

Agence de l'Eau Rhône-Méditerranée et Corse

ETUDE DES PLANS D'EAU DU PROGRAMME DE SURVEILLANCE DES BASSINS RHONE-MEDITERRANEE ET CORSE - RAPPORT DE DONNEES BRUTES ET INTERPRETATION - RETENUE DU REALTOR SUIVI ANNUEL 2012

crédit photo : Sciences et Techniques de l'Environnement

Rapport n° 08-283/2013-PE2012-19 – Septembre 2013

co-traitants

sous-traitants

Maître d'Ouvrage :	Agence de l'Eau Rhône Méditerranée et Corse (AERMC) Direction des Données et Redevances 2-4, allée de Lodz 69363 Lyon cedex 09					
	Interlocuteur: Mr Imbert Loïc					
	Coordonnées: loic.imbert@eaurmc.fr					

Titre du Rapport	ETUDE DES PLANS D'EAU DU PROGRAMME DE SURVEILLANCE DES BASSINS RHONE-MEDITERRANEE ET CORSE				
Résumé	Le rapport rend compte de l'ensemble des données collectées sur la retenue du Réaltor lors des campagnes de suivi 2012. Une présentation du plan d'eau et du cadre d'intervention est menée puis les résultats des investigations sont développés dans la suite du document.				
Mots-clés	Géographiques : Bassins Rhône-Méditerranée et Corse - Bouches-du-Rhône (13) - Retenue du Réaltor				
	Thematiques : Réseau	ux de surveillance - Etat trophique - Pla	n d'eau		
Date	Septembre 2013	Statut du rapport	Définitif		
Présent tirage en exemplaire (s)	1	Diffusion informatique au Maître d'Ouvrage	oui		

Auteur	Sciences et Techniques de l'Environnement – B.P. 374 17, Allée du Lac d'Aiguebelette - Savoie Technolac 73372 Le Bourget du Lac cedex tél.: 04 79 25 08 06; tcp: 04 79 62 13 22
Rédacteur(s)	Hervé Coppin
Chef de projet – contrôle qualité	Eric Bertrand / Audrey Péricat

SOMMAIRE

PREAMBULE		<u>1</u>
1 CADRE DU PROGRAMME DE SUIVI		3
1.1 INVESTIGATIONS PHYSICOCHIMIQU	JES	4
1.2 INVESTIGATIONS HYDROMORPHOL	OGIQUES ET HYDROBIOLOGIQUES	5
2 PRESENTATION DU PLAN D'EAU ET	LOCALISATION	6
3 CONTENU DU SUIVI 2012		8
RESULTATS DES INVESTIGATION	<u>vs</u>	<u>9</u>
	JES	
1.1 ANALYSES DES EAUX DU LAC		11
1.2 ANALYSES DE SEDIMENTS		19
2 PHYTOPLANCTON		22
2.2 LISTE FLORISTIQUE (NOMBRE DE C	ELLULES/ML)	23
	ROUPEMENTS PHYTOPLANCTONIQUES	
3 MACROPHYTES		27
3.1 CHOIX DES UNITES D'OBSERVATION	V	27
3.2 CARTE DE LOCALISATION DES UNIT	TES D'OBSERVATION	28
3.3 VEGETATION AQUATIQUE IDENTIFI	EE PAR UNITE D'OBSERVATION	29
3.4 LISTE DES ESPECES PROTEGEES ET	ESPECES INVASIVES	31
3.5 APPROCHE DU NIVEAU TROPHIQUE	DU PLAN D'EAU	31
3.6 COMPARAISON AVEC LE SUIVI DE F	OPULATION DE MACROPHYTES 2009	31
3.7 RELEVES DES UNITES D'OBSERVAT	ION	32
INTERPRETATION GLOBALE DES	S RESULTATS	33
ANNEXES		35
<u> </u>	•••••••••••••••••••••••••••••••••••••••	JJ

Agence de l'Eau Rhône - Méditerranée & Corse Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Retenue du Réaltor (13)
<u>PREAMBULE</u>

CADRE DU PROGRAMME DE SUIVI

Dans le cadre de la mise en œuvre de la Directive Cadre européenne sur l'Eau (DCE), un programme de surveillance doit être établi pour suivre l'état écologique (ou le potentiel écologique) et l'état chimique des eaux douces de surface.

Différents réseaux constituent le programme de surveillance. Parmi ceux-ci, deux réseaux sont actuellement mis en œuvre sur les plans d'eau :

- Le réseau de contrôle de surveillance (RCS) vise à donner une image globale de la qualité des eaux. Tous les plans d'eau naturels supérieurs à 50 ha ont été pris en compte sur les bassins Rhône-Méditerranée et Corse. Pour les plans d'eau d'origine anthropique, une sélection a été opérée parmi les plans d'eau supérieurs à 50 ha, afin de couvrir au mieux les différents types présents (grandes retenues, plans d'eau de digue, plans d'eau de creusement).
- Le contrôle opérationnel (CO) vise à suivre spécifiquement les masses d'eau (naturelles ou anthropiques) supérieures à 50 ha, à risque de non atteinte du bon état (ou du bon potentiel) des eaux en 2015.

Au total, 80 plans d'eau sont suivis sur les bassins Rhône-Méditerranée et Corse dans le cadre de des deux réseaux RCS et CO.

Le contenu du programme de suivi sur les plans d'eau est identique pour le RCS et le CO. Un plan d'eau concerné par le CO sera cependant suivi à une fréquence plus soutenue (tous les 3 ans) comparativement à un plan d'eau strictement visé par le RCS (tous les 6 ans).

Le tableau 1 résume les différents éléments suivis sur une année et les fréquences d'intervention associées. Il s'agit du suivi qualitatif type mis en place sur les plans d'eau concernés par le RCS et le CO. Pour chaque plan d'eau, selon leur typologie et l'historique de leur suivi, ce programme peut faire l'objet d'ajustements concernant l'hydrobiologie et l'hydromorphologie.

Un suivi « allégé » a été mené sur quatorze plans d'eau identifiés en tant que masses d'eaux DCE mais non intégrés aux réseaux RCS et CO. Ce suivi s'inscrit dans le cadre de la préparation du nouvel état des lieux du bassin Rhône-Méditerranée afin de préciser l'état de ces plans d'eau en l'absence de données milieux disponibles. Neuf plans d'eau ont ainsi été suivis en 2011 et cinq en 2012.

Le contenu du programme de suivi de ces plans d'eau est dit « allégé » puisqu'ils ne font pas l'objet de prélèvements d'eau de fond et seule l'étude du peuplement phytoplanctonique est réalisée concernant l'hydrobiologie et l'hydromorphologie. Le contenu du suivi est ainsi restreint aux seuls éléments permettant à ce jour de définir l'état écologique et chimique des plans d'eau selon l'arrêté "Surveillance" du 25 janvier 2010.

Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Retenue du Réaltor (13)

Tableau 1 : synoptique générique des investigations menées sur une année de suivi d'un plan d'eau

			Paramètres	Type de prélèvements/ Mesures	HIVER	PRINTEMPS	ЕТЕ	AUTOMNE
Mesures in situ		Mesures in situ	O2 dis. (mg/l, %sat.), pH, COND (25°C), T°C, transparence secchi	Profils verticaux		Х	х	Х
	2	Physico-chimie classique	DBO5, PO4, Ptot, NH4, NKJ, NO3, NO2, COT, COD, MEST, Turbidité, Si dissoute	Prélèvement intégré et prélèvement ponctuel de fond	Х	Х	Х	х
	Sur EAU	Substances prioritaires, autres substances et pesticides	Micropolluants*	Prélèvement intégré et prélèvement ponctuel de fond	Х	х	Х	Х
	Pigments chlorophylliens Minéralisation		Chlorophylle a + phéopigments	Prélèvement intégré		х	х	Х
			Ca ²⁺ , Na ⁺ , Mg ²⁺ , K ⁺ , dureté, TA, TAC, SO ₄ ²⁻ , Cl ⁻ , HCO ₃ ⁻	Prélèvement intégré				
(Physico-chimie Corg., Ptot, p Substances prioritaires autres		PO4, Ptot, NH4					
Sur SEDIMENTS			Corg., Ptot, NKJ, Granulomètrie, perte au feu	Prélèvement ponctuel au point de plus grande profondeur				Х
ns			Micropolluants*					
HYDROBIOLOGIE et HYDROMORPHOLOGIE			Phytoplancton	Prélèvement intégré (Cemagref/Utermöhl)	Х	Х	Х	Х
			Oligochètes	IOBL				Х
		HYDRORIOI OGIE et	Mollusques	IMOL				Х
			Macrophytes	Protocole Cemagref (nov.2007)			Χ	
			Hydromorphologie	A partir du Lake Habitat Survey (LHS)			Х	
			Suivi piscicole	Protocole CEN (en charge de l'ONEMA)			Х	

^{* :} se référer à l'annexe 5 de la circulaire DCE 2006/16, analyses à réaliser sur les paramètres pertinents à suivre sur le support concerné

1.1 INVESTIGATIONS PHYSICOCHIMIQUES

Les différents paramètres physico-chimiques analysés sur l'eau sont suivis lors de quatre campagnes calées aux différentes phases du cycle annuel de fonctionnement du plan d'eau, soit entre le mois de février et le mois d'octobre. Les dates d'intervention sont mentionnées dans le tableau 2, au paragraphe 3.

A chaque campagne, sont réalisées au point de plus grande profondeur, toutes ou partie des investigations suivantes (en fonction du type de réseau) :

- 1. un profil vertical des paramètres physico-chimiques de terrain : température, conductivité, oxygène dissous (en mg/l et % saturation) et pH ;
- 2. des échantillons d'eau pour analyses (physico-chimie, micropolluants, pigments chlorophylliens), il s'agit :
 - ✓ d'un prélèvement intégré sur la colonne d'eau (constitué à partir du mélange de prélèvements ponctuels réalisés tous les mètres entre la surface et 2,5 fois la transparence mesurée avec le disque de Secchi);
 - ✓ d'un prélèvement de fond (réalisé généralement à un mètre du fond).

Les sédiments sont prélevés une fois par an lors de la 4^{ème} et dernière campagne au point de plus grande profondeur.

Les échantillons d'eau et de sédiments ont été transmis au Laboratoire Départemental d'Analyses de la Drôme (LDA 26) en charge des analyses.

1.2 Investigations hydromorphologiques et hydrobiologiques

Les investigations hydromorphologiques et hydrobiologiques ont été réalisées à des périodes adaptées aux objectifs des méthodes utilisées.

L'évaluation morphologique du lac est établie en suivant le protocole du Lake Habitat Survey (LHS) dans sa version 3.1 (mai 2006).

Les investigations hydrobiologiques comprennent plusieurs volets :

- 1 l'étude des peuplements phytoplanctoniques à partir du protocole standardisé d'échantillonnage, de conservation, d'observation et de dénombrement du phytoplancton en plan d'eau pour la mise en œuvre de la DCE (CEMAGREF INRA; version 3.3 de mars 2009);
- 2 l'étude des peuplements d'oligochètes à travers la détermination de l'Indice Oligochètes de Bio-indication Lacustre : IOBL (Norme AFNOR NF T90-391, mars 2005), les prélèvements suivent ce protocole.
- l'étude des peuplements de mollusques avec la détermination de l'Indice Mollusques : IMOL (Mouthon, J. (1993) Un indice biologique lacustre basé sur l'examen des peuplements de mollusques. Bull. Franç. Pêche Pisc., 331 : 397-406) ;
- 4 l'étude des peuplements de macrophytes sur le lac s'appuie sur la méthode mise au point par le CEMAGREF et décrite au sein de la norme AFNOR XP T90-328 : « Echantillonnage des communautés de macrophytes en plans d'eau », décembre 2010.

2 Presentation du plan d'eau et localisation

La retenue du Réaltor est située dans le département des Bouches-du-Rhône (13) entre Aix-en-Provence et Vitrolles à une altitude de 159 m. Le plan d'eau est formé par une digue construite sur le Ruisseau de la Beaume de Baragne. L'ouvrage est géré par la Société des Eaux de Marseille pour l'alimentation en eau potable de l'agglomération marseillaise. Le bassin sert de régulateur/décanteur des eaux du canal de Marseille.

Carte 1 : localisation de la retenue du Réaltor (Bouches-du-Rhône)

Le plan d'eau formé est de taille réduite, environ 60 ha pour un volume théorique de 1 million de m³ en Cote Normale d'Exploitation. Sa profondeur maximale théorique est de 10 m mais il a été fortement envasé et la profondeur maximale mesurée en 2012 n'a été que de 2,8 m. Le plan d'eau est principalement alimenté par les eaux du canal de Marseille mais également par le ruisseau de la Beaume de Baragne. Une vanne régule les débits entrant et sortant depuis le canal de Marseille (cf. schéma de fonctionnement). L'exutoire naturel est le ruisseau de la Mérindole. La cote du plan d'eau varie très régulièrement selon le niveau du canal de Marseille et des besoins de stockage. Le site est fermé au public, aucune activité n'est pratiquée sur le plan d'eau.

Par accord entre la Société des Eaux de Marseille, gestionnaire du canal de Marseille, et l'Agence de l'Eau Rhône-Méditerranée et Corse, commanditaire de la présente étude, le point de prélèvements a été déplacé entre 2009 et 2012 pour permettre une meilleure représentativité du fonctionnement hydrologique de la masse d'eau. En effet, le point de prélèvements 2009 était situé à l'aval d'un point de vue topographique mais à l'amont d'un point de vue hydraulique.

3 CONTENU DU SUIVI 2012

La retenue du Réaltor est suivie au titre du Contrôle Opérationnel (CO). Parmi les investigations hydromorphologiques et hydrobiologiques précitées, seules les études des peuplements phytoplanctoniques et des peuplements de macrophytes ont été réalisées. Les investigations mollusques et oligochètes n'ont pas été réalisées en raison de la faible profondeur du plan d'eau ne permettant pas l'application de ces protocoles. L'étude hydromorphologique n'a également pas été menée en 2012 (déjà suivie en 2009 par l'Office National de l'Eau et des Milieux Aquatiques), la fréquence de suivi de cet élément étant de 6 ans. Le tableau ci-dessous indique la répartition des missions au sein du groupement aussi bien en phase terrain qu'en phase laboratoire/détermination. S.T.E. a en outre eu en charge de coordonner la mission et de collecter l'ensemble des données pour établir les rapports et mener l'exploitation des données.

Bassin du Réaltor (13)		Phase terrain				
Campagne	C1	C2	C3	Macrophytes	C4	
Date	27/02/2012	11/05/2012	09/07/2012	23/08/2012	08/10/2012	automne/hiver 2012-2013
Physicochimie des eaux	S.T.E.	S.T.E.	S.T.E.		S.T.E.	LDA26
Physicochimie des sédiments					S.T.E.	LDA26
Phytoplancton	S.T.E.	S.T.E.	S.T.E.		S.T.E.	BECQ'Eau
Macrophytes				Mosaïque environnement		Mosaïque environnement

Tableau 2 : synoptique des interventions de terrain et de laboratoire sur le plan d'eau, par campagne

Le bilan climatique¹ de l'hiver 2011/2012 pour cette région souligne des températures conformes aux moyennes de saison, un cumul de précipitations légèrement déficitaire et une durée d'ensoleillement légèrement excédentaire. Le mois de février a notamment été marqué par une vague de froid durant la 1^{ère} quinzaine.

Le bilan climatique du printemps 2012 souligne des températures et une durée d'ensoleillement conformes aux moyennes de saison. Le cumul de précipitations a été légèrement excédentaire : le mois de mars s'est révélé remarquablement sec au contraire du mois d'avril qualifié de particulièrement humide.

Le bilan climatique de l'été 2012 souligne des températures largement excédentaires par rapport aux moyennes de saison et à l'inverse un cumul de précipitations déficitaire. La durée d'ensoleillement est conforme aux moyennes de saison. Le mois d'août sec, chaud et ensoleillé a contrebalancé un début d'été frais et nuageux. La 2ème quinzaine du mois d'août se caractérise par une vague de chaleur.

¹ Comparaison des valeurs moyennes des saisons de l'année 2012 aux valeurs moyennes saisonnières sur la période 1980-2010 (source : http://climat.meteofrance.com)

Agence de	l'Eau Rhône - Méditerranée & Corse Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse –	Retenue du Réaltor (13)
	RESULTATS DES	
	INVESTIGATIONS	
	<u> </u>	

1 INVESTIGATIONS PHYSICOCHIMIQUES

Les comptes rendus des campagnes de prélèvements physicochimiques et phytoplanctoniques sont présentés en annexe 3.

1.1 ANALYSES DES EAUX DU LAC

1.1.1 Profils verticaux et evolutions saisonnieres

Le suivi prévoit la réalisation de profils verticaux sur la colonne d'eau à chaque campagne. Quatre paramètres sont mesurés : la température, la conductivité, l'oxygène (en concentration et en % saturation) et le pH. Les graphiques regroupant ces résultats pour chaque paramètre lors des 4 campagnes sont affichés dans ce chapitre.

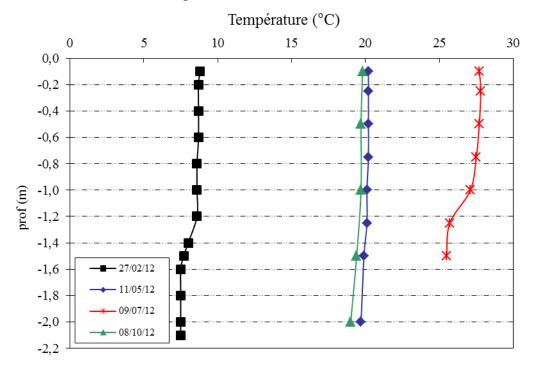


Figure 1: profils verticaux de température au point de plus grande profondeur

La retenue du Réaltor ne présente pas de stratification thermique durable en raison de sa faible profondeur. Il est tout de même possible d'observer des gradients thermiques de faible amplitude et de courte durée liés aux conditions météorologiques de la période d'intervention (absence de vent et réchauffement de surface). Ainsi, la colonne d'eau présente une ébauche de stratification le 27/02/2012 et le 09/07/2012 et elle est homogène le 11/05/2012 et le 08/10/2012. En fin d'hiver, les eaux de la retenue du Réaltor sont proches de 8°C. Elles atteignent 28°C en campagne 3 avant un refroidissement à 20°C environ en automne.

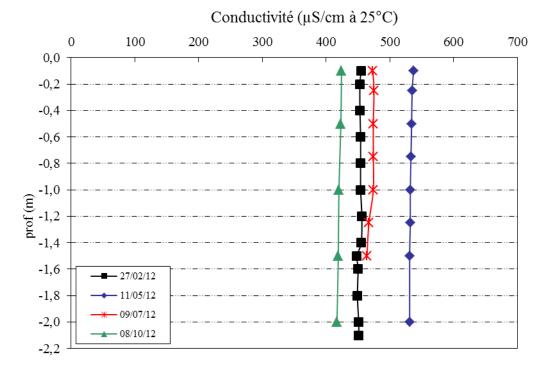


Figure 2 : profils verticaux de conductivité au point de plus grande profondeur

La conductivité, comprise entre 415 et 540 μ S/cm, indique une eau fortement minéralisée, en lien avec la nature calcaire des substrats. Elle est quasiment homogène sur la colonne d'eau lors des différentes campagnes :

- ✓ à 450 µS/cm en campagne 1;
- ✓ à 535 µS/cm en campagne 2;
- ✓ à 470 µS/cm en campagne 3;
- ✓ à 420 µS/cm en campagne 4.

On observe une augmentation significative de la conductivité entre les campagnes 1 et 2, certainement en lien avec les apports. Les minéraux sont ensuite consommés au cours de la période estivale, induisant une diminution progressive de la conductivité.

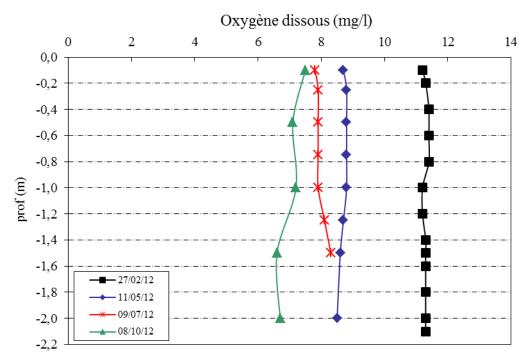


Figure 3 : profils verticaux d'oxygène (mg/l) au point de plus grande profondeur

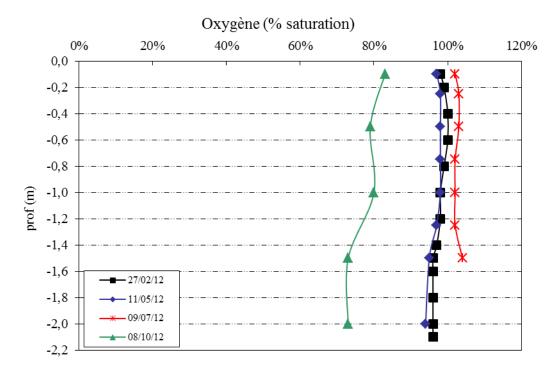


Figure 4 : profils verticaux d'oxygène (% sat.) au point de plus grande profondeur

L'oxygénation est complète sur l'ensemble de la colonne lors des 3 premières campagnes (environ 100% de saturation). La campagne 4 est marquée par une déplétion en oxygène qui est plus importante au fond (73% de saturation) qu'en surface (83% de saturation). Cette consommation d'oxygène s'explique par les processus de dégradation de la matière organique macrophytique et phytoplanctonique.

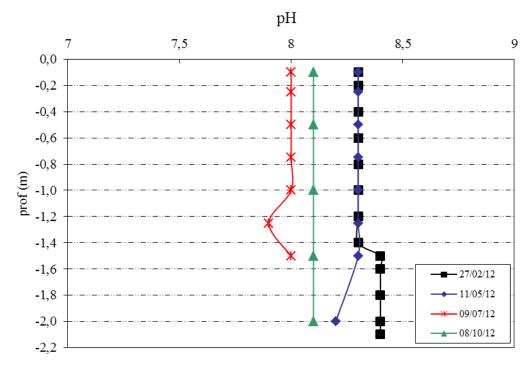


Figure 5: profils verticaux de pH au point de plus grande profondeur

Le pH est peu variable sur la retenue du Réaltor, à la fois sur la colonne d'eau lors de chaque campagne mais aussi au fil du temps. Il est légèrement alcalin, entre 8,0 et 8,3.

1.1.2 PARAMETRES DE CONSTITUTION ET TYPOLOGIE DU LAC

N.B. pour tous les tableaux suivants :

LD = limite de détection, généralement =SQ/3, sauf pour DBO5 et turbidité pour lesquels LD=SQ, avec SQ = seuil de quantification; Prés. = valeur comprise entre LD et SQ, composé présent mais non précisément quantifiable.

Les paramètres de minéralisation sont étudiés lors de la 1^{ère} campagne uniquement. Les résultats sont présentés dans le tableau 3.

Tableau 3 : résultats des paramètres de minéralisation lors de la 1ère campagne

Retenue du	Réaltor	seuil quantification	27/02/2012		
code plan d'eau :	Y4125003	seun quantification	Intégré	Fond	
Dureté calculée	°F	0,1	24,8		
T.A.C.	°F	0,5	14,8		
T.A.	°F	0,5	<ld< td=""><td></td></ld<>		
CO ₃	mg(CO3)/l	6	<ld< td=""><td></td></ld<>		
HCO ₃	mg(HCO3)/l	6,1	175,7		
Calcium total	mg(Ca)/l	1	78,0		
Magnésium	mg(Mg)/l	1	13,0		
Sodium	mg(Na)/l	1	12,0		
Potassium	mg(K)/l	1	1,1		
Chlorures	mg(Cl)/l	1	17,0		
Sulfates	mg(SO4)/l	1	102,0		

Les résultats indiquent une eau bien carbonatée, de dureté particulièrement élevée. La retenue du Réaltor et son bassin versant se trouvent pour l'essentiel sur des terrains calcaires, ce qui explique la forte minéralisation des eaux. La concentration en sulfates est particulièrement élevée.

1.1.3 RESULTATS DES ANALYSES PHYSICOCHIMIQUES DES EAUX (HORS MICROPOLLUANTS)

Tableau 4 : résultats des paramètres de physico-chimie classique sur eau.

Physico-chimie sur eau										
Retenue du	Réaltor	seuil quantification	27/02/2012		11/05/2012		09/07/2012		08/10/2012	
code plan d'eau :	Y4125003	seun quantification	Intégré	Fond	Intégré	Fond	Intégré	Fond	Intégré	Fond
Turbidité	NTU	0,1	14,2	12,5	8,9	16,6	14,0	17,0	5,7	6,5
M.E.S.T.	mg/l	1	13	17	10	16	14	17	11	12
C.O.D.	mg(C)/l	0,1	0,8	0,8	1,6	1,6	1,1	1,2	0,9	0,9
C.O.T.	mg(C)/l	0,1	0,9	0,8	1,7	1,7	1,1	1,2	0,9	0,9
D.B.O.5	mg(O2)/l	0,5	1,6	1,1	0,5	0,5	<ld< td=""><td>0,5</td><td>0,5</td><td><ld< td=""></ld<></td></ld<>	0,5	0,5	<ld< td=""></ld<>
Azote Kjeldahl	mg(N)/l	1	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
NH ₄ ⁺	mg(NH4)/l	0,05	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,05</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,05</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,05</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,05</td><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	0,05	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
NO_3^-	mg(NO3)/l	1	1,9	1,9	<ld< td=""><td><ld< td=""><td>1,2</td><td>1,1</td><td>1,4</td><td>1,4</td></ld<></td></ld<>	<ld< td=""><td>1,2</td><td>1,1</td><td>1,4</td><td>1,4</td></ld<>	1,2	1,1	1,4	1,4
NO_2^-	mg(NO2)/l	0,02	0,02	0,03	0,02	0,02	0,02	0,02	0,02	0,02
PO ₄	mg(PO4)/l	0,015	<ld< td=""><td><ld< td=""><td>0,037</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,037</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,037	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Phosphore Total	mg(P)/l	0,005	0,021	0,024	0,016	0,028	0,015	0,024	0,017	0,019
Silice dissoute	mg(SiO2)/l	0,2	3,0	3,0	4,9	4,9	5,4	5,4	4,5	4,7
Chl. A	μg/l	1	<ld< td=""><td></td><td>2,4</td><td></td><td>2,7</td><td></td><td>1,1</td><td></td></ld<>		2,4		2,7		1,1	
Chl. B	μg/l	1	<ld< td=""><td></td><td><ld< td=""><td></td><td><ld< td=""><td></td><td><ld< td=""><td></td></ld<></td></ld<></td></ld<></td></ld<>		<ld< td=""><td></td><td><ld< td=""><td></td><td><ld< td=""><td></td></ld<></td></ld<></td></ld<>		<ld< td=""><td></td><td><ld< td=""><td></td></ld<></td></ld<>		<ld< td=""><td></td></ld<>	
Chl. C	μg/l	1	<ld< td=""><td></td><td>1,0</td><td></td><td><ld< td=""><td></td><td><ld< td=""><td></td></ld<></td></ld<></td></ld<>		1,0		<ld< td=""><td></td><td><ld< td=""><td></td></ld<></td></ld<>		<ld< td=""><td></td></ld<>	
Indice phéopigments	μg/l	1	<ld< td=""><td></td><td><ld< td=""><td></td><td><ld< td=""><td></td><td><ld< td=""><td></td></ld<></td></ld<></td></ld<></td></ld<>		<ld< td=""><td></td><td><ld< td=""><td></td><td><ld< td=""><td></td></ld<></td></ld<></td></ld<>		<ld< td=""><td></td><td><ld< td=""><td></td></ld<></td></ld<>		<ld< td=""><td></td></ld<>	

Les analyses des fractions dissoutes ont été réalisées sur eau filtrée (COD, NH4, NO3, NO2, PO4, Si).

Les eaux de la retenue du Réaltor sont globalement turbides et chargées en matières en suspension (apports des eaux de la Durance via le canal de Marseille). La charge organique est faible, le carbone organique dissous est compris entre 0,8 et 1,6 mg/l.

En fin d'hiver, les eaux de la retenue du Réaltor sont assez riches en nitrates (1,9 mg/l) et pauvres en orthophosphates (non quantifiés). Le rapport N/P² est donc important, le phosphore est le facteur limitant pour la production végétale par rapport à l'azote, favorisant ainsi le développement des chlorophycées. La seconde campagne est ensuite marquée par la non-quantification des nitrates, probablement consommés pour la production biologique. Les orthophosphates sont alors biodisponibles (0,037 mg/l dans l'échantillon intégré). Lors des campagnes 3 et 4, la concentration en nitrates varie entre 1,1 et 1,4 mg/l. On constate la quantification de nitrites lors des différentes campagnes, à de faibles concentrations (0,02 à 0,03 mg/l).

La teneur en silice dissoute est moyenne à élevée et favorise ainsi le développement des diatomées. La turbidité importante des eaux (particules minérales) contribue probablement à limiter la production chlorophyllienne dans la retenue du Réaltor.

² le rapport N/P est calculé à partir de [Nminéral]/ [P-PO₄³⁻] avec N minéral = [N-NO₃⁻]+[N-NO₂⁻]+[N-NH₄⁺] sur la campagne de fin d'hiver.

1.1.4 MICROPOLLUANTS MINERAUX

Tableau 5 : résultats d'analyses de métaux sur eau

Micropolluants minér	Micropolluants minéraux sur eau									
Retenue du	Réaltor	seuil	27/02/	/2012	11/05	/2012	09/07/	/2012	08/10	/2012
code plan d'eau :	Y4125003	quantification	Intégré	Fond	Intégré	Fond	Intégré	Fond	Intégré	Fond
Aluminium	μg(Al)/l	5	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>5</td><td>6</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>5</td><td>6</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>5</td><td>6</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>5</td><td>6</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	5	6	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Antimoine	μg(Sb)/l	0,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Argent	μg(Ag)/l	0,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Arsenic	μg(As)/l	0,2	0,4	0,4	0,4	0,5	0,5	0,6	0,3	0,4
Baryum	μg(Ba)/l	5	37	36	45	46	45	45	37	37
Beryllium	μg(Be)/l	0,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Bore	μg(B)/l	5	14	14	30	30	19	17	13	13
Cadmium	μg(Cd)/l	0,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Chrome Total	μg(Cr)/l	0,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Cobalt	μg(Co)/l	0,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Cuivre	μg(Cu)/l	0,2	1,4	0,4	0,6	0,5	0,7	0,6	0,6	0,6
Etain	μg(Sn)/l	0,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Fer total	μg(Fe)/l	5	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Manganèse	μg(Mn)/l	5	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Mercure	μg(Hg)/l	0,1	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Molybdène	μg(Mo)/l	0,2	1,0	1,0	0,8	0,8	1,1	1,1	0,9	0,9
Nickel	μg(Ni)/l	0,2	0,6	0,5	0,7	0,8	0,6	0,5	0,5	0,5
Plomb	μg(Pb)/l	0,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Sélénium	μg(Se)/l	0,2	0,3	0,4	0,4	0,4	0,3	0,3	0,3	0,2
Thallium	μg(Tl)/l	0,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Titane	μg(Ti)/l	5	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Uranium	μg(U)/l	0,2	1,1	1,1	0,6	0,6	1,0	1,0	0,8	0,8
Vanadium	μg(V)/l	0,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,3</td><td>0,3</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,3</td><td>0,3</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,3</td><td>0,3</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,3</td><td>0,3</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	0,3	0,3	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Zinc	μg(Zn)/l	2	<ld< td=""><td>11</td><td>3</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>5</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	11	3	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>5</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>5</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>5</td></ld<></td></ld<>	<ld< td=""><td>5</td></ld<>	5

Les analyses sur les métaux ont été effectuées sur eau filtrée.

Plusieurs micropolluants minéraux sont présents dans l'eau en quantité plus ou moins importante :

- ✓ l'arsenic à des concentrations comprises entre 0.3 et $0.5 \mu g/l$;
- ✓ le cuivre à des concentrations comprises entre 0,4 à 1,4 µg/l;
- ✓ le nickel à des concentrations comprises entre 0.5 et $0.8 \mu g/l$;
- ✓ l'uranium à des concentrations comprises entre 0.6 et $1.1 \mu g/l$;
- ✓ le zinc à la concentration de 11 µg/l dans l'échantillon de fond de campagne 1.

Parmi les éléments de constitution des minéraux des substrats, on trouve du baryum, du bore et du vanadium.

1.1.5 MICROPOLLUANTS ORGANIQUES

Le tableau 6 indique les micropolluants organiques qui ont été détectés (présent à l'état de traces ou quantifiés) lors des campagnes de prélèvements. La liste de l'ensemble des substances analysées est fournie en annexe 1.

Tableau 6: résultats d'analyses de micropolluants organiques présents sur eau

Micropolluants organiques mis en évidence sur eau										
Retenue du	Réaltor	seuil quantification	27/02	/2012	11/05/	/2012	09/07/2012		08/10/2012	
code plan d'eau :	Y4125003	seun quantification	Intégré	Fond	Intégré	Fond	Intégré	Fond	Intégré	Fond
Acide monochloroacétique	μg/l	5	<ld< td=""><td>9</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	9	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Fluorène	μg/l	0,01	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,01</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,01</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,01</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,01</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,01</td><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,01</td><td><ld< td=""></ld<></td></ld<>	0,01	<ld< td=""></ld<>
Monobutylétain	μg/l	0,003			<ld< td=""><td>0,003</td><td>0,009</td><td>0,015</td><td>0,016</td><td>0,006</td></ld<>	0,003	0,009	0,015	0,016	0,006
Naphtalène	μg/l	0,02	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,04</td><td>0,04</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,04</td><td>0,04</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,04</td><td>0,04</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,04</td><td>0,04</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,04</td><td>0,04</td></ld<></td></ld<>	<ld< td=""><td>0,04</td><td>0,04</td></ld<>	0,04	0,04
Phénanthrène	μg/l	0,01	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,02</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,02</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,02</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,02</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,02</td><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,02</td><td><ld< td=""></ld<></td></ld<>	0,02	<ld< td=""></ld<>
Toluène	μg/l	0,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,3</td><td>0,6</td><td>0,6</td><td>0,4</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,3</td><td>0,6</td><td>0,6</td><td>0,4</td><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,3</td><td>0,6</td><td>0,6</td><td>0,4</td><td><ld< td=""></ld<></td></ld<>	0,3	0,6	0,6	0,4	<ld< td=""></ld<>
Xylène méta	μg/l	0,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,3</td><td>0,4</td><td>0,2</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,3</td><td>0,4</td><td>0,2</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,3</td><td>0,4</td><td>0,2</td><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,3</td><td>0,4</td><td>0,2</td><td><ld< td=""></ld<></td></ld<>	0,3	0,4	0,2	<ld< td=""></ld<>
Xylène ortho	μg/l	0,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,2</td><td>0,2</td><td>0,2</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,2</td><td>0,2</td><td>0,2</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,2</td><td>0,2</td><td>0,2</td><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,2</td><td>0,2</td><td>0,2</td><td><ld< td=""></ld<></td></ld<>	0,2	0,2	0,2	<ld< td=""></ld<>
Xylène para	μg/l	0,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,2</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,2</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,2</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,2</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,2</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	0,2	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>

Il s'agit d'une présentation des résultats bruts, certaines valeurs pouvant être qualifiées d'incertaines suite à la validation finale des résultats (cas par exemple des valeurs mesurées en BTEX, HAP, DEHP, Formaldéhyde, dont une contamination via la chaîne de prélèvement et/ou d'analyse de laboratoire est parfois privilégiée).

Des composés de type BTEX, le toluène et les différentes formes du xylène, ont été quantifiés à de faibles teneurs dans les échantillons de campagne 3 et l'échantillon intégré de campagne 4. Le toluène est également présent dans l'échantillon de fond de campagne 2. Trois hydrocarbures aromatiques polycycliques (HAP), le fluorène, le naphtalène et le phénanthrène, ont également été mesurés en campagne 4.

Deux autres micropolluants organiques ont été quantifiés dans les eaux de la retenue du Réaltor :

- ✓ l'acide monochloroacétique dans l'échantillon de fond de campagne 1 ;
- ✓ le monobutylétain (composé de la famille des organostanneux) lors des campagnes 2, 3 et 4.

1.2 ANALYSES DE SÉDIMENTS

1.2.1 Physicochimie des sediments

Le tableau 7 fournit la synthèse de l'analyse granulométrique menée sur les sédiments prélevés.

Tableau 7 : synthèse granulométrique sur le sédiment du point de plus grande profondeur

Sédiment : composition granulométrique (%)							
R	etenue o	lu Réaltor	08/10/2012				
code pl	an d'eau	ı: Y4125003	06/10/2012				
classe granu	lométriq	ue (µm)	%				
0	à	2	7,4				
2	à	20	38,8				
20	à	50	21,2				
50	à	63	4,9				
63	à	200	22,3				
200	à	1000	5,4				
1000	à	2000	0,0				
> 2000			0,0				

Il s'agit de sédiments fins, de nature limono-sableuse (exempts de débris grossiers). Les limons (2 à 20 µm) et les sables fins (20 à 200 µm) représentent respectivement 38,8 % et 48,4 % du sédiment.

Les analyses de physico-chimie classique menées sur la fraction solide et sur l'eau interstitielle du sédiment sont rapportées au tableau 8.

Tableau 8 : analyse de sédiments

Eau interstitielle du sédiment : Physico-chimie							
Retenue du	Retenue du Réaltor						
code plan d'eau :	Y4125003	seuil quantification	08/10/2012				
NH ₄ ⁺	mg(NH4)/l	0,5	<ld< td=""></ld<>				
PO ₄	mg(PO4)/l	1,5	<ld< td=""></ld<>				
Phosphore Total	mg(P)/l	0,1	<ld< td=""></ld<>				

Sédiment : Physico-chimie							
Retenue du	Réaltor	seuil quantification					
code plan d'eau :	Y4125003	seun quantification	08/10/2012				
Matières sèches minérales	% MS	0	95,3				
Perte au feu	% MS	0	4,7				
Matières sèches totales	%	0	73,3				
C.O.T.	mg(C)/kg MS	1	24000,0				
Azote Kjeldahl	mg(N)/kg MS	1	1700,0				
Phosphore Total	mg(P)/kg MS	0,5	355,3				

Dans les sédiments, la teneur en matière organique est faible avec 4,7 % de perte au feu. La concentration en azote organique est également faible (1,7 g/kg MS). Le rapport C/N est de 14,1, il reflète une prédominance de matière macrophytique en voie de dégradation. La concentration en phosphore est considérée comme faible, inférieure à 0,4 g/kg MS.

Agence de l'Eau Rhône - Méditerranée & Corse

Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Retenue du Réaltor (13) L'eau interstitielle contient les minéraux facilement mobilisables dans les sédiments. L'ammonium et le phosphore ne sont pas quantifiés. L'interface eau/sédiment n'est pas anoxique, il n'y a donc pas de risque de relargage.

1.2.2 MICROPOLLUANTS MINERAUX

Ils ont été dosés sur la fraction solide du sédiment.

Tableau 9 : Micropolluants minéraux sur sédiment

Sédiment : Micropolluan	Sédiment : Micropolluants minéraux						
Retenue du	Réaltor	:1:C::					
code plan d'eau :	Y4125003	seuil quantification	08/10/2012				
Aluminium	mg(Al)/kg MS	10	20512				
Bore	mg(B)/kg MS	0,2	50,7				
Fer total	mg(Fe)/kg MS	10	11886				
Mercure	mg(Hg)/kg MS	0,015	0,037				
Zinc	mg(Zn)/kg MS	0,2	47,6				
Antimoine	mg(Sb)/kg MS	0,2	0,4				
Argent	mg(Ag)/kg MS	0,2	<ld< td=""></ld<>				
Arsenic	mg(As)/kg MS	0,2	5,7				
Baryum	mg(Ba)/kg MS	0,2	159,4				
Beryllium	mg(Be)/kg MS	0,2	0,7				
Cadmium	mg(Cd)/kg MS	0,2	<ld< td=""></ld<>				
Chrome Total	mg(Cr)/kg MS	0,2	38,7				
Cobalt	mg(Co)/kg MS	0,2	6,3				
Cuivre	mg(Cu)/kg MS	0,2	16,6				
Etain	mg(Sn)/kg MS	0,2	1,8				
Manganèse	mg(Mn)/kg MS	0,2	287,6				
Molybdène	mg(Mo)/kg MS	0,2	0,3				
Nickel	mg(Ni)/kg MS	0,2	20,9				
Plomb	mg(Pb)/kg MS	0,2	11,8				
Sélénium	mg(Se)/kg MS	0,2	1,4				
Tellurium	mg(Te)/kg MS	0,2	<ld< td=""></ld<>				
Thallium	mg(Th)/kg MS	0,2	0,3				
Titane	mg(Ti)/kg MS	0,2	1348,0				
Uranium	mg(U)/kg MS	0,2	1,1				
Vanadium	mg(V)/kg MS	0,2	49,2				

Les concentrations en micropolluants minéraux sont faibles dans les sédiments de la retenue du Réaltor et ne suggèrent donc pas de pollution particulière de ce compartiment.

1.2.3 MICROPOLLUANTS ORGANIQUES

Le tableau 10 indique les micropolluants organiques qui ont été quantifiés dans les sédiments lors de la campagne de prélèvements. La liste de l'ensemble des substances analysées est fournie en annexe 2.

Tableau 10 : résultats d'analyses de micropolluants organiques présents sur sédiment

Sédiment : Micropolluants organique	Sédiment : Micropolluants organiques mis en évidence							
Retenue du	Réaltor	seuil quantification						
code plan d'eau :	Y4125003	seun quantification	08/10/2012					
Benzo (a) anthracène	μg/kg MS	10	13					
Benzo (a) pyrène	μg/kg MS	10	18					
Benzo (b) fluoranthène	μg/kg MS	10	56					
Benzo (ghi) pérylène	μg/kg MS	10	26					
Di(2-éthylhexyl)phtalate (DEHP)	μg/kg MS	100	107					
Fluoranthène	μg/kg MS	40	55					
Hexachlorobenzène	μg/kg MS	10	12					
Indéno (1,2,3-cd) pyrène	μg/kg MS	10	32					
PCB101	μg/kg MS	1	6					
PCB105	μg/kg MS	1	2					
PCB118	μg/kg MS	1	5					
PCB132	μg/kg MS	1	2					
PCB138	μg/kg MS	1	5					
PCB149	μg/kg MS	1	3					
PCB153	μg/kg MS	1	4					
PCB170	μg/kg MS	1	1					
PCB180	μg/kg MS	1	2					
PCB44	μg/kg MS	1	2					
PCB52	μg/kg MS	1	3					
PCB77	μg/kg MS	1	2					

Divers hydrocarbures et plusieurs PCB ont été quantifiés dans les sédiments de la retenue du Réaltor:

- ✓ 6 hydrocarbures aromatiques polycycliques (HAP) ont été recensés pour une concentration totale faible de 200 μg/kg;
- ✓ 12 substances appartenant aux PCB (polychlorobiphényles) ont été quantifiées pour une concentration totale non négligeable de 37 µg/kg.

Le DEHP, un indicateur plastifiant, a également été mesuré à la concentration faible de 107 µg/kg.

Un chlorobenzène, l'hexachlorobenzène, a été quantifié à la concentration de 12 µg/kg dans les sédiments de la retenue du Réaltor. Ce composé compte parmi les 12 polluants organiques persistants de la convention de Stockholm qui vise à réduire et/ou éliminer les rejets de ces substances dans l'environnement. Avant 1988, l'hexachlorobenzène était entre autres utilisé comme fongicide dans les cultures agricoles. Il est aujourd'hui un sous-produit involontaire dans certaines industries, principalement dans la fabrication de solvants chlorés³.

S.T.E. - Sciences et Techniques de l'Environnement - Rapport 08-283/2013-PE2012-19 - octobre 2013 - Page 21

³ Source: <u>http://www.ineris.fr/rsde/fiches/fiche hexachlorobenzene.pdf</u>

2 PHYTOPLANCTON

2.1 Prélèvements intégrés

Les prélèvements intégrés destinés à l'analyse du phytoplancton ont été réalisés en même temps que les prélèvements pour analyses physicochimiques. Sur la retenue du Réaltor, la zone euphotique et la transparence mesurées sont représentées par le graphique de la figure 6. La zone euphotique est identique lors des 4 campagnes : elle atteint 1,5 m de profondeur. La transparence est donc faible (0,6 m) sur la retenue du Réaltor, en lien avec la turbidité naturelle des eaux.

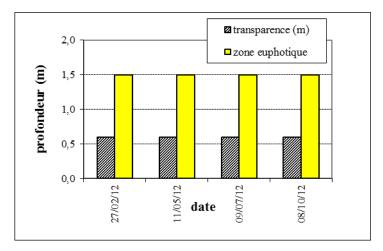


Figure 6 : évolution de la transparence et de la zone euphotique aux 4 campagnes

La liste des espèces de phytoplancton par plan d'eau a été établie selon la méthodologie développée par le CEMAGREF: Protocole standardisé d'échantillonnage, de conservation, d'observation et de dénombrement du phytoplancton en plan d'eau pour la mise en œuvre de la DCE, Mars 2009.

La diversité taxonomique N espèces correspond au nombre de taxons identifiés à l'espèce, à l'exclusion des groupes et familles, ainsi que des taxons identifiés au genre quand une espèce du même genre est présente et déterminée à l'espèce. Le nombre N' correspond à la diversité taxonomique totale incluant tous les taxons aux différents niveaux d'identification (nombre le plus probable).

2.2 LISTE FLORISTIQUE (NOMBRE DE CELLULES/ML)

Tableau 11: Liste taxonomique du phytoplancton

Retenue du Réa	ltor	Date prélèvement				
Classe	Nom Taxon	27/02/2012	11/05/2012	09/07/2012	08/10/2012	
Chlorophycées	Chlorella vulgaris	78	740	115	79	
	Chlorophycées flagellées indéterminées diam 5-10 µm			8	2	
	Chlorophycées indéterminées	27		14	19	
	Choricystis minor	251	277	56	63	
	Coenochloris hindakii	24				
	Crucigenia tetrapedia	84				
	Desmodesmus communis	60	37			
	Desmodesmus spinosus	6			8	
	Dictyosphaerium pulchellum	167				
	Dictyosphaerium pulchellum var. minutum		136			
	Hyaloraphidium contortum	3		3		
	Lagerheimia genevensis				2	
	Monoraphidium arcuatum		6		2	
	Monoraphidium circinale	15	74	6	2	
	Monoraphidium komarkovae		123		2	
	Monoraphidium minutum	134	31	3	2	
	Monoraphidium tortile	9				
	Nephrochlamys rostrata	21		3		
	Pseudodidymocystis fina	305	25			
	Quadrigula closterioides	12				
	Scenedesmus bicaudatus	108				
	Scenedesmus sp.	24				
	Sphaerocystis schroeteri	12				
	Tetraedron minimum	9				
	Tetrastrum triangulare	299				
Chrysophycées	Chrysococcus sp.		37			
	Chrysolykos planctonicus				2	
	Dinobryon divergens	3		6	13	
	Dinobryon elegantissimum			143	6	
	Dinobryon sertularia			342		
	Dinobryon sociale var. stipitatum		18	199	85	
	Erkenia subaequiciliata		129	3	6	
	Kephyrion ovale		394	14	81	
	Kephyrion ovum	3				
	Kephyrion spirale		6			
	Mallomonas sp.				2	
	Pseudopedinella sp.	3				
Cryptophycées	Cryptomonas sp.	21	12	31	106	
-	Plagioselmis nannoplanctica	117	456	48	263	
Diatomées	Asterionella formosa	3				
	Diatomées centriques indéterminées	24			2	
	Diatomées centriques indéterminées <10 µm	134	74	67	63	

Agence de l'Eau Rhône - Méditerranée & Corse Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Retenue du Réaltor (13)

	Fragilaria sp.	3	6	17	
	Nitzschia sp.		25	8	
	Ulnaria delicatissima var. angustissima			6	
	Ulnaria ulna var. acus			20	2
Dinoflagellés	Gymnodinium lantzschii		18	6	17
	Gymnodinium sp.			6	
	Peridinium sp.				6
Euglènes	Euglena sp.			6	15
	Trachelomonas volvocina	9			
A	bondance cellulaire totale (nb cellules/ml)	1966	2626	1129	850
	Diversité taxonomique N	26	19	20	20
	Diversité N'	30	20	24	25

2.3 ÉVOLUTIONS SAISONNIÈRES DES GROUPEMENTS PHYTOPLANCTONIQUES

Les échantillons destinés à la détermination du phytoplancton sont constitués d'un prélèvement intégré sur la zone euphotique (équivalant à 2,5 fois la transparence lors de la campagne). Les graphiques suivants présentent la répartition du phytoplancton par groupe algal à partir des résultats exprimés en cellules/ml d'une part et à partir des biovolumes (mm³/l) d'autre part.

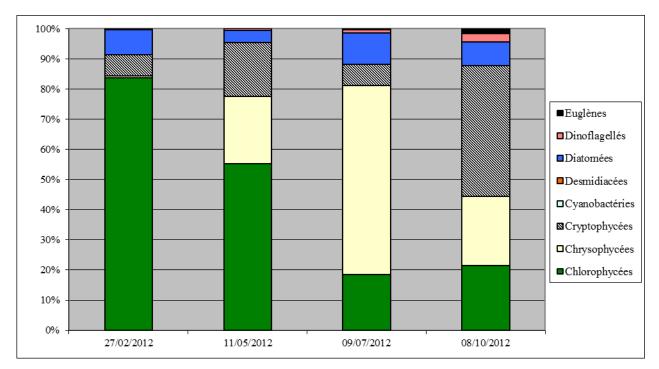


Figure 7: Répartition du phytoplancton sur la retenue du Réaltor à partir des abondances (cellules/ml)

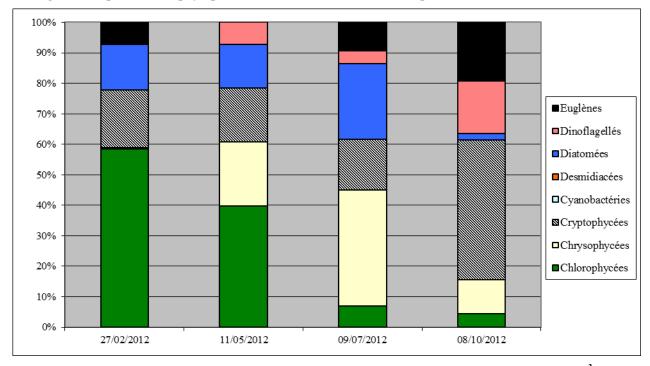


Figure 8: Répartition du phytoplancton sur la retenue du Réaltor à partir des biovolumes (mm³/l)

Le peuplement phytoplanctonique de la retenue du Réaltor présente une abondance faible à très faible tout au long de la saison, comprise entre 850 et 2626 cellules/ml représentant un biovolume de 0,239 à 0,450 mm³/l. La diversité taxonomique est moyenne, variant de 19 à 26 taxons selon les campagnes.

En fin d'hiver, le peuplement est dominé par les chlorophycées, en particulier *Choricystis minor*, *Pseudodidymocystis fina* et *Tetrastrum triangulare*, qui représentent 58% du biovolume total et 84% de l'abondance cellulaire. Elles sont accompagnées principalement par des cryptophycées et des diatomées, représentant respectivement 7 et 8% du peuplement en termes d'abondance cellulaire et 19 et 15% en termes de biovolume.

Au printemps, les chrysophycées, notamment *Kephyrion ovale*, se développent et constituent plus de 20% du peuplement phytoplanctonique tant en termes d'abondance cellulaire que de biovolume. Bien que les espèces dominantes soient différentes, les chlorophycées sont encore bien présentes et constituent près de la moitié du peuplement. Les cryptophycées et les diatomées, quant à elles, se maintiennent (diatomées) voire se développent (cryptophycées).

La campagne estivale est caractérisée par une forte diminution des chlorophycées et des cryptophycées qui ne représentent respectivement plus que 18% et 7% du peuplement en termes d'abondance cellulaire. Les chrysophycées du genre *Dinobryon* continuent leur développement sur le début de l'été jusqu'à constituer la majorité du peuplement phytoplanctonique (63% de l'effectif et 38% du biovolume).

La dernière campagne est marquée par une chute des chrysophycées au profit des cryptophycées qui représentent près de la moitié du peuplement. Notons la présence non négligeable d'euglènes en termes de biovolume (19%), groupe algal se rencontrant généralement dans les eaux riches en matière organique.

Tant en termes de biovolume que d'abondance cellulaire, les groupes algaux présents (cryptophycées, chrysophycées et chlorophycées) ne traduisent pas une eutrophisation particulièrement marquée. L'indice phytoplanctonique (IPL) est de 38,3, qualifiant le milieu d'oligo-mésotrophe.

3 MACROPHYTES

3.1 CHOIX DES UNITÉS D'OBSERVATION

La retenue du Réaltor a déjà fait l'objet d'un suivi des populations de macrophytes en 2009 par le bureau d'études S.T.E. pour l'Agence de l'eau Rhône-Méditerranée et Corse. Le protocole suivi était la version 3 (novembre 2007) de la « Méthodologie d'étude des communautés de macrophytes en plans d'eau » établie par le Cemagref. En 2012, le protocole suivi par S.T.E. respecte la norme AFNOR XP T90-328 (Décembre 2010) normalisant le protocole du Cemagref.

Le positionnement des unités d'observation est déterminé avec la méthode de Jensen. Pour la retenue du Réaltor, 5 profils perpendiculaires à la plus grande longueur du plan d'eau ont été représentés, soit 10 points contacts potentiels auxquels s'ajoutent les 2 points correspondant aux points de départ et d'arrivée de cette ligne de base.

Le protocole d'échantillonnage s'appuie sur :

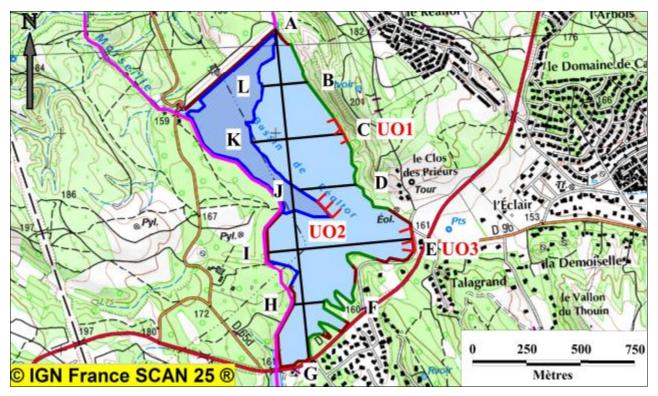
- ✓ les différents types de rives recensés sur le plan d'eau pour la sélection des unités d'observation (UO) à prospecter ;
- ✓ la pente des fonds et la transparence des eaux pour définir la limite de profondeur des profils perpendiculaires à explorer sur chaque UO (définition de la zone potentiellement colonisée par les végétaux).

Sur la retenue du Réaltor, 3 types de rives ont été observés. Une appréciation du recouvrement est donnée en % du périmètre total (approximation à 10%) :

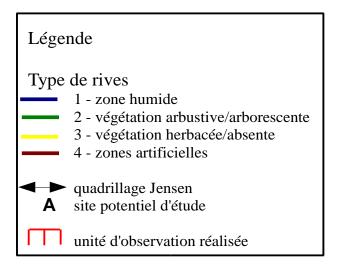
- ✓ Type 1 ; zones humides caractéristiques : 30 % ;
- ✓ Type 2 ; zones rivulaires colonisées par une végétation arbustive ou arborescente non humide : 40 % ;
- ✓ Type 4 ; zones artificialisées ou subissant des pressions anthropiques visibles : 30 %.

La transparence est faible avec 0,6 m mesuré au disque de Secchi. La limite de profondeur de la zone à explorer (Ze), selon la définition de la Norme AFNOR XP T90-328, atteint une profondeur de 1,8 m. La longueur des profils perpendiculaires est variable, de 45 à 100 m selon les UO prospectées. La superficie du plan d'eau étant de 62 ha, 3 unités d'observation ont été sélectionnées selon leur représentativité d'un type de rive soit : une unité de type 1, une unité de type 2 et une unité de type 4.

Les unités d'observation ainsi sélectionnées sont :


- ✓ UO 1 : 1 unité de type 2 ;
- ✓ UO 2 : 1 unité de type 1 ;
- ✓ UO 3 : 1 unité de type 4.

Pour chaque unité d'observation, le choix a porté sur un secteur exclusivement constitué d'un type de rive (sur 100 m minimum), accessible, à l'exclusion des arrivées de tributaires, et des singularités. Il a été effectué en respectant les critères de la norme XP T90-328 tout en s'appuyant sur la localisation des UO ayant déjà fait l'objet d'inventaires lors du précédent suivi (2009) afin de


Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Retenue du Réaltor (13) pouvoir suivre l'évolution temporelle des peuplements de macrophytes.

3.2 CARTE DE LOCALISATION DES UNITÉS D'OBSERVATION

Les relevés de végétation aquatique se sont déroulés le 23 août 2012.

Carte 2 : Localisation des unités d'observation pour l'étude des macrophytes sur la retenue du Réaltor

3.3 VÉGÉTATION AQUATIQUE IDENTIFIÉE PAR UNITÉ D'OBSERVATION

Photo 1 : Vues générales de la retenue du Réaltor

Le lac est bordé de milieux naturels (pinèdes), de milieux agricoles (cultures, friches) et de milieux plus artificialisés (digues, routes).

Le recouvrement global en macrophytes sur le lac est estimé à plus de 75%.

Le bassin abrite une grande diversité d'espèces présentes de manière abondante. On y observe des roselières à Roseau commun ainsi que des herbiers aquatiques (herbiers de potamots, de naïades et de characées).

3.3.1 Unite d'observation n°1

Photo 2 : Vue sur l'UO1 de la retenue du Réaltor

L'unité d'observation 1 est située au Nord-Est du plan d'eau, en bordure d'une pinède couvrant la zone riveraine et la berge.

Une roselière à Roseau commun est présente au niveau de la zone littorale immergée.

Le long des profils perpendiculaires de rive, quelques herbiers localisés de naïades (*Najas marina* et *Najas minor*) et de Potamot perfolié (*Potamogeton perfoliatus*) ont été recensés jusqu'à 1,7 m de profondeur.

Agence de l'Eau Rhône - Méditerranée & Corse

Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Retenue du Réaltor (13) Des algues vertes filamenteuses du genre *Spirogyra* sont présentes jusqu'à 15 m de la berge, parfois en mélange avec les herbiers à petite naïade.

3.3.2 Unite d'observation n°2

Photo 3 : Vues sur l'UO2 de la retenue du Réaltor

L'unité d'observation 2 est réalisée sur la rive Ouest du plan d'eau. La zone riveraine présente essentiellement une zone humide marquée par une roselière dense.

La zone littorale immergée est marquée par une roselière de Roseau commun accompagné parfois de Scirpe lacustre (*Scirpus lacustris*) jusqu'à 80 cm de profondeur.

Les hydrophytes se développent jusqu'à 1,7 m de profondeur et couvrent ainsi toute l'unité d'observation. On recense des herbiers à *Najas marina* et à *Potamogeton nodosus* ainsi que des herbiers assez denses à *Nitellopsis obtusa* entre 0,9 et 1,7 m de profondeur.

3.3.3 Unite d'observation n°3

Photo 4 : Vues sur l'UO3 de la retenue du Réaltor

L'unité d'observation 3 est localisée à l'extrémité Est du site. La zone riveraine est caractérisée par la présence d'une route et d'une décharge.

La digue bétonnée empêche l'installation d'hélophytes sur la berge.

Sur l'ensemble de l'unité d'observation, seules des algues vertes filamenteuses du genre *Spirogyra* ont été observées en zone littorale immergée.

3.4 LISTE DES ESPÈCES PROTÉGÉES ET ESPÈCES INVASIVES

Concernant les espèces invasives, le Paspale dilaté (*Paspalum dilatatum*) a été observé sur la zone littorale de l'UO 1. Quelques cannes de Provence (*Arundo donax*) ont également été recensées dans la partie Est de l'UO 1.

Une seule espèce protégée (niveau régional) a été observée sur le bassin : il s'agit de la Laîche faux-souchet (*Carex pseudocyperus*).

Photo 5: Carex pseudocyperus

3.5 APPROCHE DU NIVEAU TROPHIQUE DU PLAN D'EAU

Les espèces rencontrées sur le bassin du Réaltor traduisent un niveau de trophie mésotrophe à eutrophe :

- * Potamogeton perfoliatus et Potamogeton nodosus se rencontrent dans des eaux alcalines mésotrophes à eutrophes ;
- * Najas marina dans des eaux mésotrophes ;
- * Najas minor dans des eaux méso-eutrophes ;
- Nitellopsis obtusa est connue comme étant tolérante aux charges en nutriments, elle est donc caractéristique des lacs carbonatés eutrophes.

Quelques algues filamenteuses (*Spirogyra sp.*) sont également observées à faible profondeur. Elles se développent plutôt en conditions mésotrophes ou faiblement eutrophes.

3.6 COMPARAISON AVEC LE SUIVI DE POPULATION DE MACROPHYTES 2009

Au niveau de l'UO 1, les herbiers à naïades et à potamots semblent être moins denses qu'en 2009. D'autre part, *Chara globularis* n'a pas été observée en 2012.

Agence de l'Eau Rhône - Méditerranée & Corse

Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Retenue du Réaltor (13) Sur l'UO 3, les herbiers très denses à Potamot perfolié en mélange avec *Najas marina*, inventoriés en 2009, n'ont pas été observés en 2012.

3.7 RELEVÉS DES UNITÉS D'OBSERVATION

Les relevés des 3 unités d'observations réalisés ont été reportés dans le formulaire de saisie version 4 élaboré par l'IRSTEA. Les 3 fichiers sont disponibles sur demande.

INTERPRETATION GLOBALE DES RESULTATS

Les résultats acquis durant le suivi annuel ont été interprétés en termes de potentiel écologique pour les plans d'eau d'origine anthropique et d'état chimique selon les critères et méthodes d'évaluation décrits dans l'arrêté du 25 janvier 2010.

Ces résultats ont également été traités en termes de niveau trophique à l'aide des outils de la diagnose rapide (Cemagref, 2003).

Les résultats de ces deux approches sont présentés dans le document complémentaire : Note synthétique d'interprétation des résultats.

✓ Critères d'applicabilité de la diagnose rapide

La diagnose rapide vise à évaluer l'état trophique des lacs et à mettre en évidence les phénomènes d'eutrophisation. Elle fait appel au principe fondamental du fonctionnement des lacs qui suppose qu'il existe un lien entre la composition physico-chimique à l'époque du mélange hivernal et les phénomènes qu'elle est susceptible d'engendrer dans les divers compartiments de l'écosystème au cours de la période de croissance végétale qui lui succède.

Cette méthode est donc adaptée aux plans d'eau qui stratifient durablement en été et exclut les plans d'eau au temps de séjour réduit (CEMAGREF, 1990, 2003) et les lacs dont la profondeur moyenne est inférieure à 3 m. Il convient également de noter que la diagnose rapide ne prend en compte que la biomasse phytoplanctonique sous l'aspect "production végétale" et n'intègre donc pas l'importance du recouvrement en macrophytes du plan d'eau.

La retenue du Réaltor est un plan d'eau d'origine artificielle d'une profondeur moyenne estimée à 1,5 m. Elle présente un fonctionnement lacustre particulier davantage assimilable à un étang sans stratification thermique durable.

Le temps de séjour est court mais reste difficile à évaluer car il est très variable selon l'exploitation du plan d'eau.

Les périodes d'intervention des différentes campagnes de prélèvements menées en 2012 correspondent aux préconisations de la méthodologie.

La retenue du Réaltor ne répond théoriquement pas aux exigences pour appliquer la diagnose rapide. Les indices relatifs à cet outil d'interprétation sont néanmoins calculés afin d'appréhender le niveau trophique du plan d'eau.

Agence de	l'Eau Rhône - Mé Etude des plans	diterranée & Corse d'eau du programme o	de surveillance des t	oassins Rhône-Médi	iterranée et Corse –	Retenue du Réaltor (1
			ANNE	<u>XES</u>		

1. LISTE DES MICROPOLLUANTS ANALYSES SUR EAU

Code			Code		
SANDRE	Libel_param	Famille composés	SANDRE	Libel_param	Famille composés
5474	4-n-nonylphénol	Alkylphénols	1118	Benzo (ghi) Pérylène	HAP
1957	Nonylphénols	Alkylphénols	1117	Benzo (k) Fluoranthène	HAP
1920	p-(n-octyl)phénols	Alkylphénols	1476	Chrysène	HAP
1958	Para-nonylphénols ramifiés	Alkylphénols	1621	Dibenzo (ah) Anthracène	HAP
1959	Para-tert-octylphénol	Alkylphénols	1191	Fluoranthène	HAP
1593	Chloroaniline-2	Anilines et Chloroanilines	1623	Fluorène	HAP
1592	Chloroaniline-3	Anilines et Chloroanilines	1204	Indéno (123c) Pyrène	HAP
1591	Chloroaniline-4	Anilines et Chloroanilines	1619	Méthyl-2-Fluoranthène	HAP
1589	Dichloroaniline-2,4	Anilines et Chloroanilines	1618	Méthyl-2-naphtalène	HAP
1114	Benzène	BTEX	1517	Naphtalène	HAP
1602	Chlorotoluène-2	BTEX	1524	Phénanthrène	HAP
1601	Chlorotoluène-3	BTEX	1537	Pyrène	HAP
1600	Chlorotoluène-4	BTEX	1370	Aluminium	Métaux
1497	Ethylbenzène	BTEX	1376	Antimoine	Métaux
1633	Isopropylbenzène	BTEX	1368	Argent	Métaux
1278	Toluène	BTEX	1369	Arsenic	Métaux
5431	Xylène (ortho+meta+para)	BTEX	1396	Baryum	Métaux
1292	Xylène-ortho	BTEX	1377	Beryllium	Métaux
1955	Chloroalcanes C10-C13	Chloroalacanes	1362	Bore	Métaux
1467	Chlorobenzène (Mono)	Chlorobenzènes	1388	Cadmium	Métaux
1165	Dichlorobenzène-1,2	Chlorobenzènes	1389	Chrome	Métaux
1164	Dichlorobenzène-1,3	Chlorobenzènes	1379	Cobalt	Métaux
1166	Dichlorobenzène-1,4	Chlorobenzènes	1392	Cuivre	Métaux
1199	Hexachlorobenzène	Chlorobenzènes	1380	Etain	Métaux
1888	Pentachlorobenzène	Chlorobenzènes	1393	Fer	Métaux
1631	Tétrachlorobenzène-1,2,4,5	Chlorobenzènes	1394	Manganèse	Métaux
1630	Trichlorobenzène-1,2,3	Chlorobenzènes	1387	Mercure	Métaux
1283	Trichlorobenzène-1,2,4	Chlorobenzènes	1395	Molybdène	Métaux
1629	Trichlorobenzène-1,3,5	Chlorobenzènes	1386	Nickel	Métaux
1774	Trichlorobenzènes	Chlorobenzènes	1382	Plomb	Métaux
1469	Chloronitrobenzène-1,2	Chloronitrobenzènes	1385	Sélénium	Métaux
1468	Chloronitrobenzène-1,3	Chloronitrobenzènes	2559	Tellurium	Métaux
1470	Chloronitrobenzène-1,4	Chloronitrobenzènes	2555	Thallium	Métaux
1617	Dichloronitrobenzène-2,3	Chloronitrobenzènes	1373	Titane	Métaux
1615	Dichloronitrobenzène-2,5	Chloronitrobenzènes	1361	Uranium	Métaux
1614	Dichloronitrobenzène-3,4	Chloronitrobenzènes	1384	Vanadium	Métaux
2915	BDE100	Diphényléthers bromés	1383	Zinc	Métaux
2912	BDE153	Diphényléthers bromés	1135	Chloroforme (trichlorométhane)	OHV
2911	BDE154	Diphényléthers bromés	2611	Chloroprène	OHV
2920	BDE28	Diphényléthers bromés	2065	Chloropropène-3	OHV
2919	BDE47	Diphényléthers bromés	1160	Dichloréthane-1,1	OHV
2916	BDE99	Diphényléthers bromés	1161	Dichlorethane-1,1	OHV
1815	Décabromodiphényléther	Diphényléthers bromés	1162	Dichlorethylène-1,1	OHV
2609	Octabromodiphénylether	Diphényléthers bromés	1163	Dichlorethylène-1,2	OHV
1921	Pentabromodiphényléther	Diphényléthers bromés	1456	Dichlorethylène-1,2 cis	OHV
	A 11 11 (0)	D:	4707	D: 11 (# 1) 4 0 (OHV
1465 1753	Chlorure de vinyle	Chlorure de vinyles	1/2/	Dichlorethylene-1,2 trans Dichlorométhane	OHV
	Diéthylamine	Divers	1652	Hexachlorobutadiène	OHV
2773	Diméthylamine	Divers	1271	Tétrachloréthane-1,1,2,2	OHV
				Tétrachloréthylène	
1494	Epichlorohydrine	Divers	1272		OHV
1453 1622	Acénaphtène	HAP	1276	Tétrachlorure de C	OHV
	Acénaphtylène	HAP	1284 1285	Trichloréthane-1,1,1 Trichloréthane-1,1,2	OHV OHV
	A 4 L			LLUCHOFETDADE-1 1 Z	IUHV
1458	Anthracène	HAP			
1458	Anthracène Benzo (a) Anthracène Benzo (a) Pyrène	HAP HAP	1286 1771	Trichloréthylène Dibutylétain	OHV Organostanneux complets

Agence de l'Eau Rhône - Méditerranée & Corse

Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Retenue du Réaltor (13)

O- d-	Etude des plans d'éau	du programme de surve		assins knone-Mediterran	iee et Corse – Retenue du Rea
Code	Libel_param	Familla composós	Code SANDRE	Libal param	Famille composés
		Famille_composés	4 	Libel_param	
2879	Tributylétain-cation	Organostanneux complets	1187	Fénitrothion	Pesticides
1779	Triphénylétain	Organostanneux complets	1967	Fénoxycarbe	Pesticides
1242	PCB 101	PCB	2022	Fludioxonil	Pesticides
1243	PCB 118	PCB	1765	Fluroxypyr	Pesticides
1244	PCB 138	PCB	2547	Fluroxypyr-meptyl	Pesticides
1245	PCB 153	PCB	1194	Flusilazole	Pesticides
1090	PCB 169	PCB	1702	Formaldéhyde	Pesticides
1246	PCB 180	PCB	1506	Glyphosate	Pesticides
	PCB 28	PCB	1200	HCH alpha	Pesticides
1240	PCB 35	PCB	1201	HCH beta	Pesticides
1241	PCB 52	PCB	1202	HCH delta	Pesticides
1091	PCB 77	PCB	2046	HCH epsilon	Pesticides
1141	2 4 D	Pesticides	1203	HCH gamma	Pesticides
1212	2 4 MCPA	Pesticides	1405	Hexaconazole	Pesticides
1832	2-Hydroxy-atrazine	Pesticides	1877	Imidaclopride	Pesticides
1903	Acétochlore	Pesticides	1206	Iprodione	Pesticides
1688	Aclonifen	Pesticides	1207	Isodrine	Pesticides
1101	Alachlore	Pesticides	1208	Isoproturon	Pesticides
1103	Aldrine	Pesticides	1950	Kresoxim méthyl	Pesticides
1105	Aminotriazole	Pesticides	1094	Lambda Cyhalothrine	Pesticides
1907	AMPA	Pesticides	1209	Linuron	Pesticides
1107	Atrazine	Pesticides	1210	Malathion	Pesticides
1109	Atrazine déisopropyl	Pesticides	1214	Mécoprop	Pesticides
1108	Atrazine déséthyl	Pesticides	2987	Métalaxyl m = mefenoxam	Pesticides
1951	Azoxystrobine	Pesticides	1796	Métaldéhyde	Pesticides
1113	Bentazone	Pesticides	1215	Métamitrone	Pesticides
1686	Bromacil	Pesticides	1670	Métazachlore	Pesticides
1125	Bromoxynil	Pesticides	1216	Méthabenzthiazuron	Pesticides
1941	Bromoxynil octanoate	Pesticides	1227	Monolinuron	Pesticides
1129	Carbendazime	Pesticides	1519	Napropamide	Pesticides
1130	Carbofuran	Pesticides	1882	Nicosulfuron	Pesticides
1464	Chlorfenvinphos	Pesticides	1669	Norflurazon	Pesticides
1134	Chlorméphos	Pesticides	1667	Oxadiazon	Pesticides
1474	Chlorprophame	Pesticides	1666	Oxadixyl	Pesticides
1083	Chlorpyriphos éthyl	Pesticides	1231	Oxydéméton méthyl	Pesticides
1540	Chlorpyriphos méthyl	Pesticides	1234	Pendiméthaline	Pesticides
1136	Chlortoluron	Pesticides	1665	Phoxime	Pesticides
2017			4		
	Clomazone	Pesticides	1664	Procymidone	Pesticides
1680	Cyproconazole	Pesticides	1414	Propyzamide	Pesticides
1359	Cyprodinil	Pesticides	1432	Pyriméthanil	Pesticides
1143	DDD-o,p'	Pesticides	1892	Rimsulfuron	Pesticides
1144	DDD-p,p'	Pesticides	1263	Simazine	Pesticides
1145	DDE-o,p'	Pesticides	1662	Sulcotrione	Pesticides
1146	DDE-p,p'	Pesticides	1694	Tébuconazole	Pesticides
1147	DDT-o,p'	Pesticides	1661	Tébutame	Pesticides
1148	DDT-p,p'	Pesticides	1268	Terbuthylazine	Pesticides
1830	Déisopropyl-déséthyl-atrazine	Pesticides	2045	Terbuthylazine déséthyl	Pesticides
1149	Deltaméthrine	Pesticides	1954	Terbuthylazine hydroxy	Pesticides
1480	Dicamba	Pesticides	1269	Terbutryne	Pesticides
	Dichlorprop	Pesticides	1660	Tétraconazole	Pesticides
1170	Dichlorvos	Pesticides	1288	Trichlopyr	Pesticides
1173	Dieldrine	Pesticides	1289	Trifluraline	Pesticides
1814	Diflufénicanil	Pesticides	1636	Chlorométhylphénol-4,3	Phénols et chlorophénols
1678	Diméthénamide	Pesticides	1471	Chlorophénol-2	Phénols et chlorophénols
1403	Diméthomorphe	Pesticides	1651	Chlorophénol-3	Phénols et chlorophénols
1177	Diuron	Pesticides	1650	Chlorophénol-4	Phénols et chlorophénols
1178	Endosulfan alpha	Pesticides	1486	Dichlorophénol-2,4	Phénols et chlorophénols
1179	Endosulfan beta	Pesticides	1235	Pentachlorophénol	Phénols et chlorophénols
1742	Endosulfan sulfate	Pesticides	1548	Trichlorophénol-2,4,5	Phénols et chlorophénols
1743	Endosulfan Total	Pesticides	1549	Trichlorophénol-2,4,6	Phénols et chlorophénols
			4 	Biphényle	Semi volatils organiques divers
1181	Endrine	Pesticides	1584	Diprierryie	Jenn voialiis organiques divers
	Endrine Epoxiconazole	Pesticides Pesticides	1461	DEPH	Semi volatils organiques divers

2. LISTE DES MICROPOLLUANTS ANALYSES SUR SEDIMENTS

5474	Libel param	Famille_composés	Code_SANDR		Famille_composés OHV
1957	4-n-nonylphénol	Alkylphénols	1652 1770	Hexachlorobutadiène	
1920	Nonylphénols p-(n-octyl)phénols	Alkylphénols Alkylphénols	1936	Dibutylétain (oxyde) Tétrabutylétain	Organostanneux complets Organostanneux complets
1958	Para-nonylphénols ramifiés	Alkylphénols	2879	Tributylétain-cation	Organostanneux complets
1959	Para-tert-octylphénol	Alkylphénols	1779	Triphénylétain	Organostanneux complets
1602	Chlorotoluène-2	BTEX	1242	PCB 101	PCB
1601	Chlorotoluène-3	BTEX	1243	PCB 101	PCB
1600	Chlorotoluène-4	BTEX	1244	PCB 138	PCB
1497	Ethylbenzène	BTEX	1245	PCB 153	PCB
1633	Isopropylbenzène	BTEX	1090	PCB 169	PCB
5431	Xylène (ortho+meta+para)	BTEX	1246	PCB 180	PCB
1292	Xylène-ortho	BTEX	1239	PCB 28	PCB
1955	Chloroalcanes C10-C13	Chloroalacanes	1240	PCB 35	PCB
1165	Dichlorobenzène-1,2	Chlorobenzènes	1241	PCB 52	PCB
1164	Dichlorobenzène-1,3	Chlorobenzènes	1091	PCB 77	PCB
1166	Dichlorobenzène-1,4	Chlorobenzènes	1903	Acétochlore	Pesticides
1199	Hexachlorobenzène	Chlorobenzènes	1688	Aclonifen	Pesticides
1888	Pentachlorobenzène	Chlorobenzènes	1103	Aldrine	Pesticides
1631	Tétrachlorobenzène-1,2,4,5	Chlorobenzènes	1125	Bromoxynil	Pesticides
1630	Trichlorobenzène-1,2,3	Chlorobenzènes	1941	Bromoxynil octanoate	Pesticides
1283	Trichlorobenzène-1,2,4	Chlorobenzènes	1464	Chlorfenvinphos	Pesticides
1629	Trichlorobenzène-1,3,5	Chlorobenzènes	1134	Chlorméphos	Pesticides
1774	Trichlorobenzènes	Chlorobenzènes	1474	Chlorprophame	Pesticides
1617	Dichloronitrobenzène-2,3	Chloronitrobenzènes	1083	Chlorpyriphos éthyl	Pesticides
1615	Dichloronitrobenzène-2,5	Chloronitrobenzènes	1540	Chlorpyriphos méthyl	Pesticides
1614	Dichloronitrobenzène-3,4	Chloronitrobenzènes	1359	Cyprodinil	Pesticides
2915	BDE100	Diphényléthers bromés	1143	DDD-o,p'	Pesticides
2912	BDE153	Diphényléthers bromés	1144	DDD-p,p'	Pesticides
2911	BDE154	Diphényléthers bromés	1145	DDE-o,p'	Pesticides
2920	BDE28	Diphényléthers bromés	1146	DDE-p,p'	Pesticides
2919	BDE47	Diphényléthers bromés	1147	DDT-o,p'	Pesticides
2916	BDE99	Diphényléthers bromés	1148	DDT-p,p'	Pesticides
1815	Décabromodiphényléther	Diphényléthers bromés	1149	Deltaméthrine	Pesticides
2609	Octabromodiphénylether	Diphényléthers bromés	1169	Dichlorprop	Pesticides
1921	Pentabromodiphényléther	Diphényléthers bromés	1173	Dieldrine	Pesticides
1453	Acénaphtène	HAP	1814	Diflufénicanil	Pesticides
1622	Acénaphtylène	HAP	1178	Endosulfan alpha	Pesticides
1458	Anthracène	HAP	1179	Endosulfan beta	Pesticides
1082	Benzo (a) Anthracène	HAP	1742	Endosulfan sulfate	Pesticides
1115	Benzo (a) Pyrène	HAP	1742	Endosulfan Total	Pesticides
1116	Benzo (b) Fluoranthène	HAP	1181	Endrine	Pesticides
1118	Benzo (ghi) Pérylène	HAP	1744	Epoxiconazole	Pesticides
1117	Benzo (k) Fluoranthène	HAP	1187	Fénitrothion	Pesticides
1476	Chrysène	HAP	1967	Fénoxycarbe	Pesticides
1621	Dibenzo (ah) Anthracène	HAP	2022	Fludioxonil	Pesticides
1191	Fluoranthène	HAP	2547	Fluroxypyr-meptyl	Pesticides
1623	Fluorène	HAP	1194	Flusilazole	Pesticides
1204	Indéno (123c) Pyrène	HAP	1200	HCH alpha	Pesticides
1619	Méthyl-2-Fluoranthène	HAP	1201	HCH beta	Pesticides
1618	Méthyl-2-naphtalène	HAP	1201	HCH delta	Pesticides
1517	Naphtalène	HAP	2046	HCH delta HCH epsilon	Pesticides
1524	Phénanthrène	HAP	1203	HCH gamma	Pesticides
1537		HAP	1405		Pesticides
1370	Pyrène Aluminium	Métaux	1206	Hexaconazole Inrodione	Pesticides
	Antimoino		1206	Iprodione Isodrine	
1376 1368	Antimoine Argent	Métaux Métaux	1950		Pesticides Pesticides
			1094	Kresoxim méthyl Lambda Cyhalothrine	
1369 1396	Arsenic	Métaux Métaux	1209		Pesticides
1396	Baryum	Métaux	1519	Linuron Napropamide	Pesticides Pesticides
1362	Beryllium Bore	Métaux	1667	Oxadiazon	Pesticides
1362	Cadmium	Métaux	1234	Pendiméthaline	Pesticides
1389	Chrome	Métaux	1664	Procymidone	Pesticides
1379		Métaux	1414	Propyzamide	Pesticides
1379	Cobalt Cuivre	Métaux	1694	Tébuconazole	Pesticides
1380	Etain	Métaux	1661	Tébutame	Pesticides
1393	Fer	Métaux	1268	Terbuthylazine	Pesticides
1394	Manganèse	Métaux	1269	Terbutryne	Pesticides
1387	Mercure	Métaux	1660	Tétraconazole	Pesticides
1395	Molybdène	Métaux	1289	Trifluraline	Pesticides
1386	Nickel	Métaux	1636	Chlorométhylphénol-4,3	Phénols et chlorophénols
1382	Plomb	Métaux	1486	Dichlorophénol-2,4	Phénols et chlorophénols
1385	Sélénium	Métaux	1235	Pentachlorophénol	Phénols et chlorophénols
2559	Tellurium	Métaux	1548	Trichlorophénol-2,4,5	Phénols et chlorophénols
2555	Thallium	Métaux	1549	Trichlorophénol-2,4,6	Phénols et chlorophénols
1373	Titane	Métaux	1584	Biphényle	Semi volatils organiques dive
1201	Uranium	Métaux	1461	DEPH	Semi volatils organiques dive
1361					
1384	Vanadium	Métaux	1847	Tributylphosphate	Semi volatils organiques dive

gence (de l'Eau Rhône Etude des p	- Méditerranée lans d'eau du p	& Corse	e ne de surveillance o	les bass	sins Rhône-Méditerranée	et Corse – Retenue du Réalto	r (13)
<i>3</i> .	COMPTES	RENDUS	DES	CAMPAGNES	DE	PRELEVEMENTS	PHYSICOCHIMIQUES	ET
	PHYTOPLA	NCTONIQUE	ES SUR	L'ANNEE 2012				

DONNEES GENERALES PLAN D'EAU - STATION

Plan d'eau : Réaltor (retenue du)

Type (naturel, artificiel,...) : artificiel

Organisme / opérateur : S.T.E. : T. Vulliet et A. Gravouille

Organisme demandeur : Agence de l'eau RM&C

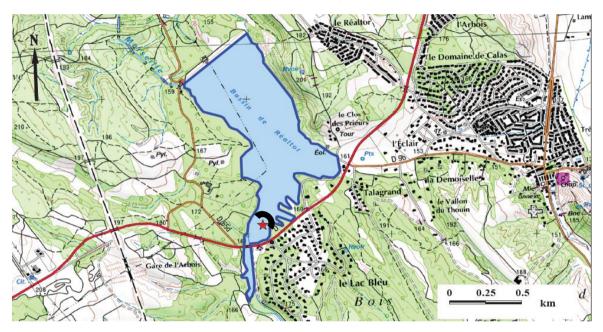
Date : 27/02/2012

Code lac : Y4125003

Campagne 1 page 1/5

marché n° 08M082

LOCALISATION PLAN D'EAU


Commune : Cabriès (13)

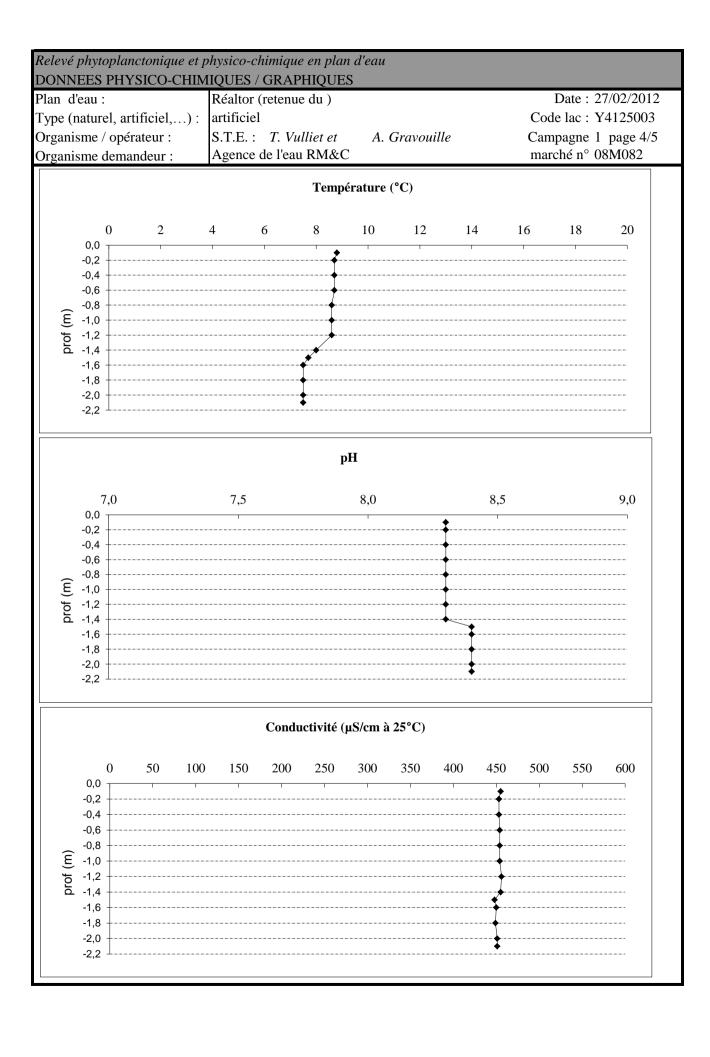
Lac marnant : non Type : A8

Temps de séjour : nd jours petits plans d'eau de plaine ou de moyenne montagne, à Superficie du plan d'eau : 62 ha marnage très important voire fréquent, alimentés par des

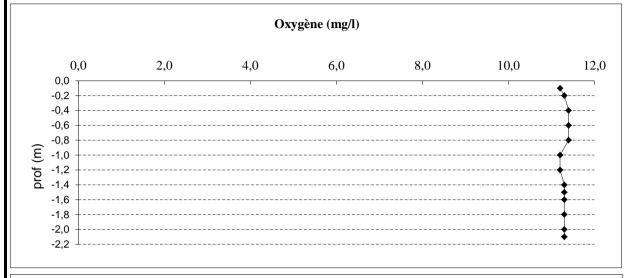
Profondeur maximale: 3 m sources ou des petits cours d'eau

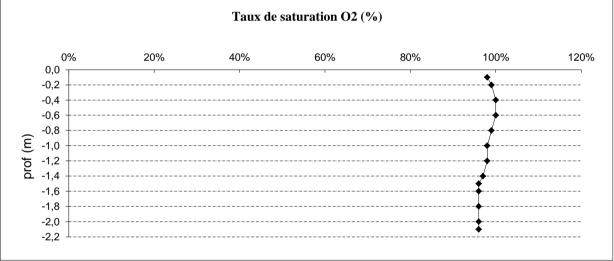
Carte: (extrait SCAN25, IGN 1/25 000)

localisation du point de prélèvements


C angle de prise de vue de la photographie

STATION




Réaltor (retenue du)		Date: 27/02/2012
artificiel	Cod	e lac: Y4125003
		pagne 1 page 2/5
		ché n° 08M082
rigonee de reda raviece		0110 11 00111002
relevées sur : GPS		
	V: 6264881	alt.: 159 m
		•.
	1.	alt.: m
Météo : ensoleillé sec		
Surface de l'eau : faibleme	ent agitée	
Hauteur des vagues : 0.02 m	n P atm standard	: 995 hPa
		999 hPa
		0,0 m
11011	idatedi de la bande .	0,0 111
campagne de fin d'hiver : hor de l'activité biologique	mothermie du plan d'e	au avant démarrage
15.50	1 6 1 1 / 1	c 40
15:50 Heure d	de fin du relevé : 1	6:40
eau chlorophylle matériel phytoplancton	l employé : pomp	oe
Société du Canal de Marseille		
Société du Canal de Marseille		nu potable
_		
	S.T.E.: T. Vulliet et Agence de l'eau RM&C relevées sur: GPS	Réaltor (retenue du) artificiel Cod S.T.E.: T. Vulliet et A. Gravouille Cam Agence de l'eau RM&C mare relevées sur : GPS

Relevé phytoplanctonique et p DONNEES PHYSICO-CHIM		imique en	plan d'e	eau 			
Plan d'eau:	_ `	etenue du	.)			Date :	27/02/2012
Type (naturel, artificiel,):	artificiel		Code lac:	Y4125003			
Organisme / opérateur :		T. Vulliet	et et	A. Gravouille	2	Campagne	1 page 3/5
Organisme demandeur :		e l'eau RN				marché n°	
TRANSPARENCE	8.						
Secchi en m :	0,6		Z eupho	otique (2,5 x S	Secchi) ·	1,5	m
PROFIL VERTICAL	0,0		Z cupin	311que (2,5 A 5	ecciii) .	1,5	
Moyen de mesure utilisé :		in-situ à c	chaque p	orof.	X	en surface da	ans un récipient
Volume prélevé (en litres) :	Prof. (m)	Temp. (°C)	pН	Cond. (µS/cm 25°)	O ₂ (mg/l)	O ₂ (%)	Heure
prélèvement intégré (2 L)	-0,1	8,8	8,3	455	11,2	98%	15:50
prélèvement intégré (2 L)	-0,2	8,7	8,3	453	11,3	99%	
prélèvement intégré (2 L)	-0,4	8,7	8,3	453	11,4	100%	
prélèvement intégré (2 L)	-0,6	8,7	8,3	454	11,4	100%	
prélèvement intégré (2 L)	-0,8	8,6	8,3	454	11,4	99%	
prélèvement intégré (2 L)	-1,0	8,6	8,3	454	11,2	98%	
prélèvement intégré (2 L)	-1,2	8,6	8,3	456	11,2	98%	
prélèvement intégré (2 L)	-1,4	8,0	8,3	455	11,3	97%	
prélèvement intégré (2 L)	-1,5	7,7	8,4	448	11,3	96%	16:10
-	-1,6	7,5	8,4	450	11,3	96%	
	-1,8	7,5	8,4	449	11,3	96%	
	-2,0	7,5	8,4	451	11,3	96%	
prélèvement de fond	-2,1	7,5	8,4	451	11,3	96%	16:20
1							

									_
Prélèvement	d'ann	do fo	nd nou	r analyca	e nha	cico	chim	iana	c •

Distance au fond : 0.3 m soit à Zf = -2.1 m

Remarques et observations :

Remise des échantillons :

Echantillons pour analyses physicochimiques (Laboratoire LDA26)

échantillon intégré n° | 1960816 (demande 817) bon transport intégré : EE338849483EE

1962240 (demande 818)

échantillon de fond n° 1961266 (demande 819) bon transport fond : EE338660142EE

1962149 (demande 820)

remise par S.T.E.: le à

Au transporteur : Chronopost le 27/02/12 à 18h00

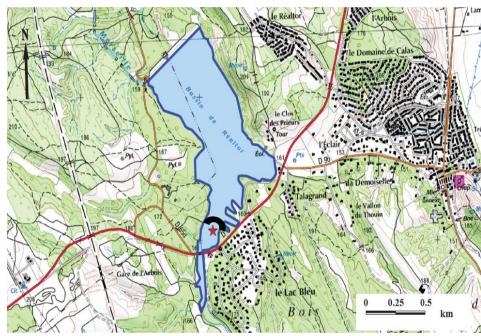
Arrivée au laboratoire LDA 26 dans la matinée du : 28/02/12

Echantillons pour analyses phytoplanctoniques à BECQ'EAU, le 04/06/12

DONNEES GENERALES PLAN D'EAU - STATION

Plan d'eau: Réaltor (retenue du) Date: 11/05/2012 Code lac: Y4125003 Type (naturel, artificiel,...): artificiel Organisme / opérateur : **S.T.E.** : A. Gravouille et L. Krithari Campagne 2 page 1/5 Agence de l'eau RM&C marché n° 08M082 Organisme demandeur:

LOCALISATION PLAN D'EAU


Commune : Cabriès (13)

Lac marnant : non Type: A8

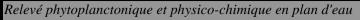
Temps de séjour : nd jours petits plans d'eau de plaine ou de moyenne montagne, à marnage très important voire fréquent, alimentés par des Superficie du plan d'eau : 62 ha

sources ou des petits cours d'eau Profondeur maximale

Carte: (extrait SCAN25, IGN 1/25 000)

localisation du point de prélèvements

angle de prise de vue de la photographie

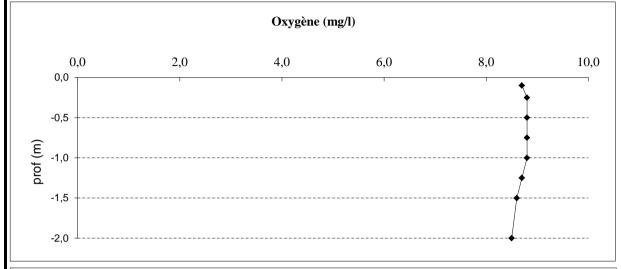

STATION

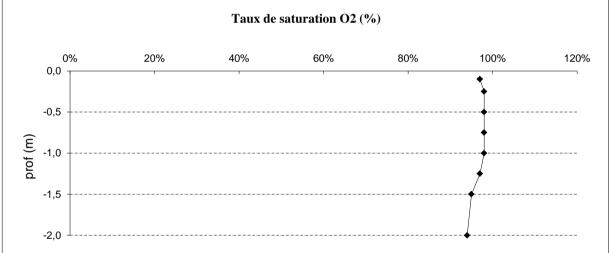
Relevé phytoplanctonique et phy DONNEES GENERALES CAM	
Plan d'eau :	Réaltor (retenue du) Date : 11/05/2012
Type (naturel, artificiel,):	artificiel Code lac: Y4125003
Organisme / opérateurs :	S.T.E.: A. Gravouille et L. Krithari Campagne 2 page 2/5
Organisme demandeur :	Agence de l'eau RM&C marché n° 08M082
	Agence de Feau Kwi&C marche ii 08/vi082
STATION Coordonnées de la station	1
Lambert 93	
WGS 84 (systinternational)	
Profondeur :	
	Vent: nul
	Météo: ensoleillé sec
Conditions d'observation :	Surface de l'eau : lisse
	Hauteur des vagues : 0,0 m P atm standard : 995 hPa
	Bloom algal: non Pression atm.: 1006 hPa
Marnage:	oui Hauteur de la bande : -0,1 m
iviainage .	Tradeur de la bande . O,1 m
Campagne :	2 campagne printanière de croissance du phytoplancton : mise en place de la thermocline
PRELEVEMENTS	
PRELEVEMENTS Heure de début du relevé :	09:10 Heure de fin du relevé : 10:00
	09:10 Heure de fin du relevé : 10:00 eau chlorophylle matériel employé : pompe phytoplancton
Heure de début du relevé :	eau chlorophylle matériel employé : pompe
Heure de début du relevé : Prélèvements pour analyses :	eau chlorophylle matériel employé : pompe
Heure de début du relevé : Prélèvements pour analyses :	eau chlorophylle matériel employé : pompe phytoplancton Société du Canal de Marseille
Heure de début du relevé : Prélèvements pour analyses : Gestion :	eau chlorophylle matériel employé : pompe phytoplancton Société du Canal de Marseille Bassin de régulation/décantation pour l'alimentation en eau potable
Heure de début du relevé : Prélèvements pour analyses : Gestion :	eau chlorophylle matériel employé : pompe phytoplancton Société du Canal de Marseille Bassin de régulation/décantation pour l'alimentation en eau potable Société du Canal de Marseille
Heure de début du relevé : Prélèvements pour analyses : Gestion :	eau chlorophylle matériel employé : pompe phytoplancton Société du Canal de Marseille Bassin de régulation/décantation pour l'alimentation en eau potable
Heure de début du relevé : Prélèvements pour analyses : Gestion :	eau chlorophylle matériel employé : pompe phytoplancton Société du Canal de Marseille Bassin de régulation/décantation pour l'alimentation en eau potable Société du Canal de Marseille
Heure de début du relevé : Prélèvements pour analyses : Gestion : Contact préalable :	eau chlorophylle matériel employé : pompe phytoplancton Société du Canal de Marseille Bassin de régulation/décantation pour l'alimentation en eau potable Société du Canal de Marseille
Heure de début du relevé : Prélèvements pour analyses : Gestion : Contact préalable :	eau chlorophylle matériel employé : pompe phytoplancton Société du Canal de Marseille Bassin de régulation/décantation pour l'alimentation en eau potable Société du Canal de Marseille JM. Reynes - Tél. : 04.91.57.62.12 / 06.10.20.37.61 Modification du site de prélèvement par rapport à 2009 par accord entre

Relevé phytoplanctonique et p	-	imique en	plan d'	еаи						
DONNEES PHYSICO-CHIM										
Plan d'eau:	-	Réaltor (retenue du) Date : 11/05/2012 artificiel Code lac : Y4125003								
J1 () /	artificiel									
Organisme / opérateur :				L. Krithari		Campagne 2 page 3/5				
Organisme demandeur :	Agence d	e l'eau RN	Л&C			marché n°	08M082			
TRANSPARENCE										
Secchi en m :	0,6		Z eupho	otique (2,5 x S	Secchi):	1,5	m			
PROFIL VERTICAL										
Moyen de mesure utilisé :		in-situ à	chaque p	orof.	X	en surface da	ans un récipient			
Volume prélevé (en litres) :	Prof.	Temp.	pН	Cond.	O_2	O_2	Heure			
volume prefeve (en nues):	(m)	(°C)		(µS/cm 25°)	(mg/l)	(%)				
prélèvement intégré (2 L)	-0,10	20,2	8,3	537	8,7	97%	9:10			
prélèvement intégré (2 L)	-0,25	20,2	8,3	535	8,8	98%				
prélèvement intégré (2 L)	-0,50	20,2	8,3	534	8,8	98%				
prélèvement intégré (2 L)	-0,75	20,2	8,3	533	8,8	98%				
prélèvement intégré (2 L)	-1,00	20,1	8,3	532	8,8	98%				
prélèvement intégré (2 L)	-1,25	20,1	8,3	532	8,7	97%				
prélèvement intégré (2 L)	-1,50	19,9	8,3	531	8,6	95%	9:30			
prélèvement de fond	-2,00	19,7	8,2	531	8,5	94%	9:40			

Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES Plan d'eau: Réaltor (retenue du) Date: 11/05/2012 artificiel Type (naturel, artificiel,...): Code lac: Y4125003 Organisme / opérateur : S.T.E.: A. Gravouille et L. Krithari Campagne 2 page 4/5 Agence de l'eau RM&C marché n° 08M082 Organisme demandeur : Température (°C) 5 10 15 20 25 0 0,0 -0,5 prof (m) -1,0 -1,5 -2,0 pН 7,0 7,5 8,0 8,5 9,0 0,0 -0,5 prof (m) -1,5 -2,0 Conductivité (µS/cm à 25°C) 0 50 100 150 200 250 300 350 400 450 500 550 600 0,0 -0,5 prof (m) -1,5 -2,0

DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES


Plan d'eau: Réaltor (retenue du)


Type (naturel, artificiel,...):

artificiel Organisme / opérateur : S.T.E.: A. Gravouille et L. Krithari

Organisme demandeur: Agence de l'eau RM&C

Date: 11/05/2012 Code lac: Y4125003 Campagne 2 page 5/5 marché n° 08M082

Prélèvement d'eau de fond, pour analyses physicochimiques :

Distance au fond: 0,4 m soit à Zf = -2,0 m

Remarques et observations :

Remise des échantillons:

Echantillons pour analyses physicochimiques (Laboratoire LDA26)

échantillon intégré n° 1960839 (demande 817) bon transport intégré:

1962262 (demande 818)

échantillon de fond n° 1961286 (demande 819) bon transport fond:

1962167 (demande 820)

remise par S.T.E.: le 11/05/12 à 12h00

Au transporteur: le à

> Arrivée au laboratoire LDA 26 dans la matinée du : 11/05/12

Echantillons pour analyses phytoplanctoniques à BECQ'EAU, le 25/06/12

DONNEES GENERALES PLAN D'EAU - STATION

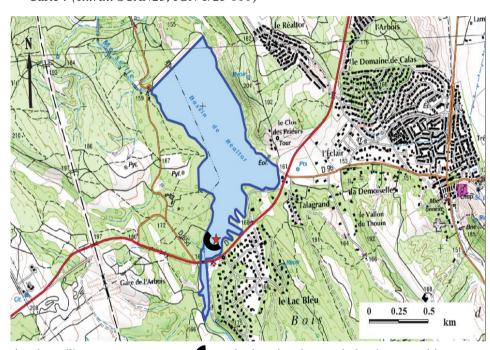
Plan d'eau : Réaltor (retenue du) Date : 09/07/2012

Type (naturel, artificiel,...) : artificiel Code lac : Y4125003

Organisme / opérateur : S.T.E. : A. Gravouille et L. Krithari Campagne 3 page 1/5

Organisme demandeur : Agence de l'eau RM&C marché n° 08M082

LOCALISATION PLAN D'EAU


Commune : Cabriès (13)

Lac marnant : non Type : A8

Temps de séjour : nd jours petits plans d'eau de plaine ou de moyenne montagne, à
Superficie du plan d'eau : 62 ha marnage très important voire fréquent, alimentés par des
Profondeur maximale : 3 m sources ou des petits cours d'eau

Profondeur maximale : 3 m

Carte : (extrait SCAN25, IGN 1/25 000)

localisation du point de prélèvements

angle de prise de vue de la photographie

STATION

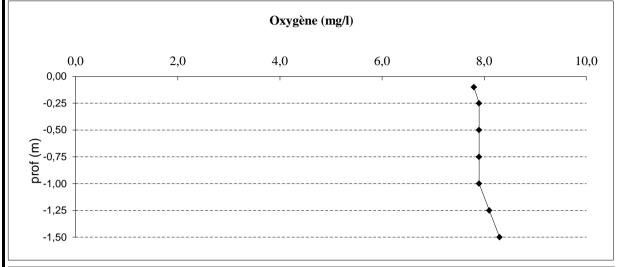
	ysico-chimique en plan d'eau
DONNEES GENERALES CAN	
Plan d'eau:	Réaltor (retenue du) Date : 09/07/2012
Type (naturel, artificiel,):	artificiel Code lac: Y4125003
Organisme / opérateurs :	S.T.E.: A. Gravouille et L. Krithari Campagne 3 page 2/5
Organisme demandeur:	Agence de l'eau RM&C marché n° 08M082
STATION	
Coordonnées de la station	relevées sur : GPS
Lambert 93	X:888541 Y: 6264881 alt.:159 m
WGS 84 (systinternational)	GPS (en dms) X: Y: alt.: m
Profondeur :	
110101001	Vent: faible
	Météo : ensoleillé sec
	ivieteo. Ensoreme see
Canditions d'absorption	Sumface de l'acu : faiblement exitée
Conditions d'observation :	Surface de l'eau : faiblement agitée
	Hauteur des vagues : 0,05 m P atm standard : 995 hPa
	Bloom algal: non Pression atm.: 992 hPa
Marnage:	non Hauteur de la bande : 0,0 m
PRELEVEMENTS Heure de début du relevé :	14:40 Heure de fin du relevé : 15:10
Prélèvements pour analyses :	eau chlorophylle matériel employé : pompe phytoplancton
	chlorophylle matériel employé : pompe phytoplancton
	chlorophylle matériel employé : pompe phytoplancton Société du Canal de Marseille
Gestion :	chlorophylle matériel employé : pompe phytoplancton Société du Canal de Marseille Bassin de régulation/décantation pour l'alimentation en eau potable
Gestion :	Société du Canal de Marseille Bassin de régulation/décantation pour l'alimentation en eau potable Société du Canal de Marseille
Gestion :	chlorophylle matériel employé : pompe phytoplancton Société du Canal de Marseille Bassin de régulation/décantation pour l'alimentation en eau potable
Gestion : Contact préalable :	Société du Canal de Marseille Bassin de régulation/décantation pour l'alimentation en eau potable Société du Canal de Marseille

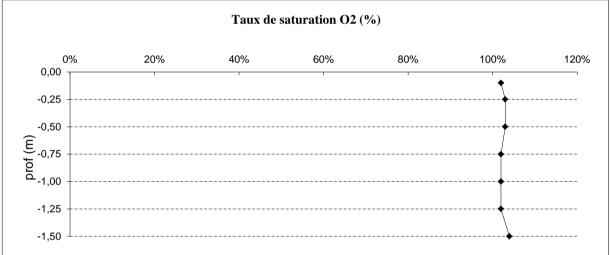
Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES PHYSICO-CHIMIQUES							
Plan d'eau :	Réaltor (retenue du) Date : 09/07/2012						
Type (naturel, artificiel,):	artificiel Code lac: Y ²					Y4125003	
Organisme / opérateur :	S.T.E.: A. Gravouille et L. Krithari					Campagne 3 page 3/5	
Organisme demandeur :	Agence de l'eau RM&C					marché n° 08M082	
TRANSPARENCE							
Secchi en m: 0,6 Z euphotique (2,5 x Secchi): 1,5 m							m
PROFIL VERTICAL							
Moyen de mesure utilisé :		in-situ à	chaque r	orof.	X	en surface da	ns un récipient
Ĭ	Prof.	Temp.	pН	Cond.	O_2	O_2	Heure
Volume prélevé (en litres) :	(m)	(°C)	1	(μS/cm 25°)	(mg/l)	(%)	
prélèvement intégré (2 L)	-0,10	27,7	8,0	473	7,8	102%	14:40
prélèvement intégré (2 L)	-0,25	27,8	8,0	475	7,9	103%	
prélèvement intégré (2 L)	-0,50	27,7	8,0	474	7,9	103%	
prélèvement intégré (2 L)	-0,75	27,5	8,0	474	7,9	102%	
prélèvement intégré (2 L)	-1,00	27,1	8,0	474	7,9	102%	
prélèvement intégré (2 L)	-1,25	25,7	7,9	467	8,1	102%	
prélèvement de fond	-1,50	25,5	8,0	464	8,3	104%	14:50

Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES Réaltor (retenue du) Date: 09/07/2012 Plan d'eau: artificiel Code lac: Y4125003 Type (naturel, artificiel,...): Organisme / opérateur : S.T.E.: A. Gravouille et L. Krithari Campagne 3 page 4/5 Agence de l'eau RM&C marché n° 08M082 Organisme demandeur : Température (°C) 0 5 10 15 20 25 30 0,00 -0,25 -0,50 $\widehat{\mathbf{E}}$ -0,75) ford -1,00 -1,25 -1,50 pН 8,0 7,5 7,0 8,5 9,0 0,00 -0,25 -0,50 € _{-0,75} od -1,00 -1,25 -1,50 Conductivité (µS/cm à 25°C) 50 100 0 150 200 250 300 350 400 450 500 550 600 0,00 -0,25 -0,50 (E) -0,75 --1,25 -1,50

DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES

Plan d'eau : Réaltor (retenue du)


Type (naturel, artificiel,...): artificiel


Organisme / opérateur :

S.T.E.: A. Gravouille et L. Krithari

Organisme demandeur : Agence de l'eau RM&C

Date: 09/07/2012 Code lac: Y4125003 Campagne 3 page 5/5 marché n° 08M082

Prélèvement d'eau de fond, pour analyses physicochimiques :

Distance au fond : 0.4 m soit à Zf = -1.5 m

Remarques et observations :

Remise des échantillons:

Echantillons pour analyses physicochimiques (Laboratoire LDA26)

échantillon intégré n° | 1960863 (demande 817) bon transport intégré : EE338589117EE

1962286 (demande 818)

échantillon de fond n° 1961309 (demande 819) bon transport fond : EE338589125EE

1962187 (demande 820)

remise par S.T.E.: le à

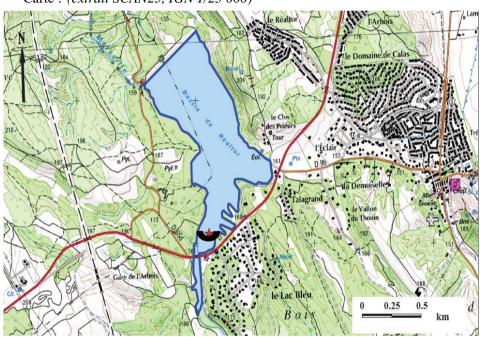
Au transporteur : Chronopost le 09/07/12 à 15h30

Arrivée au laboratoire LDA 26 dans la matinée du : 10/07/12

Echantillons pour analyses phytoplanctoniques à BECQ'EAU, le 27/08/12

DONNEES GENERALES PLAN D'EAU - STATION

Plan d'eau: Réaltor (retenue du) Date: 08/10/2012 Code lac: Y4125003 artificiel Type (naturel, artificiel,...): Organisme / opérateur : **S.T.E.** : Campagne 4 page 1/6 S. Meistermann et E. Dor Organisme demandeur: marché n° 08M082 Agence de l'eau RM&C


LOCALISATION PLAN D'EAU

Commune : Cabriès (13)

Lac marnant : non Type: A8

Temps de séjour : nd jours petits plans d'eau de plaine ou de moyenne montagne, à marnage très important voire fréquent, alimentés par des Superficie du plan d'eau : 62 ha sources ou des petits cours d'eau Profondeur maximale

Carte: (extrait SCAN25, IGN 1/25 000)

localisation du point de prélèvements

angle de prise de vue de la photographie

STATION

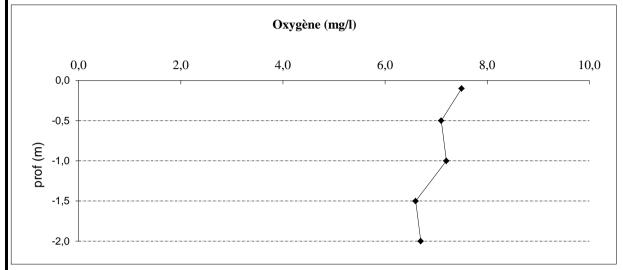
Relevé phytoplanctonique et ph	•		
DONNEES GENERALES CAN		D-4 00/10/2012	
Plan d'eau:	Réaltor (retenue du)	Date: 08/10/2012 Code lac: Y4125003	
Type (naturel, artificiel,):	artificiel S.T.E.: S. Meistermann et E. Dor		
Organisme / opérateurs :		Campagne 4 page 2/6 marché n° 08M082	
Organisme demandeur : STATION	Agence de l'eau RM&C	marche ii U8MU82	
Coordonnées de la station	ralayáas sur		
Lambert 93		.881 alt.: 159 m	
WGS 84 (systinternational)		alt.: m	
Profondeur:	· ·		
	Vent: nul		
	Météo: ensoleillé sec		
Conditions d'observation :	Surface de l'eau : lisse		
	Hauteur des vagues: 0,0 m P atm st	andard : 995 hPa	
	Bloom algal: non Pression	atm.: 995 hPa	
Marnage:	non Hauteur de la b	ande: 0,0 m	
Campagne : PRELEVEMENTS Heure de début du relevé :	eau chlorophylle matériel employé :	έ: 15:50 pompe	
Prélèvements pour analyses :	phytoplancton sédiments	benne Ekmann	
	la a . 1 . 1 . 11		
Gastion	l'Société du Canal de Marcaille		
Gestion:	Société du Canal de Marseille	on en eau potable	
	Bassin de régulation/décantation pour l'alimentation Société du Canal de Marseille JM. Reynes - Tél.: 04.91.57.62.12 / 06.10.20.37		
Contact préalable :	Bassin de régulation/décantation pour l'alimentation Société du Canal de Marseille	.61 2009 par accord entre	

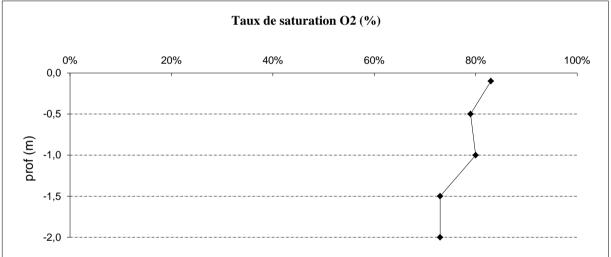
Relevé phytoplanctonique et physico-chimique en plan d'eau							
DONNEES PHYSICO-CHIMIQUES Detail 08/10/2012							
Plan d'eau:	Réaltor (retenue du) Date: 08/10/2012						
J1 () /	artificiel					Code lac : Y4125003	
	S.T.E.: S. Meistermann e E. Dor					Campagne 4 page 3/6 marché n° 08M082	
Organisme demandeur :	Agence de l'eau RM&C					marche n°	08M082
TRANSPARENCE							
Secchi en m: 0,6 Z euphotique (2,5 x Secchi): 1,5 m							
PROFIL VERTICAL							
Moyen de mesure utilisé :		in-situ à d	chaque p		X		ans un récipient
Volume prélevé (en litres) :	Prof. (m)	Temp. (°C)	pН	Cond. (µS/cm 25°)	O ₂ (mg/l)	O ₂ (%)	Heure
prélèvement intégré (2,5 L)	-0,1	19,8	8,1	424	7,5	83%	15:00
prélèvement intégré (2,5 L)	-0,5	19,7	8,1	423	7,1	79%	
prélèvement intégré (2,5 L)	-1,0	19,7	8,1	420	7,2	80%	
prélèvement intégré (2,5 L)	-1,5	19,4	8,1	419	6,6	73%	
prélèvement de fond	-2,0	19,0	8,1	417	6,7	73%	15:30
		,					

Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES Plan d'eau: Réaltor (retenue du) Date: 08/10/2012 artificiel Code lac: Y4125003 Type (naturel, artificiel,...): Organisme / opérateur : S.T.E.: S. Meistermann e E. Dor Campagne 4 page 4/6 Agence de l'eau RM&C marché n° 08M082 Organisme demandeur: Température (°C) 5 10 15 20 25 0 0,0 prof (m) -1,0 -1,5 -2,0 pН 7,0 7,5 8,0 8,5 9,0 0,0 prof (m) -1,5 -2,0 Conductivité (µS/cm à 25°C) 0 50 100 150 200 250 300 350 400 450 500 550 600 0,0 -0,5 prof (m) -1,5 -2,0

DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES

Réaltor (retenue du) Plan d'eau:


Type (naturel, artificiel,...): artificiel


Organisme / opérateur :

S.T.E.: S. Meistermann e E. Dor

Organisme demandeur: Agence de l'eau RM&C

Date: 08/10/2012 Code lac: Y4125003 Campagne 4 page 5/6 marché n° 08M082

Prélèvement d'eau de fond, pour analyses physicochimiques :

Distance au fond: 0.8 m soit à Zf =

-2,0 m

Remarques et observations :

Remise des échantillons:

Echantillons pour analyses physicochimiques (Laboratoire LDA26)

échantillon intégré n° 1960891 (demande 817) bon transport intégré: EE338666803EE

1962309 (demande 818)

échantillon de fond n° 1961329 (demande 819) bon transport fond: EE338666794EE

1962205 (demande 820)

remise par S.T.E.: le à

Au transporteur : Chronopost le 08/10/12 à 17h00

Arrivée au laboratoire LDA 26 dans la matinée du : 09/10/12

Echantillons pour analyses phytoplanctoniques à BECQ'EAU, le 17/10/12

Prélèvements de sédiments p	* *	* *		MENTE			
DONNEES GENERALES I			ENT DE SEDI	WENTS	D . 027	10/2012	
	Réaltor (retenu	e du)	_	Date: 08/1			
31 (/	artificiel			Code lac: Y41			
8 I	S.T.E.	S. Meisterman	E. Dor		re: 16:00		
Organisme demandeur:	Agence de l'eat	ı RM&C	n	narché n° 08N	1082		
					pag	e 6/6	
Conditions de milieu							
chaud, ensoleillé X	période estimée favorable à : débits des affluents						
couvert	mort et sédime	ntation du plan					
pluie, neige	sédimentation o	de MES de tou	>>	turbidité aff	luent:		
Vent		Secchi (m)	0,6				
					()	-,-	
Matériel				-			
drague fond plat	pelle à main		benne X	piège	card	ottier	
Localisation générale de la	zone de prélè	evements (en r	articulier, X Y	Lambert 93)		
				,) 1	
Point de plus grande profone	deur (cf campa	gne 4) X:	888541		Y: 626488	31	
					1		
Prélèvements		1	2	3	4	5	
profondeur (en m)		2,8	2,8	2,8			
épaisseur échantillonnée							
récents (<2cm)		X	X	X			
anciens (>2cm)							
indéterminé							
épaisseur, en cm :							
granulomérie dominante							
graviers							
sables							
limons		_					
vases		X	X	X			
argile							
aspect du sédiment							
homogène							
hétérogène		X	X	X			
couleur		gris foncé	gris foncé	gris foncé			
odeur		légère	légère	légère			
présence de débris végétx n		oui	oui	oui			
présence d'hydrocarbures (i	risations)	non	non	non	-		
présence d'autres débris		non	non	non			
Remarques générales :							
Kemai ques generales.							
Remise des échantillons :							
Echantillons pour analyses p	hysicochimiqu	ies (Laboratoir	e LDA26)				
	s n° eau insters		016886	sédimer	nt: 2016	887	
					20483	304	
remise par S.T.		le		à			
Au transporte	ur: Chron	opost le	08/10/201	2 à 17	h00		

arrivée au laboratoire LDA 26 en mi-journée du : 09/10/2012