées, seule l'étude des peuplements phytoplanctoniques a été effectuée. Concernant les investigations physico-chimiques, la retenue de Villeneuve-de-la-Raho a fait l'objet d'un suivi dit « allégé » en 2012, sans prélèvement de fond. Le tableau ci-dessous indique la répartition des missions au sein du groupement aussi bien en phase terrain qu'en phase laboratoire/détermination. S.T.E. a en outre eu en charge de coordonner la mission et de collecter l'ensemble des données pour établir les rapports et mener l'exploitation des données.

Tableau 2 : synoptique	des interventions de terrain et de laboratoire sur le pla	an d'eau, par cam	pagne

Retenue de Villeneuve-de-la- Raho (66)		Laboratoire - détermination			
Campagne	C1	C2	C3	C4	
Date	12/03/2012	21/05/2012	30/07/2012	01/10/2012	automne/hiver 2012-2013
Physicochimie des eaux	S.T.E.	S.T.E.	S.T.E.	S.T.E.	LDA26
Physicochimie des sédiments				S.T.E.	LDA26
Phytoplancton	S.T.E.	S.T.E.	S.T.E.	S.T.E.	BECQ'Eau

Le bilan climatique¹ de l'hiver 2011/2012 pour la région Languedoc-Roussillon souligne des températures inférieures aux moyennes de saison, un cumul de précipitations déficitaire et une durée d'ensoleillement légèrement excédentaire. En effet, le mois de février a été particulièrement froid et ensoleillé. L'hiver 2012 constitue un des hivers les plus secs depuis 1959 pour la moitié sud de la France.

Le printemps 2012 présente des valeurs de températures et d'ensoleillement conformes aux moyennes de saison. La pluviométrie a été déficitaire en raison d'un mois de mars particulièrement sec.

Durant l'été 2012, la pluviométrie a été largement déficitaire dans le Roussillon. L'ensoleillement a été légèrement excédentaire, en particulier au mois d'août.

¹ Comparaison des valeurs moyennes des saisons de l'année 2012 aux valeurs moyennes saisonnières sur la période 1980-2010 (source : <a href="http://climat.meteofrance.com">http://climat.meteofrance.com</a>)

de l'Eau Rhône - Méditerranée & Corse  Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Retenue de Villeneuve
RESULTATS DES
<u>INVESTIGATIONS</u>

# 1 INVESTIGATIONS PHYSICOCHIMIQUES

Les comptes rendus des campagnes de prélèvements physicochimiques et phytoplanctoniques sont présentés en annexe 3.

#### 1.1 ANALYSES DES EAUX DU LAC

#### 1.1.1 Profils verticaux et evolutions saisonnières

Le suivi prévoit la réalisation de profils verticaux sur la colonne d'eau à chaque campagne. Quatre paramètres sont mesurés : la température, la conductivité, l'oxygène (en concentration et en % saturation) et le pH. Les graphiques regroupant ces résultats pour chaque paramètre lors des 4 campagnes sont affichés dans ce chapitre.

Remarque : Alimentée par le canal de Perpignan, la retenue de Villeneuve-de-la-Raho connait une phase de remplissage en hiver et au début du printemps puis une phase de déstockage en fin d'été pour satisfaire à son usage principal, l'irrigation. En 2012, la cote d'eau est restée relativement stable sur l'année (profondeur mesurée comprise entre 9 et 11 m).

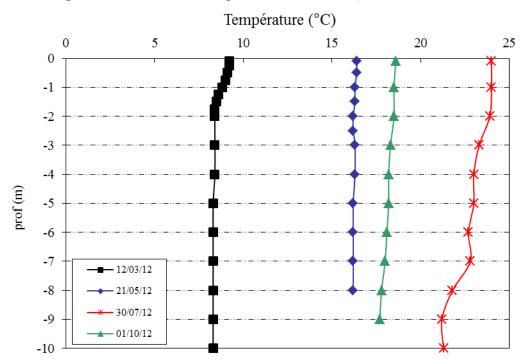



Figure 1: profils verticaux de température au point de plus grande profondeur

Lors de la 1^{ère} campagne, la température est homogène sur toute la colonne d'eau (8,4°C) hormis un léger réchauffement de surface (9,2°C).

Au printemps, la colonne d'eau se réchauffe uniformément et présente ainsi une homothermie

Agence de l'Eau Rhône - Méditerranée & Corse

Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Retenue de Villeneuve (66) (16.3°C).

Lors de la campagne estivale, la température augmente significativement et atteint 24,0°C en surface. On observe une ébauche de stratification thermique : le différentiel surface/fond est faible (21,2°C au fond) et la thermocline est mal définie.

En fin d'été, la colonne d'eau est à nouveau homogène à environ 18°C.

La retenue de Villeneuve-de-la-Raho ne présente pas de stratification thermique estivale en raison de sa faible profondeur d'une part et des vents violents induisant un brassage régulier de la masse d'eau d'autre part.

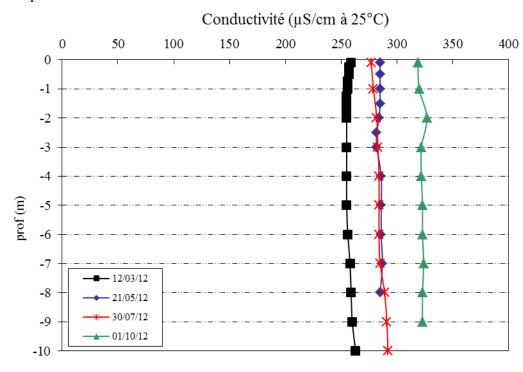



Figure 2 : profils verticaux de conductivité au point de plus grande profondeur

La conductivité, comprise entre 250 et 330  $\mu$ S/cm, indique une eau moyennement minéralisée, en lien avec la nature mixte des substrats : dépôts sédimentaires du quaternaire de la plaine du Roussillon. Elle est quasiment homogène sur la colonne d'eau lors des différentes campagnes :

- ✓ à 255 µS/cm en campagne 1;
- ✓ à 285 µS/cm en campagne 2;
- ✓ à 285 µS/cm en campagne 3;
- ✓ à 320 µS/cm en campagne 4.

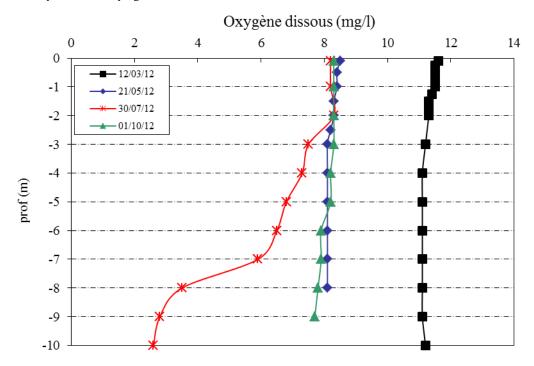



Figure 3: profils verticaux d'oxygène (mg/l) au point de plus grande profondeur

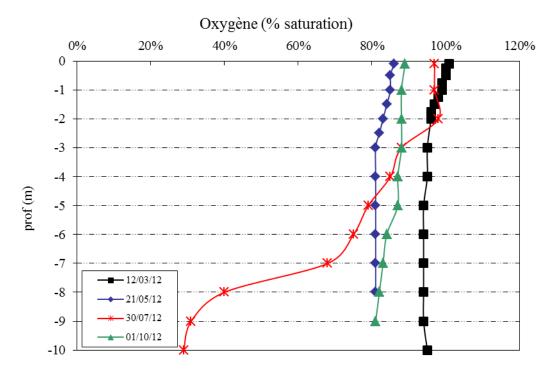



Figure 4 : profils verticaux d'oxygène (% sat.) au point de plus grande profondeur

Lors des différentes campagnes, l'oxygène dissous est quasiment homogène sur toute la colonne d'eau :

- ✓ à 100% de saturation en campagne 1 ;
- ✓ à 82% de saturation en campagne 2 ;
- ✓ à 85% de saturation en campagne 4.

Agence de l'Eau Rhône - Méditerranée & Corse

Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Retenue de Villeneuve (66) Seule la campagne 3 fait exception à cette règle : on observe une oxycline avec une demande importante en oxygène dans la couche profonde (30% de saturation au fond) en lien avec les processus de dégradation de la matière organique.

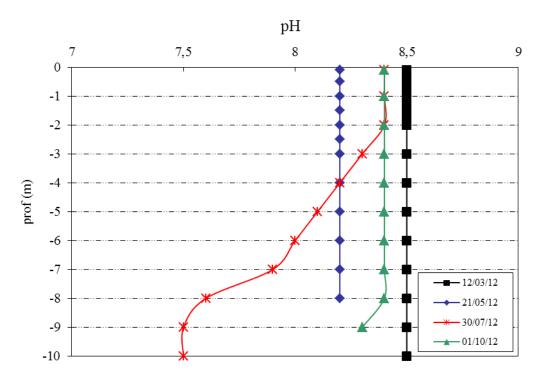



Figure 5 : profils verticaux de pH au point de plus grande profondeur

Le pH est peu variable sur la retenue de Villeneuve-de-la-Raho. La colonne d'eau est homogène à 8,5 en campagne 1, à 8,2 en campagne 2 et à 8,4 en campagne 4. La campagne 3 est quant à elle marquée par une importante diminution du pH dans la couche profonde (= 7,5) en lien avec les processus de respiration et de décomposition alors que le pH est conforme aux autres campagnes en surface (= 8,4).

#### 1.1.2 PARAMETRES DE CONSTITUTION ET TYPOLOGIE DU LAC

N.B. pour tous les tableaux suivants :

LD = limite de détection, généralement =SQ/3, sauf pour DBO5 et turbidité pour lesquels LD=SQ, avec SQ = seuil de quantification; Prés. = valeur comprise entre LD et SQ, composé présent mais non précisément quantifiable.

Les paramètres de minéralisation sont étudiés lors de la 1^{ère} campagne uniquement. Les résultats sont présentés dans le tableau 3.

Tableau 3 : résultats des paramètres de minéralisation lors de la 1ère campagne

Retenue de	Villeneuve	seuil	12/03/2012
code plan d'eau :	Y0305003	quantification	Intégré
Dureté calculée	°F	0,1	12,0
T.A.C.	°F	0,5	11,9
T.A.	°F	0,5	1,7
CO ₃	mg(CO3)/l	6	20,4
HCO ₃	mg(HCO3)/l	6,1	103,7
Calcium total	mg(Ca)/l	1	38,0
Magnésium	mg(Mg)/l	1	6,1
Sodium	mg(Na)/l	1	17,0
Potassium	mg(K)/l	1	1,9
Chlorures	mg(Cl)/l	1	17,0
Sulfates	mg(SO4)/l	1	18,0

Les résultats indiquent une eau moyennement carbonatée, de dureté moyenne à forte. Rappelons que la géologie de la plaine du Roussillon est constituée de dépôts sédimentaires mixtes du Quaternaire.

#### 1.1.3 RESULTATS DES ANALYSES PHYSICOCHIMIQUES DES EAUX (HORS MICROPOLLUANTS)

Tableau 4 : résultats des paramètres de physico-chimie classique sur eau.

Physico-chimie sur eau						
Retenue de	Villeneuve	seuil quantification	12/03/2012	21/05/2012	30/07/2012	01/10/2012
code plan d'eau :	Y0305003	seun quantification	Intégré	Intégré	Intégré	Intégré
Turbidité	NTU	0,1	11,6	6,6	3,3	9,5
M.E.S.T.	mg/l	1	14	7	3	11
C.O.D.	mg(C)/l	0,1	2,9	2,8	3,3	2,9
C.O.T.	mg(C)/l	0,1	2,9	2,9	3,6	2,9
D.B.O.5	mg(O2)/l	0,5	<ld< td=""><td>0,9</td><td>0,6</td><td>0,9</td></ld<>	0,9	0,6	0,9
Azote Kjeldahl	mg(N)/l	1	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
NH ₄ ⁺	mg(NH4)/l	0,05	<ld< td=""><td>0,06</td><td><ld< td=""><td>0,06</td></ld<></td></ld<>	0,06	<ld< td=""><td>0,06</td></ld<>	0,06
$NO_3$	mg(NO3)/l	1	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
$NO_2^-$	mg(NO2)/l	0,02	0,02	0,03	<ld< td=""><td>0,03</td></ld<>	0,03
PO ₄	mg(PO4)/l	0,015	<ld< td=""><td>0,049</td><td>0,107</td><td>0,135</td></ld<>	0,049	0,107	0,135
Phosphore Total	mg(P)/l	0,005	0,039	0,049	0,054	0,087
Silice dissoute	mg(SiO2)/l	0,2	2,8	3,2	3,6	0,4
Chl. A	μg/l	1	3,2	1,1	2,4	<ld< td=""></ld<>
Chl. B	μg/l	1	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Chl. C	μg/l	1	1,3	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Indice phéopigments	μg/l	1	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>

Les analyses des fractions dissoutes ont été réalisées sur eau filtrée (COD, NH4, NO3, NO2, PO4, Si).

La charge en matière organique est moyenne dans les eaux de la retenue de Villeneuve-de-la-Raho : la concentration en carbone organique dissous est comprise entre 2,8 et 3,3 mg/l. Les matières en suspension ne sont pas négligeables (3 à 14 mg/l) et rendent globalement les eaux de la retenue assez turbides. La demande biologique en oxygène est faible (≤ 0,9 mg/l).

Les teneurs en nutriments disponibles sont faibles pour les matières azotées et assez élevées pour les matières phosphorées. En effet, les nitrates ne sont pas quantifiés lors des 4 campagnes de prélèvements et on observe un enrichissement en orthophosphates durant la période estivale. Ils ne sont pas quantifiés en fin d'hiver et atteignent la concentration de 0,135 mg/l lors de la 4ème campagne. Ainsi, durant la période estivale, l'azote semble donc limitant pour la production biologique, favorisant ainsi le développement des cyanobactéries, capables de fixer l'azote atmosphérique. On constate ponctuellement la quantification à de faibles concentrations des formes réduites de l'azote : les nitrites en campagnes 1, 2 et 4 et l'ammonium en campagnes 2 et 4.

La concentration en silice dissoute est moyenne lors des 3 premières campagnes (2,8 à 3,6 mg/l) et ne limite donc pas le développement des diatomées, même lors de la 4^{ème} campagne pour laquelle la teneur en silice est nettement plus faible (0,4 mg/l). La production chlorophyllienne est modérée sur la retenue de Villeneuve-de-la-Raho.

#### 1.1.4 MICROPOLLUANTS MINERAUX

Tableau 5 : résultats d'analyses de métaux sur eau

Micropolluants miné	raux sur eau					
Retenue de	Villeneuve	seuil	12/03/2012	21/05/2012	30/07/2012	01/10/2012
code plan d'eau :	Y0305003	quantification	Intégré	Intégré	Intégré	Intégré
Aluminium	μg(Al)/l	5	38	<ld< td=""><td>10</td><td><ld< td=""></ld<></td></ld<>	10	<ld< td=""></ld<>
Antimoine	μg(Sb)/l	0,2	0,4	0,4	0,4	0,4
Argent	μg(Ag)/l	0,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Arsenic	μg(As)/l	0,2	4,5	3,8	10,9	13,9
Baryum	μg(Ba)/l	5	31	30	32	33
Beryllium	μg(Be)/l	0,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Bore	μg(B)/l	5	17	17	20	20
Cadmium	μg(Cd)/l	0,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Chrome Total	μg(Cr)/l	0,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Cobalt	μg(Co)/l	0,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Cuivre	μg(Cu)/l	0,2	2,5	1,7	2,3	1,5
Etain	μg(Sn)/l	0,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Fer total	μg(Fe)/l	5	83	<ld< td=""><td>9</td><td><ld< td=""></ld<></td></ld<>	9	<ld< td=""></ld<>
Manganèse	μg(Mn)/l	5	11	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Mercure	μg(Hg)/l	0,1	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Molybdène	μg(Mo)/l	0,2	0,6	0,6	0,6	0,7
Nickel	μg(Ni)/l	0,2	0,3	0,2	0,2	0,3
Plomb	μg(Pb)/l	0,2	0,6	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Sélénium	μg(Se)/l	0,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Thallium	μg(Tl)/l	0,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Titane	μg(Ti)/l	5	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Uranium	μg(U)/l	0,2	1,1	1,1	1,0	1,0
Vanadium	μg(V)/l	0,2	1,3	1,3	1,9	2,4
Zinc	μg(Zn)/l	2	2	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>

Les analyses sur les métaux ont été effectuées sur eau filtrée.

Plusieurs métaux lourds sont présents dans l'eau en quantité plus ou moins importante :

- ✓ l'arsenic à des concentrations élevées (supérieures au seuil de bon état écologique de 4,2 μg/l), comprises entre 3,8 et 13,9 μg/l;
- ✓ le cuivre à des concentrations élevées (supérieures au seuil de bon état écologique de 1,4  $\mu$ g/l), comprises entre 1,5 et 2,5  $\mu$ g/l.

Le nickel, le plomb et le zinc sont également quantifiés de manière plus ou moins ponctuelle, à des concentrations faibles.

Parmi les éléments de constitution des minéraux des substrats, on trouve plus particulièrement du baryum, du bore et du vanadium.

Enfin, l'aluminium, le fer et le manganèse, qui sont relativement abondants dans les sédiments, ont été nettement quantifiés lors de la campagne 1 qui fait suite à un épisode venteux de forte intensité entrainant le brassage des eaux.

#### 1.1.5 MICROPOLLUANTS ORGANIQUES

Le tableau 6 indique les micropolluants organiques qui ont été détectés (présent à l'état de traces ou quantifiés) lors des campagnes de prélèvements. La liste de l'ensemble des substances analysées est fournie en annexe 1.

Tableau 6: résultats d'analyses de micropolluants organiques présents sur eau

Micropolluants organiques mis en évidence sur eau						
Retenue de	Villeneuve	seuil quantification	12/03/2012	21/05/2012	30/07/2012	01/10/2012
code plan d'eau :	Y0305003	seun quantification	Intégré	Intégré	Intégré	Intégré
AMPA	μg/l	0,1	0,15	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Benzène	μg/l	0,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,2</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,2</td></ld<></td></ld<>	<ld< td=""><td>0,2</td></ld<>	0,2
DEHP	μg/l	1	20,7	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Ethylbenzène	μg/l	0,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,4</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,4</td></ld<></td></ld<>	<ld< td=""><td>0,4</td></ld<>	0,4
Formaldéhyde	μg/l	1	<ld< td=""><td><ld< td=""><td>1,6</td><td>1,7</td></ld<></td></ld<>	<ld< td=""><td>1,6</td><td>1,7</td></ld<>	1,6	1,7
Hydroxyterbuthylazine	μg/l	0,02	0,03	0,03	0,02	<ld< td=""></ld<>
Monobutylétain	μg/l	0,003		<ld< td=""><td>0,005</td><td>0,044</td></ld<>	0,005	0,044
Naphtalène	μg/l	0,02	<ld< td=""><td><ld< td=""><td>0,03</td><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,03</td><td><ld< td=""></ld<></td></ld<>	0,03	<ld< td=""></ld<>
Toluène	μg/l	0,2	0,7	0,3	0,9	1,4
Xylène méta	μg/l	0,2	<ld< td=""><td>0,2</td><td>0,4</td><td>0,8</td></ld<>	0,2	0,4	0,8
Xylène ortho	μg/l	0,2	<ld< td=""><td><ld< td=""><td>0,3</td><td>0,6</td></ld<></td></ld<>	<ld< td=""><td>0,3</td><td>0,6</td></ld<>	0,3	0,6
Xylène para	μg/l	0,2	<ld< td=""><td><ld< td=""><td>0,2</td><td>0,3</td></ld<></td></ld<>	<ld< td=""><td>0,2</td><td>0,3</td></ld<>	0,2	0,3

Il s'agit d'une présentation des résultats bruts, certaines valeurs pouvant être qualifiées d'incertaines suite à la validation finale des résultats (cas par exemple des valeurs mesurées en BTEX, HAP, DEHP, Formaldéhyde, dont une contamination via la chaîne de prélèvement et/ou d'analyse de laboratoire est parfois privilégiée).

Des composés de type BTEX (benzène, éthylbenzène, toluène et xylène) ont été quantifiés à de faibles teneurs lors des différentes campagnes, et plus particulièrement lors de la 4ème campagne. Un hydrocarbure aromatique polycyclique (HAP), le naphtalène, a été détecté lors de la campagne 3.

Le formaldéhyde a été repéré sur les échantillons des campagnes 3 et 4 (entre 1,6 à 1,7 µg/l).

L'hydroxyterbuthylazine, métabolite de l'herbicide terbuthylazine utilisé pour le désherbage des sols viticoles, a été détecté dans les échantillons des campagnes 1, 2 et 3.

Le DEHP (indicateur plastifiant) a été nettement quantifié lors de la 1^{ère} campagne.

Un composé de la famille des organo-stanneux, le monobutylétain, a également été détecté lors des campagnes 3 et 4.

#### 1.2 ANALYSES DE SÉDIMENTS

#### 1.2.1 Physicochimie des sediments

Le tableau 7 fournit la synthèse de l'analyse granulométrique menée sur les sédiments prélevés.

Tableau 7 : synthèse granulométrique sur le sédiment du point de plus grande profondeur

Sédiment : composition granulométrique (%)				
R	etenue (	de Villeneuve	01/10/2012	
code pl	an d'eau	ı: Y0305003	01/10/2012	
classe granu	lométriq	ue (µm)	%	
0	à	2	8,8	
2	à	20	50,6	
20	à	50	13,6	
50	à	63	2,1	
63	à	200	11,3	
200	à	1000	13,7	
1000	à	2000	0,0	
> 2000	•		0,0	

Il s'agit de sédiments fins, de nature limono-sableuse. Les limons (2 à 20 μm) et les sables (20 à 1000 μm) représentent respectivement 64,2 % et 27,1 % du sédiment.

Les analyses de physico-chimie classique menées sur la fraction solide et sur l'eau interstitielle du sédiment sont rapportées au tableau 8.

Tableau 8 : analyse de sédiments

Eau interstitielle du sédiment : Physico-chimie					
Retenue de					
code plan d'eau :	Y0305003	seuil quantification	01/10/2012		
NH ₄ ⁺	mg(NH4)/l	0,5	1,47		
PO ₄	mg(PO4)/l	1,5	<ld< td=""></ld<>		
Phosphore Total	mg(P)/l	0,1	0,41		

Sédiment : Physico-chimie					
Retenue de	Villeneuve	savil avantification			
code plan d'eau :	Y0305003	seuil quantification	01/10/2012		
Matières sèches minérales	% MS	0	92,5		
Perte au feu	% MS	0	7,5		
Matières sèches totales	%	0	24,6		
C.O.T.	mg(C)/kg MS	1	20400,0		
Azote Kjeldahl	mg(N)/kg MS	1	4400,0		
Phosphore Total	mg(P)/kg MS	0,5	743,1		

Dans les sédiments, la teneur en matière organique est moyenne avec 7,5 % de perte au feu. La concentration en azote organique est élevée (4,4 g/kg MS). Le rapport C/N est faible (4,6), il indique une prédominance de matière algale récemment déposée dont une fraction sera recyclée en azote minéral. La concentration en phosphore est considérée comme moyenne, proche de 0,7 g/kg MS.

L'eau interstitielle contient les minéraux facilement mobilisables dans le sédiment. L'ammonium et le phosphore total sont faiblement quantifiés, ce qui témoigne de conditions peu favorables au relargage à l'interface eau/sédiment (absence d'anoxie).

#### 1.2.2 MICROPOLLUANTS MINERAUX

Ils ont été dosés sur la fraction solide du sédiment.

Tableau 9 : Micropolluants minéraux sur sédiment

Sédiment : Micropolluants minéraux				
Retenue de	Villeneuve	:1:C::		
code plan d'eau :	Y0305003	seuil quantification	01/10/2012	
Aluminium	mg(Al)/kg MS	10	91960	
Bore	mg(B)/kg MS	0,2	25,4	
Fer total	mg(Fe)/kg MS	10	46110	
Mercure	mg(Hg)/kg MS	0,005	0,007	
Zinc	mg(Zn)/kg MS	0,2	133,8	
Antimoine	mg(Sb)/kg MS	0,2	1,5	
Argent	mg(Ag)/kg MS	0,2	<ld< td=""></ld<>	
Arsenic	mg(As)/kg MS	0,2	26,1	
Baryum	mg(Ba)/kg MS	0,2	539,4	
Beryllium	mg(Be)/kg MS	0,2	3,9	
Cadmium	mg(Cd)/kg MS	0,2	0,2	
Chrome Total	mg(Cr)/kg MS	0,2	71,6	
Cobalt	mg(Co)/kg MS	0,2	13,6	
Cuivre	mg(Cu)/kg MS	0,2	101,8	
Etain	mg(Sn)/kg MS	0,2	8,5	
Manganèse	mg(Mn)/kg MS	0,2	802,6	
Molybdène	mg(Mo)/kg MS	0,2	0,3	
Nickel	mg(Ni)/kg MS	0,2	32,9	
Plomb	mg(Pb)/kg MS	0,2	34,1	
Sélénium	mg(Se)/kg MS	0,2	1,5	
Tellurium	mg(Te)/kg MS	0,2	<ld< td=""></ld<>	
Thallium	mg(Th)/kg MS	0,2	0,8	
Titane	mg(Ti)/kg MS	0,2	2535,0	
Uranium	mg(U)/kg MS	0,2	1,7	
Vanadium	mg(V)/kg MS	0,2	106,1	

Les sédiments de la retenue de Villeneuve-de-la-Raho sont particulièrement riches en aluminium, en fer, en baryum et en manganèse.

Parmi les métaux lourds, l'arsenic, le chrome, le zinc et surtout le cuivre atteignent des concentrations assez élevées.

#### 1.2.3 MICROPOLLUANTS ORGANIQUES

Le tableau 10 indique les micropolluants organiques qui ont été quantifiés dans les sédiments lors de la campagne de prélèvements. La liste de l'ensemble des substances analysées est fournie en annexe 2.

Tableau 10 : résultats d'analyses de micropolluants organiques présents sur sédiment

Sédiment : Micropolluants organiques mis en évidence					
Retenue d					
code plan d'eau : Y0305003		seuil quantification	01/10/2012		
Benzo (a) anthracène	μg/kg MS	10	11		
Benzo (a) pyrène	μg/kg MS	10	18		
Benzo (b) fluoranthène	μg/kg MS	10	23		
Benzo (ghi) pérylène	μg/kg MS	10	18		
DDE-4,4'	μg/kg MS	5	20		
DEHP	μg/kg MS	100	369		

Quatre hydrocarbures aromatiques polycycliques (HAP) ont été quantifiés dans les sédiments de la retenue de Villeneuve-de-la-Raho pour une concentration totale faible de  $70~\mu g/kg$ .

Un pesticide, le DDE-4,4' (produit de dégradation du DDT), a également été quantifié dans les sédiments à la concentration de 20  $\mu g/kg$ . Le DEHP, indicateur plastifiant, présente une concentration de 369  $\mu g/kg$ .

## 2 PHYTOPLANCTON

# 2.1 Prélèvements intégrés

Les prélèvements intégrés destinés à l'analyse du phytoplancton ont été réalisés en même temps que les prélèvements pour analyses physicochimiques. Sur la retenue de Villeuve-de-la-Raho, la zone euphotique et la transparence mesurées sont représentées par le graphique de la figure 6.

La zone euphotique varie entre 2,0 et 6,0 m sur les quatre campagnes réalisées. La transparence est globalement faible lors des différentes campagnes : elle est minimale en campagne 1 et 4 avec seulement 0,8 m et maximale en campagne 3 (2,4 m).

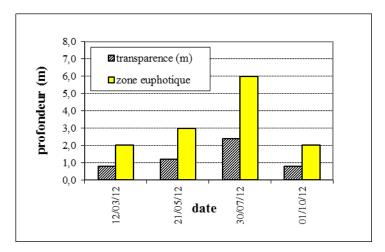



Figure 6 : évolution de la transparence et de la zone euphotique aux 4 campagnes

La liste des espèces de phytoplancton par plan d'eau a été établie selon la méthodologie développée par le CEMAGREF: Protocole standardisé d'échantillonnage, de conservation, d'observation et de dénombrement du phytoplancton en plan d'eau pour la mise en œuvre de la DCE, Mars 2009.

La diversité taxonomique N espèces correspond au nombre de taxons identifiés à l'espèce, à l'exclusion des groupes et familles, ainsi que des taxons identifiés au genre quand une espèce du même genre est présente et déterminée à l'espèce. Le nombre N' correspond à la diversité taxonomique totale incluant tous les taxons aux différents niveaux d'identification (nombre le plus probable).

# 2.2 LISTE FLORISTIQUE (NOMBRE DE CELLULES/ML)

Tableau 11: Liste taxonomique du phytoplancton

Retenue de Ville	eneuve-de-la-Raho	Date prélèvement				
Classe	Nom Taxon	12/03/2012	21/05/2012	30/07/2012	01/10/2012	
Chlorophycées	Chlorella vulgaris		50	199	34	
	Chlorophycées flagellées indéterminées diam 2-5 µm			5		
	Chlorophycées indéterminées	15	73	25	30	
	Choricystis minor			76	13	
	Coelastrum microporum		15			
	Coenochloris hindakii			41		
	Crucigenia tetrapedia		7	20		
	Monactinus simplex				7	
	Oocystis lacustris		37			
	Oocystis solitaria		6			
	Schroederia setigera		7	5	7	
	Sphaerocystis schroeteri		30	81		
	Tetraedron triangulare			5	1	
Chrysophycées	Erkenia subaequiciliata	84	11	20	7	
Cryptophycées	Cryptomonas sp.	74	6	76	35	
	Plagioselmis nannoplanctica	648	103	473	151	
Cyanobactéries	Aphanizomenon flos-aquae			1986	76	
	Dolichospermum flos-aquae			1314	164	
	Merismopedia tenuissima		1149	6517		
	Woronichinia naegeliana		30			
Diatomées	Asterionella formosa		7			
	Aulacoseira granulata	58	75	143	13	
	Aulacoseira subarctica		131			
	Cyclostephanos dubius	1188	224			
	Diatomées centriques indéterminées			10		
	Diatomées centriques indéterminées <10 µm			107	45	
	Navicula sp.		4			
	Stephanodiscus medius	25	9		183	
Dinoflagellés	Ceratium hirundinella			5		
	Gymnodinium lantzschii	10				
Euglènes	Trachelomonas sp.				1	
Trachelomonas volvocina					1	
Ab	ondance cellulaire totale (nb cellules/ml)	2102	1974	11109	769	
	Diversité taxonomique N	8	18	15	13	
	Diversité N'	8	19	19	16	

# 2.3 ÉVOLUTIONS SAISONNIÈRES DES GROUPEMENTS PHYTOPLANCTONIQUES

Les échantillons destinés à la détermination du phytoplancton sont constitués d'un prélèvement intégré sur la zone euphotique (équivalant à 2,5 fois la transparence lors de la campagne). Les graphiques suivants présentent la répartition du phytoplancton par groupe algal à partir des résultats exprimés en cellules/ml d'une part et à partir des biovolumes (mm³/l) d'autre part.

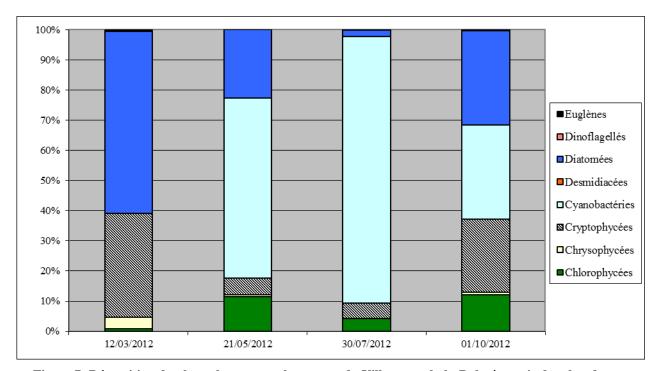



Figure 7: Répartition du phytoplancton sur la retenue du Villeneuve-de-la-Raho à partir des abondances (cellules/ml)

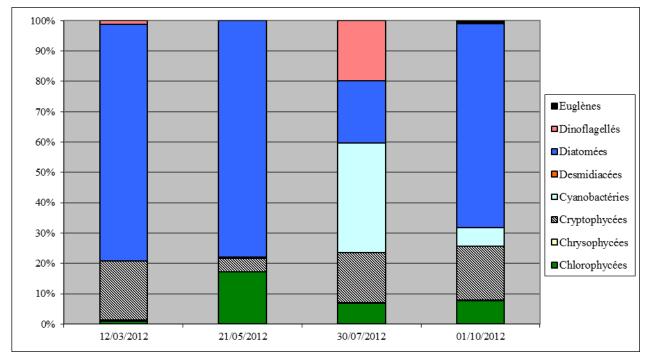



Figure 8: Répartition du phytoplancton sur la retenue de Villeneuve-de-la-Raho à partir des biovolumes (mm³/l)

À l'exception de la campagne 3, le peuplement phytoplanctonique de la retenue de Villeneuve-de-la-Raho présente une abondance moyenne (769 à 2102 cellules/ml). Le biovolume est compris entre 0,38 et 0,90 mm³/l. La campagne 3 est quant à elle caractérisée par un bloom de cyanobactéries qui porte à plus de 11000 cellules/ml l'abondance phytoplanctonique. Cependant, les espèces présentes étant de petite taille, le biovolume total reste modéré (1,026 mm³/l). La diversité taxonomique est particulièrement faible, comprise entre 8 et 18 taxons.

À la sortie de l'hiver, les diatomées dominent le peuplement phytoplanctonique (78% en biovolume et 60% en abondance), en particulier l'espèce *Cyclostephanos dubius*, accompagnées de cryptophycées (20% en biovolume et 34% en abondance) avec l'espèce ubiquiste *Plagioselmis nannoplanctica*.

La campagne 2 est marquée par le développement de petites cyanobactéries, en particulier l'espèce *Merismopedia tenuissima* très fréquente dans les eaux mésotrophes à eutrophes. Les diatomées restent dominantes.

Les cyanobactéries forment un bloom lors des successions estivales avec dominance de l'espèce *Merismopedia tenuissima* accompagnée d'*Aphanizomenon flos-aquae* et *Dolichospermum flos-aquae*. L'espèce *Aphanizomenon flos-aquae* est relativement commune dans les milieux mésotrophes à eutrophes, elle forme des filaments qui se regroupent en surface et qui forment ainsi des efflorescences potentiellement gênantes dans les eaux de baignade (production de neurotoxines). Les cyanobactéries représentent alors 88% du peuplement phytoplanctonique (abondance cellulaire).

La campagne de fin d'été est caractérisée par une très forte diminution du phytoplancton et notamment des cyanobactéries. Le peuplement s'équilibre entre plusieurs groupes algaux, il est de nouveau dominé par les diatomées.

En termes de biovolume, le peuplement phytoplanctonique est globalement dominé par les diatomées qui ne témoignent pas d'un degré de trophie élevé. L'indice phytoplanctonique (IPL) est donc de 31,7, qualifiant le milieu d'oligotrophe. Pour information, l'indice calculé à partir de l'abondance cellulaire est beaucoup moins favorable (62,0 - eutrophe) en raison de la plus faible représentation des diatomées en faveur des cyanophycées.

# INTERPRETATION GLOBALE DES RESULTATS

Les résultats acquis durant le suivi annuel ont été interprétés en termes de potentiel écologique pour les plans d'eau d'origine anthropique et d'état chimique selon les critères et méthodes d'évaluation décrits dans l'arrêté du 25 janvier 2010.

Ces résultats ont également été traités en termes de niveau trophique à l'aide des outils de la diagnose rapide (Cemagref, 2003).

Les résultats de ces deux approches sont présentés dans le document complémentaire : Note synthétique d'interprétation des résultats.

#### ✓ Critères d'applicabilité de la diagnose rapide

La diagnose rapide vise à évaluer l'état trophique des lacs et à mettre en évidence les phénomènes d'eutrophisation. Elle fait appel au principe fondamental du fonctionnement des lacs qui suppose qu'il existe un lien entre la composition physico-chimique à l'époque du mélange hivernal et les phénomènes qu'elle est susceptible d'engendrer dans les divers compartiments de l'écosystème au cours de la période de croissance végétale qui lui succède.

Cette méthode est donc adaptée aux plans d'eau qui stratifient durablement en été et exclut les plans d'eau au temps de séjour réduit (CEMAGREF, 1990, 2003) et les lacs dont la profondeur moyenne est inférieure à 3 m. Il convient également de noter que la diagnose rapide ne prend en compte que la biomasse phytoplanctonique sous l'aspect "production végétale" et n'intègre donc pas l'importance du recouvrement en macrophytes du plan d'eau.

La retenue de Villeneuve-de-la-Raho est un plan d'eau d'origine artificielle d'une profondeur moyenne estimée à 9 m. Elle ne présente pas de stratification thermique durable en raison de la faible profondeur et du brassage régulier des eaux par le vent.

Le temps de séjour est très variable compte tenu du mode d'alimentation et de l'usage principal pour l'irrigation. Il peut être considéré comme long (> 60 jours) avec une phase de remplissage au printemps et une phase de déstockage en fin d'été.

Les périodes d'intervention des différentes campagnes de prélèvements menées en 2012 correspondent aux préconisations de la méthodologie. Cependant, la retenue de Villeneuve-de-la-Raho subit régulièrement un brassage des eaux en raison de sa situation géographique dans un couloir à vent.

La retenue de Villeneuve-de-la-Raho ne répond pas aux exigences pour appliquer la diagnose rapide. Les indices relatifs à cet outil d'interprétation sont néanmoins calculés afin d'appréhender le niveau trophique du plan d'eau.

Agence	e de l'Eau Rhô Etude des p	one - Méditern olans d'eau du	anée & Corse programme de	e surveillance de	s bassins Rhône-	Méditerranée et	Corse – Retenu	e de Villeneuve (6
				ANN	<u>VEXES</u>			

# 1. LISTE DES MICROPOLLUANTS ANALYSES SUR EAU

Code			Code		
SANDRE	Libel_param	Famille composés	SANDRE	Libel_param	Famille composés
5474	4-n-nonylphénol	Alkylphénols	1118	Benzo (ghi) Pérylène	HAP
1957	Nonylphénols	Alkylphénols	1117	Benzo (k) Fluoranthène	HAP
1920	p-(n-octyl)phénols	Alkylphénols	1476	Chrysène	HAP
1958	Para-nonylphénols ramifiés	Alkylphénols	1621	Dibenzo (ah) Anthracène	HAP
1959	Para-tert-octylphénol	Alkylphénols	1191	Fluoranthène	HAP
1593	Chloroaniline-2	Anilines et Chloroanilines	1623	Fluorène	HAP
1592	Chloroaniline-3	Anilines et Chloroanilines	1204	Indéno (123c) Pyrène	HAP
1591	Chloroaniline-4	Anilines et Chloroanilines	1619	Méthyl-2-Fluoranthène	HAP
1589	Dichloroaniline-2,4	Anilines et Chloroanilines	1618	Méthyl-2-naphtalène	HAP
1114	Benzène	BTEX	1517	Naphtalène	HAP
1602	Chlorotoluène-2	BTEX	1524	Phénanthrène	HAP
1601	Chlorotoluène-3	BTEX	1537	Pyrène	HAP
1600	Chlorotoluène-4	BTEX	1370	Aluminium	Métaux
1497	Ethylbenzène	BTEX	1376	Antimoine	Métaux
1633	Isopropylbenzène	BTEX	1368	Argent	Métaux
1278	Toluène	BTEX	1369	Arsenic	Métaux
5431	Xylène (ortho+meta+para)	BTEX	1396	Baryum	Métaux
1292	Xylène-ortho	BTEX	1377	Beryllium	Métaux
1955	Chloroalcanes C10-C13	Chloroalacanes	1362	Bore	Métaux
1467	Chlorobenzène (Mono)	Chlorobenzènes	1388	Cadmium	Métaux
1165	Dichlorobenzène-1,2	Chlorobenzènes	1389	Chrome	Métaux
1164	Dichlorobenzène-1,3	Chlorobenzènes	1379	Cobalt	Métaux
1166	Dichlorobenzène-1,4	Chlorobenzènes	1392	Cuivre	Métaux
1199	Hexachlorobenzène	Chlorobenzènes	1380	Etain	Métaux
1888	Pentachlorobenzène	Chlorobenzènes	1393	Fer	Métaux
1631	Tétrachlorobenzène-1,2,4,5	Chlorobenzènes	1394	Manganèse	Métaux
1630	Trichlorobenzène-1,2,3	Chlorobenzènes	1387	Mercure	Métaux
1283	Trichlorobenzène-1,2,4	Chlorobenzènes	1395	Molybdène	Métaux
1629	Trichlorobenzène-1,3,5	Chlorobenzènes	1386	Nickel	Métaux
1774	Trichlorobenzènes	Chlorobenzènes	1382	Plomb	Métaux
1469	Chloronitrobenzène-1,2	Chloronitrobenzènes	1385	Sélénium	Métaux
1468	Chloronitrobenzène-1,3	Chloronitrobenzènes	2559	Tellurium	Métaux
1470	Chloronitrobenzène-1,4	Chloronitrobenzènes	2555	Thallium	Métaux
1617	Dichloronitrobenzène-2,3	Chloronitrobenzènes	1373	Titane	Métaux
1615	Dichloronitrobenzène-2,5	Chloronitrobenzènes	1361	Uranium	Métaux
1614	Dichloronitrobenzène-3,4	Chloronitrobenzènes	1384	Vanadium	Métaux
2915	BDE100	Diphényléthers bromés	1383	Zinc	Métaux
2912	BDE153	Diphényléthers bromés	1135	Chloroforme (trichlorométhane)	OHV
2911	BDE154	Diphényléthers bromés	2611	Chloroprène	OHV
2920	BDE28	Diphényléthers bromés	2065	Chloropropène-3	OHV
2919	BDE47	Diphényléthers bromés	1160	Dichloréthane-1,1	OHV
2916	BDE99	Diphényléthers bromés	1161	Dichlorethane-1,1	OHV
1815	Décabromodiphényléther	Diphényléthers bromés	1162	Dichlorethylène-1,1	OHV
2609	Octabromodiphénylether	Diphényléthers bromés	1163	Dichlorethylène-1,2	OHV
1921	Pentabromodiphényléther	Diphényléthers bromés	1456	Dichlorethylène-1,2 cis	OHV
	A 11 11 (0)	D:	4707	D: 11 (# 1) 4 0 (	OHV
1465 1753	Chlorure de vinyle	Chlorure de vinyles	1/2/	Dichlorethylene-1,2 trans Dichlorométhane	OHV
	Diéthylamine	Divers	1652	Hexachlorobutadiène	OHV
2773	Diméthylamine	Divers	1271	Tétrachloréthane-1,1,2,2	OHV
				Tétrachloréthylène	
1494	Epichlorohydrine	Divers	1272		OHV
1453 1622	Acénaphtène	HAP	1276	Tétrachlorure de C	OHV
	Acénaphtylène	HAP	1284 1285	Trichloréthane-1,1,1 Trichloréthane-1,1,2	OHV OHV
	A 4 L			LLUCHOFETDADE-1 1 Z	IUHV
1458	Anthracène	HAP			
1458	Anthracène Benzo (a) Anthracène Benzo (a) Pyrène	HAP HAP	1286 1771	Trichloréthylène Dibutylétain	OHV Organostanneux complets

Agence de l'Eau Rhône - Méditerranée & Corse

Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Retenue de Villeneuve (66)

01-	Etude des plans d'eau du	programme de surveilla		ins Rhone-Mediterranee	et Corse – Retenue de Villen
	Libel_param	Famille_composés	Code SANDRE	Libel_param	Famille composés
2879	Tributylétain-cation	Organostanneux complets	1187	Fénitrothion	Pesticides
1779	Triphénylétain	Organostanneux complets	1967	Fénoxycarbe	Pesticides
1242	PCB 101	PCB	2022	Fludioxonil	Pesticides
1243	PCB 118	PCB	1765	Fluroxypyr	Pesticides
1244	PCB 138	PCB	2547	Fluroxypyr-meptyl	Pesticides
1245	PCB 153	PCB	1194	Flusilazole	Pesticides
1090	PCB 169	PCB	1702	Formaldéhyde	Pesticides
1246	PCB 180	PCB	1506	Glyphosate	Pesticides
1239	PCB 28	PCB	1200	HCH alpha	Pesticides
1240	PCB 35	PCB	1201	HCH beta	Pesticides
1241	PCB 52	PCB	1202	HCH delta	Pesticides
1091	PCB 77	PCB	2046	HCH epsilon	Pesticides
1141	2 4 D	Pesticides	1203	HCH gamma	Pesticides
1212	2 4 MCPA	Pesticides	1405	Hexaconazole	Pesticides
1832	2-Hydroxy-atrazine	Pesticides	1877	Imidaclopride	Pesticides
1903	Acétochlore	Pesticides	1206	Iprodione	Pesticides
1688	Aclonifen	Pesticides	1207	Isodrine	Pesticides
1101	Alachlore	Pesticides	1208	Isoproturon	Pesticides
1103	Aldrine	Pesticides	1950	Kresoxim méthyl	Pesticides
1105	Aminotriazole	Pesticides	1094	Lambda Cyhalothrine	Pesticides
1907	AMPA	Pesticides	1209	Linuron	Pesticides
1107	Atrazine	Pesticides	1210	Malathion	Pesticides
1109	Atrazine déisopropyl	Pesticides	1214	Mécoprop	Pesticides
1108	Atrazine déséthyl	Pesticides	2987	Métalaxyl m = mefenoxam	Pesticides
1951	Azoxystrobine	Pesticides	1796	Métaldéhyde	Pesticides
1113	Bentazone	Pesticides	1215	Métamitrone	Pesticides
1686	Bromacil	Pesticides	1670	Métazachlore	Pesticides
1125	Bromoxynil	Pesticides	1216	Méthabenzthiazuron	Pesticides
1941	Bromoxynil octanoate	Pesticides	1227	Monolinuron	Pesticides
1129	Carbendazime	Pesticides	1519	Napropamide	Pesticides
1130	Carbofuran	Pesticides	1882	Nicosulfuron	Pesticides
1464		Pesticides	1669	Norflurazon	Pesticides
1134	Chlorentinphos		-		
	Chlorméphos	Pesticides	1667	Oxadiazon	Pesticides
1474	Chlorprophame	Pesticides	1666	Oxadixyl	Pesticides
1083	Chlorpyriphos éthyl	Pesticides	1231	Oxydéméton méthyl	Pesticides
1540	Chlorpyriphos méthyl	Pesticides	1234	Pendiméthaline	Pesticides
1136	Chlortoluron	Pesticides	1665	Phoxime	Pesticides
2017	Clomazone	Pesticides	1664	Procymidone	Pesticides
1680	Cyproconazole	Pesticides	1414	Propyzamide	Pesticides
1359	Cyprodinil	Pesticides	1432	Pyriméthanil	Pesticides
1143	DDD-o,p'	Pesticides	1892	Rimsulfuron	Pesticides
1144	DDD-p,p'	Pesticides	1263	Simazine	Pesticides
1145	DDE-o,p'	Pesticides	1662	Sulcotrione	Pesticides
1146	DDE-p,p'	Pesticides	1694	Tébuconazole	Pesticides
1147	DDT-o,p'	Pesticides	1661	Tébutame	Pesticides
1148	DDT-p,p'	Pesticides	1268	Terbuthylazine	Pesticides
1830	Déisopropyl-déséthyl-atrazine	Pesticides	2045	Terbuthylazine déséthyl	Pesticides
1149	Deltaméthrine	Pesticides	1954	Terbuthylazine hydroxy	Pesticides
1480	Dicamba	Pesticides	1269	Terbutryne	Pesticides
	Dichlorprop	Pesticides	1660	Tétraconazole	Pesticides
1170	Dichlorvos	Pesticides	1288	Trichlopyr	Pesticides
1173	Dieldrine	Pesticides	1289	Trifluraline	Pesticides
1814	Diflufénicanil	Pesticides	1636	Chlorométhylphénol-4,3	
					Phénois et chlorophénois
1678	Diméthénamide	Pesticides	1471	Chlorophénol-2	Phénois et chlorophénois
1403	Diméthomorphe	Pesticides	1651	Chlorophénol-3	Phénols et chlorophénols
1177	Diuron	Pesticides	1650	Chlorophénol-4	Phénols et chlorophénols
1178	Endosulfan alpha	Pesticides	1486	Dichlorophénol-2,4	Phénols et chlorophénols
1179	Endosulfan beta	Pesticides	1235	Pentachlorophénol	Phénols et chlorophénols
1742	Endosulfan sulfate	Pesticides	1548	Trichlorophénol-2,4,5	Phénols et chlorophénols
1743	Endosulfan Total	Pesticides	1549	Trichlorophénol-2,4,6	Phénols et chlorophénols
1181	Endrine	Pesticides	1584	Biphényle	Semi volatils organiques divers
1744	Epoxiconazole	Pesticides	1461	DEPH	Semi volatils organiques divers
1184	Ethofumésate	Pesticides	1847	Tributylphosphate	Semi volatils organiques divers

# 2. LISTE DES MICROPOLLUANTS ANALYSES SUR SEDIMENTS

5474	Libel param	Famille_composés	Code_SANDR		Famille_composés OHV
1957	4-n-nonylphénol	Alkylphénols	1652 1770	Hexachlorobutadiène	
1920	Nonylphénols p-(n-octyl)phénols	Alkylphénols Alkylphénols	1936	Dibutylétain (oxyde) Tétrabutylétain	Organostanneux complets Organostanneux complets
1958	Para-nonylphénols ramifiés	Alkylphénols	2879	Tributylétain-cation	Organostanneux complets
1959	Para-tert-octylphénol	Alkylphénols	1779	Triphénylétain	Organostanneux complets
1602	Chlorotoluène-2	BTEX	1242	PCB 101	PCB
1601	Chlorotoluène-3	BTEX	1243	PCB 101	PCB
1600	Chlorotoluène-4	BTEX	1244	PCB 138	PCB
1497	Ethylbenzène	BTEX	1245	PCB 153	PCB
1633	Isopropylbenzène	BTEX	1090	PCB 169	PCB
5431	Xylène (ortho+meta+para)	BTEX	1246	PCB 180	PCB
1292	Xylène-ortho	BTEX	1239	PCB 28	PCB
1955	Chloroalcanes C10-C13	Chloroalacanes	1240	PCB 35	PCB
1165	Dichlorobenzène-1,2	Chlorobenzènes	1241	PCB 52	PCB
1164	Dichlorobenzène-1,3	Chlorobenzènes	1091	PCB 77	PCB
1166	Dichlorobenzène-1,4	Chlorobenzènes	1903	Acétochlore	Pesticides
1199	Hexachlorobenzène	Chlorobenzènes	1688	Aclonifen	Pesticides
1888	Pentachlorobenzène	Chlorobenzènes	1103	Aldrine	Pesticides
1631	Tétrachlorobenzène-1,2,4,5	Chlorobenzènes	1125	Bromoxynil	Pesticides
1630	Trichlorobenzène-1,2,3	Chlorobenzènes	1941	Bromoxynil octanoate	Pesticides
1283	Trichlorobenzène-1,2,4	Chlorobenzènes	1464	Chlorfenvinphos	Pesticides
1629	Trichlorobenzène-1,3,5	Chlorobenzènes	1134	Chlorméphos	Pesticides
1774	Trichlorobenzènes	Chlorobenzènes	1474	Chlorprophame	Pesticides
1617	Dichloronitrobenzène-2,3	Chloronitrobenzènes	1083	Chlorpyriphos éthyl	Pesticides
1615	Dichloronitrobenzène-2,5	Chloronitrobenzènes	1540	Chlorpyriphos méthyl	Pesticides
1614	Dichloronitrobenzène-3,4	Chloronitrobenzènes	1359	Cyprodinil	Pesticides
2915	BDE100	Diphényléthers bromés	1143	DDD-o,p'	Pesticides
2912	BDE153	Diphényléthers bromés	1144	DDD-p,p'	Pesticides
2911	BDE154	Diphényléthers bromés	1145	DDE-o,p'	Pesticides
2920	BDE28	Diphényléthers bromés	1146	DDE-p,p'	Pesticides
2919	BDE47	Diphényléthers bromés	1147	DDT-o,p'	Pesticides
2916	BDE99	Diphényléthers bromés	1148	DDT-p,p'	Pesticides
1815	Décabromodiphényléther	Diphényléthers bromés	1149	Deltaméthrine	Pesticides
2609	Octabromodiphénylether	Diphényléthers bromés	1169	Dichlorprop	Pesticides
1921	Pentabromodiphényléther	Diphényléthers bromés	1173	Dieldrine	Pesticides
1453	Acénaphtène	HAP	1814	Diflufénicanil	Pesticides
1622	Acénaphtylène	HAP	1178	Endosulfan alpha	Pesticides
1458	Anthracène	HAP	1179	Endosulfan beta	Pesticides
1082	Benzo (a) Anthracène	HAP	1742	Endosulfan sulfate	Pesticides
1115	Benzo (a) Pyrène	HAP	1742	Endosulfan Total	Pesticides
1116	Benzo (b) Fluoranthène	HAP	1181	Endrine	Pesticides
1118	Benzo (ghi) Pérylène	HAP	1744	Epoxiconazole	Pesticides
1117	Benzo (k) Fluoranthène	HAP	1187	Fénitrothion	Pesticides
1476	Chrysène	HAP	1967	Fénoxycarbe	Pesticides
1621	Dibenzo (ah) Anthracène	HAP	2022	Fludioxonil	Pesticides
1191	Fluoranthène	HAP	2547	Fluroxypyr-meptyl	Pesticides
1623	Fluorène	HAP	1194	Flusilazole	Pesticides
1204	Indéno (123c) Pyrène	HAP	1200	HCH alpha	Pesticides
1619	Méthyl-2-Fluoranthène	HAP	1201	HCH beta	Pesticides
1618	Méthyl-2-naphtalène	HAP	1201	HCH delta	Pesticides
1517	Naphtalène	HAP	2046	HCH delta HCH epsilon	Pesticides
1524	Phénanthrène	HAP	1203	HCH gamma	Pesticides
1537		HAP	1405		Pesticides
1370	Pyrène Aluminium	Métaux	1206	Hexaconazole Inrodione	Pesticides
	Antimoino		1206	Iprodione Isodrine	
1376 1368	Antimoine Argent	Métaux Métaux	1950		Pesticides Pesticides
			1094	Kresoxim méthyl Lambda Cyhalothrine	
1369 1396	Arsenic	Métaux Métaux	1209		Pesticides
1396	Baryum	Métaux	1519	Linuron Napropamide	Pesticides Pesticides
1362	Beryllium Bore	Métaux	1667	Oxadiazon	Pesticides
1362	Cadmium	Métaux	1234	Pendiméthaline	Pesticides
1389	Chrome	Métaux	1664	Procymidone	Pesticides
1379		Métaux	1414	Propyzamide	Pesticides
1379	Cobalt Cuivre	Métaux	1694	Tébuconazole	Pesticides
1380	Etain	Métaux	1661	Tébutame	Pesticides
1393	Fer	Métaux	1268	Terbuthylazine	Pesticides
1394	Manganèse	Métaux	1269	Terbutryne	Pesticides
1387	Mercure	Métaux	1660	Tétraconazole	Pesticides
1395	Molybdène	Métaux	1289	Trifluraline	Pesticides
1386	Nickel	Métaux	1636	Chlorométhylphénol-4,3	Phénols et chlorophénols
1382	Plomb	Métaux	1486	Dichlorophénol-2,4	Phénols et chlorophénols
1385	Sélénium	Métaux	1235	Pentachlorophénol	Phénols et chlorophénols
2559	Tellurium	Métaux	1548	Trichlorophénol-2,4,5	Phénols et chlorophénols
2555	Thallium	Métaux	1549	Trichlorophénol-2,4,6	Phénols et chlorophénols
1373	Titane	Métaux	1584	Biphényle	Semi volatils organiques dive
1201	Uranium	Métaux	1461	DEPH	Semi volatils organiques dive
1361					
1384	Vanadium	Métaux	1847	Tributylphosphate	Semi volatils organiques dive

gence	de l'Eau Rhône Etude des plan	- Méditerranée s d'eau du prog	e & Corse gramme e	e de surveillance des l	bassins	Rhône-Méditerranée et (	Corse – Retenue de Villeneuve	e (66
<i>3</i> .		RENDUS		CAMPAGNES	DE	PRELEVEMENTS	PHYSICOCHIMIQUES	<b>E</b> '.
	PHYTOPLA	NCTONIQUI	ES SUR	<i>L'ANNEE 2012</i>				

# Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES GENERALES PLAN D'EAU - STATION Plan d'eau : Villeneuve-de-la-Raho (retenue de ) Date : 12/03/2012

Type (naturel, artificiel,...):

Organisme / opérateur:

Organisme demandeur:

Vincituve-de-la-Rano (retente de )

artificiel

Code lac: Y0305003

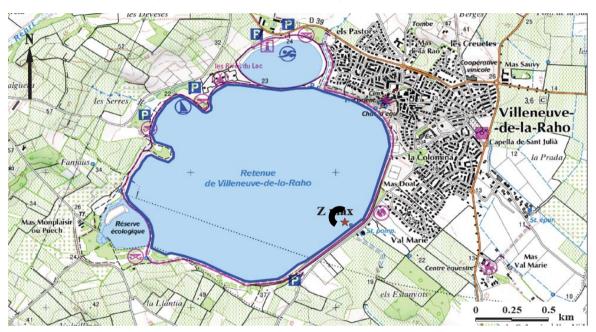
Campagne 1 page 1/5

Agence de l'eau RM&C

marché n° 08M082

#### LOCALISATION PLAN D'EAU

Commune : Villeneuve de la Raho (66)


Lac marnant : oui Type : A11

Temps de séjour : nd jours retenues méditerranéennes de basse altitude, sur

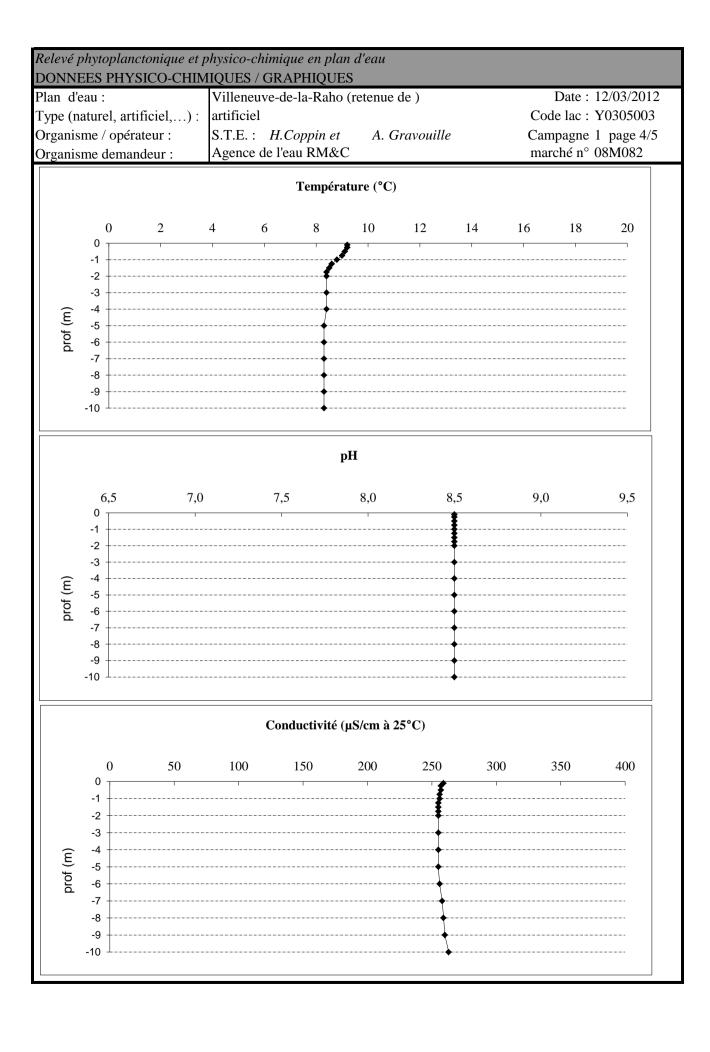
Superficie du plan d'eau : 191 ha socle cristallin, peu profondes

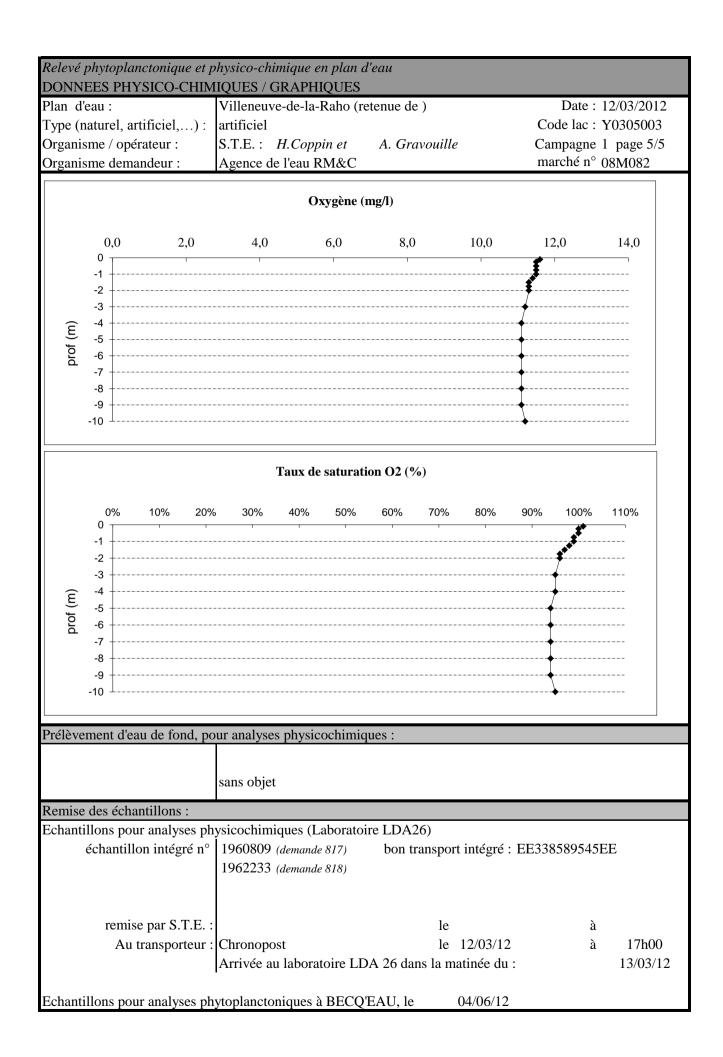
Profondeur maximale: 11 m

Carte: (extrait SCAN25, IGN 1/25 000)



localisation du point de prélèvements


angle de prise de vue de la photographie


#### STATION



Relevé phytoplanctonique et phy	* *
DONNEES GENERALES CAN	
Plan d'eau:	, ( (
Type (naturel, artificiel,):	artificiel Code lac: Y0305003
Organisme / opérateurs :	S.T.E.: H.Coppin et A. Gravouille Campagne 1 page 2/5
Organisme demandeur :	Agence de l'eau RM&C marché n° 08M082
STATION	and and
Coordonnées de la station	
Lambert 93	
WGS 84 (systinternational)	
Profondeur :	11,0 m
	Vent: moyen
	Météo : ensoleillé sec
Conditions d'observation :	Surface de l'eau : faiblement agitée
	-
	Hauteur des vagues: 0,05 m P atm standard: 1012 hPa
	Bloom algal: non Pression atm.: 1019 hPa
Marnage:	oui Hauteur de la bande : -2,0 m
Titulingo .	
Campagne:	campagne de fin d'hiver : homothermie du plan d'eau avant démarrage de l'activité biologique
PRELEVEMENTS	
Heure de début du relevé :	15:10 Heure de fin du relevé : 15:50
Prélèvements pour analyses :	eau chlorophylle matériel employé : pompe phytoplancton
Gestion :	BRL pour irrigation et AEP
Contact préalable :	BRL Exploitation - Secteur de Villeneuve-de-la-Raho
1	G. Fourty - Tél. : 04.68.55.95.54
	Plan de prévention avant intervention
	1
Remarques, observations :	L'intervention était prévue la semaine précédente mais a été annulée
remarques, observations.	pour cause de vent violent
	Cote = 20,22 m NGF le 28/02/2012
	COIC — 20,22 III NOI ¹ IC 20/02/2012

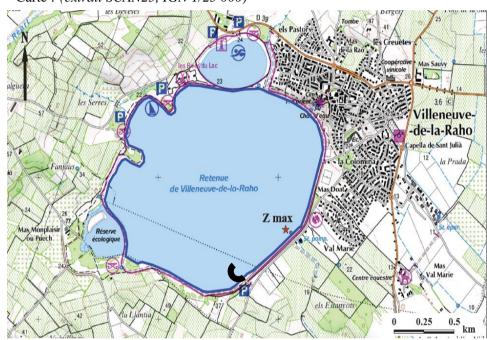
Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES PHYSICO-CHIMIQUES								
Plan d'eau:	_	e-de-la-R	aho (ret	enue de )		Date:	12/03/2012	
Type (naturel, artificiel,):	artificiel	0 00 10 11		,			Y0305003	
Organisme / opérateur :		H.Coppii	n et	A. Gravouille	,	Campagne 1 page 3/5		
Organisme demandeur :		e l'eau RN		marché n°				
TRANSPARENCE								
Secchi en m :	2,0	m						
PROFIL VERTICAL	0,8		Z cupin	otique (2,5 x S	iccciii).	2,0	III	
Moyen de mesure utilisé :		in-situ à	chaque p	orof.	X	en surface da	ans un récipient	
Volume prélevé (en litres) :	Prof.	Temp.	pН	Cond.	$O_2$	$O_2$	Heure	
volume prefeve (en nues).	(m)	(°C)		(µS/cm 25°)	(mg/l)	(%)		
prélèvement intégré (1 L)	-0,1	9,2	8,5	259	11,6	101%	15:10	
prélèvement intégré (1 L)	-0,3	9,2	8,5	257	11,5	100%		
prélèvement intégré (1 L)	-0,5	9,1	8,5	257	11,5	100%		
prélèvement intégré (1 L)	-0,8	9,0	8,5	256	11,5	99%		
prélèvement intégré (1 L)	-1,0	8,8	8,5	256	11,5	99%		
prélèvement intégré (1 L)	-1,3	8,6	8,5	255	11,4	98%		
prélèvement intégré (1 L)	-1,5	8,5	8,5	255	11,3	97%		
prélèvement intégré (1 L)	-1,8	8,4	8,5	255	11,3	96%	15:20	
prélèvement intégré (1 L)	-2,0	8,4	8,5	255	11,3	96%		
	-3,0	8,4	8,5	255	11,2	95%		
	-4,0	8,4	8,5	255	11,1	95%		
	-5,0	8,3	8,5	255	11,1	94%		
	-6,0	8,3	8,5	256	11,1	94%		
	-7,0	8,3	8,5	258	11,1	94%		
	-8,0	8,3	8,5	259	11,1	94%		
	-9,0	8,3	8,5	260	11,1	94%		
	-10,0	8,3	8,5	263	11,2	95%	15:50	





#### Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES GENERALES PLAN D'EAU - STATION Villeneuve-de-la-Raho (retenue de ) Date: 21/05/2012 Plan d'eau: Type (naturel, artificiel,...): artificiel Code lac: Y0305003 Organisme / opérateur : **S.T.E.**: S. Meistermann et C. Jeudy Campagne 2 page 1/5 Organisme demandeur: Agence de l'eau RM&C marché n° 08M082 LOCALISATION PLAN D'EAU

Commune : Villeneuve de la Raho (66)


Lac marnant : oui Type : A11

Temps de séjour : nd jours retenues méditerranéennes de basse altitude, sur

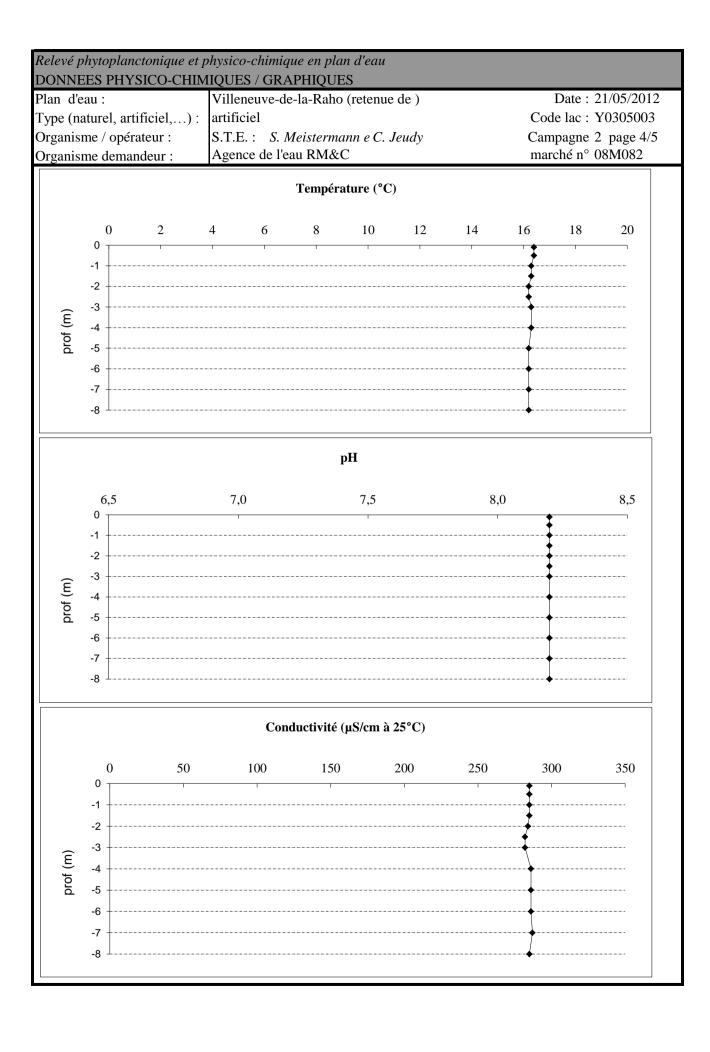
Superficie du plan d'eau : 191 ha socle cristallin, peu profondes

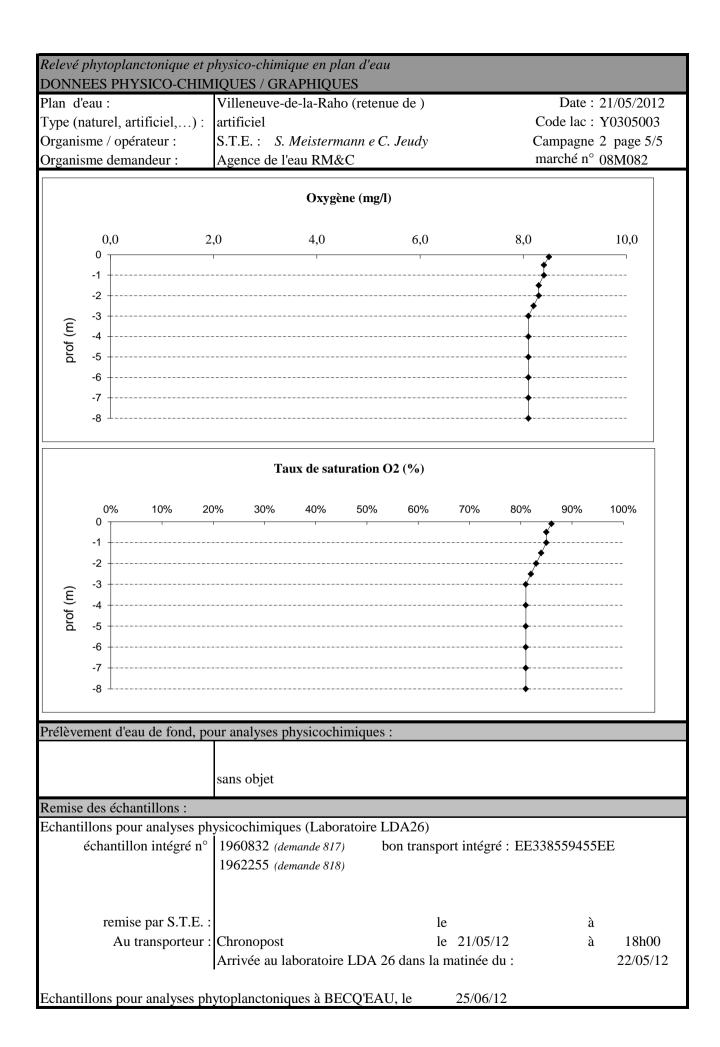
Profondeur maximale: 11 m

Carte: (extrait SCAN25, IGN 1/25 000)



localisation du point de prélèvements


angle de prise de vue de la photographie


### STATION



Relevé phytoplanctonique et ph	ysico-chimique en plan d'eau
DONNEES GENERALES CAN	* *
Plan d'eau :	Villeneuve-de-la-Raho (retenue de ) Date : 21/05/2012
Type (naturel, artificiel,):	artificiel Code lac: Y0305003
Organisme / opérateurs :	S.T.E.: S. Meistermann et C. Jeudy Campagne 2 page 2/5
Organisme demandeur:	Agence de l'eau RM&C marché n° 08M082
STATION	
Coordonnées de la station	relevées sur : GPS
Lambert 93	X:692651 Y: 6169858 alt.: 23 m
WGS 84 (systinternational)	GPS (en dms) X: Y: alt.: m
Profondeur :	9,0 m
	Vent: fort
	Météo: sec fortement nuageux
Conditions d'observation :	Surface de l'eau : très agitée
	Hauteur des vagues : 0,50 m P atm standard : 1012 hPa
	Bloom algal: non Pression atm.: 1033 hPa
Marnage:	oui Hauteur de la bande : -1,0 m
	1244404 60 14 041140 1 1,0 11
Campagne :	campagne printanière de croissance du phytoplancton : mise en place
Campagne .	de la thermocline
PRELEVEMENTS	
PRELEVEMENTS Heure de début du relevé :	16:30 Heure de fin du relevé : 17:10
	16:30 Heure de fin du relevé : 17:10
	16:30 Heure de fin du relevé : 17:10 eau
	eau chlorophylle matériel employé : pompe
Heure de début du relevé :	eau
	eau chlorophylle matériel employé : pompe
Heure de début du relevé :	eau chlorophylle matériel employé : pompe
Heure de début du relevé :	eau chlorophylle matériel employé : pompe
Heure de début du relevé :	eau chlorophylle matériel employé : pompe
Heure de début du relevé :	eau chlorophylle matériel employé : pompe
Heure de début du relevé :  Prélèvements pour analyses :	eau chlorophylle matériel employé : pompe phytoplancton
Heure de début du relevé :  Prélèvements pour analyses :	eau chlorophylle matériel employé : pompe
Heure de début du relevé :  Prélèvements pour analyses :  Gestion :	eau chlorophylle matériel employé : pompe phytoplancton  BRL pour irrigation et AEP
Heure de début du relevé :  Prélèvements pour analyses :  Gestion :	eau chlorophylle matériel employé : pompe phytoplancton  BRL pour irrigation et AEP  BRL Exploitation - Secteur de Villeneuve-de-la-Raho
Heure de début du relevé :  Prélèvements pour analyses :  Gestion :	eau chlorophylle matériel employé : pompe phytoplancton  BRL pour irrigation et AEP  BRL Exploitation - Secteur de Villeneuve-de-la-Raho G. Fourty - Tél. : 04.68.55.95.54
Heure de début du relevé :  Prélèvements pour analyses :  Gestion :	eau chlorophylle matériel employé : pompe phytoplancton  BRL pour irrigation et AEP  BRL Exploitation - Secteur de Villeneuve-de-la-Raho
Heure de début du relevé :  Prélèvements pour analyses :  Gestion :  Contact préalable :	eau chlorophylle matériel employé : pompe phytoplancton  BRL pour irrigation et AEP  BRL Exploitation - Secteur de Villeneuve-de-la-Raho G. Fourty - Tél. : 04.68.55.95.54
Heure de début du relevé :  Prélèvements pour analyses :  Gestion :	eau chlorophylle matériel employé : pompe phytoplancton  BRL pour irrigation et AEP  BRL Exploitation - Secteur de Villeneuve-de-la-Raho G. Fourty - Tél. : 04.68.55.95.54
Heure de début du relevé :  Prélèvements pour analyses :  Gestion :  Contact préalable :	eau chlorophylle matériel employé : pompe phytoplancton  BRL pour irrigation et AEP  BRL Exploitation - Secteur de Villeneuve-de-la-Raho G. Fourty - Tél. : 04.68.55.95.54
Heure de début du relevé :  Prélèvements pour analyses :  Gestion :  Contact préalable :	eau chlorophylle matériel employé : pompe phytoplancton  BRL pour irrigation et AEP  BRL Exploitation - Secteur de Villeneuve-de-la-Raho G. Fourty - Tél. : 04.68.55.95.54
Heure de début du relevé :  Prélèvements pour analyses :  Gestion :  Contact préalable :	eau chlorophylle matériel employé : pompe phytoplancton  BRL pour irrigation et AEP  BRL Exploitation - Secteur de Villeneuve-de-la-Raho G. Fourty - Tél. : 04.68.55.95.54
Heure de début du relevé :  Prélèvements pour analyses :  Gestion :  Contact préalable :	eau chlorophylle matériel employé : pompe phytoplancton  BRL pour irrigation et AEP  BRL Exploitation - Secteur de Villeneuve-de-la-Raho G. Fourty - Tél. : 04.68.55.95.54

Relevé phytoplanctonique et physico-chimique en plan d'eau									
DONNEES PHYSICO-CHIMIQUES									
Plan d'eau :		e-de-la-R	aho (rete	enue de )			21/05/2012		
Type (naturel, artificiel,):	artificiel					Code lac: Y0305003			
Organisme / opérateur :	S.T.E. :	S. Meiste	rmann e	C. Jeudy		Campagne 2 page 3/5			
Organisme demandeur:	Agence d	e l'eau RN	Л&C	marché n°	08M082				
TRANSPARENCE									
Secchi en m :	1,2		Z eupho	otique (2,5 x S	Secchi):	3,0	m		
PROFIL VERTICAL									
Moyen de mesure utilisé :		in-situ à d	chaque p	orof.	X	en surface da	ans un récipient		
Volumo prálová (an litros) :	Prof.	Temp.	pН	Cond.	$O_2$	$O_2$	Heure		
Volume prélevé (en litres) :	(m)	(°C)	_	(µS/cm 25°)	(mg/l)	(%)			
prélèvement intégré (1,5 L)	-0,1	16,4	8,2	285	8,5	86%	16:30		
prélèvement intégré (1,5 L)	-0,5	16,4	8,2	285	8,4	85%			
prélèvement intégré (1,5 L)	-1,0	16,3	8,2	285	8,4	85%			
prélèvement intégré (1,5 L)	-1,5	16,3	8,2	285	8,3	84%			
prélèvement intégré (1,5 L)	-2,0	16,2	8,2	284	8,3	83%			
prélèvement intégré (1,5 L)	-2,5	16,2	8,2	282	8,2	82%			
prélèvement intégré (1,5 L)	-3,0	16,3	8,2	282	8,1	81%	16:50		
	-4,0	16,3	8,2	286	8,1	81%			
	-5,0	16,2	8,2	286	8,1	81%			
	-6,0	16,2	8,2	286	8,1	81%			
	-7,0	16,2	8,2	287	8,1	81%			
	-8,0	16,2	8,2	285	8,1	81%	17:10		
	-,-	,-	-,-		-,-	0270	2,,,2,		





#### Relevé phytoplanctonique et physico-chimique en plan d'eau

# DONNEES GENERALES PLAN D'EAU - STATION

Plan d'eau: Villeneuve-de-la-Raho (retenue de ) Date: 30/07/2012 Code lac: Y0305003 Type (naturel, artificiel,...): artificiel Organisme / opérateur : **S.T.E.** : Campagne 3 page 1/5 A. Gravouille et E.Dor Organisme demandeur: marché n° 08M082 Agence de l'eau RM&C

#### LOCALISATION PLAN D'EAU

Commune : Villeneuve de la Raho (66)


Lac marnant : oui Type: A11

retenues méditerranéennes de basse altitude, sur Temps de séjour : nd jours

Superficie du plan d'eau : 191 socle cristallin, peu profondes ha

Profondeur maximale

Carte: (extrait SCAN25, IGN 1/25 000)

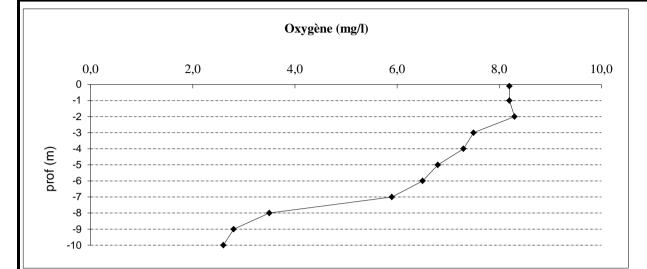


localisation du point de prélèvements

angle de prise de vue de la photographie

#### STATION

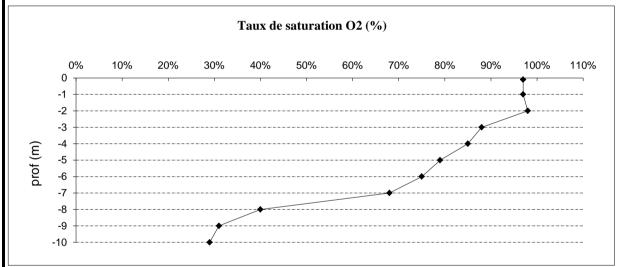



Relevé phytoplanctonique et ph	* *
DONNEES GENERALES CAN	
Plan d'eau:	Villeneuve-de-la-Raho (retenue de )  Date: 30/07/2012
Type (naturel, artificiel,):	artificiel Code lac: Y0305003
Organisme / opérateurs :	S.T.E.: A. Gravouille et E.Dor Campagne 3 page 2/5
Organisme demandeur :	Agence de l'eau RM&C marché n° 08M082
STATION	d CDG
Coordonnées de la station	
Lambert 93	
WGS 84 (systinternational)	
Profondeur:	11,0 m
	Vent: faible
	Météo : ensoleillé sec
Conditions d'observation :	Surface de l'eau : faiblement agitée
	Hauteur des vagues : 0,05 m P atm standard : 1012 hPa
	Bloom algal: non Pression atm.: 1016 hPa
Marnage:	oui Hauteur de la bande : -2,0 m
Warnage .	our riddedi de la bande . 2,0 m
Campagne :	campagne estivale : thermocline bien installée, 2ème phase de croissance du phytoplancton
PRELEVEMENTS	
Heure de début du relevé :	15:30 Heure de fin du relevé : 16:00
Prélèvements pour analyses :	eau chlorophylle matériel employé : pompe phytoplancton
Gestion:	BRL pour irrigation et AEP
Contact préalable :	BRL Exploitation - Secteur de Villeneuve-de-la-Raho
	G. Fourty - Tél. : 04.68.55.95.54
	Plan de prévention avant intervention
Remarques, observations:	Cote = 20,11 m NGF le 26/07/2012

DONNEES PHYSICO-CHIMIQUES	2								
Type (naturel, artificiel,): Organisme / opérateur : S.T.E. : A. Gravouille et E.Dor Campagne 3 page 3/ Magence de l'eau RM&C marché n° 08M082  TRANSPARENCE  Secchi en m : 2,4 Z euphotique (2,5 x Secchi) : 6,0 m  PROFIL VERTICAL  Moyen de mesure utilisé : in-situ à chaque prof. X en surface dans un réci (m) (°C) (m) (°C) (mg/l) (%)  prélèvement intégré (2 L) -0,1 24,0 8,4 277 8,2 97% 15:36 prélèvement intégré (2 L) -1,0 24,0 8,4 282 8,3 98% prélèvement intégré (2 L) -3,0 23,3 8,3 283 7,5 88% prélèvement intégré (2 L) -4,0 23,0 8,2 284 7,3 85%									
Organisme / opérateur :         S.T.E. : A. Gravouille et E.Dor         Campagne 3 page 3/ marché n° 08M082           TRANSPARENCE           Secchi en m : 2,4         Z euphotique (2,5 x Secchi) : 6,0 m           PROFIL VERTICAL           Moyen de mesure utilisé :         in-situ à chaque prof.         X         en surface dans un récival									
Organisme demandeur : Agence de l'eau RM&C         marché n° 08M082           TRANSPARENCE           Secchi en m : 2,4         Z euphotique (2,5 x Secchi) : 6,0 m           PROFIL VERTICAL           Moyen de mesure utilisé : Volume prélevé (en litres) : (m) (°C)         prof. Temp. (m) (°C)         pH (Cond. (μS/cm 25°) (mg/l) (%)         O2 (mg/l) (%)         Heur (%)           prélèvement intégré (2 L) -0,1 24,0 8,4 277 8,2 97%         15:30           prélèvement intégré (2 L) -1,0 24,0 8,4 279 8,2 97%         15:30           prélèvement intégré (2 L) -2,0 23,9 8,4 282 8,3 98%         98%           prélèvement intégré (2 L) -3,0 23,3 8,3 283 7,5 88%         88%           prélèvement intégré (2 L) -4,0 23,0 8,2 284 7,3 85%	;								
TRANSPARENCE           Secchi en m : 2,4         Z euphotique (2,5 x Secchi) : 6,0 m           PROFIL VERTICAL           Moyen de mesure utilisé :         in-situ à chaque prof.         X         en surface dans un récine									
Secchi en m : 2,4         Z euphotique (2,5 x Secchi) : 6,0 m           PROFIL VERTICAL           Moyen de mesure utilisé :         in-situ à chaque prof.         X         en surface dans un récident dans un r									
PROFIL VERTICAL           Moyen de mesure utilisé :         in-situ à chaque prof.         X         en surface dans un récidence dans un r									
Moyen de mesure utilisé :         in-situ à chaque prof.         X         en surface dans un récipe dans un récipe dans un récipe de litres) :           Volume prélevé (en litres) :         Prof. (m)         Temp. (°C)         pH         Cond. (μS/cm 25°)         O2         O2         Heur (mg/l)           prélèvement intégré (2 L)         -0,1         24,0         8,4         277         8,2         97%         15:30           prélèvement intégré (2 L)         -1,0         24,0         8,4         279         8,2         97%           prélèvement intégré (2 L)         -2,0         23,9         8,4         282         8,3         98%           prélèvement intégré (2 L)         -3,0         23,3         8,3         283         7,5         88%           prélèvement intégré (2 L)         -4,0         23,0         8,2         284         7,3         85%									
Volume prélevé (en litres) :         Prof. (m)         Temp. (°C)         pH (μS/cm 25°)         Cond. (μS/cm 25°)         O2 (mg/l)         Heur (mg/l)           prélèvement intégré (2 L)         -0,1         24,0         8,4         277         8,2         97%         15:30           prélèvement intégré (2 L)         -1,0         24,0         8,4         279         8,2         97%           prélèvement intégré (2 L)         -2,0         23,9         8,4         282         8,3         98%           prélèvement intégré (2 L)         -3,0         23,3         8,3         283         7,5         88%           prélèvement intégré (2 L)         -4,0         23,0         8,2         284         7,3         85%	ient								
Volume preleve (en litres):         (m)         (°C)         (μS/cm 25°)         (mg/l)         (%)           prélèvement intégré (2 L)         -0,1         24,0         8,4         277         8,2         97%         15:30           prélèvement intégré (2 L)         -1,0         24,0         8,4         279         8,2         97%           prélèvement intégré (2 L)         -2,0         23,9         8,4         282         8,3         98%           prélèvement intégré (2 L)         -3,0         23,3         8,3         283         7,5         88%           prélèvement intégré (2 L)         -4,0         23,0         8,2         284         7,3         85%									
prélèvement intégré (2 L)       -0,1       24,0       8,4       277       8,2       97%       15:30         prélèvement intégré (2 L)       -1,0       24,0       8,4       279       8,2       97%         prélèvement intégré (2 L)       -2,0       23,9       8,4       282       8,3       98%         prélèvement intégré (2 L)       -3,0       23,3       8,3       283       7,5       88%         prélèvement intégré (2 L)       -4,0       23,0       8,2       284       7,3       85%									
prélèvement intégré (2 L)     -1,0     24,0     8,4     279     8,2     97%       prélèvement intégré (2 L)     -2,0     23,9     8,4     282     8,3     98%       prélèvement intégré (2 L)     -3,0     23,3     8,3     283     7,5     88%       prélèvement intégré (2 L)     -4,0     23,0     8,2     284     7,3     85%									
prélèvement intégré (2 L)     -3,0     23,3     8,3     283     7,5     88%       prélèvement intégré (2 L)     -4,0     23,0     8,2     284     7,3     85%									
prélèvement intégré (2 L) -4,0 23,0 8,2 284 7,3 85%									
prélèvement intégré (2 L) -5,0 23,0 8,1 284 6,8 79%									
prélèvement intégré (2 L) -6,0 22,7 8,0 284 6,5 75% 15:50									
-7,0 22,8 7,9 285 5,9 68%									
-8,0 21,8 7,6 289 3,5 40%									
-9,0 21,2 7,5 291 2,8 31%									
-10,0 21,3 7,5 292 2,6 29% 16:00									

#### Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES Date: 30/07/2012 Plan d'eau: Villeneuve-de-la-Raho (retenue de ) Code lac: Y0305003 artificiel Type (naturel, artificiel,...): Organisme / opérateur : S.T.E.: A. Gravouille et E.Dor Campagne 3 page 4/5 Agence de l'eau RM&C marché n° 08M082 Organisme demandeur: Température (°C) 0 5 10 15 20 25 0 -1 -2 -3 prof (m) -4 -6 -7 -8 -9 -10 pН 7,0 7,5 8,0 6,5 8,5 -1 -2 -3 prof (m) -4 -5 -6 -7 -8 -10 Conductivité (µS/cm à 25°C) 0 50 100 250 300 150 200 350 0 -1 -2 -3 -4 prof (m) -5 -6 -7 -8 -10

# Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES Plan d'eau: Type (naturel, artificiel,...): Organisme / opérateur: S.T.E.: A. Gravouille et E.Dor


Agence de l'eau RM&C



Date: 30/07/2012

Code lac: Y0305003

Campagne 3 page 5/5 marché n° 08M082



Prélèvement d'eau de fond, pour analyses physicochimiques :

sans objet

#### Remise des échantillons:

Organisme demandeur:

Echantillons pour analyses physicochimiques (Laboratoire LDA26)

échantillon intégré n° | 1962281 (demande 817) bon transport intégré : EE338580634EE

1960856 (demande 818)

remise par S.T.E.: le à

Au transporteur : Chronopost le 30/07/12 à 18h00 Arrivée au laboratoire LDA 26 dans la matinée du : 31/07/12

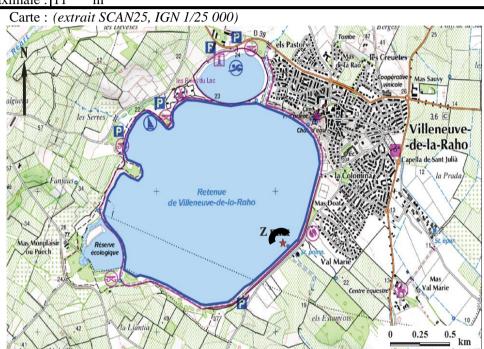
Echantillons pour analyses phytoplanctoniques à BECQ'EAU, le 27/08/12

# Relevé phytoplanctonique et physico-chimique en plan d'eau

# DONNEES GENERALES PLAN D'EAU - STATION

Plan d'eau: Villeneuve-de-la-Raho (retenue de ) Date: 01/10/2012 Code lac: Y0305003 Type (naturel, artificiel,...): artificiel Organisme / opérateur : **S.T.E.** : Campagne 4 page 1/6 A. Gravouille et E. Dor Organisme demandeur: marché n° 08M082 Agence de l'eau RM&C

#### LOCALISATION PLAN D'EAU


Commune : Villeneuve de la Raho (66)

Lac marnant : oui Type: A11

retenues méditerranéennes de basse altitude, sur Temps de séjour : nd jours

Superficie du plan d'eau : 191 socle cristallin, peu profondes ha

Profondeur maximale



localisation du point de prélèvements

angle de prise de vue de la photographie

#### STATION



Relevé phytoplanctonique et ph	*
DONNEES GENERALES CAM	
Plan d'eau:	Villeneuve-de-la-Raho (retenue de )  Date: 01/10/2012
Type (naturel, artificiel,):	artificiel Code lac: Y0305003
Organisme / opérateurs :	S.T.E.: A. Gravouille et E. Dor Campagne 4 page 2/6
Organisme demandeur :	Agence de l'eau RM&C marché n° 08M082
STATION	
Coordonnées de la station	
Lambert 93	
WGS 84 (systinternational)	
Profondeur:	
	Vent: nul
	Météo : ensoleillé sec
Conditions d'observation :	Surface de l'eau : faiblement agitée
	Hauteur des vagues : 0,02 m P atm standard : 1013 hPa
	Bloom algal: non Pression atm.: 1014 hPa
Marnage:	oui Hauteur de la bande : -2,5 m
Warnage .	our ridded de la builde . 2,5 m
Campagne :	campagne de fin d'été : fin de stratification estivale, avant baisse de la température
PRELEVEMENTS	
Heure de début du relevé :	15:00 Heure de fin du relevé : 15:30
Prélèvements pour analyses :	eau chlorophylle matériel employé : pompe phytoplancton sédiments benne Ekmann
Gestion:	BRL pour irrigation et AEP
Contact préalable :	BRL Exploitation - Secteur de Villeneuve-de-la-Raho G. Fourty - Tél. : 04.68.55.95.54 Plan de prévention avant intervention
Damaranas observations	G . 10.26 NGP1 20/00/2012
Kemarques, observations.	Cote = 19,26 m NGF le 28/09/2012

Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES PHYSICO-CHIMIQUES										
Plan d'eau :	_	e-de-la-R	aho (ret	enue de )		Date :	01/10/2012			
Type (naturel, artificiel,):	artificiel		Code lac: Y0305003							
	S.T.E. :	A. Gravo	uille et		Campagne 4 page 3/6					
Organisme demandeur :	Agence d	e l'eau RN	<b>Л&amp;</b> С	marché n°						
TRANSPARENCE										
Secchi en m :	0,8		Z eupho	otique (2,5 x S	Secchi):	2,0	m			
PROFIL VERTICAL	,			1	,	,				
Moyen de mesure utilisé :		in-situ à o	chaque p	orof.	X	en surface da	ns un récipient			
V-1	Prof.	Temp.	pН	Cond.	$O_2$	$O_2$	Heure			
Volume prélevé (en litres) :	(m)	(°C)	-	(µS/cm 25°)	(mg/l)	(%)				
prélèvement intégré (2 L)	-0,1	18,6	8,4	319	8,3	89%	15:00			
prélèvement intégré (2 L)	-1,0	18,5	8,4	320	8,3	88%				
prélèvement intégré (2 L)	-2,0	18,5	8,4	327	8,3	88%	15:10			
	-3,0	18,3	8,4	322	8,3	88%				
	-4,0	18,2	8,4	322	8,2	87%				
	-5,0	18,2	8,4	323	8,2	87%				
	-6,0	18,1	8,4	323	7,9	84%				
	-7,0	18,0	8,4	324	7,9	83%				
	-8,0	17,8	8,4	323	7,8	82%				
	-9,0	17,7	8,3	323	7,7	81%	15:30			

#### Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES Date: 01/10/2012 Plan d'eau: Villeneuve-de-la-Raho (retenue de ) artificiel Code lac: Y0305003 Type (naturel, artificiel,...): Organisme / opérateur : S.T.E.: A. Gravouille et E. Dor Campagne 4 page 4/6 marché n° 08M082 Organisme demandeur: Agence de l'eau RM&C Température (°C) 12 0 2 4 8 10 14 16 18 20 6 0 -2 -3 prof (m) -4 -5 -6 -7 -8 -9 pН 7,0 7,5 8,0 8,5 9,0 -2 -3 prof (m) -4 -5 -6 -7 -8 -9 Conductivité (µS/cm à 25°C) 50 100 0 150 200 250 300 350 0 -1 -2 -3 prof (m) -4 -5 -6 -7 -8 -9

#### Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES Villeneuve-de-la-Raho (retenue de ) Date: 01/10/2012 Plan d'eau: Type (naturel, artificiel,...): artificiel Code lac: Y0305003 Organisme / opérateur : S.T.E.: A. Gravouille et E. Dor Campagne 4 page 5/6 marché n° 08M082 Organisme demandeur: Agence de l'eau RM&C Oxygène (mg/l) 0,0 2,0 4,0 6,0 8,0 10,0 0 -2 -3 prof (m) -4 -5 -6 -7 -8 Taux de saturation O2 (%) 70% 0% 10% 20% 30% 40% 50% 60% 80% 90% 100% 0 prof (m) -5 -6 Prélèvement d'eau de fond, pour analyses physicochimiques : sans objet Remise des échantillons: Echantillons pour analyses physicochimiques (Laboratoire LDA26) échantillon intégré n° bon transport intégré: EE338529440EE 1960884 (demande 817) 1962304 (demande 818) remise par S.T.E.: le à Au transporteur : Chronopost le 01/10/12 à 17h00 Arrivée au laboratoire LDA 26 dans la matinée du : 02/10/12

17/10/12

Echantillons pour analyses phytoplanctoniques à BECQ'EAU, le

Prélèvements de sédiments pour analyses physico-chimiques							
DONNEES GENERALES P	LAN DEAU	- PRELEVEM	IENT DE SEDIM	IENTS			
Plan d'eau : Villeneuve-de-l		la-Raho (retenue de )			Date: 01/10/2012		
Type (naturel, artificiel, artificiel				Co	ode lac: Y03	05003	
Organisme / opérateur : S	<b>S.T.E.</b> A. Gravouille et E.			E. Dor	E. Dor heure: 15:40		
•	Agence de l'eau RM&C			marché n° 08M082			
					page 6/6		
Conditions de milieu							
chaud, ensoleillé X p	ériode estimée	favorable à :		débi	oits des affluents		
couvert	mort et sédimentation du planct		ncton				
	sédimentation de MES de toute nature			>>	turbidité affl	uent	
Vent S			ice nature		Secchi (m) 0,8		
					2000m (m)	-,-	
Matériel				I [.,			
drague fond plat p	elle à main		benne X	piège	caro	ttier	
Localisation générale de la	zone de prélè	vements (en 1	oarticulier, X Y	Lambert 93)			
_	_			,	V (16005	0	
Point de plus grande profond	leur (cf campa	gne 4) X:	692651		Y: 616985	8	
Prélèvements		1	2	3	4	5	
profondeur (en m)		10	10	10			
épaisseur échantillonnée							
récents (<2cm)		X					
anciens (>2cm)							
indéterminé							
épaisseur, en cm :			5	5			
granulomérie dominante							
graviers							
sables		X					
limons							
vases		X	X	X			
argile							
aspect du sédiment							
homogène			X	X			
hétérogène		X					
couleur		marron/gris	gris/gris foncé	gris/grisfoncé			
odeur		oui	oui	oui			
présence de débris végétx non décomp		non	non	non			
présence d'hydrocarbures (irisations)		non	non	non			
présence d'autres débris		non	non	non			
Remarques générales :							
Remise des échantillons :							
Echantillons pour analyses pl	hysicochimiau	es (Laboratoir	e LDA26)				
échantillons			sédiment : 2016930 2048297		930		
		2010/2/					
remise par S.T.F	E. :	le		à			

Au transporteur: Chronopost le 01/10/2012 à 17h00

arrivée au laboratoire LDA 26 en mi-journée du : 02/10/2012