

Agence de l'Eau Rhône Méditerranée Corse

ÉTUDE DES PLANS D'EAU DU PROGRAMME DE SURVEILLANCE DES BASSINS RHONE-MEDITERRANEE ET CORSE – LOT N°2 CENTRE RAPPORT DE DONNEES BRUTES ET INTERPRETATION RETENUE DU MONT- CENIS

SUIVI ANNUEL 2019

Rapport n° 16-707B - Mont- Cenis – janvier 2021

Sciences et Techniques de l'Environnement – B.P. 90374 17, Allée du Lac d'Aiguebelette - Savoie Technolac 73372 Le Bourget du Lac cedex tél. : 04 79 25 08 06; tcp : 04 79 62 13 22

SOMMAIRE

1	<u>CAI</u>	ORE DU PROGRAMME DE SUIVI	<u> 7</u>
2	DED	COULEMENT DES INVESTIGATIONS	0
<u>4</u>		PRESENTATION DU PLAN D'EAU ET LOCALISATION	
	2.1		
	2.2	CONTENU DU SUIVI 2019	10
	2.3	PLANNING DE REALISATION	11
	2.4	ETAPES DE LA VIE LACUSTRE	11
	2.5	BILAN CLIMATIQUE DE L'ANNEE 2019	13
<u>3</u>	RAP	PEL METHODOLOGIQUE	14
	3.1	INVESTIGATIONS PHYSICOCHIMIQUES	14
	3.1.1	Méthodologie	14
	3.1.2	Programme analytique	16
	3.2	INVESTIGATIONS HYDROBIOLOGIQUES	17
	3.2.1		
	3.2.2		
	3.2.3	Traitement des données	18
4	DEC	HI TATO DECINIVECTICATIONO	10
<u>4</u>		ULTATS DES INVESTIGATIONS	
	4.1	INVESTIGATIONS PHYSICOCHIMIQUES	
	4.1.1		
	4.1.2		
	4.1.3	Analyses des sédiments	26
	4.2	PHYTOPLANCTON	
	4.2.1	$oldsymbol{arphi}$	
	4.2.2	1	
	4.2.3		
	4.2.4		
	4.2.5	Comparaison avec les inventaires antérieurs	34
<u>5</u>	ΔPP	RECIATION GLOBALE DE LA QUALITE DU PLAN D'EAU	35
<u></u>	7111	RECEITION GEODREE DE EM COMETTE DO LEMA DE EM COMETTE DE LEMA DE LA COMETTE	
<u>- 1</u>	ANNEX	ES	37
<u>A</u>	NNEXE	1. LISTE DES MICROPOLLUANTS ANALYSES SUR EAU	39
A	NNEXE	2. LISTE DES MICROPOLLUANTS ANALYSES SUR SEDIMENT	47
4 1	. 11 12/2	22012 220 MICHOI ODDOTE (TO THAID I OUR ODDIMENT I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	1
	NNEXE		ET
P	HYTOP	LANCTONIOUES	51

Liste des illustrations

Figure 1 : moyennes mensuelles de température à la station de Bourg –Saint- Maurice (<i>Info-climat</i>)	13
Figure 2 : cumuls mensuels de précipitations à la station de Bourg –Saint-Maurice (site Info-climat)	
Figure 3 : Représentation schématique des différentes stratégies de comptage	
Figure 4 : Seuils des classes d'état définis pour chaque métrique et pour l'IPLAC	18
Figure 5 : Profils verticaux de température au point de plus grande profondeur	
Figure 6 : Profils verticaux de conductivité au point de plus grande profondeur	
Figure 7: Profils verticaux de pH au point de plus grande profondeur	
Figure 8 : Profils verticaux d'oxygène (mg/l) au point de plus grande profondeur	
Figure 9 : Profils verticaux d'oxygène (% sat.) au point de plus grande profondeur	21
Figure 10 : profils verticaux des matières organiques dissoutes	22
Figure 11 : Évolution de la transparence et de la zone euphotique lors de 4 campagnes	29
Figure 12 : Répartition du phytoplancton sur la retenue du Mont-Cenis à partir des abondances (cellul	
	32
Figure 13 : Evolution saisonnière des biovolumes des principaux groupes algaux de phytoplancte	on (en
mm ³ /l)	32
Tablana 1 . Camantiana afafai ana dari maratiantiana manfarana manfa da mini dina alam diana	7
Tableau 1 : Synoptique générique des investigations menées sur une année de suivi d'un plan d'eau Tableau 2 : liste des plans d'eau suivis sur le centre du bassin Rhône-Méditerranée	
Tableau 3 : Synoptique des interventions de terrain et de laboratoire sur le plan d'eau	
Tableau 4 : Résultats des paramètres de minéralisation	
Tableau 5 : Résultats des paramètres de physico-chimie classique sur eau	23 24
Tableau 7 : Résultats d'analyses de micropolluants organiques présents sur eau	
Tableau 8 : Synthèse granulométrique sur le sédiment du point de plus grande profondeur	
Tableau 9 : Analyse de sédiments	
Tableau 10 : Résultats d'analyses de micropolluants minéraux sur sédiment	
Tableau 11 : Résultats d'analyses de micropolluants organiques présents sur sédiment	
Tableau 12 : analyses des pigments chlorophylliens	
Tableau 13 : Liste taxonomique du phytoplancton (en nombre de cellules/ml)	
Tableau 14: Liste taxonomique du phytoplancton (en mm³/l)	
Tableau 15 : évolution des Indices IPLAC depuis 2007	
Tuoleuu 15. Ovolution ues mulees ii E/10 depuis 200/	5
Carte 1 : localisation du retenue du Mont-Cenis (Savoie)	
Carte 2 : Présentation du point de prélèvement	10

FICHE QUALITE DU DOCUMENT

Agence de l'Eau Rhône Méditerranée Corse (AERMC) Direction des Données et Redevances 2-4, Allée de Lodz 69363 Lyon Cedex 07 Maître d'ouvrage Interlocuteur: Mr IMBERT Loïc Coordonnées: loic.imbert@eaurmc.fr Titre du projet Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse - Rapport de données brutes et interprétation - Retenue du Mont-Cenis Référence du document Rapport n°16-707B /2019v2 - Rapport Mont-Cenis 2019 Mai 2020

S.T.E. Sciences et Techniques de l'Environnement

Contrôle qualité

Date

Auteur(s)

Version	Rédigé par	Date	Visé par	Date
V0	Audrey Péricat, Lionel Bochu	20/05/2020	Audrey Péricat	07/09/2020
V1	Audrey Péricat, Lionel Bochu	10/12/2020	Corrections suite à mail du 04/12/2020	
V2	Audrey Péricat et Lionel Bochu	08/01/2021		

Thématique

Mots-clés	Géographiques: Bassin Rhône-Méditerranée – Savoie (73) – Retenue du Mont- Cenis Thématiques: Réseaux de surveillance – Etat trophique – Plan d'eau
Résumé	Le rapport rend compte de l'ensemble des données collectées sur la Retenue du Mont- Cenis lors des campagnes de suivi 2019. Une présentation du plan d'eau et du cadre d'intervention est menée puis les résultats des investigations sont développés dans la suite du document.

Diffusion

Envoyé à :											
Nom	Organisme	Date	Format(s)	Nombre d'exemplaire(s)							
Loïc IMBERT	AERMC	07/09/2020	Papier et informatique	1							
pour version provisoire											

1 CADRE DU PROGRAMME DE SUIVI

Dans le cadre de la mise en œuvre de la Directive Cadre européenne sur l'Eau (DCE), adoptée le 23 Octobre 2000 et transposée en droit français le 21 avril 2004, un programme de surveillance a été mis en place au niveau national afin de suivre l'état écologique et l'état chimique des eaux douces de surface (cours d'eau et plans d'eau).

L'Agence de l'Eau Rhône Méditerranée Corse a en charge le suivi des plans d'eau faisant partie du programme de surveillance sur les bassins Rhône-Méditerranée et Corse.

Le suivi comprend la réalisation de prélèvements d'eau et de sédiments répartis sur quatre campagnes dans l'année pour analyse des paramètres physico-chimiques et des micropolluants. Différents compartiments biologiques sont étudiés (phytoplancton, macrophytes, diatomées, faune benthique). Le tableau 1 synthétise les différentes mesures qui sont réalisées dans le cadre du suivi type (selon la nature des plans d'eau et les éléments déjà suivis antérieurement, le contenu du suivi n'englobera pas nécessairement l'ensemble des éléments listés dans le Tableau 1). Un suivi du peuplement piscicole doit également être réalisé dans le cadre du programme de surveillance sur certains types de plans d'eau.

Tableau 1 : Synoptique générique des investigations menées sur une année de suivi d'un plan d'eau

			Paramètres	Type de prélèvements/ Mesures	HIVER	PRINTEMPS	ЕТЕ	AUTOMNE
		Mesures in situ	O2 dis. (mg/l, %sat.), pH, COND (25°C), T°, transparence secchi	Profils verticaux	х	Х	х	х
			DBO5, PO4, Ptot, NH4, NKJ, NO3,	Intégré	Х	Χ	Х	Х
	J.		dissoute	Ponctuel de fond	Χ	Х	Χ	Х
	Sur EAU	Physico-chimie classique et	(25°C), T°, transparence secchi DBO5, PO4, Ptot, NH4, NKJ, NO NO2, Corg, MEST, Turbidité, Si dissoute Micropolluants sur eau* Chlorophylle a + phéopigments de Ca²+, Na+, Mg²+, K+, dureté, TAC SO₄²-, Cl-, HCO₃ PO4, Ptot, NH4 Corg., Ptot, Norg, Granulomètrie perte au feu Micropolluants sur sédiments*	Intégré	Х	Х	Х	Х
	Sur	micropolluants	Wildropolitating Still Cata	Ponctuel de fond	Х	Х	Χ	Х
			Chlorophylle a + phéonigments	Intégré	Х	Х	Χ	Х
			Onlorophylic a 1 pheopiginents	Ponctuel de fond				
	Paramètres de		Ca ²⁺ , Na ⁺ , Mg ²⁺ , K ⁺ , dureté, TAC,	Intégré	Х			
		Minéralisation	SO ₄ ²⁻ , Cl ⁻ , HCO ₃ ⁻	Ponctuel de fond				
ည	E	au interst.: Physico-chimie	PO4, Ptot, NH4					
Sur SEDIMENTS	Phase solide	Physico-chimie classique	Corg., Ptot, Norg, Granulomètrie, perte au feu	Prélèvement au point de plus grande profondeur				х
S		Micropolluants	Micropolluants sur sédiments*					
			Phytoplancton	Intégré - Protocole IRSTEA/Utermöhl	Х	Х	Χ	Х
		YDROBIOLOGIE et	Invertébrés	Protocole en cours de développement		Х		
	HY	DROMORPHOLOGIE	Diatomées	Protocole IRSTEA			Χ	
			Macrophytes	Norme XP T 90-328			Χ	

^{*:} se référer à l'arrêté du 7 août 2015 établissant le programme de surveillance de l'état des eaux

Poissons et hydromorphologie en charge de l'ONEMA (un passage tous les 6 ans)

RCS : un passage par plan de gestion pour le suivi complet (soit une fois tous les six ans / tous les trois ans pour le phytoplacton)

CO: un passage tous les trois ans

Différents réseaux constituent le programme de surveillance. Parmi ceux-ci, deux réseaux sont actuellement mis en œuvre sur les plans d'eau :

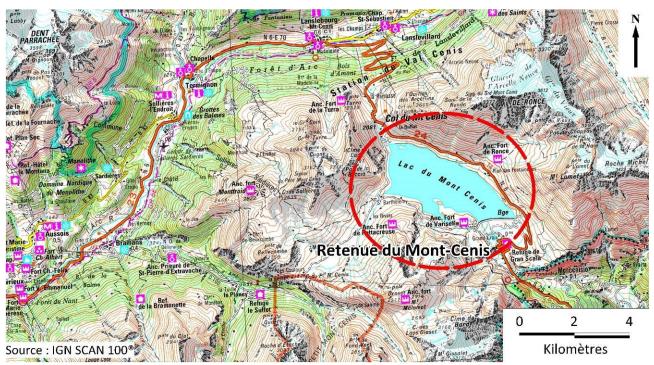
- ✓ Le réseau de contrôle de surveillance (RCS) vise à donner une image globale de la qualité des eaux. Tous les plans d'eau naturels de superficie supérieure à 50ha ont été pris en compte sur les bassins Rhône-Méditerranée et Corse. Pour les plans d'eau d'origine anthropique, une sélection a été opérée parmi les plans d'eau de superficie supérieure à 50 ha, afin de couvrir au mieux les différents types présents sur les bassins Rhône-Méditerranée et Corse (grandes retenues, plans d'eau de digue, plans d'eau de creusement).
- ✓ Le contrôle opérationnel (CO) vise à suivre spécifiquement les plans d'eau (naturels ou anthropiques) de superficie supérieure à 50 ha qui risquent de ne pas atteindre leurs objectifs environnementaux (le bon état ou le bon potentiel).

Au total, 79 plans d'eau sont suivis sur les bassins Rhône-Méditerranée et Corse dans le cadre de ces deux réseaux.

La liste des plans d'eau suivis en 2019 sur le centre du bassin Rhône-Méditerranée, précisant pour chaque plan d'eau le réseau qui le concerne, est fournie dans le Tableau 2.

Tableau 2 : liste des plans d'eau suivis sur le centre du bassin Rhône-Méditerranée

Code_lac	Libellé	Origine	Dept	Code MDO	Type cemagref	Réseaux	Altitude (m)	Type de suivi
V1235003	Annecy	Naturel	74	FRDL66	N4	RCS/CO	447	Suivi spécif. CO
V1335003	Bourget	Naturel	73	FRDL60	N4	RCS/CO	231	Classique
V03-4003	Léman	Naturel	74	FRDL65	N4	RCS/CO	372	Classique
V2515003	Nantua	Naturel	1	FRDL47	N4	RCS/CO	475	Classique
W2405023	Pierre-châtel	Naturel	38	FRDL79	N3	RCS/CO	923	Classique
W2715003	Chambon	MEFM	38	FRDL74	A5	RCS	1044	Classique
W0005083	Chevril	MEFM	73	FRDL55	A1	RCS	1790	Phytoplancton + Séd.
Y6705023	Mont-cenis	MEFM	73	FRDL53	A1	RCS	1974	Classique
W0435023	Roselend	MEFM	73	FRDL54	A1	RCS	1559	Classique
V3005063	Eaux bleues	MEA	69	FRDL50	A16	RCS/CO	170	Classique
V2705003	Allement	MEFM	1	FRDL44	А3	CO	268	Classique
V2525003	Charmines-Moux	MEFM	1	FRDL43	A2	CO	381	Classique
V23023	Cize-Bolozon	MEFM	01	FRDL42	A2	CO	283	Classique


2 DÉROULEMENT DES INVESTIGATIONS

2.1 Presentation du plan d'eau et localisation

La retenue de Mont-Cenis est située dans le département de la Savoie (73) sur la commune de Lanslebourg-Mont-Cenis, dans la vallée de la haute-Maurienne à la frontière italienne.

A l'origine, un petit lac naturel occupait une dépression qui fut mise à profit par la création d'un barrage EDF. Cette dépression a été creusée en grande partie dans une lame de gypses et de cargneules du trias, qui traverse la cuvette du lac du Mont-Cenis.

Le barrage a été construit en 1921 par l'Italie puis rehaussé par la France en 1968. Le plan d'eau fait partie d'un complexe hydroélectrique captant les eaux du bassin versant direct du plan d'eau. Les eaux du Mont-Cenis sont également en relation avec la retenue de Plan Aval, sur l'autre versant de la Maurienne. Les eaux sont turbinées à Villarodin côté français et à Venaus côté italien. La retenue est alimentée par diverses sources d'apports naturels et artificiels : le bassin versant naturel correspondant au plateau auquel s'ajoute des adductions des affluents rive gauche de l'Arc, Avérole et Ribbon, côté français. L'Italie apporte vers la retenue les apports de la Cenischia et du Rio Clarea.

Carte 1 : localisation du retenue du Mont-Cenis (Savoie)

Le plan d'eau présente une superficie de 653 ha. La profondeur maximale théorique est de 91 m pour une cote d'eau maximale à 1974 m NGF, mais elle peut être largement inférieure selon les cotes d'exploitations. Le site du Mont-Cenis s'intègre dans un bassin dépressionnaire dont le substrat est composé par des lames de gypses et de schistes (roches sédimentaires). Le plan d'eau et son bassin versant sont compris en ZNIEFF de types 1 et 2 au sein de la zone d'adhésion du parc national de la Vanoise. Une bonne partie du bassin versant du plan d'eau est soumis à l'arrêté de protection de biotope « Mont-Cenis et vallon de Savine ».

Cette région présente un climat typiquement montagnard aux hivers rudes et très enneigés et aux étés chauds et orageux. Le plan d'eau dégèle tardivement.

Le plan d'eau est géré par E.D.F. – groupement d'usines du Mont- Cenis. Il est utilisé pour la production d'hydroélectricité.

La zone de plus grande profondeur se situe dans la partie centrale du plan d'eau. Le point de plus grande profondeur atteint 75 m pour cette année 2019 (Carte 2). Le marnage maximal enregistré en 2019 était de plus de 40 m lors de la 1^{ère} campagne. Le remplissage de la retenue a été tardif et partiel pour cette année.

Carte 2 : Présentation du point de prélèvement

Le lac est dimictique, c'est-à-dire qu'il s'agit d'un plan d'eau qui présente deux phases de stratification annuelle : une stratification thermique normale en période estivale et une stratification inverse en période hivernale (prise en glace superficielle).

2.2 Contenu du suivi 2019

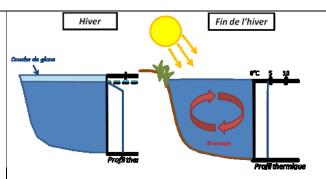
La retenue du Mont-Cenis est suivie au titre du Réseau de Contrôle de Surveillance (RCS). Selon l'arrêté «Surveillance » du 7/08/2015, les plans d'eau du RCS doivent être suivis pour tous les éléments de qualité à une fréquence de 6 ans (seul le compartiment phytoplancton est à suivre tous les 3 ans). Ainsi, en 2019, la retenue du Mont-Cenis a fait l'objet d'un suivi physicochimique complet (zone euphotique et fond) ainsi que l'étude du peuplement phytoplanctonique pour les paramètres biologiques.

En 2016, la retenue a fait l'objet d'un programme de maintenance nécessitant une vidange partielle du plan d'eau, le suivi prévu en 2016 a donc été annulé. Le précédent suivi de la qualité du lac du Mont-Cenis a eu lieu en 2013.

2.3 PLANNING DE REALISATION

Le tableau ci-dessous indique la répartition des missions aussi bien en phase terrain qu'en phase laboratoire/détermination. S.T.E. a, en outre, eu en charge de coordonner la mission et de collecter l'ensemble des données pour établir les rapports et mener l'exploitation des données.

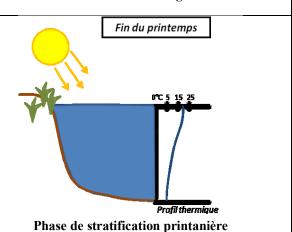
Tableau 3 : Synoptique des interventions de terrain et de laboratoire sur le plan d'eau


Retenue du Mont-Cenis		Phase to	Laboratoire - détermination		
Campagne	C1 C2		С3	C4	
Date	17/06/2019	17/07/2019	22/08/2019	16/09/2019	automne/hiver 2019-2020
Physicochimie des eaux	nie des eaux S.T.E.		S.T.E.	S.T.E.	CARSO
Physicochimie des sédiments				S.T.E.	LDA26
Phytoplancton	S.T.E.	S.T.E.	S.T.E.	S.T.E.	LEMNA

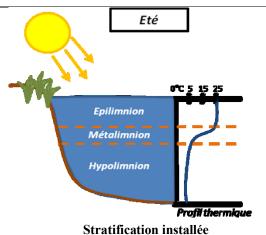
2.4 ETAPES DE LA VIE LACUSTRE

Les investigations physicochimiques ont été réalisées lors de quatre campagnes qui correspondent aux différentes étapes de développement de la vie lacustre.

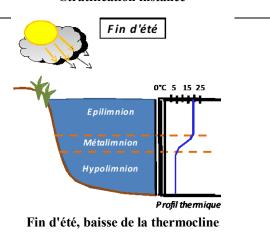
Campagne 1


La première campagne correspond à la phase d'homothermie du plan d'eau. La masse d'eau est homogène (en température et en oxygène). Sur les lacs dimictiques, cette phase intervient en fin d'hiver à la suite du dégel. La période varie entre juin et juillet suivant l'altitude du plan d'eau.

Stratification hivernale - Brassage de fin d'hiver


Campagne 2

La seconde campagne correspond à la période de démarrage et de développement de l'activité biologique des lacs. Il s'agit de la période de mise en place de la stratification thermique conditionnée par le réchauffement. Cette phase intervient au printemps et c'est à cette période que l'activité biologique atteint son maximum. La campagne est donc généralement réalisée durant le mois de juillet pour les plans d'eau d'altitude.


Campagne 3

La troisième campagne correspond à la période de stratification maximum du plan d'eau avec une thermocline bien installée avec une 2ème phase de croissance du phytoplancton. Cette phase intervient en période estivale. La campagne est donc réalisée au mois d'août, lorsque l'activité biologique est maximale sur les plans d'eau de haute montagne.

Campagne 4

La quatrième campagne correspond à la fin de la stratification estivale du plan d'eau. Elle intervient avant la baisse de la température et la disparition de la thermocline. L'épilimnion présente alors son épaisseur maximale. Cette phase intervient en fin d'été : la campagne est donc réalisée durant le mois de septembre.

2.5 BILAN CLIMATIQUE DE L'ANNEE 2019

Les conditions climatiques de l'année 2019 pour la retenue du Mont- Cenis sont analysées à partir de la station météorologique de Bourg –Saint- Maurice (865 m d'altitude), située à 43 km au Nord-Ouest du plan d'eau dans la vallée de la Tarentaise. Cette station dispose d'une longue chronique d'enregistrements (1973-2020).

L'année 2019 a été globalement assez chaude par rapport aux moyennes de saison (Figure 1) avec une température moyenne de 11,5°C en 2019 contre 10°C sur la période 1981-2010. Les moyennes mensuelles sont globalement plus élevées en 2019 tous les mois sauf en mai.

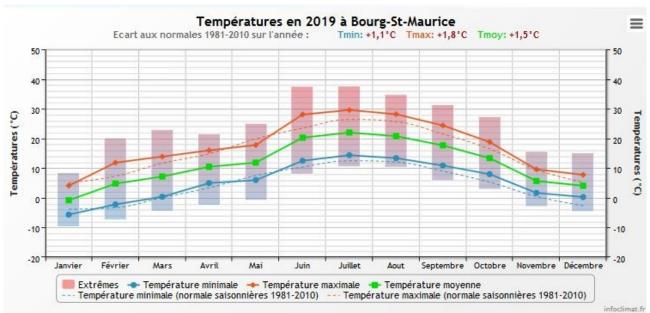


Figure 1 : moyennes mensuelles de température à la station de Bourg -Saint-Maurice (Info-climat)

Le cumul de précipitations en 2019 est légèrement déficitaire par rapport aux normales de saison (889 mm en 2019 contre 986 mm mesuré en moyenne sur la période 1981-2010), **soit -10% de pluviométrie**. Ces données sont présentées sur la Figure 2.

Il ressort les éléments suivants :

- ✓ Déficits de précipitations en février, avril, juin et septembre (-40 à 60%) par rapport à la période 1981-2010 :
- ✓ Précipitations importantes sur l'automne : 110 à 150 mm sur les mois d'octobre, novembre et décembre, soit 30 à 80% de plus que les cumuls mensuels 1981-2010 ;

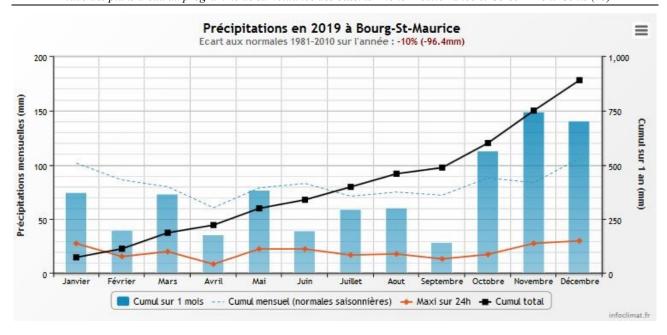


Figure 2: cumuls mensuels de précipitations à la station de Bourg -Saint-Maurice (site Info-climat)

L'enneigement a été moyen pendant l'hiver 2019 en haute-Maurienne (source : Météo-France). Grâce à un démarrage assez précoce, des précipitations conformes et une fonte printanière assez tardive, l'enneigement a été assez satisfaisant durant toute la saison. Toutefois, la haute Maurienne a été plus faiblement arrosé que les autres massifs des Alpes.

Les conditions climatiques n'ont pas permis le remplissage complet de la retenue du Mont-Cenis. Fin juin, le remplissage de la retenue présentait un déficit notoire.

3 RAPPEL MÉTHODOLOGIQUE

3.1 Investigations physicochimiques

3.1.1 METHODOLOGIE

Le contenu des investigations physicochimiques est similaire sur les quatre campagnes, excepté un point : un échantillon de sédiment est prélevé lors de la dernière campagne.

Le profil vertical et les prélèvements sont réalisés dans le secteur de plus grande profondeur que l'on recherche à partir des données collectées au préalable (bathymétrie, étude, communication avec les gestionnaires). Dans le cas des retenues, cette zone se situe en général à proximité du barrage dans le chenal central. Sur le terrain, la recherche du point de plus grande profondeur est menée à l'aide d'un échosondeur.

Au point de plus grande profondeur, on effectue, dans l'ordre :

a) une mesure de transparence au disque de Secchi, avec lecture côté "ombre" du bateau pour une parfaite acuité visuelle. Chacun des deux opérateurs fait la lecture en aveugle (1 ère lecture non indiquée au 2 electeur).

- b) un profil vertical de température (°C), conductivité (μS/cm à 25°C), pH (u. pH) et oxygène dissous (% sat. et mg/l). Il est réalisé à l'aide de 2 sondes multiparamètres OTT MS5 qui peuvent effectuer des mesures jusqu'à 200 m de profondeur :
 - les sondes MS1 et MS2 disposant d'une mémoire interne pouvant être programmée pour enregistrer les données à une fréquence de temps définie préalablement (5 secondes).

Les sondes sont équipées d'un capteur de pression permettant d'enregistrer la profondeur de la mesure. Les deux sondes sont descendues en parallèle sur la colonne d'eau pour le recueil du profil vertical.

Un profil vertical du paramètre matières organiques dissoutes *fdom* est également mené lors de toutes les campagnes à l'aide d'une sonde EXO. Cet appareil a également été équipé d'une sonde pH et conductivité en cours d'année 2019.

c) deux prélèvements pour analyses physicochimiques :

- l'échantillon intégré est en général constitué de prélèvements ponctuels tous les mètres ur la zone euphotique (soit 2,5 fois la transparence); ces prélèvements unitaires, de même volume, sont réalisés à l'aide d'une bouteille Kemmerer 1,2 L (téflon) et disposés dans une bonbonne en verre pyrex de 20 litres graduée et équipée d'un robinet verre/téflon pour conditionner les échantillons. Pour les analyses physicochimiques (uniquement micropolluants minéraux et organiques), 10 litres sont nécessaires. Une fois l'échantillon finalisé, le conditionnement est réalisé sur le bateau, en respectant l'ensemble des prescriptions du laboratoire.
- l'échantillon ponctuel de fond est prélevé à environ 1 m du fond, pour éviter la mise en suspension des sédiments. Les prélèvements sont réalisés à l'aide d'une bouteille Niskin X *General Oceanics* téflonnée (5,4 L) et disposés dans une bonbonne en verre pyrex de 20 litres graduée et équipée d'un robinet verre/téflon pour conditionner les échantillons. Pour les analyses physicochimiques (physicochimie classique, micropolluants minéraux et organiques), 15 litres sont nécessaires. Une fois l'échantillon finalisé, le conditionnement est réalisé sur le bateau, en respectant l'ensemble des prescriptions du laboratoire.

Pour chaque échantillon, le laboratoire CARSO fournit une glacière avec les flaconnages préalablement étiquetés adaptés aux analyses demandées par l'Agence de l'Eau RM&C.

Les échantillons sont conservés dans une enceinte isolée au contact de blocs réfrigérants et de glace fondante, puis envoyés par transporteur TNT pour un acheminement au laboratoire CARSO dans un délai de 24h, sauf cas particuliers.

d) un prélèvement intégré destiné à l'analyse du phytoplancton et de la chlorophylle et aux analyses de physico-chimie classique :

Les prélèvements doivent être obligatoirement intégrateurs de la colonne d'eau correspondant à la zone euphotique. Pour l'échantillonnage, 7 litres sont nécessaires. Ainsi, selon la profondeur de la zone euphotique, plusieurs matériels peuvent être utilisés, l'objectif étant de limiter les aliquotes, et donc les manipulations afin que l'échantillon soit le plus homogène possible :

- le tuyau intégrateur (système décrit dans le protocole de l'IRSTEA) est adaptable pour toute profondeur, le volume échantillonné dépend du diamètre du tuyau. S.T.E. a mis au point 2 tuyaux :
 - o l'un de 5 ou 9 m de diamètre élevé (Ø18 mm) pour les zones euphotiques réduites,
 - o l'autre de 30 m (Ø14 mm) pour les transparences élevées.

Le choix du matériel respecte l'objectif de ne pas multiplier les prélèvements élémentaires.

¹ Compte tenu de la transparence Tr. de certains plans d'eau, exprimable en plusieurs mètres, la règle du Tr. x 2,5 a parfois conduit à une valeur calculée supérieure à la profondeur du plan d'eau. Dans ces cas, le prélèvement a été arrêté à 1 m du fond, pour éviter le prélèvement d'eau de contact avec le sédiment, qui peut, selon les cas, présenter des caractéristiques spécifiques. Inversement, lorsque la transparence est très faible, amenant à une épaisseur de zone euphotique d'à peine quelques mètres, les prélèvements peuvent être resserrés à un pas moindre que 1 m (par exemple : tous les 50 cm).

La filtration de la chlorophylle est effectuée sur le terrain par le préleveur S.T.E. à l'aide d'un kit de filtration de terrain Nalgène.

Pour l'analyse du phytoplancton, 2 échantillons sont réalisés dans des flacons blancs opaques en PP de 500 et 250 ml dûment étiquetés (nom du lac, date, préleveur, campagne). On y ajoute un volume connu de lugol (3 à 5 ml) pour fixation. Les échantillons sont conservés au réfrigérateur. Un des deux échantillons est ensuite transmis au bureau d'études LEMNA en charge de la détermination et du comptage du phytoplancton. L'autre échantillon est conservé dans les locaux de S.T.E dans le cadre du contrôle qualité.

Pour les analyses de physico-chimie classique, le laboratoire CARSO fournit une glacière avec les flaconnages préalablement étiquetés adaptés aux analyses demandées par l'Agence de l'Eau RM&C. Les échantillons sont conservés dans une enceinte isolée au contact de blocs réfrigérants et de glace fondante, puis envoyés par transporteur TNT pour un acheminement au laboratoire CARSO dans un délai de

e) un prélèvement de sédiment :

24h, sauf cas particuliers.

Ce type de prélèvement n'est réalisé que lors d'une seule campagne, celle de fin d'été (septembre), susceptible de représenter la phase la plus critique pour ce compartiment. Le prélèvement de sédiments est réalisé impérativement **après** les prélèvements d'eau afin d'éviter tout risque de mise en suspension de particules du sédiment lors de son échantillonnage, et donc de contamination du prélèvement d'eau (surtout celui du fond).

Il est réalisé par une série de prélèvements à la benne Ekman. Au vu de sa taille et de la fraction ramenée par ce type de benne (en forme de secteur angulaire), on réalise de 2 à 5 prélèvements pour ramener une surface de l'ordre de 1/10 m². On observe sur chacun de ces échantillons la structure du sédiment dans le double but de :

- description (couleur, odeur, aspect, granulométrie,..);
- sélection de la seule tranche superficielle (environ 2-3 premiers cm) destinée à l'analyse.

Pour chaque échantillon, le laboratoire LDA26 fournit une glacière avec le flaconnage adapté aux analyses demandées par l'Agence de l'Eau RM&C.

Les échantillons sont conservés dans une enceinte isolée au contact de blocs réfrigérants et de glace fondante, puis envoyés par transporteur Chronopost pour un acheminement au Laboratoire de la Drôme (LDA26) dans un délai de 24h, sauf cas particuliers.

3.1.2 Programme analytique

Concernant les analyses, les paramètres suivants sont mesurés :

- ✓ sur le prélèvement intégré destiné aux analyses de physico-chimie classique et de la chlorophylle :
 - o turbidité, MES, COD, DBO₅, DCO, PO₄³, Ptot, NH₄⁺, NKJ, NO₃, NO₂, silicates;
 - o chlorophylle a et indice phéopigments ;
 - o dureté, TAC, HCO₃, Ca⁺⁺, Mg⁺⁺, Na⁺, K⁺, Cl⁻, SO₄, F⁻;
- ✓ sur le prélèvement intégré destiné aux analyses de micropolluants minéraux et organiques :
 - o micropolluants minéraux et organiques : liste des substances fournie en annexe 1.
- ✓ sur le prélèvement de fond :
 - o turbidité, MES, COD, DBO₅, DCO, PO₄³⁻, Ptot, NH₄⁺, NKJ, NO₃⁻, NO₂⁻, silicates;
 - o micropolluants minéraux et organiques : liste des substances fournie en annexe 1.

Les paramètres analysés sur les sédiments prélevés lors de la 4^{ème} campagne sont les suivants :

- ✓ sur la phase solide (fraction < 2 mm) :
 - o granulométrie;
 - o matières sèches minérales, perte au feu, matières sèches totales ;

- o carbone organique;
- o phosphore total;
- o azote Kjeldahl;
- o ammonium;
- o micropolluants minéraux et organiques : liste des substances fournie en annexe 2.
- ✓ Sur l'eau interstitielle :
 - o orthophosphates;
 - o phosphore total;
 - o ammonium.

3.2 Investigations hydrobiologiques

Les investigations hydrobiologiques menées en 2019 sur la retenue du Mont-Cenis comprennent uniquement .

✓ l'étude des peuplements phytoplanctoniques à partir de la norme XP T 90-719, « Échantillonnage du phytoplancton dans les eaux intérieures » pour la phase d'échantillonnage et pour la partie détermination à la Norme guide pour le dénombrement du phytoplancton par microscopie inversée (norme NF EN 15204, décembre 2006), correspondant à la méthode d'Utermöhl et suivant les spécifications particulières décrites au chapitre 5 du «Protocole standardisé d'échantillonnage, de conservation, d'observation et de dénombrement du phytoplancton en plan pour la mise en œuvre de la DCE, Version 3.3.1, septembre 2009.

Les prélèvements ont été effectués par S.T.E. lors des campagnes de prélèvements pour analyses physicochimiques. La détermination a été réalisée par Sonia Baillot du bureau d'études LEMNA, spécialiste en systématique et écologie des algues d'eau douce.

3.2.1 Prelevement des echantillons

Les prélèvements ont été réalisés selon la méthodologie présentée au point d) du §3.1.1 « Méthodologie » du chapitre « Rappel méthodologique ».

3.2.2 Determination des taxons

La détermination est faite au microscope inversé, à l'espèce dans la mesure du possible.

A noter : la systématique du phytoplancton est en perpétuelle évolution, les références bibliographiques se confortent ou se complètent, mais s'opposent quelques fois. Il est donc important de rappeler qu'il vaut mieux une bonne détermination à un niveau taxonomique moindre qu'une mauvaise à un niveau supérieure (Laplace-Treyture et al., 2009).

L'analyse quantitative implique l'identification et le dénombrement des taxons observés dans une surface connue de la chambre de comptage. Selon la concentration en algues décroissante, le comptage peut être réalisé de trois manières différentes (Figure 3).

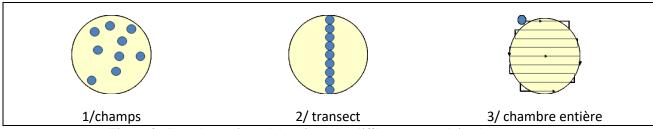


Figure 3 : Représentation schématique des différentes stratégies de comptage

Le comptage est réalisé en balayant des champs strictement aléatoires, ou des transects, ou la chambre entière jusqu'à atteindre 400 individus algaux. La stratégie de comptage utilisée est fonction de la concentration des algues.

Différentes règles de comptage sont appliquées, en respect des échanges inter-opérateur issus des réunions d'harmonisation phytoplancton INRA 2015-2016. Il est entendu que :

- ✓ Tout filament, colonie, ou cœnobe, compte pour un individu algal à X cellules. Le nombre de cellules présentes dans le champ et par individu est dénombré (cellules/individus algaux).
- ✓ Seules les cellules contenant un plaste (exceptés pour les cyanobactéries et chrysophycées à logettes) sont comptées. Les cellules vides des colonies, des cœnobes, des filaments ou des diatomées ne sont pas dénombrées.
- ✓ Les logettes des chrysophycées (ex : *Dinobryon, Kephyrion,...*) sont dénombrées même si elles sont vides, les cellules de flagellés isolés ne sont pas dénombrés.
- ✓ Pour les diatomées, en cas de difficulté d'identification et de fortes abondances (supérieur à 20% de l'abondance totale), une préparation entre lame et lamelle selon le mode préparatoire décrit par la norme NF T 90-354 (AFNOR) est effectuée.

3.2.3 Traitement des données

Les résultats sont exprimés en nombre de cellules par millilitre. Ils sont également exprimés en biovolume (mm³/l), ce qui reflète l'occupation des différentes espèces. En effet, les espèces de petite taille n'occupent pas un même volume que les espèces de grandes tailles. Les biovolumes sont obtenus de trois manières :

- 1. Grâce aux données proposées par le logiciel Phytobs (version 3.1.3), d'aide au dénombrement,
- 2. si les données sont absentes, les mesures sur 30 individus lors de l'observation au microscope sont employées pour calculer un biovolume robuste,
- 3. si l'ensemble des dimensions utiles au calcul n'est pas observé, les données complémentaires issues de la bibliographie sont employées.

Le comptage terminé, la liste bancarisée dans l'outil de comptage PHYTOBS est exporté au format .xls ou .csv. Cet outil permet de présenter des résultats complets.

Le calcul de l'indice Phytoplancton lacustre ou IPLAC est réalisé à l'aide à l'aide du Système d'Evaluation de l'Etat des Eaux (SEEE). Il s'appuie sur 2 métriques :

- ✓ La Métrique de biomasse algale ou MBA est basée sur la concentration moyenne de la chlorophylle a sur la période de végétation.
- ✓ La Métrique de Composition Spécifique ou MCS exprime une note en fonction de la présence (exprimée en biovolume) de taxons indicateurs, figurant dans une liste de référence de 165 taxons (SEEE 1.1.0). A chaque taxon correspond une cote spécifique et une note de sténoécie, représentant l'amplitude écologique du taxon. La note finale est obtenue en mesurant l'écart avec la valeur prédite en condition de référence.

La note IPLAC résulte de l'agréation par somme pondérée de ces deux métriques:

Valeurs de limite	Classe
[1-0.8]	Très bon
]0.8 - 0.6]	Bon
]0.6 - 0.4]	Moyen
]0.4 - 0.2]	Médiocre
]0.2 - 0]	Mauvais

Figure 4 : Seuils des classes d'état définis pour chaque métrique et pour l'IPLAC

L'interprétation des caractéristiques écologiques du peuplement permet d'établir si une dégradation de la note indicielle peut être expliquée par la présence de taxons polluotolérants ou favorisés par une abondance

de nutriments liée à l'eutrophisation du milieu ou être lié au fonctionnement du milieu (stratification, anoxie,...).

L'utilisation de la bibliographie et des groupes morpho-fonctionnels permet d'affiner notre analyse et d'évaluer la robustesse de la note IPLAC obtenue.

4 RÉSULTATS DES INVESTIGATIONS

4.1 INVESTIGATIONS PHYSICOCHIMIQUES

Les comptes rendus des campagnes de prélèvements physicochimiques et phytoplanctoniques sont présentés en annexe 3.

4.1.1 Profils verticaux et evolutions saisonnières

Le suivi prévoit la réalisation de profils verticaux sur la colonne d'eau à chaque campagne. Quatre paramètres sont mesurés : la température, la conductivité, l'oxygène (en concentration et en % saturation) et le pH. Les graphiques regroupant ces résultats pour chaque paramètre lors des 4 campagnes sont affichés dans ce chapitre.

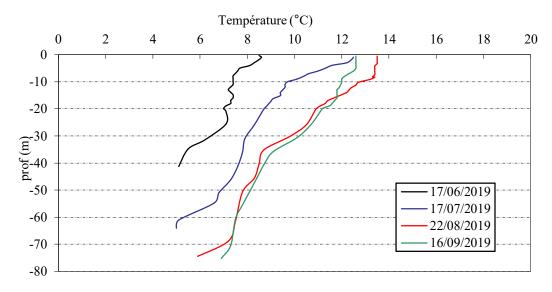


Figure 5 : Profils verticaux de température au point de plus grande profondeur

Lors de la 1^{ère} campagne, le plan d'eau est très partiellement rempli (-35 m). La température est de 8,5°C en surface et chute progressivement pour atteindre 5°C au fond.

1 mois plus tard, les eaux de surface se sont bien réchauffées (12,6°C) et la température diminue en profondeur pour atteindre 5°C au fond.

Les profils thermiques des campagnes 3 et 4 sont assez similaires, on observe une ébauche d'épilimnion entre 0 et 10 m, puis un gradient thermique en profondeur :

- ✓ Le 22 août : 13,4°C entre 0 et 8 m puis baisse progressive de la température pour atteindre 5,9°C au fond ;
- ✓ Le 16 septembre : 12 à 12,6°C entre 0 et 10 m puis baisse progressive de la température pour atteindre 6,9°C au fond ;

Compte tenu de l'altitude du plan d'eau et du contexte géo-climatique, le réchauffement des eaux reste modéré (14°C au maximum) et le lac du Mont-Cenis ne présente pas de stratification thermique durable.

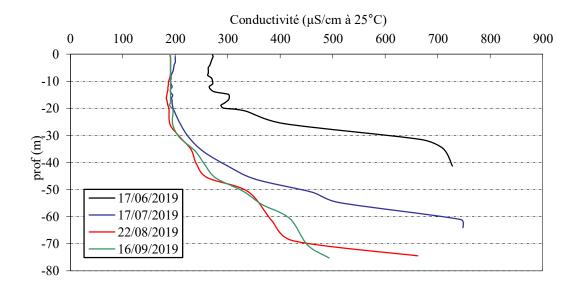


Figure 6 : Profils verticaux de conductivité au point de plus grande profondeur

Lors de chaque campagne, la retenue du Mont- Cenis présente une conductivité relativement homogène sur les 20-25 premiers mètres (190 à 270 μ S/cm selon les campagnes). On distingue une masse d'eau profonde « isolée » où la conductivité est très élevée (sur les 10 derniers mètres). Par ailleurs, la conductivité est plus élevée à la sortie de la fonte des neiges que lors des campagnes dites « estivales » :

- ✓ entre 270 et 300 μS/cm sur les 20 premiers mètres puis jusqu'à 728 μS/cm au fond en C1;
- entre 190 et 200 μS/cm sur les 30 premiers mètres puis jusqu'à 744, 662 et 493 μS/cm au fond respectivement en C2, C3 et C4;

La conductivité n'est donc pas homogène sur la colonne d'eau, elle est plus élevée dans la couche profonde et semble être principalement sous la dépendance d'apports sous lacustres (fonctionnement méromictique).

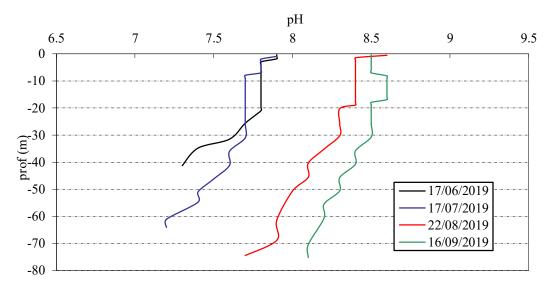


Figure 7: Profils verticaux de pH au point de plus grande profondeur

Le pH est légèrement alcalin dans les eaux du Mont- Cenis, il est compris entre 7,7 et 8,6 en surface. A l'instar des autres paramètres, le pH est homogène sur les 20-25 premiers mètres puis diminue à mesure que

la profondeur augmente. Les profils des campagnes 1 et 2 sont assez similaires et ceux des campagnes 3 et 4 le sont également ;

- ✓ 7,8 sur les 25 premiers mètres et de 7,3 au fond lors des campagnes 1 et 2 ;
- ✓ 8,3-8,6 sur les 30 premiers mètres et de 7,7 à 8,1 au fond (75 m) lors des campagnes 3 et 4.

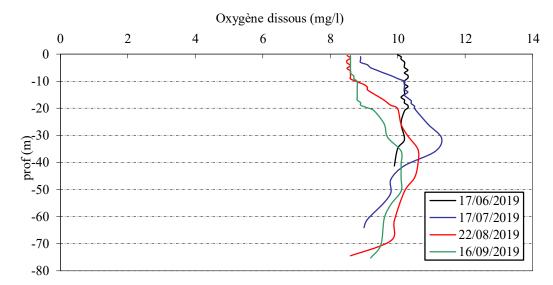


Figure 8 : Profils verticaux d'oxygène (mg/l) au point de plus grande profondeur

La teneur en oxygène dissous est globalement homogène à plus de 100% de saturation (96% à 105%) sur les 35 premiers mètres. Une augmentation de la teneur en oxygène dissous (110 à 120% sat) est à signaler à miprofondeur (20 à 40 m) lors des campagnes de juillet à septembre. L'oxygénation reste bonne dans le fond du plan d'eau (87 à 97 % sat).

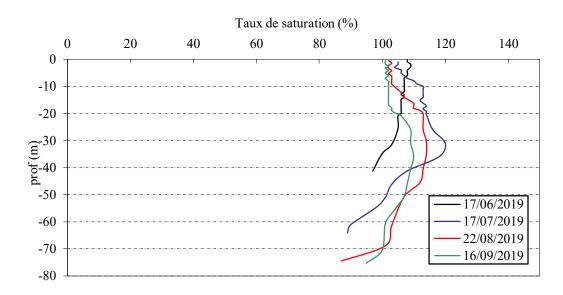


Figure 9 : Profils verticaux d'oxygène (% sat.) au point de plus grande profondeur

Les matières organiques dissoutes sont étudiées à l'aide d'une sonde EXO équipée d'un capteur fdom qui mesure les matières organiques dissoutes (MOD) en ppb QSU sulfate de quinine. Seul le profil de la 3^{ème} campagne² est disponible sur la Figure 10.

_

² Panne de sonde pour les trois autres campagnes

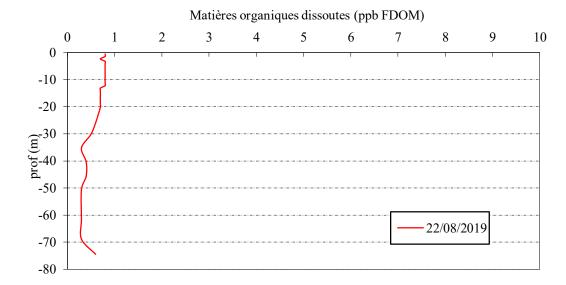


Figure 10 : profils verticaux des matières organiques dissoutes

Les teneurs en matières organiques dissoutes sont très faibles dans la retenue du Mont-Cenis (<1 ppb QSU). Elles témoignent d'une faible charge organique dans les eaux.

4.1.2 Analyses physico-chimiques sur eau

4.1.2.1 Paramètres de constitution et typologie du lac

N.B. pour tous les tableaux suivants : LQ = limite de quantification.

Les résultats des paramètres de minéralisation des quatre campagnes sont présentés dans le Tableau 4.

Reten	nue de Mont-Cenis	Unité	Code	LQ	17/06	/2019	17/07	/2019	22/08	/2019	16/09	/2019
Code pl	Code plan d'eau: Y6705023		sandre	LQ	intégré	fond	intégré	fond	intégré	fond	intégré	fond
	Bicarbonates	mg(HCO ₃)/L	1327	6.1	67	98	59	98	62	90	53	73
_	Calcium	mg(Ca)/L	1374	0.1	44.4	134.0	33.9	135.0	29.6	104.0	30.0	78.2
tion	Chlorures	mg(Cl)/L	1337	0.1	1.1	3.5	0.4	3.3	<lq< td=""><td>2.7</td><td>0.3</td><td>1.7</td></lq<>	2.7	0.3	1.7
isa	Dureté	°F	1345	0.5	12.8	38.8	9.8	39.0	8.6	30.1	8.7	22.3
<u> </u>	Magnésium	mg(Mg)/L	1372	0.05	4.2	13.0	3.3	13.0	2.8	10.0	2.8	6.7
iné	Potassium	mg(K)/L	1367	0.1	0.4	0.6	0.4	0.6	0.4	0.5	0.4	0.5
Mi.	Sodium	mg(Na)/L	1375	0.2	0.6	2.4	0.3	2.1	0.4	1.9	0.9	1.3
	Sulfates	mg(SO ₄)/L	1338	0.2	77.0	306.0	45.3	298.0	40.9	234.0	42.0	161.0
	TAC	۰F	1347	0	5.5	8.1	4.9	8.1	5.1	7.4	4.4	6.0

Tableau 4 : Résultats des paramètres de minéralisation

Les résultats montrent une très grande différence de composition entre les eaux de surface et les eaux du fond :

- ✓ les échantillons intégrés indiquent une eau faiblement carbonatée (53 à 67 mg/l) de dureté moyenne (8 à 13°F), conforme à la nature principalement cristalline des bassins versants des différentes sources d'apport. On note toutefois, des concentrations en sulfates relativement élevées (42 à 77 mg/l);
- ✓ l'eau du fond est de nature calco-carbonatée, très dure (22 à 40°F) et extrêmement riche en sulfates (160 à 300 mg/l) en particulier en début de saison.

4.1.2.2 Analyses physicochimiques des eaux (hors micropolluants)

Tableau 5 : Résultats des paramètres de physico-chimie classique sur eau

Retenue de Mont-Cenis Code plan d'eau: Y6705023		Unité	Code	LQ	17/06/2019		17/07/2019		22/08/2019		16/09/2019	
		Office	sandre	LQ	intégré	fond	intégré	fond	intégré	fond	intégré	fond
	Ammonium	mg(NH4)/L	1335	0,01	0,01	0,02	<lq< td=""><td>0,02</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,04</td></lq<></td></lq<></td></lq<></td></lq<>	0,02	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,04</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,04</td></lq<></td></lq<>	<lq< td=""><td>0,04</td></lq<>	0,04
	Azote Kjeldahl	mg(N)/L	1319	0,5	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Carbone organique	mg(C)/L	1841	0,2	0,3	0,3	0,3	0,2	0,3	0,4	0,2	0,3
	DBO5	mg(O2)/L	1313	0,5	<lq< td=""><td><lq< td=""><td>0,7</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,1</td><td>0,9</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,7</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,1</td><td>0,9</td></lq<></td></lq<></td></lq<></td></lq<>	0,7	<lq< td=""><td><lq< td=""><td><lq< td=""><td>1,1</td><td>0,9</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>1,1</td><td>0,9</td></lq<></td></lq<>	<lq< td=""><td>1,1</td><td>0,9</td></lq<>	1,1	0,9
	DCO	mg(O2)/L	1314	20	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
DC	MeS	mg/L	1305	1	4,3	1	2,6	<lq< td=""><td>1,2</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	1,2	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
PC eau	Nitrates	mg(NO3)/L	1340	0,5	1,1	1	0,9	1,2	0,9	1,1	1,3	1
	Nitrites	mg(NO2)/L	1339	0,01	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,01</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,01</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,01</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,01</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,01</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	0,01	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Phosphates	mg(PO4)/L	1433	0,01	<lq< td=""><td>0,02</td><td>0,01</td><td><lq< td=""><td><lq< td=""><td>0,01</td><td><lq< td=""><td>0,02</td></lq<></td></lq<></td></lq<></td></lq<>	0,02	0,01	<lq< td=""><td><lq< td=""><td>0,01</td><td><lq< td=""><td>0,02</td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,01</td><td><lq< td=""><td>0,02</td></lq<></td></lq<>	0,01	<lq< td=""><td>0,02</td></lq<>	0,02
	Phosphore total	mg(P)/L	1350	0,005	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Silicates	mg(SiO2)/L	1342	0,05	1,7	2,1	1,5	2,2	1,3	2,1	1,3	1,8
	Turbidité	NFU	1295	0,1	6,1	2	5	0,56	3,6	1,4	1,9	1,1

Les analyses des fractions dissoutes ont été réalisées sur eau filtrée (COD, NH4, NO3, NO2, PO4, Si).

En première campagne, la zone euphotique présente une turbidité (6,1 NTU) et une concentration de matières en suspension (4,3 mg/l) plutôt élevées. Les 2 paramètres diminuent ensuite au fil des campagnes. Cette turbidité naturelle est en lien avec les eaux alimentant la retenue (apports par la fonte des neiges : eaux chargées en particules fines minérales). L'eau du fond, quant à elle, est moins turbide et présente peu de matières en suspension (\leq LQ).

La charge organique dans le lac du Mont- Cenis est très faible : la DCO comme l'azote Kjeldahl sont en dessous des seuils de quantification. La concentration en carbone organique dissous est très faible, comprise entre 0,2 et 0,4 mg/l. La DBO5 est également réduite (≤ 1,1 mg/l).

Sur l'ensemble des échantillons, les concentrations en nutriments disponibles sont très faibles : les nitrates sont présents à environ 1 mg/l et la teneur en phosphates est négligeable en zone euphotique ($\leq 0,01$ mg/l). En fin d'hiver, le rapport N/P³ est très élevé (> 150) : le phosphore est donc limitant par rapport à l'azote. Les matières azotées (ammonium et nitrites) sont absentes en zone euphotique. Le phosphore total est sous le seuil de quantification pour tous les échantillons.

La teneur en silice dissoute est faible sur l'ensemble de la masse d'eau, lors des 4 campagnes : 1,7 à 1,3 mg/l en zone euphotique.

 $^{^3}$ le rapport N/P est calculé à partir de [Nminéral]/ [P-PO $_4$ avec N minéral = [N-NO $_3$]+[N-NO $_2$]+[N-NH $_4$ sur la campagne de fin d'hiver.

4.1.2.3 Micropolluants minéraux

Tableau 6 : Résultats d'analyses de métaux sur eau

Retenue	Retenue de Mont-Cenis		Code	LO	17/06	/2019	17/07	/2019	22/08	/2019	16/09	/2019
Code plan	d'eau: Y6705023	Unité	sandre	LQ	intégré	fond	intégré	fond	intégré	fond	intégré	fond
	Aluminium	μg(Al)/L	1370	2	10.3	2.8	9.7	2.1	11.6	2.6	10.7	3.9
	Antimoine	μg(Sb)/L	1376	0.5	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Argent	μg(Ag)/L	1368	0.01	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Arsenic	μg(As)/L	1369	0.05	0.3	0.22	0.23	0.18	0.27	0.2	0.27	0.25
	Baryum	μg(Ba)/L	1396	0.5	5.3	9.7	4.5	8.4	4.4	8.9	4.2	10.2
	Beryllium	μg(Be)/L	1377	0.01	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Bore	μg(B)/L	1362	10	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>14</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>14</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>14</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>14</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	14	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Cadmium	μg(Cd)/L	1388	0.01	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Chrome	μg(Cr)/L	1389	0.5	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Cobalt	μg(Co)/L	1379	0.05	0.05	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Cuivre	μg(Cu)/L	1392	0.1	0.33	0.2	0.21	0.15	0.18	0.18	0.14	0.2
	Etain	μg(Sn)/L	1380	0.5	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
X X	Fer	μg(Fe)/L	1393	1	7.1	3.6	5.1	1.9	6.2	1.2	3.7	4
Métaux	Lithium	μg(Li)/L	1364	0.5	1	2.2	0.8	2.1	0.8	1.6	0.8	1.4
Σ	Manganèse	μg(Mn)/L	1394	0.5	4.6	3.1	0.9	<lq< td=""><td>2.1</td><td><lq< td=""><td>0.7</td><td>0.9</td></lq<></td></lq<>	2.1	<lq< td=""><td>0.7</td><td>0.9</td></lq<>	0.7	0.9
	Mercure	μg(Hg)/L	1387	0.01	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Molybdène	μg(Mo)/L	1395	1	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Nickel	μg(Ni)/L	1386	0.5	0.8	1	<lq< td=""><td>0.7</td><td><lq< td=""><td>0.7</td><td><lq< td=""><td>0.6</td></lq<></td></lq<></td></lq<>	0.7	<lq< td=""><td>0.7</td><td><lq< td=""><td>0.6</td></lq<></td></lq<>	0.7	<lq< td=""><td>0.6</td></lq<>	0.6
	Plomb	μg(Pb)/L	1382	0.05	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Sélénium	μg(Se)/L	1385	0.1	0.19	0.29	0.17	0.24	<lq< td=""><td>0.25</td><td>0.2</td><td>0.39</td></lq<>	0.25	0.2	0.39
	Tellure	μg(Te)/L	2559	0.5	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Thallium	μg(Tl)/L	2555	0.01	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.018</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.018</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0.018</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0.018</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0.018</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	0.018	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Titane	μg(Ti)/L	1373	0.5	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Uranium	μg(U)/L	1361	0.05	0.73	1.59	0.5	1.36	0.55	1.31	0.53	0.94
	Vanadium	μg(V)/L	1384	0.1	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Zinc	μg(Zn)/L	1383	1	4.42	1.26	1.33	10.9	7.2	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>

Les analyses sur les métaux ont été effectuées sur eau filtrée.

Plusieurs micropolluants minéraux sont présents dans l'eau en quantité plus ou moins importante :

- ✓ l'Arsenic est présent sur tous les échantillons à des concentrations faibles comprises entre 0,18 et 0,3 μg/l;
- ✓ le Cuivre est présent sur tous les échantillons à des teneurs comprises entre 0,14 et 0,33 μg/l;
- ✓ le Lithium est présent sur tous les échantillons à des concentrations comprises entre 0,8 et 2,2 μg/l;
- ✓ le Sélénium est présent dans l'eau à des concentrations comprises entre 0,17 et 0,39 μg/l;
- ✓ l'Uranium est présent dans l'eau à des concentrations comprises entre 0,5 et 1,6 μg/l;
- ✓ le Zinc est présent sur les échantillons de C1, C2, et C3 intégré entre 1 et 11 mg/l;
- ✓ le nickel est mesuré dans les eaux du fond.

Les eaux présentent également du Fer, du Manganèse, de l'Aluminium et du Baryum de par la nature des substrats.

4.1.2.4 Micropolluants organiques

Le Tableau 7 indique les micropolluants organiques qui ont été quantifiés lors des campagnes de prélèvements. La liste de l'ensemble des substances analysées est fournie en annexe 1.

Code 17/06/2019 Retenue de Mont-Cenis 17/07/2019 22/08/2019 16/09/2019 Unité LQCode plan d'eau: Y6705023 sandre intégré intégré intégré intégré fond HAP Naphtalène $\mu g/1$ 1517 0,005 0.006 <LQ <LQ <LQ <LQ <LQ <LQ <LQ Monobutyletain cation μg/1 2542 0,0025 <LO 0.0026 <LO <LO <LO <LO <LO <LO organostanniques 7074 0,0025 0,0027 organostanniques Dibutyletain cation $\mu g/1$ <1.0 <LO <LO <LO 2045 0.005 0.008 0.006 0.006 0.006 0.006 <LO <LO Terbuthylazine déséthyl 0,006 Pesticide $\mu g/1$ plastifiants Diéthyl phtalate ug/1 1527 0,05 <LC 0,43 <LO <LO <LQ plastifiants n-Butyl Phtalate $\mu g/1$ 1462 0.05 0,13 0,11 0,12 0,12 <LQ 0,14 0,06 plastifiants Bisphénol-A 2766 0.02 0,056 <LQ <LQ <LQ <LQ <LQ <LQ $\mu g/1$ <LQ DEHP <LQ 6616 0,4 0,67 <LQ <LQ <LQ <LQ plastifiants <LQ 1,3 $\mu g/1$ Semi-volatils divers 1702 <LQ <LQ Formaldéhyde <LQ <LQ <LQ <LQ <LQ $\mu g/l$ stimulants Cafeine $\underline{\mu}g/l$ 6519 0,01 0,02 0,012 0,04 0,035 0,013 0,015 <LQ <LQ stimulants Nicotine $\mu g/1$ 5657 0,02 0,022 <LQ <LQ <LQ Acide perfluoro-n-5977 0,002 <LQ <LQ <LQ 0,0024 <LQ <LQ <LQ tensio-actif $\mu g/1$ <LO heptanoïque (PFHpA) Acide perfluoro-0,002 0.0021 5347 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <LQ tensio-actif $\mu g/1$ octanoïque (PFOA)

Tableau 7 : Résultats d'analyses de micropolluants organiques présents sur eau

13 micropolluants organiques ont été détectés dans les eaux de la retenue du Mont-Cenis. Aucune substance n'est retrouvée dans tous les échantillons. Trois substances sont cependant quantifiées systématiquement sur les échantillons intégrés et de fond lors de 3 campagnes de prélèvements :

- le terbuthylazine desethyl à faible concentration (6 à 8 ng/l) dans les échantillons des trois premières campagnes : il s'agit d'un produit de dégradation d'un herbicide la terbuthylazine ;
- ✓ un stimulant d'origine naturelle végétale, la caféine est mesurée entre 0,012 et 0,04 μg/l dans les échantillons des trois premières campagnes ;
- ✓ le n-butylPhtalate, indicateur plastique mesuré en C1, C2 et C4 entre 0,06 et 0,13 μg/l.

Les autres substances retrouvées ponctuellement sont les suivantes :

- ✓ 1 HAP : naphtalène présent dans l'échantillon intégré en C1 à une concentration très faible de 0,006 μg/l;
- ✓ Deux composés organostanniques sont mis en évidence dans l'échantillon du fond en C1;
- ✓ Trois autres substances plastifiantes :
 - le bisphenol-A, indicateur plastique mesuré dans l'échantillon de fond du 17 juin à 0,056 μg/l;
 - le Di(2-ethylhexyl)phtalate (DEHP) dans les échantillons intégrés des 17 juin et 17 juillet (0,67 à 1,3 μg/l);
 - o le Diéthyl phtalate retrouvé uniquement dans l'échantillon C2 intégré.
- ✓ Le formol est mesuré dans l'intégré en C1 (3 μg/l) ;
- ✓ Un stimulant d'origine naturelle végétale, la nicotine, est mesuré à 0,022 μg/l dans l'échantillon C1 fond ;
- ✓ Deux substances tensioactives PFHpA et PFOA sont détectées dans l'échantillon intégré du 22 août.

4.1.3 Analyses des sediments

4.1.3.1 Analyses physicochimiques des sédiments (hors micropolluants)

Le Tableau 8 fournit la synthèse de l'analyse granulométrique menée sur les sédiments prélevés.

Tableau 8 : Synthèse granulométrique sur le sédiment du point de plus grande profondeur

Composition granulométrique du sédiment								
Retenue de Mont-Cenis	Unité	Code	16/09/2019					
Code plan d'eau: Y6705023	Office	sandre	10/09/2019					
fraction inférieure à 20 µm	% MS	6228	65,9					
fraction de 20 à 63 µm	% MS	3054	29,5					
fraction de 63 à 150 µm	% MS	7042	4,6					
fraction de 150 à 200 µm	% MS	7043	0					
fraction supérieure à 200 µm	% MS	7044	0,0					

Il s'agit de sédiments très fins, de nature limono-argileuse avec 100% de particules comprises entre de 0 à $150~\mu m$.

Les analyses de physico-chimie classique menées sur la fraction solide et sur l'eau interstitielle du sédiment sont rapportées au Tableau 9.

Tableau 9 : Analyse de sédiments

Physico-chimie du sédiment								
Retenue de Mont-Cenis	Unité	Code	LQ	16/09/2019				
Code plan d'eau: Y6705023	Office	sandre	LQ	10/09/2019				
Matière sèche à 105°C	%	1307		69,9				
Matière Sèche Minérale	% MS	5539		96,1				
Perte au feu à 550°C	% MS	6578		3,9				
Carbone organique	mg(C)/kg MS	1841	1000	6680				
Azote Kjeldahl	mg(N)/kg MS	1319	1000	1110				
Phosphore total	mg(P)/kg MS	1350	2	553				
Physico-chim	ie du sédiment : E	au interstitie	elle					
Ammonium	mg(NH4)/L	1335	0,5	< LQ				
Phosphates	mg(PO4)/L	1433	0,015	0,055				
Phosphore total	mg(P)/L	1350	0,01	0,05				

Dans les sédiments, la teneur en matière organique est faible avec 3,9% de perte au feu. La concentration en azote organique est également très faible avec une concentration de 1,11 g(N)/kg MS. Ce qui induit un rapport C/N de 6: Le sédiment est formé de matière algale récemment déposée dont une fraction sera recyclée en tant qu'azote minérale. La teneur en phosphore est assez faible avec 0,55 g/kg MS. Le sédiment présente une très bonne qualité physico-chimique.

L'eau interstitielle contient les minéraux facilement mobilisables dans les sédiments. Les concentrations en éléments nutritifs sont très faibles ne suggérant aucun processus de relargage.

4.1.3.2 Micropolluants minéraux

Ils ont été dosés sur la fraction solide du sédiment.

Tableau 10 : Résultats d'analyses de micropolluants minéraux sur sédiment

Sédiment : micropolluants minéraux							
Retenue de Mont-Cenis Code plan d'eau: Y6705023	Unité	Code sandre	LQ	16/09/2019			
Aluminium	mg(Al)/kg MS	1370	5	66400			
Antimoine	mg(Sb)/kg MS	1376	0,2	1,9			
Argent	mg(Ag)/kg MS	1368	0,1	0,2			
Arsenic	mg(As)/kg MS	1369	0,2	16,1			
Baryum	mg(Ba)/kg MS	1396	0,4	434			
Beryllium	mg(Be)/kg MS	1377	0,2	2,9			
Bore	mg(B)/kg MS	1362	1	97,6			
Cadmium	mg(Cd)/kg MS	1388	0,2	0,2			
Chrome	mg(Cr)/kg MS	1389	0,2	261			
Cobalt	mg(Co)/kg MS	1379	0,2	29,8			
Cuivre	mg(Cu)/kg MS	1392	0,2	64,8			
Etain	mg(Sn)/kg MS	1380	0,2	4,7			
Fer	mg(Fe)/kg MS	1393	5	48300			
Lithium	mg(Li)/kg MS	1364	1	72,2			
Manganèse	mg(Mn)/kg MS	1394	0,4	1330			
Mercure	mg(Hg)/kg MS	1387	0,01	0,08			
Molybdène	mg(Mo)/kg MS	1395	0,2	1,1			
Nickel	mg(Ni)/kg MS	1386	0,2	197			
Plomb	mg(Pb)/kg MS	1382	0,2	28,3			
Sélénium	mg(Se)/kg MS	1385	0,2	1,1			
Tellure	mg(Te)/kg MS	2559	0,2	< LQ			
Thallium	mg(Th)/kg MS	2555	0,2	0,8			
Titane	mg(Ti)/kg MS	1373	1	2630			
Uranium	mg(U)/kg MS	1361	0,2	2,2			
Vanadium	mg(V)/kg MS	1384	0,2	128			
Zinc	mg(Zn)/kg MS	1383	0,4	121			

Les sédiments sont naturellement riches en Aluminium, en Fer, en Manganèse et en Titane. Parmi les métaux lourds, les concentrations en Chrome et en Nickel sont très élevées, elles dépassent les seuils S1⁴ de contamination des sédiments de curage : on peut donc dire que les sédiments présentent une

⁴ Seuil S1 : seuil édicté par l'Arrêté du 9 août 2006.

contamination en métaux attribuable au fond géochimique (schistes).

4.1.3.3 Micropolluants organiques

Le Tableau 11 indique les micropolluants organiques qui ont été quantifiés dans les sédiments lors de la campagne de prélèvements. La liste de l'ensemble des substances analysées est fournie en annexe 2.

Tableau 11 : Résultats d'analyses de micropolluants organiques présents sur sédiment

Sédiment : micropolluants organiques mis en évidence								
Retenue de Mont-Cenis	Unité	Code	LQ	16/09/2019				
Code plan d'eau: Y6705023	Office	sandre	LQ	10/09/2019				
Anthraquinone	μg/ kg MS	2013	4	4				
Benzo (b) Fluoranthène	μg/ kg MS	1116	10	11				
Fluoranthène	μg/ kg MS	1191	10	11				
Irganox 1076	μg/ kg MS	7129	20	26				
Tributylphosphate	μg/ kg MS	1847	4	8				
Diisobutyl phthalate	μg/ kg MS	5325	100	157				

3 micropolluants organiques appartenant aux Hydrocarbures Aromatiques Polycycliques ont été détectés dans les sédiments pour une concentration totale en HAP de 26 μ g/kg MS, valeur très faible et inférieure au seuil d'effets.

L'Irganox 1076 est un antioxydant primaire fabriqué par BASF principalement utilisé pour stabiliser les polymères, en particulier les polyamides, il est retrouvé à une concentration faible de 26 µg/kg MS.

Des traces de Tributylphosphate sont retrouvées dans les sédiments du Mont-Cenis.

Un indicateur plastique le Diisobutyl phthalate est détecté à 157 µg/kg MS.

Les sédiments ne présentent pas de pollution significative en micropolluants organiques.

4.2 PHYTOPLANCTON

4.2.1 <u>Prelevements integres</u>

Les prélèvements intégrés destinés à l'analyse du phytoplancton ont été réalisés en même temps que les prélèvements pour analyses physicochimiques classiques.

Sur la retenue du Mont-Cenis, la zone euphotique et la transparence mesurées sont représentées par le graphique de la Figure 11. La transparence est faible (1 m) en début de saison avec les apports de fonte des neiges. La turbidité mesurée est d'origine minérale, à relier aux matières en suspension apportées par les eaux du bassin versant et des transferts (Arc notamment). La transparence est modérée (2,2 à 2,6 m) lors des campagnes de juillet et d'août, puis devient élevée en fin de saison avec 7,5 m mesuré le 16 septembre.

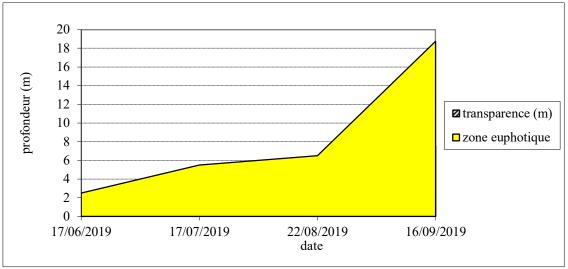


Figure 11: Evolution de la transparence et de la zone euphotique lors de 4 campagnes

Les échantillons destinés à la détermination du phytoplancton et de la chlorophylle a sont constitués d'un prélèvement intégré sur la zone euphotique (équivalant à 2,5 fois la transparence lors de la campagne). Les échantillons de la zone euphotique concernent une colonne d'eau qui augmente au fil de la saison entre 2,5 m en juin et 18,75 m en septembre. Les concentrations en chlorophylle a et en phéopigments sont présentées dans le tableau suivant.

Retenue de Mont-Cenis Code plan d'eau: Y6705023		Unité	Code sandre	LQ	17/06/2019 intégré	17/07/2019 intégré	22/08/2019 intégré	16/09/2019 intégré
indices	Chlorophylle a	μg/L	1439	1	1	1	1	0,5
chlorophylliens	indice phéopigment	μg/L	1436	1	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>

Tableau 12: analyses des pigments chlorophylliens

Si la concentration en chlorophylle ou phéopigments est <LQ, alors la valeur considérée est LQ/2 soit 0,5 µg/l.

Les concentrations en pigments chlorophylliens sont très faibles dans la retenue du Mont-Cenis (0,5 à 1 μ g/l). Cela traduit une très faible production primaire dans le plan d'eau. La moyenne estivale de concentration en chlorophylle a est évaluée à 0,8 μ g/l. La concentration en phéopigments reste faible toute l'année, elle est < 1 μ g/l. L'activité biologique est réduite en cohérence avec le caractère oligotrophe de ce plan d'eau.

4.2.2 <u>Listes floristiques</u>

Tableau 13 : Liste taxonomique du phytoplancton (en nombre de cellules/ml)

Embranchement	Nom taxon	Code Sandre	17/06/2019	17/07/2019	22/08/2019	16/09/2019
	Achnanthidium	9356	0,2			
	Achnanthidium pyrenaicum	10597	0,0			
	Amphora	9470	0,1			
	Amphora pediculus	7116	0,0			
	Caloneis	9417	0,1			
	Cyclotella costei	8615	0,6	5,9	5,5	14,0
	Cymbella excisa	7295	0,0			
	Cymbella parva	7346			1,8	
	Diatoma mesodon	6624	0,0		-	
	Discostella pseudostelligera	8656	0,2		114,2	7,7
	Encyonema silesiacum	7443	0,0		,	
	Encyonopsis cesatii	7447	0,0			
	Encyonopsis minuta	9449	0,0			
	Eolimna minima	9419	0,0			
BACILLARIOPHYTA		7569	0,0			
	Fragilaria	9533	0,0	1,2	3,7	0,3
	Fragilaria arcus	9527	0,0	1,4	3,1	0,5
	Fragilaria saxoplanctonica	38467	0,6	100,8	574,6	80,3
	Fragilaria saxopianetonica Fragilaria tenera	6713	6,8	100,0	18,4	00,3
	Gomphonema	8781	0,1		10,4	
		7731	0,1			
	Gomphonema tergestinum					
	Navicula	9430	0,0	0.6	1.0	0.6
	Nitzschia	9804	0,2	0,6	1,8	0,6
	Nitzschia acicularis	8809	0.4		1,8	
	Nitzschia rectiformis	16265	0,1			
	Puncticulata radiosa	8731	0,1		5,5	
	Stephanodiscus alpinus	8738	0,1	4,1		0,3
	Surirella angusta	8483	0,0			
	Ulnaria grunowii	44401	0,2	0,6	1,8	0,1
	Chlorella vulgaris	5933	0,0			
CHLOROPHYTA	Lobocystis	5721			7,4	4,8
CILLOROTHITIA	Monoraphidium minutum	5736				0,3
	Stichococcus bacillaris	6004				5,7
	Cryptomonas	6269				0,3
CRYPTOPHYTA	Cryptomonas ovata	6274			1,8	
	Plagios elmis nannoplanctica	9634	0,3	0,6	1,8	0,9
CYANOBACTERIA	Pseudanabaena catenata	6456	23,8	4,7	16,6	
EUGLENOZOA	Euglena	6479	0,3			
	Ceratium hirundinella	6553	0,0	0,6	1,8	0,1
	Gymnodiniales indét 20 - 50 μm	5011	0,0			
	Gymnodinium cnecoides	20338	0,6	0,6		0,6
MIOZOA	Gymnodinium helveticum	6558	0,1	,		/
-	Gymnodinium lantzschii	6559	,			0,3
	Peridinium	6577	0,0			-,-
	Peridinium umbonatum	6587	*,**	0,6		
	Chrysococcus rufescens	9571	0,1	-,-		
	Dinobryon sociale	6136	·,·	0,6		
	Dinobryon sociale var. americanum	6137		47,1		13,7
	Dinobryon sociale var. stipitatum	6135		17,52	1,8	1,5
OCHROPHYTA	Kephyrion	6150	0,3		1,0	1,50
Jeimoriiria	Kephyrion inconstans	31980	0,0			
	Kephyrion littorale	6151	1,5	52,5	3,7	
	Kephyrion ovale	9584	1,3	33,6	268,9	11,0
	Pseudopedinella elastica	20753	0,0		200,9	11,0
	*	20/33		0,6	10	10
	Nombre de taxons		40	16	18	18
	Nombre de cellules/ml		36,5	254,6	1033,2	142,4

Tableau 14: Liste taxonomique du phytoplancton (en mm³/l)

			lytopianeton	,		
Embranchement	Nom taxon	Code Sandre	17/06/2019	17/07/2019	22/08/2019	16/09/2019
	Achnanthidium	9356	0,00002			
	Achnanthidium pyrenaicum		0,00000			
	Amphora	9470	0,00027			
	Amphora pediculus	7116	0,00000			
	Caloneis	9417	0,00005			
	Cyclotella costei	8615	0,00014	0,00150	0,00141	0,00357
	Cymbella excisa	7295	0,00003	0,0000	0,000	3,0000
	Cymbella parva	7346	0,00002		0,00122	
	Diatoma mesodon	6624	0,00002		0,00122	
	Discostella pseudostelligera	8656	0,00001		0,00993	0,00067
	Encyonema silesiacum	7443	0,00001		0,00773	0,00007
	Encyonopsis cesatii	7447	0,00002			
		9449				
	Encyonopsis minuta		0,00001			
D + CH + + DIODINE	Eolimna minima	9419	0,00000			
BACILLARIOPHYTA	Eunotia	7569	0,00004			
	Fragilaria	9533		0,00285	0,00892	0,00072
	Fragilaria arcus	9527	0,00002			
	Fragilaria saxoplanctonica	38467	0,00014	0,02278	0,12986	0,01815
	Fragilaria tenera	6713	0,00169		0,00460	
	Gomphonema	8781	0,00023			
	Gomphonema tergestinum	7731	0,00001			
	Navicula	9430	0,00005			
	Nitzschia	9804	0,00018	0,00047	0,00147	0,00048
	Nitzschia acicularis	8809	ĺ	, ,	0,00054	Ź
	Nitzschia rectiformis	16265	0,00007		.,	
	Puncticulata radiosa	8731	0,00006		0,00553	
	Stephanodiscus alpinus	8738	0,00011	0,00371	0,00333	0,00027
	Surirella angusta	8483	0,00011	0,00371		0,00027
		44401	0,00035	0,00130	0,00405	0,00025
	Ulnaria grunowii			0,00130	0,00403	0,00023
	Chlorella vulgaris	5933	0,00000		0.00077	0.00050
CHLOROPHYTA	Lobocystis	5721			0,00077	0,00050
	Monoraphidium minutum	5736				0,00003
	Stichococcus bacillaris	6004				0,00033
	Cryptomonas	6269				0,00053
CRYPTOPHYTA	Cryptomonas ovata	6274			0,00386	
	Plagioselmis nannoplanctica	9634	0,00002	0,00004	0,00013	0,00006
CYANOBACTERIA	Pseudanabaena catenata	6456	0,00017	0,00003	0,00012	
EUGLENOZOA	Euglena	6479	0,00153			
	Ceratium hirundinella	6553	0,00079	0,02357	0,07367	0,00385
	Gymnodiniales indét 20 - 50 μm	5011	0,00034			
	Gymnodinium cnecoides	20338	0,00127	0,00134		0,00136
MIOZOA	Gymnodinium helveticum	6558	0,00135			,
	Gymnodinium lantzschii	6559	.,.,.			0,00036
	Peridinium	6577	0,00018			-,
	Peridinium umbonatum	6587	0,00010	0,00522		
	Chrysococcus rufescens	9571	0,00001	0,00322		
	Dinobryon sociale	6136	0,00001	0,00006		
	j	6137		0,00000		0.00494
	Dinobryon sociale var. americanum			0,01/02	0.00067	- /
OCHDODISE	Dinobryon sociale var. stipitatum	6135	0.00002		0,00067	0,00054
OCHROPHYTA	Kephyrion	6150	0,00002			
	Kephyrion inconstans	31980	0,00000	0.00	0.000-	
	Kephyrion littorale	6151	0,00015	0,00504	0,00035	
	Kephyrion ovale	9584		0,00403	0,03227	0,00132
	Pseudopedinella elastica	20753	0,00003	0,00080		
	Nombre de taxons		40	16	18	18
	Biovolume (mm ³ /l)		0,009	0,090	0,279	0,038
	Diovolume (mm /1)		0,007	0,070	0,217	0,000

4.2.3 EVOLUTIONS SAISONNIERES DES GROUPEMENTS PHYTOPLANCTONIQUES

Les graphiques suivants présentent la répartition du phytoplancton (relative) par groupe algal à partir des résultats exprimés en cellules/ml d'une part et à partir des biovolumes (mm³/l) d'autre part. Sur chacun des graphiques, la courbe représente l'abondance totale par échantillon (Figure 12), et le biovolume de l'échantillon (Figure 13).

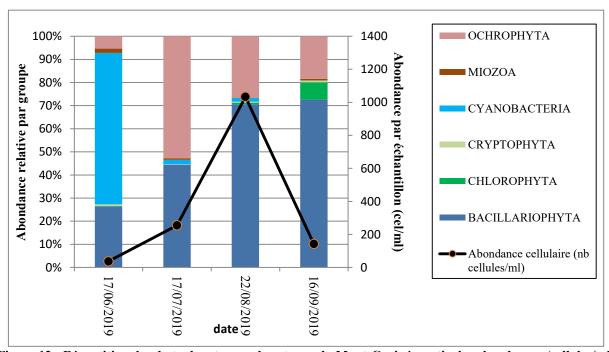


Figure 12 : Répartition du phytoplancton sur la retenue du Mont-Cenis à partir des abondances (cellules/ml)

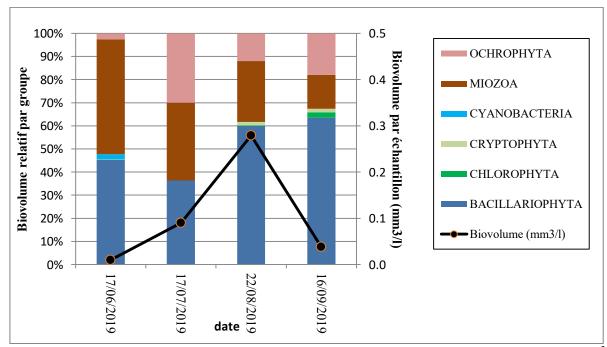


Figure 13 : Evolution saisonnière des biovolumes des principaux groupes algaux de phytoplancton (en mm³/l)

La productivité est très faible sur le barrage du Mont-Cenis. En effet, les teneurs en chlorophylle *a* ne dépassent pas 1µg/l et les concentrations cellulaires sont inférieures à 300 cel./ml, exceptées au mois d'aout où l'activité phytoplanctonique est modérée (1033 cel./ml). Le peuplement phytoplanctonique est assez diversifié pour un lac de haute altitude, entre 16 et 40 taxons sont identifiés au total.

Le peuplement est marqué par une absence de transition saisonnière au niveau des groupes pigmentaires. En effet, résistantes au froid grâce à leur coquille de verre, les diatomées (ou bacillariophytes) dominent l'ensemble de la période d'échantillonnage. Leur représentativité croit progressivement de 40% environ en première et deuxième campagne, à 64% en dernière campagne en termes de biovolume relatif. Le milieu semble ainsi riche en silice sur la période prélevée, à savoir entre juin et septembre.

Les diatomées majoritairement présentes sont *Fragilaria saxoplanctonica*, *Fragilaria tenera* et *Discostella pseudostelligera*. Ces deux dernières sont fréquemment rencontrées dans les Alpes en plans d'eau profonds de haute altitude.

Lors de la première campagne, en juin, même si cela ne représente qu'un faible biovolume, la concentration cellulaire de la cyanobactérie *Pseudanabaena catenata*, représente 65% du peuplement inventorié. Sans représenter de risque sanitaire puisque la concentration est seulement de 24 cel./ml.

En juillet, les diatomées sont accompagnées des ochrophytes, *Dinobryon sociale var. americanum* et *Kephyrion littorale*. Ces espèces classiquement printanières, ont un développement ici décalé en raison de l'altitude.

Quelques individus de grandes tailles appartenant aux miozoa sont présentes, notamment *Ceratium hirundinella*. Ces individus hétérotrophes ne se nourrissent pas ou peu de nutriments.

Globalement, la faible productivité et les espèces en présence traduisent un milieu oligotrophe.

4.2.4 Indice Phytoplanctonique IPLAC

L'indice phytoplancton lacustre ou IPLAC est calculé à partir du SEEE (v1.1.0 en date du 07/04/2020). Il s'appuie sur la moyenne pondérée de 2 métriques : l'une basée sur les teneurs en chlorophylle a (µg/l) (MBA ou métrique de biomasse algale totale), et l'autre sur la présence d'espèces indicatrices quantifiée en biovolume (mm³/l) (MCS ou métrique de composition spécifique). Plus la valeur d'une métrique tend vers 1, plus la qualité est proche de la valeur prédite en conditions de référence. Les 5 classes d'état sont fournies sur la Figure 4.

Les classes d'état pour les deux métriques et l'IPLAC sont données pour le Mont-Cenis dans le tableau suivant.

Code Lac	Nom Lac	année	MBA	MCS	IPLAC	Classe IPLAC
Y6705023	Mont-Cenis	2019	0,983	0,859	0,896	ТВ

Le peuplement de phytoplancton inventorié révèle une très bonne qualité (MCS=0,859) et la productivité du milieu est très faible (MBA=0,983). Le milieu est de très bonne qualité selon la note IPLAC de 0,896.

L'indice IPLAC de la retenue du Mont-Cenis obtient la valeur de 0,896, ce qui correspond à une très bonne classe d'état pour l'élément de qualité phytoplancton.

4.2.5 Comparaison avec les inventaires anterieurs

En 2019, l'évolution saisonnière des peuplements phytoplanctoniques est similaire au suivi 2013, avec une domination des diatomées toute la saison. Les ochrophytes (*Kephyrion*, *Dinobryon*) se développent en période estivale. La production algale reste très faible dans la retenue du Mont-Cenis lors des suivis successifs.

L'historique des valeurs IPLAC acquises sur le plan d'eau du Mont-Cenis est présenté dans le Tableau 15 (valeurs issues du SEEE V1.0.2 base du 07/01/2019).

Tableau 15 : évolution des Indices IPLAC depuis 2007

Nom lac	code_Lac	année	MBA	MCS	IPLAC	Classe IPLAC
Mont-Cenis	Y6705023	2008	1,000	0,742	0,819	ТВ
Mont-Cenis	Y6705023	2013	1,000	0,848	0,894	ТВ
Mont-Cenis	Y6705023	2019	0,983	0,859	0,896	ТВ

NC: non calculable

Les indices IPLAC montrent un très bon état du compartiment phytoplancton depuis 2008. L'indice MBA affiche une excellente qualité lors des suivis successifs (0,98 à 1) signe d'une faible productivité. La métrique de composition spécifique est comprise entre 0,74 et 0,86 montrant l'absence de déséquilibres majeurs.

Ces éléments tendent à indiquer que la retenue du Mont-Cenis présente un état du compartiment phytoplancton très bon depuis plusieurs années.

5 APPRECIATION GLOBALE DE LA QUALITE DU PLAN D'EAU

Le suivi physicochimique et biologique 2019 sur la Retenue du Mont-Cenis s'est déroulé conformément aux prescriptions de suivi de l'état écologique et l'état chimique des eaux douces de surface. On rappelle que ce plan d'eau est suivi dans le cadre du réseau de contrôle de surveillance (RCS).

Les conditions climatiques 2019 n'ont pas permis le remplissage complet de la retenue du Mont-Cenis. Fin juin, le remplissage de la retenue présentait un déficit notoire.

Les résultats obtenus sont proches de ceux de 2013 pour tous les compartiments, ils sont synthétisés dans le tableau suivant.

Compartiment	Synthèse de la qualité du plan d'eau ⁵
Profils verticaux	Stratification thermique non durable réchauffement modéré en surface (max : 14°C) Masse d'eau bien oxygénée Couche d'eau distincte au fond (plus minéralisée)
Qualité physico-chimique des eaux	Absence de pollution organique Teneurs faibles en nitrates et en phosphore Peu de micropolluants minéraux et organiques
Qualité physico-chimique des sédiments	Très bonne qualité des sédiments Sédiments riches en nickel, et chrome (fond géochimique) Peu de micropolluants organiques
Biologie – chlorophylle a	Production chlorophyllienne très faible – Moyenne estivale : 0,8 μg/l –
Biologie - phytoplancton	Peuplement de très bonne qualité – production algale très faible IPLAC : très bon état

⁵ il s'agit d'une interprétation des valeurs brutes observées (analyses physico-chimiques, peuplements biologiques) mais pas d'une stricte évaluation de l'Etat écologique et chimique selon les arrêtés en vigueur

L'ensemble des suivis physico-chimiques et biologiques 2019 indiquent un milieu aquatique de très bonne qualité avec absence de pollutions organiques. La retenue du Mont-Cenis est utilisée pour l'hydroélectricité. Cette gestion entraine des variations importantes de niveau d'eau et notamment un marnage conséquent au printemps (-40 m mi-juin) rendant très difficile l'accès au plan d'eau. Il convient également de rappeler que le plan d'eau est alimenté par diverses sources : bassin versant direct, dérivation des affluents de l'Arc, et côté italien, dérivation des affluents du Pô (Cenischia et du Rio Clarea).

La masse d'eau ne stratifie pas durablement et reste bien oxygénée. Les analyses physico-chimiques des eaux montrent l'absence de pollutions organiques et des apports faibles en nutriments (voire quasi nulle en phosphore). La production primaire résultante dans le plan d'eau est très faible. Le peuplement algal affiche une très bonne qualité biologique. Les eaux fraîches et les conditions géo climatiques sont peu favorables au développement phytoplanctonique.

Les analyses sur eau ne montrent pas de contamination récurrente en micropolluants minéraux et organiques.

Le compartiment sédiments affiche également une très bonne qualité avec un faible stockage en matière organique et en minéraux. Une contamination des sédiments en métaux nickel et chrome est détectée (origine = fond géochimique).

Les résultats du suivi 2019 confirment la très bonne qualité de la retenue du Mont-Cenis. Le plan d'eau est peu productif, il peut être qualifié d'oligotrophe.

Étude des	s plans d'eau du pros	Agence de gramme de surve	: l'Eau Rhône M eillance des bas	Méditerranée C ssins Rhône-M	orse jéditerranée et C	Corse – Mont-Cei	nis (73)
		Ξ	Anni	EXES -			

Annexe 1. LISTE DES MICROPOLLUANTS ANALYSES SUR EAU

Code SANDRE paramètre	Libellé paramètre	LQ	Unité	Code SANDRE paramètre	Libellé paramètre	LQ	Unité	Code SANDRE paramètre	Libellé paramètre	LQ	Uni
1368	Argent	0.01	μg(Ag)/L	6456	Acebutolol	0.005	μg/L	6594	Anilofos	0.005	μg,
1370	Aluminium	2	1	1453	Acénaphtène	0.01	μg/L	1458	Anthracène	0.01	μg,
			μg(Al)/L	1622	Acénaphtylène	0.01	μg/L	2013	Anthraquinone	0.005	μg
1369	Arsenic	0.05	μg(As)/L	1100	Acéphate	0.005	μg/L	1965	Asulame	0.02	μg
1362	Bore	10	μg(B)/L	1454	Acétaldéhyde	5	μg/L	5361	Atenolol	0.005	μg
1396	Baryum	0.5	μg(Ba)/L	5579	Acetamiprid	0.02	μg/L	1107	Atrazine	0.005	μg
1377	Beryllium	0.01	μg(Be)/L	6856	Acetochlor ESA	0.03	μg/L	1832	Atrazine 2 hydroxy	0.02	μд
1388	Cadmium	0.01	μg(Cd)/L	6862	Acetochlor OXA	0.03	μg/L	1109	Atrazine déisopropyl	0.01	μд
				1903	Acétochlore	0.005	μg/L	1108	Atrazine déséthyl	0.01	μе
1084	Cyanures libres	0.2	μg(CN)/L	5581	Acibenzolar-S-Methyl	0.02		1830	Atrazine déséthyl	0.03	με
1379	Cobalt	0.05	μg(Co)/L				μg/L	2014	Azaconazole	0.005	με
1389	Chrome	0.5	μg(Cr)/L	6735	Acide acetylsalicylique	0.05	μg/L	2015	Azaméthiphos	0.02	με
1392	Cuivre	0.1	μg(Cu)/L	5408	Acide clofibrique	0.005	μg/L	2937	Azimsulfuron	0.02	με
1393	Fer	1		5369	Acide fenofibrique	0.005	μg/L	1110	Azinphos éthyl	0.02	μ
			μg(Fe)/L	6538	Acide mefenamique	0.005	μg/L	1111	Azinphos méthyl	0.005	με
1387	Mercure	0.01	μg(Hg)/L	1465	Acide	0.2	μg/L	7817	Azithromycine	0.5	με
1364	Lithium	0.5	μg(Li)/L	1521	Acide nitrilotriacétique	5	μg/L	1951	Azoxystrobine	0.02	μ
1394	Manganèse	0.5	μg(Mn)/L		Acide			6231	BDE 181	0.0005	με
1395	Molybdène	1	μg(Mo)/L	6549	pentacosafluorotridecan	0.2	μg/L	5986	BDE 203	0.0015	με
			1		Acide perfluorodecane			5997	BDE 205	0.0015	με
1386	Nickel	0.5	μg(Ni)/L	6550		0.005	μg/L	2915	BDE100	0.0002	με
1382	Plomb	0.05	μg(Pb)/L		sulfonique (PFDS)			2913	BDE138	0.00015	με
1376	Antimoine	0.5	μg(Sb)/L	6509	Acide perfluoro-	0.002	μg/L	2912	BDE153	0.0002	με
1385	Sélénium	0.1	μg(Se)/L		decanoïque (PFDA)			2911	BDE154	0.0002	με
			1	6507	Acide perfluoro-	0.02	μg/L	2921	BDE17	0.00015	με
1380	Etain	0.5	μg(Sn)/L	0307	dodecanoïque (PFDoA)	0.02	μ ₆ / L	2921	BDE17	0.00015	
2559	Tellure	0.5	μg(Te)/L	65.40	Acide perfluoroheptane	0.001	ue fi				μ
1373	Titane	0.5	μg(Ti)/L	6542	sulfonique	0.001	μg/L	2909	BDE190	0.0005	μ
2555	Thallium	0.01	μg(TI)/L		Acide			1815	BDE209	0.005	μ
				6830	perfluorohexanesulfoni	0.002	μg/L	2920	BDE28	0.0002	μ
1361	Uranium	0.05	μg(U)/L	0630		0.002	⊬g/ L	2919	BDE47	0.0002	μ
1384	Vanadium	0.1	μg(V)/L		que (PFHS)			2918	BDE66	0.00015	μ
1383	Zinc	1	μg(Zn)/L	5980	Acide perfluoro-n-	0.2	μg/L	2917	BDE71	0.00015	μ
			1-00	5977	Acide perfluoro-n-	0.002	μg/L	7437	BDE77	0.0002	μ
2934	1-(3-chloro-4-	0.02	μg/L	3377	heptanoïque (PFHpA)	0.002	μ ₈ / L	2914	BDE85	0.0002	με
	methylphenyl)uree		P-6/ -		Acide perfluoro-n-			2916	BDE99	0.0002	με
				5978	hexanoïque (PFHxA)	0.002	μg/L	7522	Beflubutamide	0.01	μ
6751	1,7-Dimethylxanthine	0.1	μg/L		Acide perfluoro-n-			1687	Bénalaxyl	0.005	με
7041	14-	0.005	μg/L	6508	nonanoïque (PFNA)	0.02	μg/L	7423	BENALAXYL-M	0.1	με
			1					1329	Bendiocarbe	0.005	μ
5399	17alpha-Estradiol	0.005	μg/L	6510	Acide perfluoro-n-	0.02	μg/L	1112	Benfluraline	0.005	μ
7011	1-Hydroxy Ibuprofen	0.01	μg/L		undecanoïque (PFUnA)			2924	Benfuracarbe	0.05	щ
1264	245T	0.02	μg/L	6560	Acide	0.02	μg/L	2074	Benoxacor	0.005	με
1141	24D	0.02	μg/L		perfluorooctanesulfoniq		P0/ -	5512	Bensulfuron-methyl	0.02	
2872	2 4 D isopropyl ester	0.005	μg/L	5347	Acide perfluoro-	0.002	/1	6595	Bensulide	0.005	με
				3347	octanoïque (PFOA)	0.002	μg/L	1113	Bentazone	0.003	με
2873	24D méthyl ester	0.005	μg/L		Acide			7460	Benthiavalicarbe-		με
1142	2 4 DB	0.1	μg/L	6547	Perfluorotetradecanoigu	0.02	μg/L			0.02	μ
1212	2 4 MCPA	0.02	μg/L	5355	Acide salicylique	0.05	μg/L	1764	Benthiocarbe	0.005	μ
1213	2 4 MCPB	0.03	μg/L	1970	Acifluorfen	0.02		1114	Benzène	0.5	μ
							μg/L	1082	Benzo (a) Anthracène	0.001	μ
2011	2 6 Dichlorobenzamide	0.005	μg/L	1688	Aclonifen	0.001	μg/L	1115	Benzo (a) Pyrène	0.01	μ
	2-(3-			1310	Acrinathrine	0.005	μg/L	1116	Benzo (b) Fluoranthène	0.0005	με
6870	trifluoromethylphenoxy	0.005	μg/L	6800	Alachlor ESA	0.03	μg/L	1118	Benzo (ghi) Pérylène	0.0005	με
)nicotinamide			6855	Alachlor OXA	0.03	μg/L	1117	Benzo (k) Fluoranthène	0.0005	μ
7015		0.05	/!	1101	Alachlore	0.005	μg/L	1924	Benzyl butyl phtalate	0.05	μ
7815	2,6-di-tert-butyl-4-	0.05	μg/L	6740	Albendazole	0.005	μg/L	3209	Beta cyfluthrine	0.01	με
6022	2.4+2.5-dichloroanilines	0.05	μg/L	1102	Aldicarbe	0.02	μg/L	6652	beta-	0.05	μ
7012	2-Hydroxy Ibuprofen	0.1	μg/L	1807	Aldicarbe sulfone	0.02	μg/L	6457	Betaxolol	0.005	μ
3159	2-hydroxy-desethyl-	0.02	μg/L					5366	Bezafibrate	0.005	μ
5255		3.02	MP/ ₽	1806	Aldicarbe sulfoxyde	0.02	μg/L	1119	Bifénox	0.005	μ
5352	2-Naphthaleneacetic	0.1	μg/L	1103	Aldrine	0.001	μg/L	1120	Bifenthrine	0.005	μ
	acid, 6-hydroxy-alph			1697	Alléthrine	0.03	μg/L	1502	Bioresméthrine	0.005	μ
2613	2-nitrotoluène	0.02	μg/L	7501	Allyxycarbe	0.005	μg/L	1502	Biphényle	0.005	μ
5695	3,4,5-Trimethacarb	0.005	μg/L	6651	alpha-	0.05	μg/L	6453		0.005	
				1812	Alphaméthrine	0.005	μg/L		Bisoprolol		μ
2820	3-Chloro-4	0.05	μg/L	5370	Alprazolam	0.01	μg/L	7594	Bisphenol S	0.02	μ
5367	4-Chlorobenzoic acid	0.1	μg/L	7842	Ametoctradine	0.1	μg/L	2766	Bisphénol-A	0.02	μ
7016	4-méthoxycinnamate de	0.05	/	1104	Amétryne	0.02	μg/L μg/L	1529	Bitertanol	0.005	μ
7816	2-éthylhexyle	0.65	μg/L					7104	Bithionol	0.1	μ
6536	4-Methylbenzylidene	0.02	110/1	5697	Amidithion	0.005	μg/L	7345	Bixafen	0.02	μ
			μg/L	2012	Amidosulfuron	0.02	μg/L	5526	Boscalid	0.02	με
5474	4-n-nonylphénol	0.1	μg/L	5523	Aminocarbe	0.02	μg/L	1686	Bromacil	0.005	με
1958	4-nonylphénols ramifiés	0.1	μg/L	2537	Aminochlorophénol-2,4	0.1	μg/L	1859	Bromadiolone	0.05	με
2610	4-tert-butylphénol	0.02	μg/L	7580	Aminopyralid	0.1	μg/L	5371	Bromazepam	0.01	μ
				1105	Aminotriazole	0.03	μg/L	1121	Bromochlorométhane	0.5	μ
1959	4-tert-octylphénol	0.03	μg/L	7516	Amiprofos-methyl	0.005	μg/L	1122	Bromoforme	0.5	μ
				1308	Amitraze	0.005		1123	Bromophos éthyl	0.005	щ
							μg/L	1124	Bromophos méthyl	0.005	μ
				6967	Amitriptyline	0.005	μg/L	1685	Bromopropylate	0.005	μ
				6781	Amlodipine	0.05	μg/L	1125	Bromoxynil	0.003	με
				6719	Amoxicilline	0.02	μg/L	1941	Bromoxynil octanoate	0.02	
				1907	AMPA	0.02	μg/L	1860	Bromuconazole	0.01	μ <u>ε</u> μ <u>ε</u>

Code SANDRE paramètre	Libellé paramètre	LQ	Unité	Code SANDRE paramètre	Libellé paramètre	LQ	Unité	Code SANDRE paramètre	Libellé paramètre	LQ	Unit
7502	Bufencarbe	0.02	μg/L	1471	Chlorophénol-2	0.05	μg/L	7801	Cyprosulfamide	0.02	μg/
6742	Buflomedil	0.05	μg/L	1651	Chlorophénol-3	0.05	μg/L	2897	Cyromazine	0.02	μg/
				1650	Chlorophénol-4	0.05	μg/L	7503	Cythioate	0.02	μg/
1861	Bupirimate	0.01	μg/L	2611	Chloroprène	0.5	μg/L	5930	Daimuron	0.005	μg/
6518	Bupivacaine	0.005	μg/L	2065	Chloropropène-3	0.5	μg/L	2094	Dalapon	0.02	μg,
1862	Buprofézine	0.005	μg/L	1473	Chlorothalonil	0.01		5597	Daminozide	0.03	μg,
5710	Butamifos	0.005	μg/L				μg/L	6677	Danofloxacine	0.1	μg
1126	Butraline	0.005	μg/L	1602	Chlorotoluène-2	0.5	μg/L	1869	Dazomet	0.05	μg
1531	Buturon	0.02	μg/L	1601	Chlorotoluène-3	0.5	μg/L	1929	DCPMU (métabolite du	0.02	μg
7038	Butylate	0.03	μg/L	1600	Chlorotoluène-4	0.5	μg/L		Diuron)		
1855	Butylbenzène n	0.5	μg/L	1683	Chloroxuron	0.005	μg/L	1930	DCPU (métabolite	0.05	μе
1610	Butylbenzène sec	0.5	μg/L	1474	Chlorprophame	0.005	μg/L		Diuron)		
				1083	Chlorpyriphos éthyl	0.005	μg/L	1143	DDD-o,p'	0.001	με
1611	Butylbenzène tert	0.5	μg/L	1540	Chlorpyriphos méthyl	0.005	μg/L	1144	DDD-p,p'	0.001	μе
1863	Cadusafos	0.02	μg/L	1353	Chlorsulfuron	0.02	μg/L	1145	DDE-o,p'	0.001	μе
6519	Cafeine	0.01	μg/L	6743	Chlortetracycline	0.02	μg/L	1146	DDE-p,p'	0.001	μе
1127	Captafol	0.01	μg/L	2966	Chlorthal dimethyl	0.005		1147	DDT-o,p'	0.001	με
1128	Captane	0.01	μg/L		·		μg/L	1148	DDT-p,p'	0.001	με
5296	Carbamazepine	0.005	μg/L	1813	Chlorthiamide	0.01	μg/L	6616	DEHP	0.4	μд
6725	Carbamazepine epoxide	0.005	μg/L	5723	Chlorthiophos	0.02	μg/L	1149	Deltaméthrine	0.001	μе
				1136	Chlortoluron	0.02	μg/L	1153	Déméton S méthyl	0.005	μе
1463	Carbaryl	0.02	μg/L	2715	Chlorure de Benzylidène	0.1	μg/L	1154	Déméton S méthyl	0.01	με
1129	Carbendazime	0.005	μg/L	2977	CHLORURE DE CHOLINE	0.1	μg/L		sulfone		
1333	Carbétamide	0.02	μg/L	1753	Chlorure de vinyle	0.05	μg/L	1150	Déméton-O	0.01	με
1130	Carbofuran	0.005	μg/L	1476	Chrysène	0.01	μg/L	1152	Déméton-S	0.01	με
1805	Carbofuran 3 hydroxy	0.02	μg/L	5481	Cinosulfuron	0.005	μg/L	2051	Déséthyl-terbuméthon	0.02	με
1131	Carbophénothion	0.005	μg/L	6540	Ciprofloxacine	0.02	μg/L	2980	Desmediphame	0.02	με
1864	Carbosulfan	0.02	μg/L	6537	Clarithromycine	0.005		2738	Desméthylisoproturon	0.02	με
2975	Carboxine	0.02			·		μg/L	1155	Desmétryne	0.02	με
			μg/L	6968	Clenbuterol	0.005	μg/L	6574	Dexamethasone	0.05	με
6842	Carboxyibuprofen	0.1	μg/L	2978	Clethodim	0.02	μg/L	1156	Diallate	0.02	με
2976	Carfentrazone-ethyl	0.005	μg/L	6792	Clindamycine	0.005	μg/L	5372	Diazepam	0.005	μе
1865	Chinométhionate	0.005	μg/L	2095	Clodinafop-propargyl	0.02	μg/L	1157	Diazinon	0.005	με
7500	Chlorantraniliprole	0.02	μg/L	1868	Clofentézine	0.005	μg/L	1621	Dibenzo (ah) Anthracène	0.01	μд
1336	Chlorbufame	0.02	μg/L	2017	Clomazone	0.005	μg/L	1021		0.01	PE
7010	Chlordane alpha	0.005	μg/L	1810	Clopyralide	0.02	μg/L	1479	Dibromo-1,2 chloro-	0.5	μе
1757	·	0.005		2018	Cloquintocet mexyl	0.005	μg/L	1473	3propane		
	Chlordane beta		μg/L	6748	Clorsulone	0.01		1158	Dibromochlorométhane	0.05	με
1758	Chlordane gamma	0.005	μg/L				μg/L	1498	Dibromoéthane-1,2	0.05	με
5553	Chlorefenizon	0.005	μg/L	6389	Clothianidine	0.03	μg/L	1513	Dibromométhane	0.5	με
1464	Chlorfenvinphos	0.02	μg/L	5360	Clotrimazole	0.005	μg/L	7074	Dibutyletain cation	0.0025	με
2950	Chlorfluazuron	0.01	μg/L	6520	Cotinine	0.005	μg/L	1480	Dicamba	0.03	με
1133	Chloridazone	0.005	μg/L	2972	Coumafène	0.005	μg/L	1679	Dichlobénil	0.005	μе
5522	Chlorimuron-ethyl	0.02	μg/L	1682	Coumaphos	0.02	μg/L	1159	Dichlofenthion	0.005	με
5405	Chlormadinone	0.02		2019	Coumatétralyl	0.005	μg/L	1360	Dichlofluanide	0.005	μе
			μg/L	1640	Crésol-ortho	0.05	μg/L	1160	Dichloréthane-1,1	0.5	μе
1134	Chlorméphos	0.005	μg/L	5724	Crotoxyphos	0.005	μg/L	1161	Dichloréthane-1,2	0.5	μе
5554	Chlormequat	0.03	μg/L	5725	Crufomate	0.005	μg/L	1162	Dichloréthylène-1,1	0.5	με
2097	Chlormequat chlorure	0.038	μg/L					1456	Dichloréthylène-1,2 cis	0.05	με
1955	Chloroalcanes C10-C13	0.15	μg/L	6391	Cumyluron	0.03	μg/L	1727	Dichloréthylène-1,2	0.5	
1593	Chloroaniline-2	0.05	μg/L	1137	Cyanazine	0.02	μg/L	1/2/	trans	0.5	με
1592	Chloroaniline-3	0.05	μg/L	5726	Cyanofenphos	0.1	μg/L	2929	Dichlormide	0.01	με
1591	Chloroaniline-4	0.05		5567	Cyazofamid	0.05	μg/L	1586	Dichloroaniline-3,4	0.015	με
			μg/L	5568	Cycloate	0.02	μg/L	1585	Dichloroaniline-3,5	0.02	με
1467	Chlorobenzène	0.5	μg/L	6733	Cyclophosphamide	0.001	μg/L	1165	Dichlorobenzène-1,2	0.05	με
2016	Chlorobromuron	0.005	μg/L	2729	CYCLOXYDIME	0.02	μg/L	1164	Dichlorobenzène-1,3	0.5	μе
1853	Chloroéthane	0.5	μg/L	1696	Cycluron	0.02	μg/L	1166	Dichlorobenzène-1,4	0.05	με
1135	Chloroforme	0.5	μg/L	7748	cyflufénamide	0.05	μg/L	1167	Dichlorobromométhane	0.05	με
1736	Chlorométhane	0.5	μg/L		·				Dichlorodifluorométhan		
2821	Chlorométhylaniline-4,2	0.02	μg/L	1681	Cyfluthrine	0.005	μg/L	1485	e	0.5	με
1636	Chlorométhylphénol-4,3			5569	Cyhalofop-butyl	0.05	μg/L	1168	Dichlorométhane	5	μе
		0.05	μg/L	1138	Cyhalothrine	0.005	μg/L		Dichloronitrobenzène-		
1341	Chloronèbe	0.005	μg/L	1139	Cymoxanil	0.02	μg/L	1617	2,3	0.05	μе
1594	Chloronitroaniline-4,2	0.1	μg/L	1140	Cyperméthrine	0.005	μg/L		Dichloronitrobenzène-		
1469	Chloronitrobenzène-1,2	0.02	μg/L	1680	Cyproconazole	0.02	μg/L	1616	2,4	0.05	με
1468	Chloronitrobenzène-1,3	0.02	μg/L	1359	Cyprodinil	0.005	μg/L		Dichloronitrobenzène-		
1470	Chloronitrobenzène-1,4	0.05	μg/L	1 2333	-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2.000	P0/ -	1615	2,5	0.05	μе
1684	Chlorophacinone	0.02	μg/L					1614	Dichloronitrobenzène- 3,4	0.05	μе
								1613	Dichloronitrobenzène- 3,5	0.05	με
								1	3.5		

Code SANDRE	Libellé paramètre	LQ	Unité	Code SANDRE	Libellé paramètre	LQ	Unité	Code SANDRE paramètre	Libellé paramètre	LQ	Unité
paramètre				paramètre	Deviverelies	0.005	/1	1825	Fluazifop-butyl	0.02	μg/L
1645	Dichlorophénol-2,3	0.05	μg/L	6791	Doxycycline	0.005	μg/L	1404	Fluazifop-P-butyl	0.1	μg/L
1647	Dichlorophénol-3,4	0.05	μg/L	7515	DPU (Diphenylurée)	0.01	μg/L	2984	Fluazinam	0.1	μg/L
1655	Dichloropropane-1,2	0.2	μg/L	6714	Dydrogesterone	0.02	μg/L	2022	Fludioxonil	0.02	μg/L
1654	Dichloropropane-1,3	0.5	μg/L	5751	Edifenphos	0.005	μg/L	6863	Flufenacet oxalate	0.01	μg/L
2081	Dichloropropane-2,2	0.05	μg/L	1493	EDTA	5	μg/L	6864	Flufenacet sulfonic acid	0.01	μg/L
2082	Dichloropropène-1,1	0.5	μg/L	8102	Emamectine	0.1	μg/L	1676	Flufénoxuron	0.02	μg/L
				1178	Endosulfan alpha	0.001	μg/L	5635	Flumequine	0.02	μg/L
1834	Dichloropropylène-1,3	0.05	μg/L	1179	Endosulfan beta	0.001	μg/L	2023	Flumioxazine	0.005	μg/L
1835	Dichloropropylène-1,3	0.05	μg/L	1742	Endosulfan sulfate	0.001	μg/L	1501	Fluométuron	0.003	μg/L
1653	Dichloropropylène-2,3	0.5	μg/L	1181	Endrine	0.001	μg/L	7499	Fluopicolide	0.02	
1169	Dichlorprop	0.03	μg/L	2941	Endrine aldehyde	0.005	μg/L				μg/L
2544	Dichlorprop-P	0.03	μg/L				μg/L	7649	Fluopyram	0.02	μg/L
1170	Dichlorvos	0.00025		6768	Enoxacine	0.02	μg/L	1191	Fluoranthène	0.005	μg/L
			μg/L	6784	Enrofloxacine	0.02	μg/L	1623	Fluorène	0.005	μg/L
5349	Diclofenac	0.01	μg/L	1494	Epichlorohydrine	0.1	μg/L	5373	Fluoxetine	0.005	μg/L
1171	Diclofop méthyl	0.05	μg/L	1873	EPN	0.005	μg/L	2565	Flupyrsulfuron methyle	0.02	μg/L
1172	Dicofol	0.005	μg/L	1744	Epoxiconazole	0.02	μg/L	2056	Fluquinconazole	0.02	μg/L
5525	Dicrotophos	0.005	μg/L	1182	EPTC	0.1	μg/L	1974	Fluridone	0.02	μg/L
6696	Dicyclanil	0.01		7504	Equilin	0.005	μg/L	1675	Flurochloridone	0.005	μg/L
			μg/L	6522	Erythromycine	0.005	μg/L	1765	Fluroxypyr	0.03	μg/L
2847	Didéméthylisoproturon	0.02	μg/L					2547	Fluroxypyr-meptyl	0.02	μg/L
1173	Dieldrine	0.001	μg/L	1809	Esfenvalérate	0.005	μg/L	2024	Flurprimidol	0.005	μg/L
7507	Dienestrol	0.005	μg/L	5397	Estradiol	0.005	μg/L	2008	Flurtamone	0.02	μg/L
1402	Diéthofencarbe	0.02	μg/L	6446	Estriol	0.005	μg/L	1194	Flusilazole	0.02	μg/L
				5396	Estrone	0.01	μg/L	2985	Flutolanil	0.02	μg/L
1527	Diéthyl phtalate	0.05	μg/L	5529	Ethametsulfuron-methyl	0.005	μg/L	1503	Flutriafol	0.02	μg/L
2826	Diéthylamine	6	μg/L	2093	Ethephon	0.02	μg/L	6739	Fluvoxamine	0.02	μg/L
2628	Diethylstilbestrol	0.005	μg/L	1763	Ethidimuron	0.02	μg/L	7342	fluxapyroxade	0.01	
2982	Difenacoum	0.005	μg/L	5528	Ethiofencarbe sulfone	0.005	μg/L μg/L	1192	Folpel	0.01	μg/L
1905	Difénoconazole	0.02	μg/L						· · · · · · · · · · · · · · · · · · ·		μg/L
5524	Difenoxuron	0.005		6534	Ethiofencarbe sulfoxyde	0.02	μg/L	2075	Fomesafen	0.05	μg/L
			μg/L	1183	Ethion	0.02	μg/L	1674	Fonofos	0.005	μg/L
2983	Difethialone	0.02	μg/L	1874	Ethiophencarbe	0.02	μg/L	2806	Foramsulfuron	0.03	μg/L
1488	Diflubenzuron	0.02	μg/L	1184	Ethofumésate	0.005	μg/L	5969	Forchlorfenuron	0.005	μg/L
1814	Diflufénicanil	0.001	μg/L	1495	Ethoprophos	0.02	μg/L	1702	Formaldéhyde	1	μg/L
6647	Dihydrocodeine	0.005	μg/L	5527	Ethoxysulfuron	0.02	μg/L	1975	Foséthyl aluminium	0.02	μg/L
	· · · · · · · · · · · · · · · · · · ·			2673	·	0.5		1816	Fosetyl	0.0185	μg/L
5325	Diisobutyl phthalate	0.4	μg/L		Ethyl tert-butyl ether		μg/L	2744	Fosthiazate	0.02	μg/L
6729	Diltiazem	0.005	μg/L	1497	Ethylbenzène	0.5	μg/L	1908	Furalaxyl	0.005	μg/L
1870	Diméfuron	0.02	μg/L	5648	EthylèneThioUrée	0.1	μg/L	2567	Furathiocarbe	0.02	μg/L
7142	Dimepiperate	0.005	μg/L	6601	EthylèneUrée	0.1	μg/L	7441	Furilazole	0.1	μg/L
2546	Dimétachlore	0.005	μg/L	6644	Ethylparaben	0.01	μg/L	5364	Furosemide	0.02	μg/L
5737		0.005	μg/L	2629	Ethynyl estradiol	0.001	μg/L	7602	Gabapentine	0.01	μg/L
	Dimethametryn			5625	Etoxazole	0.005	μg/L	7002	gamma-	0.01	P6/ L
6865	Dimethenamid ESA	0.01	μg/L	5760	Etrimfos	0.005	μg/L	6653	Hexabromocyclododeca	0.05	μg/L
1678	Diméthénamide	0.005	μg/L	2020	Famoxadone	0.005		F265		0.02	/1
7735	Diméthénamide OXA	0.01	μg/L				μg/L	5365	Gemfibrozil	0.02	μg/L
5617	Dimethenamid-P	0.03	μg/L	5761	Famphur	0.005	μg/L	1526	Glufosinate	0.02	μg/L
1175	Diméthoate	0.01		2057	Fénamidone	0.02	μg/L	1506	Glyphosate	0.03	μg/L
			μg/L	1185	Fénarimol	0.005	μg/L	5508	Halosulfuron-methyl	0.02	μg/L
1403	Diméthomorphe	0.02	μg/L	2742	Fénazaquin	0.02	μg/L	2047	Haloxyfop	0.05	μg/L
2773	Diméthylamine	10	μg/L	6482	Fenbendazole	0.005	μg/L	1833	Haloxyfop-éthoxyéthyl	0.02	μg/L
1641	Diméthylphénol-2,4	0.02	μg/L	1906	Fenbuconazole	0.02	μg/L	1909	Haloxyfop-R	0.005	μg/L
6972	Dimethylvinphos	0.005	μg/L	2078	Fenbutatin oxyde	0.0217	μg/L	1200	HCH alpha	0.001	μg/L
1698	Dimétilan	0.02	μg/L	7513	Fenchlorazole-ethyl	0.0217	μg/L	1201	HCH beta	0.001	μg/L
					Fenchlorphos			1202	HCH delta	0.001	μg/L
5748	dimoxystrobine	0.02	μg/L	1186		0.005	μg/L	2046	HCH epsilon	0.005	μg/L
1871	Diniconazole	0.02	μg/L	2743	Fenhexamid	0.005	μg/L	1203	HCH gamma	0.001	μg/L
1578	Dinitrotoluène-2,4	0.5	μg/L	1187	Fénitrothion	0.001	μg/L	1197	Heptachlore	0.005	μg/L
1577	Dinitrotoluène-2,6	0.5	μg/L	5627	Fenizon	0.005	μg/L	1748	Heptachlore époxyde cis	0.005	μg/L
5619	Dinocap	0.05	μg/L	5763	Fenobucarb	0.005	μg/L	1749	Heptachlore époxyde	0.005	μg/L
				5368	Fenofibrate	0.01	μg/L	1910	Heptenophos	0.005	μg/L
1491	Dinosèbe	0.02	μg/L	6970	Fenoprofen	0.05	μg/L	1199	Hexachlorobenzène	0.003	μg/L
1176	Dinoterbe	0.03	μg/L	5970	Fenothiocarbe	0.005		1652	Hexachlorobutadiène	0.001	
7494	Dioctyletain cation	0.0025	μg/L				μg/L				μg/L
5743	Dioxacarb	0.005	μg/L	1973	Fénoxaprop éthyl	0.02	μg/L	1656	Hexachloroéthane	0.3	μg/L
7495	Diphenyletain cation	0.00046	μg/L	1967	Fénoxycarbe	0.005	μg/L	2612	Hexachloropentadiène	0.1	μg/L
				1188	Fenpropathrine	0.005	μg/L	1405	Hexaconazole	0.02	μg/L
1699	Diquat	0.03	μg/L	1700	Fenpropidine	0.01	μg/L	1875	Hexaflumuron	0.005	μg/L
1492	Disulfoton	0.005	μg/L	1189	Fenpropimorphe	0.005	μg/L	1673	Hexazinone	0.02	μg/L
5745	Ditalimfos	0.05	μg/L	1190	Fenthion	0.005	μg/L	1876	Hexythiazox	0.02	μg/L
1966	Dithianon	0.1	μg/L	1500	Fénuron	0.02	μg/L	5645	Hydrazide maleique	0.5	μg/L
1177	Diuron	0.02	μg/L					6746	Hydrochlorothiazide	0.005	μg/L
				1701	Fenvalérate	0.01	μg/L	6730	Hydroxy-metronidazole	0.01	μg/L
1490	DNOC	0.02	μg/L	2021	Ferbam	10000	μg/L	5350	Ibuprofene	0.01	μg/L
2933	Dodine	0.02	μg/L	2009	Fipronil	0.005	μg/L	6727	Ifosfamide	0.005	μg/L
6969	Doxepine	0.005	μg/L	1840	Flamprop-isopropyl	0.005	μg/L	1704	Imazalil	0.02	μg/L
				6539	Flamprop-methyl	0.005	μg/L	1695	Imazaméthabenz	0.02	
				1939	Flazasulfuron	0.02	μg/L	1911			μg/L
				6393	Flonicamid	0.005	μg/L	1911	Imazaméthabenz méthyl	0.01	μg/L
				2810	Florasulam	0.02	μg/L				
				6764	Florfenicol	0.1	μg/L				
				6545	Fluazifop	0.02	μg/L	I			

Code SANDRE paramètre	Libellé paramètre	LQ	Unité	Code SANDRE paramètre	Libellé paramètre	LQ	Unité	Code SANDRE paramètre	Libellé paramètre	LQ	Unité
2986	Imazamox	0.02	μg/L	2752	Mecoprop-2-	0.005	μg/L	1881	Myclobutanil	0.02	μg/L
2090	Imazapyr	0.02	μg/L	2753	Mecoprop-2-ethylhexyl	0.005	μg/L	6380	N-(2,6-dimethylphenyl)-	0.01	μg/L
2860	IMAZAQUINE	0.02	μg/L	2754	Mecoprop-2-octyl ester	0.005	μg/L		N-(2-methoxyethyl		
7510		0.005		2755	Mecoprop-methyl ester	0.005	μg/L	6443	Nadolol	0.005	μg/L
	Imibenconazole		μg/L	2084	Mécoprop-P	0.1	μg/L	1516	Naled	0.005	μg/L
1877	Imidaclopride	0.02	μg/L	1968	Méfenacet	0.005	μg/L	1517	Naphtalène	0.005	μg/L
6971	Imipramine	0.005	μg/L					1519	Napropamide	0.005	μg/L
1204	Indéno (123c) Pyrène	0.0005	μg/L	2930	Méfenpyr diethyl	0.005	μg/L	5351	Naproxene	0.05	μg/L
6794	Indometacine	0.02	μg/L	2568	Mefluidide	0.02	μg/L	1937	Naptalame	0.05	μg/L
5483	Indoxacarbe	0.02	μg/L	2987	Méfonoxam	0.02	μg/L	1462	n-Butyl Phtalate	0.05	μg/L
6706	lobitridol	0.1	μg/L	5533	Mepanipyrim	0.005	μg/L	1520	Néburon Nicosulfuron	0.02	μg/L
2741	Iodocarbe	0.02	μg/L	5791	Mephosfolan	0.005	μg/L	1882		0.01	μg/L
2025	Iodofenphos	0.005	μg/L	1969	Mépiquat	0.03	μg/L	5657 2614	Nicotine Nitrobenzène	0.02	μg/L
2563	lodosulfuron	0.003		2089	Mépiquat chlorure	0.04	μg/L	1229	Nitrofène	0.005	μg/L
			μg/L	6521	Mepivacaine	0.01	μg/L	1637	Nitrophénol-2	0.003	μg/L
5377	Iopromide	0.1	μg/L	1878	Mépronil	0.005	μg/L	5400	Norethindrone	0.001	μg/L μg/L
1205	loxynil	0.02	μg/L	1677	Meptyldinocap	1	μg/L	6761	Norfloxacine	0.001	μg/L
2871	loxynil methyl ester	0.005	μg/L	1510	Mercaptodiméthur	0.01	μg/L	6772	Norfluoxetine	0.005	μg/L
1942	loxynil octanoate	0.01	μg/L	1804	Mercaptodiméthur	0.02	μg/L	1669	Norflurazon	0.005	
7508	Ipoconazole	0.02	μg/L	2578	Mesosulfuron methyle	0.02	μg/L	2737	Norflurazon desméthyl	0.005	μg/L μg/L
5777	Iprobenfos	0.005	μg/L		· · · · · · · · · · · · · · · · · · ·			1883	Nuarimol	0.005	μg/L μg/L
1206	Iprodione	0.005	μg/L	2076	Mésotrione	0.03	μg/L	6767	O-Demethyltramadol	0.005	μg/L μg/L
2951	Iprovalicarbe	0.003	μg/L	1706	Métalaxyl	0.02	μg/L	6533	Ofloxacine	0.003	μg/L μg/L
	· ·			1796	Métaldéhyde	0.02	μg/L	2027	Offurace	0.005	μg/L μg/L
6535	Irbesartan	0.005	μg/L	1215	Métamitrone	0.02	μg/L	1230	Ométhoate	0.003	μg/L
1935	Irgarol (Cybutryne)	0.0025	μg/L	6894	Metazachlor oxalic acid	0.1	μg/L	1668	Oryzalin	0.0003	μg/L
1976	Isazofos	0.02	μg/L	6895	Metazachlor sulfonic	0.1	μg/L	2068	Oxadiargyl	0.005	μg/L
1836	Isobutylbenzène	0.5	μg/L	1670	Métazachlore	0.005	μg/L	1667	Oxadiazon	0.005	μg/L
1207	Isodrine	0.001	μg/L	1879	Metconazole	0.02	μg/L	1666	Oxadixyl	0.005	μg/L
1829	Isofenphos	0.005	μg/L	6755	Metformine	0.005	μg/L	1850	Oxamyl	0.02	μg/L
5781	Isoprocarb	0.005	μg/L	1216	Méthabenzthiazuron	0.005	μg/L	5510	Oxasulfuron	0.005	μg/L
1633	Isopropylbenzène	0.5	μg/L	5792	Methacrifos	0.02	μg/L	5375	Oxazepam	0.005	μg/L
2681	Isopropyltoluène o	0.5		1671		0.02		7107	Oxyclozanide	0.005	μg/L
			μg/L		Méthamidophos		μg/L	6682	Oxycodone	0.01	μg/L
1856	Isopropyltoluène p	0.5	μg/L	1217	Méthidathion	0.02	μg/L	1231	Oxydéméton méthyl	0.02	μg/L
1208	Isoproturon	0.02	μg/L	1218	Méthomyl	0.02	μg/L	1952	Oxyfluorfène	0.002	μg/L
6643	Isoquinoline	0.01	μg/L	6793	Methotrexate	0.005	μg/L	6532	Oxytetracycline	0.005	μg/L
2722	Isothiocyanate de	0.05	μg/L	1511	Méthoxychlore	0.005	μg/L	1920	p-(n-octyl)phénol	0.03	μg/L
1672	Isoxaben	0.02	μg/L	5511	Methoxyfenoside	0.1	μg/L	2545	Paclobutrazole	0.02	μg/L
2807	Isoxadifen-éthyle	0.005	μg/L	1619	Méthyl-2-Fluoranthène	0.001	μg/L	5354	Paracetamol	0.025	μg/L
1945	Isoxaflutol	0.02	μg/L	1618	Méthyl-2-Naphtalène	0.005	μg/L	5806	Paraoxon	0.005	μg/L
5784	Isoxathion	0.005	μg/L	6695	Methylparaben	0.01	μg/L	1232	Parathion éthyl	0.01	μg/L
				2067	Metiram	0.03	μg/L	1233	Parathion méthyl	0.005	μg/L
7505	Karbutilate	0.005	μg/L	1515	Métobromuron	0.02	μg/L	6753	Parconazole	0.1	μg/L
5353	Ketoprofene	0.01	μg/L	6854	Metolachlor ESA	0.02	μg/L	1242	PCB 101	0.0012	μg/L
7669	Ketorolac	0.01	μg/L		Metolachlor OXA			1627	PCB 105	0.0003	μg/L
1950	Kresoxim méthyl	0.02	μg/L	6853		0.02	μg/L	5433	PCB 114	0.00003	μg/L
1094	Lambda Cyhalothrine	0.00006	μg/L	1221	Métolachlore	0.005	μg/L	1243	PCB 118	0.0012	μg/L
1406	Lénacile	0.005	μg/L	5796	Metolcarb	0.005	μg/L	5434	PCB 123	0.00003	μg/L
6711	Levamisole	0.005	μg/L	5362	Metoprolol	0.005	μg/L	2943	PCB 125	0.005	μg/L
6770	Levonorgestrel	0.02	μg/L	1912	Métosulame	0.005	μg/L	1089	PCB 126	0.000006	μg/L
	-			1222	Métoxuron	0.02	μg/L	1884	PCB 128	0.0012	μg/L
7843	Lincomycine	0.005	μg/L	5654	Metrafenone	0.005	μg/L	1244	PCB 138	0.0012	μg/L
1209	Linuron	0.02	μg/L	1225	Métribuzine	0.02	μg/L	1885	PCB 149	0.0012	μg/L
5374	Lorazepam	0.005	μg/L	6731	Metronidazole	0.005	μg/L	1245	PCB 153	0.0012	μg/L
1210	Malathion	0.005	μg/L	1797	Metsulfuron méthyl	0.02	μg/L	2032	PCB 156	0.00012	μg/L
5787	Malathion-o-analog	0.005	μg/L	1226	Mévinphos	0.005	μg/L	5435	PCB 157	0.000018	μg/L
1211	Mancozèbe	0.03	μg/L	7143	Mexacarbate	0.005		5436	PCB 167	0.00003	μg/L
6399	Mandipropamid	0.02	μg/L				μg/L	1090	PCB 169	0.000006	μg/L
1705	Manèbe	0.03	μg/L	1707	Molinate	0.005	μg/L	1626	PCB 170	0.0012	μg/L
				2542	Monobutyletain cation	0.0025	μg/L	1246	PCB 180	0.0012	μg/L
6700	Marbofloxacine	0.1	μg/L	1880	Monocrotophos	0.02	μg/L	5437	PCB 189	0.000012	μg/L
2745	MCPA-1-butyl ester	0.005	μg/L	1227	Monolinuron	0.02	μg/L	1625	PCB 194	0.0012	μg/L
2746	MCPA-2-ethylhexyl	0.005	μg/L	7496	Monooctyletain cation	0.001	μg/L	1624	PCB 209	0.005	μg/L
2747	MCPA-butoxyethyl ester	0.005	μg/L	7497	Monophenyletain cation	0.001	μg/L	1239	PCB 28	0.0012	μg/L
2748	MCPA-ethyl-ester	0.01	μg/L	1228	Monuron	0.02	μg/L	1886	PCB 31	0.005	μg/L
2749	MCPA-methyl-ester	0.005	μg/L	6671	Morphine	0.02	μg/L	1240	PCB 35	0.005	μg/L
5789	Mecarbam	0.005	μg/L	7475	Morpholine	2	μg/L	2031	PCB 37	0.005	μg/L
				1512	MTBE	0.5		1628	PCB 44	0.0012	μg/L
1214	Mécoprop	0.02	μg/L				μg/L	1241	PCB 52	0.0012	μg/L
2870	Mecoprop n isobutyl	0.005	μg/L	6342	Musc xylène	0.1	μg/L	2048	PCB 54	0.0012	μg/L
2750	Mecoprop-1-octyl ester	0.005	μg/L					5803	PCB 66	0.005	μg/L
2751	Mecoprop-2,4,4-	0.005	ua/I					1091	PCB 77	0.00006	μg/L
2751	trimethylphenyl ester	0.005	μg/L					5432	PCB 81	0.000006	μg/L

Code SANDRE paramètre	Libellé paramètre	LQ	Unité	Code SANDRE paramètre	Libellé paramètre	LQ	Unité	Code SANDRE paramètre	Libellé paramètre	LQ	Unité
1762	Penconazole	0.02	μg/L	1092	Prosulfocarbe	0.03	μg/L	2085	Sulfosufuron	0.02	μg/L
1887	Pencycuron	0.02	μg/L	2534	Prosulfuron	0.02	μg/L	1894	Sulfotep	0.005	μg/L
1234	Pendiméthaline	0.005	μg/L	5603	Prothioconazole	0.05	μg/L	5831	Sulprofos	0.02	μg/L
6394	Penoxsulam	0.003	μg/L	7442	Proximpham	0.005	μg/L	1193	Taufluvalinate	0.005	μg/L
				5416	Pymétrozine	0.02	μg/L	1694	Tébuconazole	0.02	μg/L
1888	Pentachlorobenzène	0.001	μg/L	6611	Pyraclofos	0.005	μg/L	1895	Tébufénozide	0.02	μg/L
1235	Pentachlorophénol	0.03	μg/L	2576	Pyraclostrobine	0.003	μg/L	1896	Tébufenpyrad	0.005	μg/L
7670	Pentoxifylline	0.005	μg/L	5509	Pyraflufen-ethyl	0.02		7511 1661	Tébupirimfos Tébutame	0.02	μg/L μg/L
6219	Perchlorate	0.1	μg/L				μg/L	1542	Tébuthiuron	0.005	μg/L μg/L
6548	Perfluorooctanesulfona	0.02	μg/L	1258	Pyrazophos	0.02	μg/L	5413	Tecnazène	0.003	μg/L
0346	mide (PFOSA)	0.02	μg/ L	6386	Pyrazosulfuron-ethyl	0.005	μg/L	1897	Téflubenzuron	0.005	μg/L
1523	Perméthrine	0.01	μg/L	6530	Pyrazoxyfen	0.005	μg/L	1953	Téfluthrine	0.005	μg/L
7519	Pethoxamide	0.02	μg/L	1537	Pyrène	0.005	μg/L	7086	Tembotrione	0.05	μg/L
1499	Phénamiphos	0.005	μg/L	5826	Pyributicarb	0.005	μg/L	1898	Téméphos	0.02	μg/L
1524	Phénanthrène	0.005	μg/L	1890	Pyridabène	0.005	μg/L	1659	Terbacile	0.005	μg/L
				5606	Pyridaphenthion	0.005	μg/L	1266	Terbuméton	0.02	μg/L
5420	Phénazone	0.005	μg/L	1259	Pyridate	0.01	μg/L	1267	Terbuphos	0.005	μg/L
1236	Phenmédiphame	0.02	μg/L	1663	Pyrifénox	0.01	μg/L	6963	Terbutaline	0.02	μg/L
5813	Phenthoate	0.005	μg/L	1432	Pyriméthanil	0.005	μg/L	1268	Terbuthylazine	0.02	μg/L
7708	Phenytoin	0.05	μg/L	1260	Pyrimiphos éthyl	0.02	μg/L	2045	Terbuthylazine déséthyl	0.005	μg/L
1525	Phorate	0.005	μg/L	1261	Pyrimiphos méthyl	0.02	μg/L	2045		0.003	μg/ L
1237	Phosalone	0.005	μg/L	5499				7150	Terbuthylazine desethyl-	0.02	μg/L
1971	Phosmet	0.02	μg/L		Pyriproxyfène	0.005	μg/L	1054	2-hydroxy	0.03	
1238	Phosphamidon	0.005	μg/L	7340	Pyroxsulam	0.05	μg/L	1954	Terbuthylazine hydroxy	0.02	μg/L
	· · · · · · · · · · · · · · · · · · ·			1891	Quinalphos	0.02	μg/L	1269	Terbutryne	0.02	μg/L
1665	Phoxime	0.005	μg/L	2087	Quinmerac	0.02	μg/L	5384	Testosterone	0.005	μg/L
1489	Phtalate de diméthyle	0.4	μg/L	2028	Quinoxyfen	0.005	μg/L	1936	Tetrabutyletain	0.00058	μg/L
1708	Piclorame	0.03	μg/L	1538	Quintozène	0.01	μg/L	1270	Tétrachloréthane-1,1,1,2 Tétrachloréthane-1,1,2,2		μg/L
5665	Picolinafen	0.005	μg/L	2069	Quizalofop	0.02	μg/L	1271			μg/L
2669	Picoxystrobine	0.02	μg/L	2070	Quizalofop éthyl	0.1	μg/L	1272	Tétrachloréthylène	0.5	μg/L
7057	Pinoxaden	0.05	μg/L	6529	Ranitidine	0.005	μg/L	2735 2010	Tétrachlorobenzène	0.02	μg/L
1709	Piperonil butoxide	0.005	μg/L	1892	Rimsulfuron	0.005	μg/L	1276	Tétrachlorobenzène-		μg/L
5819				2029	Roténone	0.005	μg/L		Tétrachlorure de C	0.5	μg/L
	Piperophos	0.005	μg/L					1277	Tétrachlorvinphos	0.005	μg/L
1528	Pirimicarbe	0.02	μg/L	5423	Roxythromycine	0.05	μg/L	1660	Tétraconazole	0.02	μg/L
5531	Pirimicarbe Desmethyl	0.02	μg/L	7049	RS-Iopamidol	0.1	μg/L	6750	Tetracycline	0.1	μg/L
5532	Pirimicarbe Formamido	0.005	μg/L	2974	S Métolachlore	0.1	μg/L	1900	Tétradifon	0.005	μg/L
3332	Desmethyl	0.003	μg/ L	6527	Salbutamol	0.005	μg/L	5249 5837	Tétraphénylétain	0.005	μg/L
7668	Piroxicam	0.02	μg/L	1923	Sébuthylazine	0.02	μg/L	1713	Tetrasul Thiabendazole	0.01	μg/L
5821	p-Nitrotoluene	0.15	μg/L	6101	Sebuthylazine 2-hydroxy	0.005	μg/L				μg/L
6771	Pravastatine	0.02	μg/L	5981	Sebutylazine desethyl	0.005	μg/L	5671 1940	Thiadloprid	0.05	μg/L
6734	Prednisolone	0.02		1262	Secbumeton	0.02	μg/L	6390	Thiafluamide Thiamethoxam	0.02	μg/L
			μg/L	7724	Sedaxane	0.02	μg/L	1714	Thiazasulfuron	0.02	μg/L
1949	Pretilachlore	0.005	μg/L	6769	Sertraline	0.005	μg/L	5934	Thidiazuron	0.03	μg/L μg/L
6531	Prilocaine	0.005	μg/L	1808	Séthoxydime	0.02	μg/L	7517	Thiencarbazone-methyl	0.03	μg/L
6847	Pristinamycine IIA	0.02	μg/L	1893	Siduron	0.005	μg/L	1913	Thifensulfuron méthyl	0.02	μg/L
1253	Prochloraze	0.001	μg/L					7512	Thiocyclam hydrogen	0.01	μg/L
1664	Procymidone	0.005	μg/L	5609	Silthiopham	0.02	μg/L	1093	Thiodicarbe	0.02	μg/L
1889	Profénofos	0.005	μg/L	1539	Silvex	0.02	μg/L	1715	Thiofanox	0.05	μg/L
5402	Progesterone	0.02	μg/L	1263	Simazine	0.005	μg/L	5476	Thiofanox sulfone	0.02	μg/L
1710	Promécarbe	0.005	μg/L	1831	Simazine hydroxy	0.02	μg/L	5475	Thiofanox sulfoxyde	0.02	μg/L
1711	Prométon	0.005	μg/L	5477	Simétryne	0.005	μg/L	2071	Thiométon	0.005	μg/L
				5855	somme de	0.05	ua/I	5838	Thionazin	0.005	μg/L
1254	Prométryne	0.02	μg/L	3033	Méthylphénol-3 et de	0.05	μg/L	7514	Thiophanate-ethyl	0.05	μg/L
1712	Propachlore	0.01	μg/L	6226	Somme du 1,2,3,5	0.00		1717	Thiophanate-méthyl	0.05	μg/L
6398	Propamocarb	0.02	μg/L	6326	tetrachlorobenzene et1,	0.02	μg/L	1718	Thirame	0.1	μg/L
1532	Propanil	0.005	μg/L		Somme du			6524	Ticlopidine	0.01	μg/L
6964	Propaphos	0.005	μg/L	3336	Dichlorophenol-2,4 et du	0.02	μg/L	7965	Timolol	0.005	μg/L
1972	Propaguizafop	0.02	μg/L	5424	Sotalol	0.005	μg/L	5922	Tiocarbazil	0.005	μg/L
1255	Propargite	0.005	μg/L					5675	Tolclofos-methyl	0.005	μg/L
1256	Propazine	0.003	μg/L	5610	Spinosad	0.01	μg/L	1278	Toluène	0.5	μg/L
	·			7506	Spirotetramat	0.02	μg/L	1719	Tolylfluanide	0.005	μg/L
5968	Propazine 2-hydroxy	0.02	μg/L	2664	Spiroxamine	0.02	μg/L	6720	Tramadol	0.005	μg/L
1533	Propétamphos	0.005	μg/L	3160	s-Triazin-2-ol, 4-amino-6-	0.05	μg/L	1544	Triadiméfon	0.005	μg/L
1534	Prophame	0.02	μg/L	3100	(ethylamino)-	0.05	hg∖ r	1280	Triadiménol	0.02	μg/L
1257	Propiconazole	0.005	μg/L	1541	Styrène	0.5	μg/L				
1535	Propoxur	0.02	μg/L	1662	Sulcotrione	0.03	μg/L				
5602	Propoxycarbazone-	0.02	μg/L	6525	Sulfamethazine	0.005	μg/L				
5363	Propranolol	0.005	μg/L	6795	Sulfamethizole	0.005	μg/L				
1837	Propylbenzène	0.003		5356	Sulfamethoxazole	0.005	μg/L				
	. ,		μg/L								
6214	Propylene thiouree	0.5	μg/L	6575	Sulfaquinoxaline	0.05	μg/L				
6693	Propylparaben	0.01	μg/L	6572	Sulfathiazole	0.005	μg/L				
5421	Propyphénazone	0.005	μg/L	5507	Sulfomethuron-methyl	0.005	μg/L				
1414	Propyzamide	0.005	μg/L		Sulfonate de	0.00					
	Proquinazid	0.02	μg/L	6561	perfluorooctane	0.02	μg/L				

Code			
SANDRE	Libellé paramètre	LQ	Unité
paramètre			
1281	Triallate	0.02	μg/L
1914	Triasulfuron	0.02	μg/L
1901	Triazamate	0.005	μg/L
1657	Triazophos	0.005	μg/L
2064	Tribenuron-Methyle	0.02	μg/L
5840	Tributyl phosphorotrithioite	0.02	μg/L
2879	Tributyletain cation	0.0002	μg/L
1847	Tributylphosphate	0.005	μg/L
1288	Trichlopyr	0.02	μg/L
1284	Trichloréthane-1,1,1	0.05	μg/L
1285	Trichloréthane-1,1,2	0.25	μg/L
1286	Trichloréthylène	0.5	μg/L
1630	Trichlorobenzène-1,2,3	0.05	μg/L
1283	Trichlorobenzène-1,2,4	0.05	μg/L
1629	Trichlorobenzène-1,3,5	0.05	μg/L
1195	Trichlorofluorométhane	0.05	μg/L
1548	Trichlorophénol-2,4,5	0.05	μg/L
1549	Trichlorophénol-2,4,6	0.05	μg/L
1854	Trichloropropane-1,2,3	0.5	μg/L
	Trichlorotrifluoroéthane-1,1,2		μg/L
6989	Triclocarban	0.005	μg/L
5430	Triclosan	0.05	μg/L
2898	Tricyclazole	0.02	μg/L
2885	Tricyclohexyletain cation	0.0005	μg/L
5842	Trietazine	0.005	μg/L
6102	Trietazine 2-hydroxy	0.005	μg/L
5971	Trietazine desethyl	0.005	μg/L
2678	Trifloxystrobine	0.02	μg/L
1902	Triflumuron	0.02	μg/L
1289	Trifluraline	0.005	μg/L
2991	Triflusulfuron-methyl	0.005	μg/L
1802	Triforine	0.005	μg/L
6732	Trimetazidine	0.005	μg/L
5357	Trimethoprime	0.005	μg/L
1857	Triméthylbenzène-1,2,3	1	μg/L
1609	Triméthylbenzène-1,2,4	1	μg/L
1509	Triméthylbenzène-1,3,5	1	μg/L
2096	Trinexapac-ethyl	0.02	μg/L
2886	Trioctyletain cation	0.0005	μg/L
6372	Triphenyletain cation	0.00059	μg/L
2992	Triticonazole	0.02	μg/L
7482	Uniconazole	0.005	μg/L
1290	Vamidothion	0.005	μg/L
1291	Vinclozoline	0.005	μg/L
1293	Xylène-meta	0.5	μg/L
1292	Xylène-ortho	0.5	μg/L
1294	Xylène-para	1	μg/L
1722	Zirame	100	μg/L
5376	Zolpidem	0.005	μg/L
2858	Zoxamide	0.02	μg/L
2858	Zoxamide	0.02	μg/L

Annexe 2. LISTE DES MICROPOLLUANTS ANALYSES SUR SEDIMENT

Code SANDRE	Paramètre	LQ	Unité	Code SANDRE	Paramètre	LQ	Uı
1370	Aluminium	5	mg/(kg MS)	2916	BDE99	10	μg/(
1376	Antimoine	0.2	mg/(kg MS)	1114	Benzène	5	μg/(
1368	Argent	0.1	mg/(kg MS)	1607	Benzidine	100	μg/(
1369	Arsenic	0.2	mg/(kg MS)	1082	Benzo (a) Anthracène	10	μg/(
1396	Baryum	0.4	mg/(kg MS)	1115	Benzo (a) Pyrène	10	μg/(
1377	Beryllium	0.2	mg/(kg MS)	1116	Benzo (b) Fluoranthène	10	μg/(
1362	Bore	1	mg/(kg MS)	1118	Benzo (ghi) Pérylène	10	μg/(
1388	Cadmium	0.1	mg/(kg MS)	1117	Benzo (k) Fluoranthène	10	μg/(
1389	Chrome	0.2	mg/(kg MS)	1924	Benzyl butyl phtalate	100	μg/(
1379	Cobalt	0.2	mg/(kg MS)	6652	beta-Hexabromocyclododecane	10	μg/(
L392	Cuivre	0.2	mg/(kg MS)	1119	Bifénox	50	μg/(
.380	Etain	0.2	mg/(kg MS)	1584	Biphényle	20	μg/(
393	Fer	5	mg/(kg MS)	1122	Bromoforme	5	μg/(
364 394	Lithium	0.2	mg/(kg MS)	1464	Chlorfenvinphos	20	μg/(
1394 1387	Manganèse	0.4	mg/(kg MS) mg/(kg MS)	1134	Chlorméphos	10	μg/(
395	Mercure Melyhdàna	0.01	mg/(kg MS)	1955	Chloroalcanes C10-C13	2000	μg/(
.386	Molybdène Nickel	0.2	mg/(kg MS)	1593	Chloroaniline-2	50	μg/(
1382	Plomb	0.2	mg/(kg MS)	1467	Chlorobenzène	10	μg/(
.385	Sélénium	0.2	mg/(kg MS)	1135	Chloroforme (Trichlorométhane)	5	μg/(
2559	Tellure	0.2	mg/(kg MS)	1635	Chlorométhylphénol-2,5	50 50	μg/(
:555	Thallium	0.2	mg/(kg MS)	1636 1469	Chlorométhylphénol-4,3 Chloronitrobenzène-1,2	20	μg/(
L373	Titane	1	mg/(kg MS)	1469	Chloronitrobenzene-1,2 Chloronitrobenzène-1,3	20	μg/(μg/(
1361	Uranium	0.2	mg/(kg MS)	1470	Chloronitrobenzene-1,3 Chloronitrobenzène-1,4	20	μg/(μg/(
L384	Vanadium	0.2	mg/(kg MS)	1471	Chlorophénol-2	50	μg/(
1383	Zinc	0.4	mg/(kg MS)	1651	Chlorophénol-3	50	μg/(
5536	4-Methylbenzylidene camphor	10	μg/(kg MS)	1650	Chlorophénol-4	50	μg/
474	4-n-nonylphénol	40	μg/(kg MS)	2611	Chloroprène	20	μg/
369	4-nonylphenol diethoxylate (mélange d'is	15	μg/(kg MS)	2065	Chloropropène-3	5	μg/
.958	4-nonylphénols ramifiés	40	μg/(kg MS)	1602	Chlorotoluène-2	5	μg/
7101	4-sec-Butyl-2,6-di-tert-butylphenol	20	μg/(kg MS)	1601	Chlorotoluène-3	5	μg/
2610	4-tert-butylphénol	40	μg/(kg MS)	1600	Chlorotoluène-4	5	μg/(
959	4-tert-octylphénol	40	μg/(kg MS)	1474	Chlorprophame	4	μg/
.453	Acénaphtène	10	μg/(kg MS)	1083	Chlorpyriphos éthyl	10	μg/(
.622	Acénaphtylène	10	μg/(kg MS)	1540	Chlorpyriphos méthyl	20	μg/
903	Acétochlore	4	μg/(kg MS)	1476	Chrysène	10	μg/
5509	Acide perfluoro-decanoïque (PFDA)	50	μg/(kg MS)	2017	Clomazone	4	μg/
830	Acide perfluorohexanesulfonique (PFHS)	50	μg/(kg MS)	5360	Clotrimazole	100	μg/
978 560	Acide perfluoro-n-hexanoïque (PFHxA)	50 5	μg/(kg MS)	1639	Crésol-méta	50	μg/
347	Acide perfluoroctanesulfonique (PFOS)	50	μg/(kg MS)	1640	Crésol-ortho	50	μg/
1688	Acide perfluoro-octanoïque (PFOA) Aclonifen	20	μg/(kg MS) μg/(kg MS)	1638	Crésol-para	50	μg/
1103	Aldrine	20	μg/(kg MS)	1140	Cyperméthrine	20	μg/
6651	alpha-Hexabromocyclododecane	10	μg/(kg MS)	1680	Cyproconazole	10	μg/
1812	Alphaméthrine	4	μg/(kg MS)	1359	Cyprodinil	2	μg/
7102	Anthanthrene	10	μg/(kg MS)	1143	DDD-o,p'	5	μg/
1458	Anthracène	10	μg/(kg MS)	1144	DDD-p,p'	5	μg/
2013	Anthraquinone	4	μg/(kg MS)	1145	DDE-o,p'	5	μg/
1951	Azoxystrobine	10	μg/(kg MS)	1146	DDE-p,p'	5	μg/
5989	BDE 196	10	μg/(kg MS)	1147	DDT-o,p'	5	μg/
5990	BDE 197	10	μg/(kg MS)	1148	DDT-p,p'	5	μg/
5991	BDE 198	10	μg/(kg MS)	6616	DEHP	100	μg/
5986	BDE 203	10	μg/(kg MS)	1149	Deltaméthrine	2	μg/
5996	BDE 204	10	μg/(kg MS)	1157	Diazinon	25	μg/
5997	BDE 205	10	μg/(kg MS)	1621	Dibenzo (ah) Anthracène	10	μg/
2915	BDE100	10	μg/(kg MS)	1158 1498	Dibromochlorométhane	5	μg/
2913	BDE138	10	μg/(kg MS)	7074	Dibromoéthane-1,2	10	μg/
2912	BDE153	10	μg/(kg MS)	1160	Dibutyletain cation Dichloréthane-1,1	10	μg/ μg/
2911	BDE154	10	μg/(kg MS)	1161	Dichlorethane-1,1 Dichloréthane-1,2	10	μg/
2910	BDE183	10	μg/(kg MS)	1161	Dichlorethane-1,2 Dichloréthylène-1,1	10	μg/
1815	BDE209	5	μg/(kg MS)	1456	Dichlorethylène-1,1 Dichloréthylène-1,2 cis	10	μg/
2920	BDE28	10	μg/(kg MS)	1727	Dichlorethylène-1,2 trans	10	μg/
2919	BDE47	10	μg/(kg MS)	1589	Dichloroaniline-2,4	50	μg/
7437	BDE77	10	μg/(kg MS)	1588	Dichloroaniline-2,5	50	μg/
				1165	Dichlorobenzène-1,2	10	μg/
				1164	Dichlorobenzène-1,3	10	μg/

Code SANDRE	Paramètre	LQ	Unité	Code SANDRE	Paramètre	LQ	Unité
1167	Dichlorobromométhane	5	μg/(kg MS)	1094	Lambda Cyhalothrine	10	μg/(kg N
1168	Dichlorométhane	10	μg/(kg MS)	6664	Methyl triclosan	20	μg/(kg N
1617	Dichloronitrobenzène-2,3	50	μg/(kg MS)	1619	Méthyl-2-Fluoranthène	10	μg/(kg N
1616	Dichloronitrobenzène-2,4	50	μg/(kg MS)	1618	Méthyl-2-Naphtalène	10	μg/(kg N
1615	Dichloronitrobenzène-2,5	50	μg/(kg MS)	2542 7496	Monobutyletain cation	75 40	μg/(kg N
1614	Dichloronitrobenzène-3,4	50	μg/(kg MS)	7496	Monooctyletain cation	41.5	μg/(kg f μg/(kg f
1613	Dichloronitrobenzène-3,5	50	μg/(kg MS)	1517	Monophenyletain cation Naphtalène	25	μg/(kg ľ
1645	Dichlorophénol-2,3	50	μg/(kg MS)	1517	Napropamide	10	μg/(kg i
1486	Dichlorophénol-2,4	50	μg/(kg MS)	1462	n-Butyl Phtalate	100	μg/(kg ľ
1649	Dichlorophénol-2,5	50	μg/(kg MS)	1637	Nitrophénol-2	50	μg/(kg l
1648	· · · · · · · · · · · · · · · · · · ·	50	μg/(kg MS)	6598	Nonylphénols linéaire ou ramifiés	40	μg/(kg l
	Dichlorophénol-2,6			1669	Norflurazon	4	μg/(kg
1647	Dichlorophénol-3,4	50	μg/(kg MS)	2609	Octabromodiphénylether	10	μg/(kg
1646	Dichlorophénol-3,5	50	μg/(kg MS)	6686	Octocrylene	100	μg/(kg
1655	Dichloropropane-1,2	10	μg/(kg MS)	1667	Oxadiazon	10	μg/(kg
1654	Dichloropropane-1,3	10	μg/(kg MS)	1952	Oxyfluorfène	10	μg/(kg
2081	Dichloropropane-2,2	10	μg/(kg MS)	1920	p-(n-octyl)phénol	40	μg/(kg
2082	Dichloropropène-1,1	10	μg/(kg MS)	1232	Parathion éthyl	20	μg/(kg
1834	Dichloropropylène-1,3 Cis	10	μg/(kg MS)	1242	PCB 101	1	μg/(kg
1835	Dichloropropylène-1,3 Trans	10	μg/(kg MS)	1627	PCB 105	1	μg/(kg
1653	Dichloropropylène-2,3	10	μg/(kg MS)	5433	PCB 114	1	μg/(kg
1170	Dichlorvos	30	μg/(kg MS)	1243	PCB 118	1	μg/(kg
1172	Dicofol	20	μg/(kg MS)	5434	PCB 123	1	μg/(kg
1173		20		1089	PCB 126	1	μg/(kg
	Dieldrine		μg/(kg MS)	1244	PCB 138	1	μg/(kg
1814	Diflufénicanil	10	μg/(kg MS)	1885	PCB 149	1	μg/(kg
5325	Diisobutyl phthalate	100	μg/(kg MS)	1245	PCB 153	1	μg/(kg
6658	Diisodecyl phthalate	10000	μg/(kg MS)	2032	PCB 156	1	μg/(kg
6215	Diisononyl phtalate	5000	μg/(kg MS)	5435	PCB 157	1	μg/(kg
1403	Diméthomorphe	10	μg/(kg MS)	5436	PCB 167	1	μg/(kg
1641	Diméthylphénol-2,4	50	μg/(kg MS)	1090	PCB 169	1	μg/(kg
1578	Dinitrotoluène-2,4	50	μg/(kg MS)	1626	PCB 170	1	μg/(kg
1577	Dinitrotoluène-2,6	50	μg/(kg MS)	1246	PCB 180	1	μg/(kg
7494	Dioctyletain cation	102	μg/(kg MS)	5437	PCB 189	1	μg/(kg
7495	Diphenyletain cation	11.5	μg/(kg MS)	1625	PCB 194	1	μg/(kg
1178				1624	PCB 209	1	μg/(kg
	Endosulfan alpha	20	μg/(kg MS)	1239	PCB 28	1	μg/(kg
1179	Endosulfan beta	20	μg/(kg MS)	1886	PCB 31	1	μg/(kg
1742	Endosulfan sulfate	20	μg/(kg MS)	1240	PCB 35	1	μg/(kg
1181	Endrine	20	μg/(kg MS)	1628	PCB 44	1	μg/(kg
1744	Epoxiconazole	10	μg/(kg MS)	1241	PCB 52	1	μg/(kg
5397	Estradiol	20	μg/(kg MS)	1091	PCB 77	1	μg/(kg
1497	Ethylbenzène	5	μg/(kg MS)	5432	PCB 81	1	μg/(kg
2629	Ethynyl estradiol	20	μg/(kg MS)	1234	Pendiméthaline	10	μg/(kg
1187	Fénitrothion	10	μg/(kg MS)	1888	Pentachlorobenzène	5	μg/(kg
2022	Fludioxonil	4	μg/(kg MS)	1235	Pentachlorophénol	50	μg/(kg
1191	Fluoranthène	10	μg/(kg MS)	1523	Perméthrine	5	μg/(kg
1623	Fluorène	10	μg/(kg MS)	1524	Phénanthrène	10	μg/(kg
2547		20		1664	Procymidone	10	μg/(kg
	Fluroxypyr-meptyl		μg/(kg MS)	1414	Propyzamide	10	μg/(kg
1194	Flusilazole	20	μg/(kg MS)	1537	Pyrène	10	μg/(kg
6618	Galaxolide	100	μg/(kg MS)	2028	Quinoxyfen	10	μg/(kg
6653	gamma-Hexabromocyclododecane	10	μg/(kg MS)	7128	Somme de 3 Hexabromocyclododecanes	10	μg/(kg
1200	HCH alpha	10	μg/(kg MS)	1662	Sulcotrione	10	μg/(kg
1201	HCH beta	10	μg/(kg MS)	6561	Sulfonate de perfluorooctane	5	μg/(kg
1202	HCH delta	10	μg/(kg MS)	1694	Tébuconazole	10	μg/(kg
2046	HCH epsilon	10	μg/(kg MS)	1661	Tébutame	4	μg/(kg
1203	HCH gamma	10	μg/(kg MS)	1268	Terbuthylazine	10	μg/(kg
1197	Heptachlore	10	μg/(kg MS)	1269	Terbutryne	4	μg/(kg
1748	Heptachlore époxyde cis	10	μg/(kg MS)	1936	Tetrabutyletain	15	μg/(kg
				1270	Tétrachloréthane-1,1,1,2	5	μg/(kg
1749	Heptachlore époxyde trans	10	μg/(kg MS)	1271	Tétrachloréthane-1,1,2,2	10	μg/(kg
1199	Hexachlorobenzène	10	μg/(kg MS)	1272	Tétrachloréthylène	5	μg/(kg
1652	Hexachlorobutadiène	10	μg/(kg MS)				1 F-0/ 1B
1656	Hexachloroéthane	1	μg/(kg MS)				
1405	Hexaconazole	10	μg/(kg MS)				
1204	Indéno (123c) Pyrène	10	μg/(kg MS)				
1206	Iprodione	10	μg/(kg MS)				
7129	Irganox 1076	20	μg/(kg MS)				
1935	Irgarol (Cybutryne)	10	μg/(kg MS)				
1207	Isodrine	4	μg/(kg MS)				
1633	Isopropylbenzène	5	μg/(kg MS)				
1950	Kresoxim méthyl	10	μg/(kg MS)				

Paramètre	LQ	Unité
Tétrachlorohenzène-1 2 3 4	10	μg/(kg MS)
		μg/(kg MS)
		μg/(kg MS)
		μg/(kg MS)
•		μg/(kg MS)
, , , , , , , , , , , , , , , , , , ,		μg/(kg MS)
		μg/(kg MS)
		μg/(kg MS)
		μg/(kg MS)
•		μg/(kg MS)
		μg/(kg MS)
· ·		μg/(kg MS)
		μg/(kg MS)
		μg/(kg MS)
		μg/(kg MS)
Trichlorofluorométhane		μg/(kg MS)
Trichlorophénol-2,3,4		μg/(kg MS)
Trichlorophénol-2,3,5	50	μg/(kg MS)
Trichlorophénol-2,3,6	50	μg/(kg MS)
Trichlorophénol-2,4,5	50	μg/(kg MS)
Trichlorophénol-2,4,6	50	μg/(kg MS)
Trichlorophénol-3,4,5	50	μg/(kg MS)
Trichlorotrifluoroethane	5	μg/(kg MS)
Triclocarban	20	μg/(kg MS)
Tricyclohexyletain cation	15	μg/(kg MS)
Trifluraline	10	μg/(kg MS)
	100	μg/(kg MS)
•	15	μg/(kg MS)
. ,	2	μg/(kg MS)
•		μg/(kg MS)
•		μg/(kg MS)
, , , , , , , , , , , , , , , , , , ,		μg/(kg MS)
	Tétrachlorobenzène-1,2,3,4 Tétrachlorobenzène-1,2,3,5 Tétrachlorobenzène-1,2,4,5 Tétrachlorophénol-2,3,4,5 Tétrachlorophénol-2,3,5,6 Tétrachlorophénol-2,3,5,6 Tétrachlorure de C Tibutyletain cation Tributyletain cation Tributylphosphate Trichloryr Trichloréthane-1,1,1 Trichloréthane-1,1,2 Trichloroaniline-2,4,5 Trichloroaniline-2,4,5 Trichlorobenzène-1,2,3 Trichlorobenzène-1,2,4 Trichlorobenzène-1,3,5 Trichlorophénol-2,3,4 Trichlorophénol-2,3,5 Trichlorophénol-2,3,6 Trichlorophénol-2,3,6 Trichlorophénol-2,4,5 Trichlorophénol-2,4,5 Trichlorophénol-2,4,5 Trichlorophénol-2,4,5 Trichlorophénol-2,4,5 Trichlorophénol-2,4,6 Trichlorophénol-2,4,6 Trichlorophénol-2,4,6 Trichlorophénol-3,4,5 Trichlorophénol-3,4,5 Trichlorotrifluoroethane Triclocarban Tricyclohexyletain cation	Tétrachlorobenzène-1,2,3,4 10 Tétrachlorobenzène-1,2,3,5 10 Tétrachlorobenzène-1,2,4,5 10 Tétrachlorophénol-2,3,4,5 50 Tétrachlorophénol-2,3,5,6 50 Tétrachlorure de C 5 Tétraconazole 10 Tetramethrin 40 Toluène 5 Tributyletain cation 25 Tributylphosphate 4 Trichloréthane-1,1,1 5 Trichloréthane-1,1,2 5 Trichloréthane-1,1,2 5 Trichloréthylène 5 Trichloroanilline-2,4,5 50 Trichloroanilline-2,4,6 50 Trichlorobenzène-1,2,3 10 Trichlorobenzène-1,2,4 10 Trichlorobenzène-1,2,3 10 Trichlorobenzène-1,2,4 50 Trichlorophénol-2,3,5 50 Trichlorophénol-2,3,6 50 Trichlorophénol-2,3,6 50 Trichlorophénol-2,4,6 50 Trichlorophénol-3,4,5 50 Trichlorophénol-3,

Annexe 3. COMPTES RENDUS DES CAMPAGNES PHYSICO-CHIMIQUES ET PHYTOPLANCTONIQUES

DONNEES GENERALES PLAN D'EAU

 Plan d'eau :
 Mont-cenis
 Date :
 17/06/2019

 Types (naturel, artificiel ...) :
 Artificiel |
 Code lac :
 Y6705023

 Organisme / opérateur :
 STE : Lionel Bochu & Aurélien Morin
 Aurélien Morin
 Campagne : 1

 Organisme demandeur :
 Agence de l'Eau RMC
 Marché n° : 160000036

LOCALISATION PLAN D'EAU

Commune:	Lanslebourg Mont-Cenis Type: A1	Type:	A1
Lac marnant :	oui.	retenues d	retenues de hautes montagnes, profondes
Temps de séjour :	30 jours		
Superficie du plan d'eau :	653 ha		
Profondeur maximale: 91 m	91 m		

Carte (scan 25)

Légende

Hise à l'eau

Point Mesuré

Point Mesuré

Point théorique

Source : I GN scan 25

STATION

Photo du site:

S.T.E Sciences Techniques de l'Environnement

Relevé phytoplanctonique et physico-chimique en plan d'eau

Patm.: Marnage: Vent: Météo: Profondeur: WGS 84 (syst.internationnal GPS ° " '): Organisme demandeur: Organisme / opérateur : DONNEES GENERALES PLAN D'EAU Remarques: Observation: Bloom algal: Hauteur de vagues : Types (naturel, artificiel ...): Contact préalable : Lambert 93: Coordonnée de la station : ✓ 1- temps sec ensoleillé ✓ 4- pluie fine ✓ 7- gel ☐ 0- nul ☐ 1- faible ☑ 2- moyen 0.2 m NON 810 hPa OUI Niveau du plan d'eau très bas (-46m) - mise à l'eau très diffcile profils homogènes - Faible transparence - apports de fonte des neiges EDF GEH Vallée de la Maurienne - autorisation d'accès campagne de fin d'hiver : homothermie du plan d'eau avant démarrage de l'activité REMARQUES ET OBSERVATIONS STE: Lionel Bochu & Artificiel **Mont-cenis** Agence de l'Eau RMC Hauteur de bande : X: 1008056 6°55'39,5" ✓ Système de Géolocalisation Portable STATION 2- faiblement nuageux5- orage-pluie forte8- fortement nuageux 3- fort 46 m Aurélien Morin Cote échelle : 1928 m 3- temps humide6- neige Marché n°: 160000036 Code lac: Y6705023 Date: alt. : 1974 m ☐ Carte IGN 17/06/19

DONNEES GENERALES PLAN D'EAU

 Plan d'eau :
 Mont-cenis
 Date :
 17/06/19

 Types (naturel, artificiel ...) :
 Artificiel
 Code lac :
 Y6705023

 Organisme / opérateur :
 STE : Lionel Bochu & Aurélien Morin
 Campagne : 1

 Organisme demandeur :
 Agence de l'Eau RMC
 Marché n° : 160000036

 Page
 3/6

PRELEVEMENTS ZONE EUPHOTIQUE Prélèvement pour analyses physico-chimiques et phytoplancton

Profondeur: 0 à 2.5 m

Volume prélevé: 8 L

Matériel employé: 5 m tuyau intégrateur

Heure de relevé :

Chlorophylle: OUI Volume filtré sur place : 1000 ml

Phytoplancton: OUI Ajout de lugol: 5 ml

Prélèvement pour analyses micropolluants Heure de relevé : 15:00

OUI

Pré de eu

 Profondeur :
 0 à 2.5 m

 Prélèvement :
 3 pvlt tous les 0.7 m

 Volume prélevé :
 10.8 L

 Nbre de prélèvements :
 9

 Matériel employé :
 Bouteille téflon 1,2L

Prélèvement pour analyses physico-chimiques OUI Prélèvement pour analyses micropolluants OUI

PRELEVEMENTS DE FOND

OUI

Heure de relevé : 14:30

Profondeur : 42 m

Volume prélevé : 16 L Nbre de prélèvements : 3

Remarques prélèvement :

Matériel employé :

Bouteille téflon 5,3 L

Zone de plus grande profondeur assez réduite

REMISE DES ECHANTILLONS

Dépôt : TNT 🗾 Chrono 🗌 Date : 18/06/19 Réception au laboratoire le :	Code prélèvement zone euphotique: Code prélèvement de fond:
CARSO	624363 Bon de transport : 624423 Bon de transport :
Ville : Chambéry 15:30;	6913423500365031 6913424250081620

S.T.E Sciences Techniques de l'Environnement

Relevé phytoplanctonique et physico-chimique en plan d'eau

DONNEES PHYSICO-CHIMIQUES

 Plan d'eau :
 Mont-cenis
 Date :
 17/06/19

 Types (naturel, artificiel ...) :
 Artificiel
 Code lac :
 Y6705023

 Organisme / opérateur :
 STE : Lionel Bochu & Aurélien Morin
 Campagne : 1

 Organisme demandeur :
 Agence de l'Eau RMC
 Marché n° : 160000036

 Page
 4/6

TRANSPARENCE

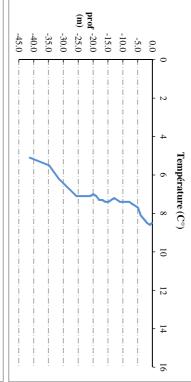
Disque Secchi = 1 m Zone euphotique (x 2,5 secchi) = 2.5 m

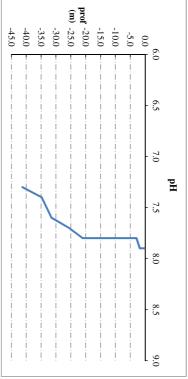
PROFIL VERTICAL

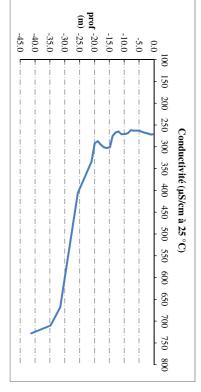
pe de pvlt	Prof.	Temp	pН	Cond.	02	02	Matières organiques dissoutes	Heure
	(m)	(°C)	UpH	(μS/cm 25°)	(%)	(mg/l)	ppb	
élèvement	-0.3	8.5	7.9	271	108	10.0		14:00
le la zone	-0.9	8.6	7.9	272	108	10.1		
uphotique	-1.8	8.5	7.9	270	109	10.1		
	-2.9	8.3	7.8	268	109	10.2		
	-4.0	8.1	7.8	266	108	10.2		
	-4.9	7.7	7.8	263	108	10.2		
	-5.9	7.6	7.8	263	108	10.3		
	-6.9	7.5	7.8	263	107	10.2		
	-7.8	7.4	7.8	262	107	10.3		
	-8.8	7.4	7.8	269	107	10.3		
	-9.9	7.4	7.8	271	107	10.2		
	-11.0	7.4	7.8	271	107	10.2		
	-11.9	7.3	7.8	265	107	10.3		
	-12.9	7.2	7.8	267	106	10.2		
	-13.9	7.3	7.8	275	107	10.2		
	-14.8	7.4	7.8	301	106	10.2		
	-15.9	7.4	7.8	303	106	10.1		
	-16.9	7.3	7.8	301	106	10.2		
	-18.0	7.3	7.8	294	106	10.2		
	-18.9	7.1	7.8	287	106	10.3		
	-19.9	7.0	7.8	292	106	10.3		
<u></u>	-21.0	7.1	7.8	334	105	10.2		
	-25.6	7.1	7.7	406	105	10.1		
	-31.5	6.2	7.6	668	103	10.2		
	-34.8	5.5	7.4	710	100	10.0		
t de fond	-41.3	5.1	7.3	728	97	9.9		

TT

DONNEES PHYSICO-CHIMIQUES / GRAPHIQUE


 Plan d'eau :
 Mont-cenis
 Date :
 17/06/19

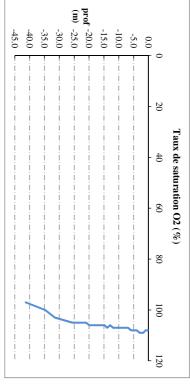

 Types (naturel, artificiel ...) :
 Artificiel
 Code lac :
 Y6705023

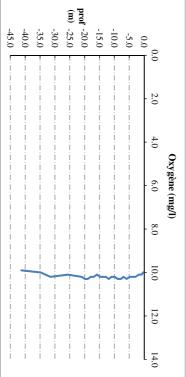

 Organisme / opérateur :
 STE : Lionel Bochu & Aurélien Morin
 Campagne : 1

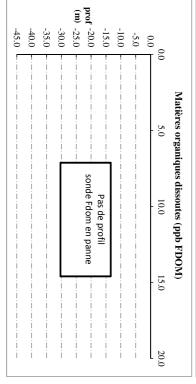
 Organisme demandeur :
 Agence de l'Eau RMC
 Marché n° : 160000036

 Page
 5/6

S.T.E Sciences Techniques de l'Environnement


Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES PHYSICO-CHIMIQUES / GRAPHIQUE


 Plan d'eau :
 Mont-cenis
 Date :
 17/06/19


 Types (naturel, artificiel ...) :
 Artificiel
 Code lac :
 Y6705023

 Organisme / opérateur :
 STE : Lionel Bochu & Aurélien Morin
 Campagne : 1

 Organisme demandeur :
 Agence de l'Eau RMC
 Marché n° : 160000036

Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES GENERALES PLAN D'EAU

Organisme demandeur: Organisme / opérateur : Types (naturel, artificiel ...): STE : Lionel Bochu & Agence de l'Eau RMC Artificiel **Mont-cenis** Adrien Bonnefoy Marché n°: 160000036 **Date:** 17/07/2019 **Code lac:** Y6705023 17/07/2019

LOCALISATION PLAN D'EAU

Commune:	Lanslebourg-Mt Cenis	Type:	Al
Lac marnant:	oui	retenues d	retenues de hautes montagnes, profondes
Temps de séjour :	30 jours		
Superficie du plan d'eau :	653 ha		
Profondeur maximale:	91 m		
	Carte (extrait SCAN 25 IGN 1/25 000)	IGN 1/25 000	<u> </u>

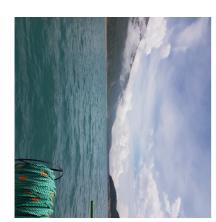


Photo du site:

Relevé phytoplanctonique et physico-chimique en plan d'eau

DONNERS	DONNEES GENERALES PLAN D'EALL	I AN D'EAII		,	
Plan d'eau:		Mont-cenis		Date: 1	17/07/19
Types (naturel, artificiel):	tificiel):	Artificiel		Code lac: Y	Y6705023
Organisme / opérateur : Organisme demandeur :	deur :	STE : Lionel Bochu & Agence de l'Eau RMC	Adrien Bonnefoy	Campagne : 2 Marché n° : 160000036	60000036
		STATION	Z		
Coordonnée de la station :	station :	✓ Système d	Système de Géolocalisation Portable		Carte IGN
Lambert 93 : WGS 84 (syst.inte	Lambert 93 : WGS 84 (syst.internationnal GPS ° '' ') :	X: 1008062 6°55'39.8"E	52 Y: 6467488 8"E 45°14'15.9"N	alt	. :: 1974 m
Profondeur:	64 m	ie.j			
Météo :	☐ 1- temps sec ensoleillé ☐ 4- pluie fine ☐ 7- gel		2- faiblement nuageux 5- orage-pluie forte 8- fortement nuageux	3- temps humide 6- neige	mide
Patm.:	805 hPa	a .			
Vent:	O- nul	☐ 1- faible ☑ 2- moyen	3- fort		
Conditions d'observation : Surface de l'eau :	rvation:	2- faiblement agitée [√ 3- agitée √ 4- très agitée	gitée	
Hauteur de vagues:	0.15 m				
Bloom algal:	NON	13			
Marnage :	OUI	Hauteur de bande :	24 m	Côte échelle :	1949.7 m
Campagne	2 campagno	campagne printanière de croissance du phytoplancton : mise en place de la thermocline	e du phytoplancton : mi	se en place de la th	ermoclin
		REMARQUES ET OB	OBSERVATIONS		
Contact préalable :		EDF GEH Vallée de la Maurienne - autorisation d'accès	utorisation d'accès		
Observation:	profils hom	profils homogènes - Faible transparence - apports de fonte des neiges	ce - apports de fonte des n	neiges	

DONNEES GENERALES PLAN D'EAU Organisme / opérateur : Types (naturel, artificiel ...): Organisme demandeur : Agence de l'Eau RMC STE: Lionel Bochu & Artificiel **Mont-cenis** Adrien Bonnefoy Date: Code lac: Y6705023 Marché n°: 160000036 17/07/19

PRELEVEMENTS ZONE EUPHOTIQUE

Dépôt : TNT 🗵 Ch Date : 17/07/19 Réception au laboratoire le : Matériel employé : Prélèvement pour analyses micropolluants Phytoplancton: Matériel employé: Code prélèvement de fond: Code prélèvement zone euphotique: Il manquait un flacon pour analyses des COV dans la glacière Remarques prélèvement : Prélèvement pour analyses physico-chimiques Matériel employé : Chlorophylle: Prélèvement pour analyses physico-chimiques et phytoplancton Suite à un problème technique (portage matériel important dû au marnage), 2 flacons en verre brun n'ont pas pu être Volume prélevé : Heure de relevé : Volume prélevé : Prélèvement : Profondeur: Heure de relevé Prélèvement pour analyses micropolluants Volume prélevé : Heure de relevé : OUI Chrono 15:10 OUI Volume filtré sur place : 14:00 Bouteille téflon 5,3 L Bouteille téflon 1,2L 1 pvlt tous les 0.5m 12 L 5 m tuyau intégrateur 0 à 5.5 m 14:50 0 à 5.5 m 61 m 16 L Heure: 18/07/19 CARSO 624364 Bon de transport : 624424 Bon de transport : REMISE DES ECHANTILLONS PRELEVEMENTS DE FOND Ajout de lugol: Ville : Chambéry 19:00 Nbre de prélèvements : Nbre de prélèvements : Nbre de prélèvements: 1000 ml 5 ml 11 6913424250113079 6913424250113180 16 1 OUI OUI OUI OUI

S.T.E Sciences Techniques de l'Environnement

Relevé phytoplanctonique et physico-chimique en plan d'eau

DONNEES PHYSICO-CHIMIQUES

Organisme demandeur: Organisme / opérateur : Types (naturel, artificiel ...): STE: Lionel Bochu & Artificiel Agence de l'Eau RMC **Mont-cenis** Adrien Bonnefoy Marché n°: 160000036 Code lac: Y6705023 Date: 17/07/19

TRANSPARENCE

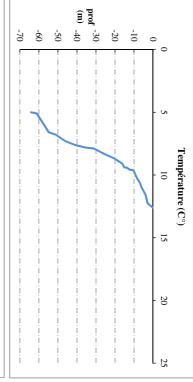
Disque Secchi = PROFIL VERTICAL Zone euphotique (x 2,5 secchi) =

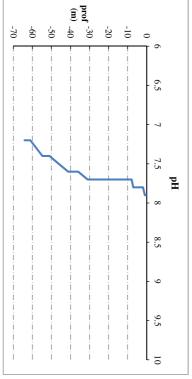
Ţ ✓ in situ à chaque profondeur en surface dans un récipient

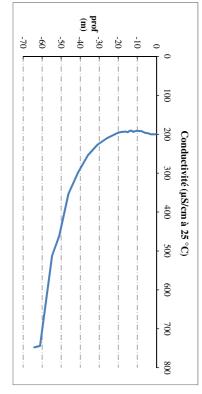
Moyen de mesure utilisé:

				Pvlt de fond																							,	euphotique	de la zone	Prélèvement				Type de pvlt
			-64.1	-61.1	-54.8	-51.0	-46.2	-41.2	-36.0	-31.0	-25.9	-20.1	-19.2	-18.2	-17.2	-16.2	-15.1	-14.0	-13.0	-12.0	-11.0	-10.0	-9.0	-7.9	-7.0	-6.0	-5.0	-3.9	-3.0	-1.9	-0.9	-0.1	(m)	Prof.
			5.0	5.1	6.6	6.8	7.3	7.6	7.8	7.9	8.3	8.7	8.8	8.9	9.0	9.1	9.4	9.4	9.5	9.6	9.6	9.7	10.1	10.4	10.6	11.0	11.3	11.6	12.2	12.4	12.5	12.6	(°C)	Temp
			7.2	7.2	7.4	7.4	7.5	7.6	7.6	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.8	7.8	7.8	7.8	7.8	7.8	7.9	7.9		pН
			748	744	512	461	353	299	254	227	210	196	195	194	194	193	195	191	191	194	192	191	192	192	194	196	197	198	200	200	200	200	(μS/cm 25°)	Cond.
			89	90	98	101	103	108	118	120	116	114	114	113	114	113	112	113	113	113	113	113	111	110	108	107	106	106	104	105	105	105	(%)	02
			9.0	9.1	9.6	9.8	9.8	10.2	11.1	11.3	10.9	10.5	10.5	10.4	10.4	10.3	10.2	10.3	10.2	10.2	10.2	10.2	10.0	9.8	9.6	9.4	9.2	9.1	8.9	8.9	8.9	8.8	(mg/l)	02
	•••																Fdom	pas de profil											- • • •				ppb	Matières organiques dissoutes
				14:00																												14:50		Heure

Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES PHYSICO-CHIMIQUES / GRAPHIQUE


Plan d'eau : Mont-cenis Types (naturel, artificiel ...) : Artificiel Organisme / opérateur : STE : Lionel Bochu & Adrien Bonnefoy Organisme demandeur : Agence de l'Eau RMC


Marché n°: 160000036


Date:

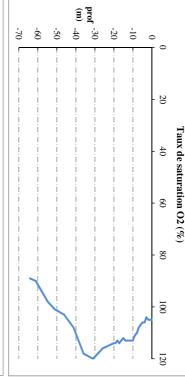
17/07/19

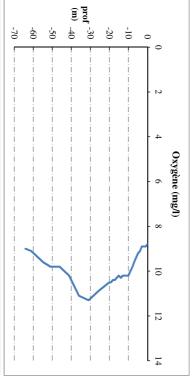
Code lac: Y6705023

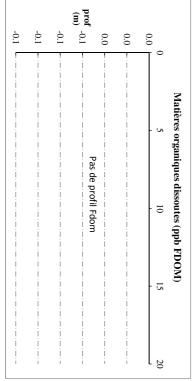
S.T.E Sciences Techniques de l'Environnement

Relevé phytoplanctonique et physico-chimique en plan d'eau

DONNEES PHYSICO-CHIMIQUES / GRAPHIQUE Plan d'eau: Artificiel

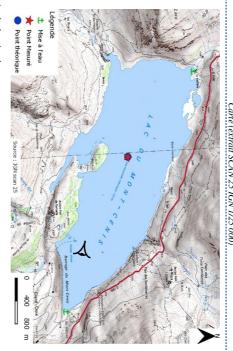

Date:


17/07/19


Types (naturel, artificiel...): Artificiel

Organisme / opérateur: STE : Lionel Bochu & Adrien Bonnefoy Campagne : 2

Organisme demandeur: Agence de l'Eau RMC Marché n° : 1600000036



DONNEES GENERALES PLAN D'EAU

Types (naturel, artificiel ...): Organisme demandeur: Organisme / opérateur : Agence de l'Eau RMC STE: Lionel Bochu & Artificiel **Mont-cenis** Aurélien Morin Date: Marché n°: 160000036 Code lac: Y6705023 22/08/2019

LOCALISATION PLAN D'EAU

Commune:	Lanslebourg-Mt Cenis	Type: A1
Lac marnant:	oui	retenues de hautes montagnes, profondes
Temps de séjour :	30 jours	
Superficie du plan d'eau:	653 ha	
Profondeur maximale :	91 m	
	Comt = (continuit SCN N 25 ICN 1 25 000)	:: ECAN 35 ICN 1/25 000)

٨

Angle de prise de vue

S.T.E Sciences Techniques de l'Environnement

Relevé phytoplanctonique et physico-chimique en plan d'eau

Vent: Marnage: Hauteur de vagues: Météo: Profondeur: WGS 84 (syst.internationnal GPS $^{\circ}$ " $^{\prime}$): Organisme demandeur: Organisme / opérateur : Types (naturel, artificiel ...): DONNEES GENERALES PLAN D'EAU Bloom algal: Patm.: Plan d'eau: Contact préalable : Coordonnée de la station : Lambert 93: ☐ 1- temps sec ensoleillé ☐ 4- pluie fine ☐ 7- gel ✓ 0- nul ☐ 1- faible ☐ 2- moyen ☐ 3- fort NON 0 m OUI 814 hPa campagne estivale : thermocline bien installée, deuxième phase de croissance des REMARQUES ET OBSERVATIONS STE: Lionel Bochu & Artificiel **Mont-cenis** Agence de l'Eau RMC Hauteur de bande : X: 1008053 6°5539,4" E Système de Géolocalisation Portable STATION ☐ 2- faiblement nuageux☐ 5- orage-pluie forte☐ 8- fortement nuageux☐ 2- faiblement nuageux☐ 2- faiblement nuageux☐ 3- fortement nuageux☐ 2- faiblement nuageux☐ 3- faiblement nuageux☐ ☐ 3- agitée ☐ 4- très agitée phytoplancton Aurélien Morin Côte échelle: ☐ 3- temps humide ☐ 6- neige Marché n°: 160000036 Code lac: Y6705023 Date: alt. : 1974 m ☐ Carte IGN nc 22/08/19

EDF GEH Vallée de la Maurienne - autorisation d'accès

Observation: pas tenir compte de l'oxygène BE - Problème lors d'étalonnage

Remarques:

Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES GENERALES PLAN D'EAU

Organisme / opérateur : Types (naturel, artificiel ...): Organisme demandeur: Plan d'eau : Agence de l'Eau RMC STE: Lionel Bochu & Artificiel **Mont-cenis** Aurélien Morin Date: Marché n°: 160000036 Code lac: Y6705023 22/08/19

PRELEVEMENTS ZONE EUPHOTIQUE

Prélèvement pour analyses physico-chimiques et phytoplancton

Remarques prélèvement :	Prelevement pour analyses micropolluants Heure de relevé: 13:30 Profondeur: 72 m Volume prélevé: 16 L Nbre de prélèvements: 3 Matériel employé: Bouteille téflon 5,3 L	Prélèvement pour analyses physico-chimiques	Nbre de prélèvements :	Heure de relevé : 14:10 Profondeur : 0 à 6.5 m Volume prélevé : 8 L Matériel employé : 20 m tuyau integrateur Chlorophylle : OUI Volume filtré sur place : 1000 ml. Phytoplancton : OUI Ajout de lugol : 5 ml. Prélèvement pour analyses micropolluants
		INO	14	élèvements : 1000 ml

REMISE DES ECHANTILLONS

Date: 22/08/19 Réception au laboratoire le :	. Thir . Change	Code prélèvement de fond:	Code prélèvement zone euphotique:
9	Villa :	624425 Bon de transport :	624365 Bon de transport :
17:30)	Ohambára,	6913424000084660	6913424250150583

S.T.E Sciences Techniques de l'Environnement

Relevé phytoplanctonique et physico-chimique en plan d'eau

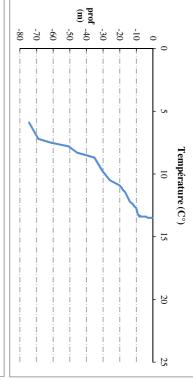
DONNEES PHYSICO-CHIMIQUES

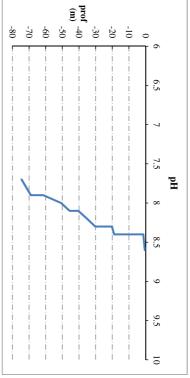
Organisme demandeur: Organisme / opérateur : Types (naturel, artificiel ...): STE : Lionel Bochu & Agence de l'Eau RMC Artificiel **Mont-cenis** Aurélien Morin Date: Marché n°: 160000036 Code lac: Y6705023 22/08/19

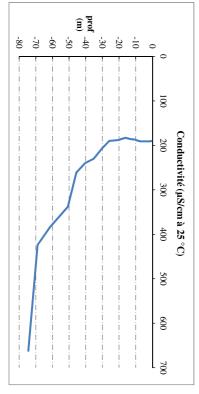
TRANSPARENCE

Disque Secchi = Zone euphotique (x 2.5 secchi) =

PROFIL VERTICAL


Moyen de mesure utilisé: ✓ in situ à chaque profondeur en surface dans un récipient


			·				
ļ							
0.6	8.6	87	662	7.7	5.9	-74.5	
0.3	9.8	101	424	7.9	7.2	-68.9	Pvlt de fond
0.3	9.9	103	384	7.9	7.5	-61.5	
0.3	10.2	107	338	∞	7.8	-50.7	
0.4	10.5	112	261	8.1	8.3	-45.6	
0.4	10.6	113	240	8.1	8.5	-40.4	
0.3	10.6	114	230	8.2	8.7	-35.2	
0.5	10.3	114	207	8.3	9.8	-30.2	
0.6	10.1	113	190	8.3	10.5	-25.9	
0.7	10	113	188	8.3	10.9	-20.2	
0.7	9.8	112	186	8.4	11.1	-18.9	
0.7	9.7	110	185	8.4	11.3	-18	
0.7	9.6	110	184	8.4	11.4	-17	
0.7	9.5	110	183	8.4	11.6	-16.2	
0.7	9.2	107	185	8.4	12.2	-14	
0.7	9.1	107	186	8.4	12.3	-13.1	
0.8	9.1	106	186	8.4	12.4	-12.2	
0.8	9	105	187	8.4	12.6	-11.2	
0.8	8.8	104	187	8.4	12.7	-10.2	
0.8	8.6	103	189	8.4	13.2	-9.1	
0.8	8.6	103	190	8.4	13.4	-8.3	
0.8	8.6	103	190	8.4	13.3	-8.2	
0.8	8.6	103	191	8.4	13.4	-7.3	
0.8	8.6	103	191	8.4	13.4	-6.2	
0.8	8.5	102	191	8.4	13.4	-5.2	
0.8	8.6	103	191	8.4	13.4	-4.2	euphotique
0.8	8.5	102	191	8.4	13.5	-3.2	de la zone
0.7	8.5	102	191	8.4	13.5	-2.3	Prélèvement
0.8	8.6	103	191	8.4	13.5	-1.4	,,
0.8	8.5	102	190	8.6	13.5	-0.5	
ppb	(mg/l)	(%)	(μS/cm 25°)		(°C)	(m)	
organiques dissoutes	02	02	Cond.	pН	Temp	Prof.	Type de pvlt
Matières							

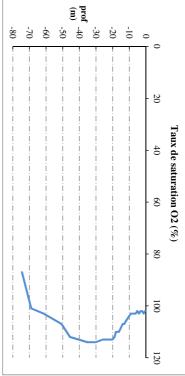

DONNEES PHYSICO-CHIMIQUES / GRAPHIQUE Relevé phytoplanctonique et physico-chimique en plan d'eau

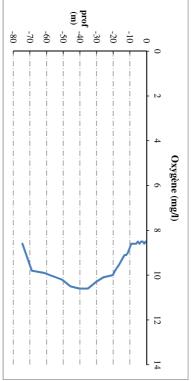
Mont-cenis

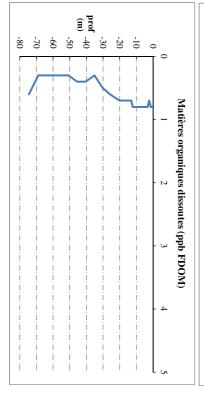
Organisme / opérateur : Organisme demandeur: Types (naturel, artificiel ...): Agence de l'Eau RMC STE: Lionel Bochu & Artificiel Aurélien Morin Marché n°: 160000036 Date: Code lac: Y6705023 22/08/19

S.T.E Sciences Techniques de l'Environnement

Relevé phytoplanctonique et physico-chimique en plan d'eau


DONNEES PHYSICO-CHIMIQUES / GRAPHIQUE **Mont-cenis**


Organisme demandeur: Organisme / opérateur : Types (naturel, artificiel ...): Artificiel STE: Lionel Bochu & Agence de l'Eau RMC Aurélien Morin Code lac: Y6705023


Marché n°: 160000036

Date:

22/08/19

Mont-cenis - Campagne 4

Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES GENERALES PLAN D'EAU

Organisme demandeur: Organisme / opérateur : Types (naturel, artificiel ...): STE : Aurélien Morin & Agence de l'Eau RMC Artificiel **Mont-cenis** Guillaume Cunillera Marché n°: 160000036 Code lac: Y6705023 Date: 16/09/2019

LOCALISATION PLAN D'EAU

Commune:	Lanslebourg-Mt Cenis	Type:	Al
Lac marnant:	oui	retenues d	retenues de hautes montagnes, profondes
Temps de séjour :	30 jours		
Superficie du plan d'eau :	653 ha		
Profondeur maximale:	91 m		
Carte (extrait SCAN 25 IGN 1/25 000)	Carte (extrait SCAN 25 IGN 1/25 000)	it SCAN 25 IGN 1/25 000)	

Angle de prise de vue

STATION

Photo du site:

S.T.E Sciences Techniques de l'Environnement

Mont-cenis - Campagne 4

Relevé phytoplanctonique et physico-chimique en plan d'eau

Plan d'ean :	DONNEES GENERALES PLAN D'EAU Plan d'eau: Wont-cenis	Mont-cenis		Date:	16/09/19
Types (naturel, artificiel): Organisme / opérateur: Organisme demandeur:):	Artificiel STE : Aurélien Morin & Agence de l'Eau RMC	Guillaume Cunillera	Code lac: Y6705023 Campagne: 4 Marché n°: 160000036	Y6705023 ne: 4 : 160000003
		STATION	N		
Coordonnée de la station :	ion :	✓ Système d	Système de Géolocalisation Portable	ble	Carte IGN
Lambert 93 : $WGS~84~(syst.internationnal~GPS~"~"):$	tionnal GPS ° '' ')	X: 1007992 6°55'36.7"E	Y	alt. 45°14'17.2" N	alt. : 1974 m
Profondeur:	75 m				
Météo :	✓ 1- temps sec ensoleillé ✓ 4- pluie fine ✓ 7- gel	nsoleillé [2- faiblement nuageux 5- orage-pluie forte 8- fortement nuageux	ux 3- temps humide 6- neige x	humide
Patm.:	810 hPa				
Vent:	□ 0- nul □ 1	☐ 1- faible 🔽 2- moyen	3- fort		
Conditions d'observation : Surface de l'eau :	- lisse	2- faiblement agitée	√ 3- agitée ☐ 4- très agitée	agitée	
Hauteur de vagues :	0.2 m				
Bloom algal:	NON				
Marnage:	OUI	Hauteur de bande :	10 m	Côte échelle :	1964.13 m
Campagne 4	campa	gne de fin d'été : fin o	campagne de fin d'été : fin de stratification avant baisse de la température	baisse de la tempé	rature
	RE	REMARQUES ET OI	OBSERVATIONS		
Contact préalable :	EDF GEH Val	EDF GEH Vallée de la Maurienne - autorisation d'accès	utorisation d'accès		
Observation:	Belle stratifica Profils homogè	Belle stratification thermique. Profils homogènes pour les autres paramètres.	ramètres.		
Remarques :	Pas de profilFDOM	DOM			

Mont-cenis - Campagne 4

Mont-cenis - Campagne 4

Relevé phytoplanctonique et physico-chimique en plan d'eau

CONVERS GENER	GENERALES PLAN D'EAU		
Plan d'eau :	Mont-cenis	Date:	16/09/19
Types (naturel, artificiel):		Code lac: Y	Y6705023
Organisme / opérateur : Organisme demandeur :	STE : Aurélien Morin & Guillaume Cunillera Agence de l'Eau RMC	Campagne : 4 Marché n° : 160000036	: 4 60000036
	PRELEVEMENTS ZONE EUPHOTIQUE		
Prélèvement pour analy	Prélèvement pour analyses physico-chimiques et phytoplancton		
Heure de relevé : Profondeur : Volume prélevé :	14:50 0 à 19.75 m 8 L Nbre de prélèvements : 3		
ye.	_		
Chlorophylle:	OUI Volume filtré sur place : 1000 ml		
Phytoplancton:	OUI Ajout de lugol : 5 m		
Prélèvement pour analyses micropolluants	yses micropolluants		OUI
Heure de relevé :	15:20		
Prélèvement :	1 prélèvement tous les 2 m		
Volume prélevé : Matériel employé :	12 L Nbre de prélèvements : 10 Bouteille téflon 1,2L		
	PRELEVEMENTS DE FOND		OUI
Prélèvement pour analyses physico-chimiques	yses physico-chimiques		OUI
Prélèvement pour analyses micropolluants	yses micropolluants		OUI
Heure de relevé : Profondeur : Volume prélevé : Matériel employé :	14:10 74 m 15 L Nbre de prélèvements: 3 Bouteille téflon 5,3 L		
Remarques prélèvement :			
	REMISE DES ECHANTILLONS		
Code prélèvement zone euphotique: Code prélèvement de fond :	624366;Bon de transport : 624426;Bon de transport :	6913424000084725 6913424250261150	50
Dépôt : TNT	Chrono ☐ CARSO ☐ Ville::Chambery Heure: 18:00; : 17/09/19		

S.T.E Sciences Techniques de l'Environnement

Relevé phytoplanctonique et physico-chimique en plan d'eau

DONNEES PHYSICO-CHIMIQUES

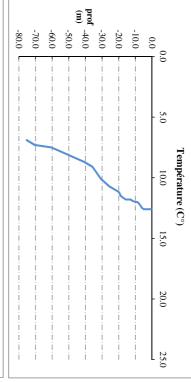
Organisme / opérateur : Organisme demandeur: Types (naturel, artificiel ...): Plan d'eau : STE : Aurélien Morin & Agence de l'Eau RMC Artificiel **Mont-cenis** Guillaume Cunillera Marché n°: 160000036 Code lac: Y6705023 16/09/19

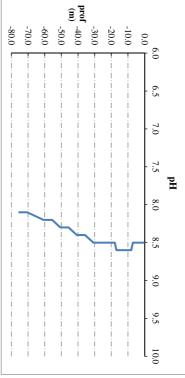
Date:

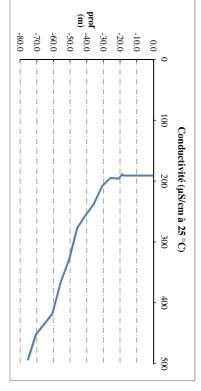
TRANSPARENCE

Disque Secchi = 7.5 m PROFIL VERTICAL Zone euphotique (x 2.5 secchi) =

Moyen de mesure utilisé:


✓ in situ à chaque profondeur


en surface dans un récipient


1							
	9.2	95	493	8.1	6.9	-75.3	Pvlt de fond
	9.5	100	452	8.1	7.3	-70.5	
	9.6	101	418	8.2	7.5	-60.7	
	9.8	104	365	8.2	7.8	-55.5	
	10.1	107	329	8.3	8.1	-50.6	
	10.1	108	277	8.3	8.4	-45.7	
	10.1	109	256	8.4	8.7	-40.7	
	10.1	110	238	8.4	9.1	-35.8	
·	9.7	109	208	8.5	10.1	-30.7	
	9.6	109	195	8.5	10.7	-25.8	
•	9.3	106	196	8.5	11.1	-20.9	
••••	9.1	104	193	8.5	11.2	-19.8	
	8.9	103	189	8.5	11.5	-18.8	
	8.9	103	191	8.5	11.6	-17.9	,
	8.8	102	191	8.6	11.7	-16.9	
Pas de profii	8.8	102	191	8.6	11.8	-15.9	,,
:	8.8	102	191	8.6	11.8	-14.8	,,
	8.8	102	191	8.6	11.8	-13.8	,,
	8.8	102	191	8.6	11.8	-12.9	,
	8.8	102	191	8.6	11.9	-12.0	,
••••	8.8	102	191	8.6	12.0	-10.1	euphotique
	8.7	102	191	8.6	12.0	-9.0	de la zone
	8.7	102	191	8.6	12.1	-8.1	Prélèvement
	8.6	101	191	8.5	12.3	-7.0	,,
	8.6	102	191	8.5	12.5	-6.0	
	8.6	101	191	8.5	12.6	-5.0	
	8.6	102	191	8.5	12.6	-4 .1	
	8.6	101	191	8.5	12.6	-3.1	,,,,
	8.6	102	191	8.5	12.6	-2.8	,
	8.6	101	191	8.5	12.6	-1.6	,,
	8.6	101	191	8.5	12.6	-0.5	
	(mg/l)	(%)	(μS/cm 25°)		(°C)	(m)	
organiques dissoutes	02	02	Cond.	pН	Temp	Prof.	Type de pvlt
Matières							

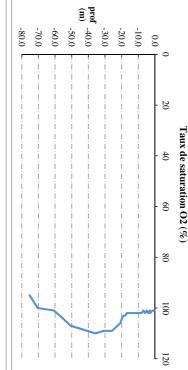
DONNEES PHYSICO-CHIMIQUES / GRAPHIQUE Relevé phytoplanctonique et physico-chimique en plan d'eau

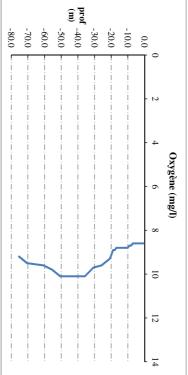
Organisme / opérateur : Organisme demandeur: Types (naturel, artificiel ...): STE : Aurélien Morin & Agence de l'Eau RMC **Mont-cenis** Guillaume Cunillera Marché n°: 160000036 Code lac: Y6705023 Date: 16/09/19

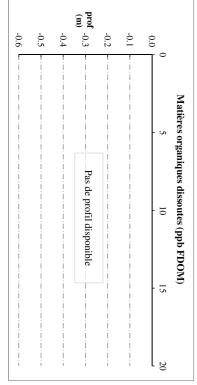
S.T.E Sciences Techniques de l'Environnement

Relevé phytoplanctonique et physico-chimique en plan d'eau

DONNEES PHYSICO-CHIMIQUES / GRAPHIQUE **Mont-cenis**


Organisme demandeur: Organisme / opérateur : Types (naturel, artificiel ...): STE : Aurélien Morin & Guillaume Cunillera Artificiel


Agence de l'Eau RMC


Marché n°: 160000036 Code lac: Y6705023

Date:

16/09/19

Mont-cenis - sédiment

TNT Chrono Diportion Date: Réception au laboratoire le	Code prélèvement :		Présence d'autres débris	Présence de débris	odeur	hétér	home	argile Asnect du sédiments	vases	sables	gravi	Granulométrie dominante	récer	Epaisseur échantillonnée	Profondeur (en m)	Pélèvements	Localisation génér (correspond au poi		✓ benn		Heure de prélèvement:	Période estimé favorable à : ✓ mort et sédimentation ✓ sédimentation de MES	Surface de l'eau :	Vent:	Météo		Prélèvement Plan d'eau : Types (naturel, artificiel) : Organisme / opérateur : Organisme demandeur :
LDA 26 🔽 17/09/19 :			débris	Présence de débris végétaux non décomposés	r i	hétérogène Coulour	homogène	ds.	vases	8	graviers	minante	récents (< 2cm) anciens (> 2cm)	llonnée			Localisation générale de la zone de prélèvement (X, Y) (correspond au point de plus grande profondeur de $C4$)		benne Ekmann		ent: 15:20	tode estimé favorable à : mort et sédimentation du plancton sédimentation de MES de toute nature			✓ 1- temps sec ensoleillé ☐ 2- faiblement nuageux ☐ 3- temps humide		Prélèvement de sédiments :: Mont-cenis turel, artificiel): Artificiel e opérateur: STE : Aweilien, e demandeur : Agence de l'E
Ville : Heure : 17/09/19	Bon de	REMISE DES ECHANTILLONS	non		non		×		>	4			X	-	75		Localisation générale de la zone de prélèvement (X, Y Lambert 93) (correspond au point de plus grande profondeur de C4)	PRELEVEMENTS	pelle à main	MATERIEL		Ire	1- lisse □ 2- faibl	0- nul 1- faible	ensoleillé t nuageux nide	CONDITIONS DU MILIEU	Mont-cenis Artificiel STE: Aurélien Morin & Agence de l'Eau RMC
Valence 9:00	Bon de transport :	HANTILLONS	n non	·	non		×		>	<			×	-		2	×	MENTS	Autre:	RIEL			2- faiblement agitée 💚	✓ 2- moyen ☐ 3- fort	☐ 4- pluie fine☐ 5- orage-pluie forte☐ 6- neige☐	DUMILIEU	r analyses phy: Suillaume Cunillera C
9:00			non	non	non		×		>	<			X	=	75	3 4	: 1007992						3- agitée 🔲 4- très agitée	☐ 4- brise ☐ 5- brise			pour analyses physico-chimiques Date: Code lac: Y Morin & Guillaume Cunillera Campagne: au RMC Marché n°:
<u></u>																	Y: 6467524						agitée	4- brise 5- brise modéré	7- gel 8- fortement nuageux		iques 16/09/19 ac: Y6705023 agne: 4 de n°: 160000036