

ETUDE DES PLANS D'EAU DU PROGRAMME DE SURVEILLANCE DES BASSINS RHONE-MEDITERRANEE ET CORSE - RAPPORT DE DONNEES BRUTES ET INTERPRETATION - RETENUE DE CODOLE SUIVI ANNUEL 2012

crédit photo : Sciences et Techniques de l'Environnement

Rapport n° 08-283/2013-PE2012-08 – Septembre 2013

co-traitants

sous-traitants

Maître d'Ouvrage :	Agence de l'Eau Rhône Méditerranée et Corse (AERMC) Direction des Données et Redevances 2-4, allée de Lodz 69363 Lyon cedex 09					
	Interlocuteur: Mr Imbert Loïc					
	Coordonnées: loic.imbert@eaurmc.fr					

Titre du Rapport	ETUDE DES PLANS D'EAU DU PROGRAMME DE SURVEILLANCE DES BASSINS RHONE-MEDITERRANEE ET CORSE				
Résumé	lors des campagnes	pte de l'ensemble des données collectée de suivi 2012. Une présentation du ée puis les résultats des investigations so	ı plan d'eau et du cadre		
Mots-clés	Géographiques : Bassins Rhône-Méditerranée et Corse - Haute-Corse (2B) - Retenue de Codole				
	Thématiques : Résea	ux de surveillance - Etat trophique - Plan	n d'eau		
Date	Septembre 2013	Statut du rapport	Définitif		
Présent tirage en exemplaire (s)	1	Diffusion informatique au Maître d'Ouvrage	oui		

Auteur	Sciences et Techniques de l'Environnement – B.P. 374 17, Allée du Lac d'Aiguebelette - Savoie Technolac 73372 Le Bourget du Lac cedex tél.: 04 79 25 08 06; tcp: 04 79 62 13 22
Rédacteur(s)	Hervé Coppin
Chef de projet – contrôle qualité	Eric Bertrand / Audrey Péricat

SOMMAIRE

PK.	EAMBULE	1
1.1 1.2 2	CADRE DU PROGRAMME DE SUIVI INVESTIGATIONS PHYSICOCHIMIQUES INVESTIGATIONS HYDROMORPHOLOGIQUES ET HYDROBIOLOGIQUES PRESENTATION DU PLAN D'EAU ET LOCALISATION CONTENU DU SUIVI 2012	4 5 6
RE	SULTATS DES INVESTIGATIONS	9
1	INVESTIGATIONS PHYSICOCHIMIQUES	11
1.1		
1.2	ANALYSES DE SEDIMENTS	19
2	PHYTOPLANCTON	
2.1		
2.2		
2.3		
3	OLIGOCHETES	
3.1	CONDITIONS DE PRELEVEMENTS	
3.2	CARACTERISTIQUES DES SEDIMENTS RECOLTES	27
3.3	LISTE FAUNISTIQUE ET CALCUL DE L'INDICE IOBL	27
3.4		
INT	FERPRETATION GLOBALE DES RESULTATS	31
	NEXES	

Agence de l'Eau Rhône - Méditerranée & Corse Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Retenue de Codole (2B)	
<u>PREAMBULE</u>	

CADRE DU PROGRAMME DE SUIVI

Dans le cadre de la mise en œuvre de la Directive Cadre européenne sur l'Eau (DCE), un programme de surveillance doit être établi pour suivre l'état écologique (ou le potentiel écologique) et l'état chimique des eaux douces de surface.

Différents réseaux constituent le programme de surveillance. Parmi ceux-ci, deux réseaux sont actuellement mis en œuvre sur les plans d'eau :

- Le réseau de contrôle de surveillance (RCS) vise à donner une image globale de la qualité des eaux. Tous les plans d'eau naturels supérieurs à 50 ha ont été pris en compte sur les bassins Rhône-Méditerranée et Corse. Pour les plans d'eau d'origine anthropique, une sélection a été opérée parmi les plans d'eau supérieurs à 50 ha, afin de couvrir au mieux les différents types présents (grandes retenues, plans d'eau de digue, plans d'eau de creusement).
- Le contrôle opérationnel (CO) vise à suivre spécifiquement les masses d'eau (naturelles ou anthropiques) supérieures à 50 ha, à risque de non atteinte du bon état (ou du bon potentiel) des eaux en 2015.

Au total, 80 plans d'eau sont suivis sur les bassins Rhône-Méditerranée et Corse dans le cadre de des deux réseaux RCS et CO.

Le contenu du programme de suivi sur les plans d'eau est identique pour le RCS et le CO. Un plan d'eau concerné par le CO sera cependant suivi à une fréquence plus soutenue (tous les 3 ans) comparativement à un plan d'eau strictement visé par le RCS (tous les 6 ans).

Le tableau 1 résume les différents éléments suivis sur une année et les fréquences d'intervention associées. Il s'agit du suivi qualitatif type mis en place sur les plans d'eau concernés par le RCS et le CO. Pour chaque plan d'eau, selon leur typologie et l'historique de leur suivi, ce programme peut faire l'objet d'ajustements concernant l'hydrobiologie et l'hydromorphologie.

Un suivi « allégé » a été mené sur quatorze plans d'eau identifiés en tant que masses d'eaux DCE mais non intégrés aux réseaux RCS et CO. Ce suivi s'inscrit dans le cadre de la préparation du nouvel état des lieux du bassin Rhône-Méditerranée afin de préciser l'état de ces plans d'eau en l'absence de données milieux disponibles. Neuf plans d'eau ont ainsi été suivis en 2011 et cinq en 2012.

Le contenu du programme de suivi de ces plans d'eau est dit « allégé » puisqu'ils ne font pas l'objet de prélèvements d'eau de fond et seule l'étude du peuplement phytoplanctonique est réalisée concernant l'hydrobiologie et l'hydromorphologie. Le contenu du suivi est ainsi restreint aux seuls éléments permettant à ce jour de définir l'état écologique et chimique des plans d'eau selon l'arrêté "Surveillance" du 25 janvier 2010.

Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Retenue de Codole (2B)

Tableau 1 : synoptique générique des investigations menées sur une année de suivi d'un plan d'eau

			Paramètres Type de prélèvements/ Mesures		HIVER	PRINTEMPS	ЕТЕ	AUTOMNE
		Mesures in situ	O2 dis. (mg/l, %sat.), pH, COND (25°C), T°C, transparence secchi	Profils verticaux	Х	Х	х	Х
	2	Physico-chimie classique	DBO5, PO4, Ptot, NH4, NKJ, NO3, NO2, COT, COD, MEST, Turbidité, Si dissoute	Prélèvement intégré et prélèvement ponctuel de fond	Х	Х	Х	х
	Sur EAU	Substances prioritaires, autres substances et pesticides	Micropolluants*	Prélèvement intégré et prélèvement ponctuel de fond	Х	х	Х	Х
		Pigments chlorophylliens	Chlorophylle a + phéopigments	Prélèvement intégré		х	х	Х
	Minéralisation		Ca ²⁺ , Na ⁺ , Mg ²⁺ , K ⁺ , dureté, TA, TAC, SO ₄ ²⁻ , Cl ⁻ , HCO ₃ ⁻ Prélèvement intégré		Х			
(Eau interstitielle : Physico-chimie		PO4, Ptot, NH4					
Sur SEDIMENTS	Phase solide (<2mm)	Physico-chimie	Corg., Ptot, NKJ, Granulomètrie, perte au feu	Prélèvement ponctuel au point de plus grande profondeur				Х
ns	Ы	Substances prioritaires, autres substances et pesticides						
HYDROBIOLOGIE et			Phytoplancton	Prélèvement intégré (Cemagref/Utermöhl)		Х	Х	Х
			Oligochètes	IOBL				Х
		HYDRORIOI OGIE et	Mollusques	IMOL				Х
		YDROMORPHOLOGIE	Macrophytes	Protocole Cemagref (nov.2007)			Χ	
			Hydromorphologie	A partir du Lake Habitat Survey (LHS)			Х	
			Suivi piscicole	Protocole CEN (en charge de l'ONEMA)			Х	

^{* :} se référer à l'annexe 5 de la circulaire DCE 2006/16, analyses à réaliser sur les paramètres pertinents à suivre sur le support concerné

1.1 Investigations physicochimiques

Les différents paramètres physico-chimiques analysés sur l'eau sont suivis lors de quatre campagnes calées aux différentes phases du cycle annuel de fonctionnement du plan d'eau, soit entre le mois de février et le mois d'octobre. Les dates d'intervention sont mentionnées dans le tableau 2, au paragraphe 3.

A chaque campagne, sont réalisées au point de plus grande profondeur, toutes ou partie des investigations suivantes (en fonction du type de réseau) :

- 1. un profil vertical des paramètres physico-chimiques de terrain : température, conductivité, oxygène dissous (en mg/l et % saturation) et pH ;
- 2. des échantillons d'eau pour analyses (physico-chimie, micropolluants, pigments chlorophylliens), il s'agit :
 - ✓ d'un prélèvement intégré sur la colonne d'eau (constitué à partir du mélange de prélèvements ponctuels réalisés tous les mètres entre la surface et 2,5 fois la transparence mesurée avec le disque de Secchi);
 - ✓ d'un prélèvement de fond (réalisé généralement à un mètre du fond).

Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Retenue de Codole (2B)

Les sédiments sont prélevés une fois par an lors de la 4^{ème} et dernière campagne au point de plus grande profondeur.

Les échantillons d'eau et de sédiments ont été transmis au Laboratoire Départemental d'Analyses de la Drôme (LDA 26) en charge des analyses.

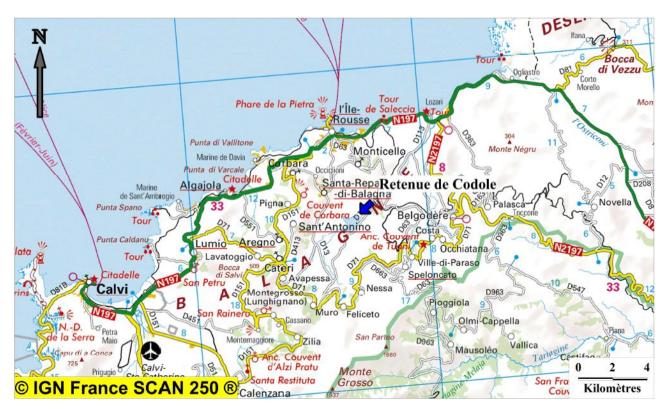
1.2 Investigations hydromorphologiques et hydrobiologiques

Les investigations hydromorphologiques et hydrobiologiques ont été réalisées à des périodes adaptées aux objectifs des méthodes utilisées.

L'évaluation morphologique du lac est établie en suivant le protocole du Lake Habitat Survey (LHS) dans sa version 3.1 (mai 2006).

Les investigations hydrobiologiques comprennent plusieurs volets :

- 1 l'étude des peuplements phytoplanctoniques à partir du protocole standardisé d'échantillonnage, de conservation, d'observation et de dénombrement du phytoplancton en plan d'eau pour la mise en œuvre de la DCE (CEMAGREF INRA; version 3.3 de mars 2009);
- 2 l'étude des peuplements d'oligochètes à travers la détermination de l'Indice Oligochètes de Bio-indication Lacustre : IOBL (Norme AFNOR NF T90-391, mars 2005), les prélèvements suivent ce protocole.
- l'étude des peuplements de mollusques avec la détermination de l'Indice Mollusques : IMOL (Mouthon, J. (1993) Un indice biologique lacustre basé sur l'examen des peuplements de mollusques. Bull. Franç. Pêche Pisc., 331 : 397-406) ;
- 4 l'étude des peuplements de macrophytes sur le lac s'appuie sur la méthode mise au point par le CEMAGREF et décrite au sein de la norme AFNOR XP T90-328 : « Echantillonnage des communautés de macrophytes en plans d'eau », décembre 2010.


2 Presentation du plan d'eau et localisation

La retenue de Codole est située dans le département de la Haute-Corse en Balagne à une altitude de 113 m. Le plan d'eau est formé par un barrage construit sur le Régino en 1985, dont la structure atteint 25 m. L'ouvrage est géré par l'OEHC pour l'alimentation en eau potable et l'irrigation de cette région très sèche.

Le plan d'eau est de taille réduite : environ 80 ha pour un volume théorique de 7 millions de m³ en Cote Normale d'Exploitation (CNE). La profondeur maximale mesurée en 2012 est de 22 m en plus hautes eaux. Le plan d'eau reçoit les eaux du Régino qui prend sa source au San Parteo à 1680 m d'altitude. Le bassin versant au droit du barrage est de 53 km². Le secteur repose sur un socle cristallin (granite rose).

Le climat de ce secteur est typiquement méditerranéen. Des hivers doux et humides alternent avec des étés chauds et secs.

La cote du plan d'eau varie de façon saisonnière entre 95 et 113 m NGF en fonction des besoins en eau. La retenue est en remplissage à l'automne et au printemps (période de hautes eaux) pour atteindre sa cote maximale début juin environ. Les eaux de la retenue sont utilisées en été pour les besoins en eau potable et en irrigation. Sur cette période estivale, les apports sont réduits et la cote du plan d'eau baisse de façon importante (marnage >10 m), et ce jusqu'en octobre à l'arrivée des crues automnales.

Carte 1 : localisation de la retenue de Codole (Haute-Corse)

Agence de l'Eau Rhône - Méditerranée & Corse Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Retenue de Codole (2B)							
Aucune activité n'est pratiquée sur le plan d'eau. En revanche, on observe du pâturage aux abords de la retenue notamment à proximité de l'arrivée du Régino. Une carrière de matériaux est visible en rive gauche, avec des pistes d'accès.							

3 CONTENU DU SUIVI 2012

La retenue de Codole est suivie au titre des Réseaux de Contrôle de Surveillance (RCS) et du Contrôle **Opérationnel** (CO). **Parmi** investigations hydrobiologiques les hydromorphologiques précitées, seules l'étude des peuplements phytoplanctoniques et l'étude des peuplements oligochètes ont été réalisées. Les études des peuplements de mollusques et de macrophytes n'ont pas été mises en œuvre en raison du caractère marnant du plan d'eau. L'étude hydromorphologique n'a également pas été menée en 2012 (déjà suivie en 2009), la fréquence de suivi de cet élément étant de 6 ans. Le tableau ci-dessous indique la répartition des missions au sein du groupement aussi bien en phase terrain qu'en phase laboratoire/détermination. S.T.E. a en outre eu en charge de coordonner la mission et de collecter l'ensemble des données pour établir les rapports et mener l'exploitation des données.

					•	
Retenue de Codole (2B)		Phase terrain				
Campagne	C1	C2	C3	IOBL	C4	
Date	28/02/2012	26/04/2012	10/07/2012	10/09/2012	11/10/2012	automne/hiver 2012-2013
Physicochimie des eaux	S.T.E.	S.T.E.	S.T.E.		S.T.E.	LDA26
Physicochimie des sédiments					S.T.E.	LDA26
Phytoplancton	S.T.E.	S.T.E.	S.T.E.		S.T.E.	BECQ'Eau
Oligochètes				IRIS Consultants		IRIS

Tableau 2 : synoptique des interventions de terrain et de laboratoire sur le plan d'eau, par campagne

Le bilan climatique¹ de l'hiver 2011/2012 en Corse souligne des températures conformes aux moyennes de saison, un cumul de précipitations légèrement déficitaire et une durée d'ensoleillement légèrement excédentaire. Le mois de février a été marqué par une vague de froid sur la 1^{ère} quinzaine ayant entrainé des épisodes neigeux importants jusqu'à basse altitude.

Le bilan climatique du printemps 2012 souligne des températures et une durée d'ensoleillement conformes aux moyennes de saison. Le cumul de précipitations a été excédentaire en raison de mois d'avril et mai bien arrosés.

Le bilan climatique de l'été 2012 souligne des températures largement supérieures par rapport aux moyennes de saison et à l'inverse un cumul de précipitations très largement déficitaire (déficit de 80%). La Corse a notamment été touchée par la vague de chaleur fin août. La durée d'ensoleillement est conforme aux moyennes de saison.

¹ Comparaison des valeurs moyennes des saisons de l'année 2012 aux valeurs moyennes saisonnières sur la période 1980-2010 (source : http://climat.meteofrance.com)

Etude des pians d'ea	u du programme de surveillance des bassins Rhône-Méditerranée et Corse	– Retenue de Codoie (21
	RESULTATS DES_	
	INVESTIGATIONS	

1 INVESTIGATIONS PHYSICOCHIMIQUES

Les comptes rendus des campagnes de prélèvements physicochimiques et phytoplanctoniques sont présentés en annexe 3.

1.1 ANALYSES DES EAUX DU LAC

1.1.1 Profils verticaux et evolutions saisonnieres

Le suivi prévoit la réalisation de profils verticaux sur la colonne d'eau à chaque campagne. Quatre paramètres sont mesurés : la température, la conductivité, l'oxygène (en concentration et en % saturation) et le pH. Les graphiques regroupant ces résultats pour chaque paramètre lors des 4 campagnes sont affichés dans ce chapitre.

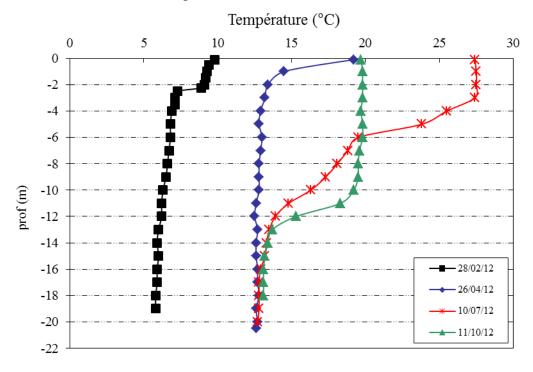


Figure 1: profils verticaux de température au point de plus grande profondeur

Lors de la 1^{ère} campagne, la température n'est pas homogène sur la colonne d'eau. La couche de surface s'est rapidement réchauffée (9°C) après l'épisode neigeux important survenu début février. Au-delà de 6 m, les eaux se maintiennent à 6°C.

En campagne 2, on observe un important réchauffement qui se limite au premier mètre (19,2°C en surface) alors que le reste de la colonne d'eau est en homothermie à 13°C.

La stratification thermique est en place lors de la 3^{ème} campagne : la thermocline s'étend entre 3 et 12 m de profondeur. L'épilimnion, de taille réduite, présente une température très élevée de 27,5°C alors que les eaux hypolimniques se sont maintenues (comme à la campagne précédente) à 13°C.

Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Retenue de Codole (2B) En campagne 4, on observe classiquement :

- ✓ un enfoncement de la thermocline entre -10 et -13 m;
- ✓ un net refroidissement des eaux épilimniques (19,8°C).

La stratification thermique est marquée sur la retenue de Codole bien qu'elle se mette en place assez tardivement (après la seconde campagne).

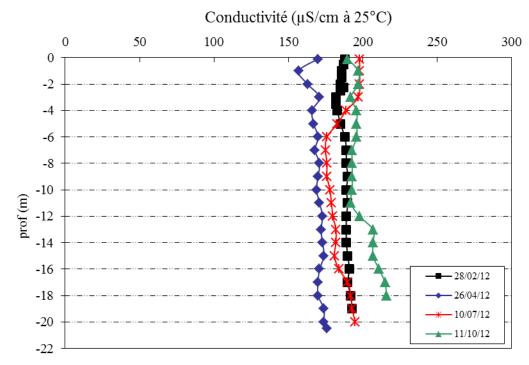


Figure 2 : profils verticaux de conductivité au point de plus grande profondeur

La conductivité, comprise entre 150 et $220~\mu\text{S/cm}$, indique une eau faiblement à moyennement minéralisée. La retenue de Codole se situe sur des substrats granitiques, ce qui explique la minéralisation modérée de l'eau. Cependant, les valeurs apparaissent relativement élevées pour ce type de substrats et suggèrent des apports en minéraux allochtones.

La conductivité est homogène lors des campagnes 1 et 2, à respectivement 180 et 170 μ S/cm. Lors des campagnes suivantes, on observe un léger regain de minéralisation des eaux du fond, en rapport avec la dégradation de la matière organique, notamment celle issue de la production estivale.

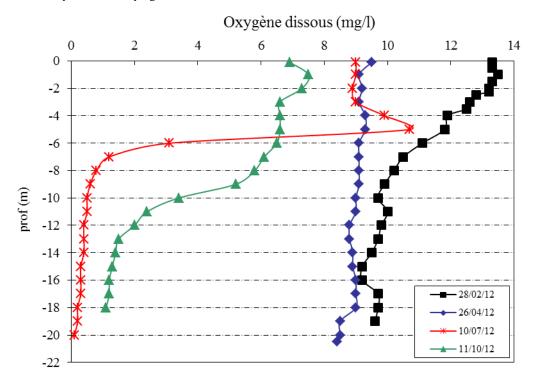


Figure 3 : profils verticaux d'oxygène (mg/l) au point de plus grande profondeur

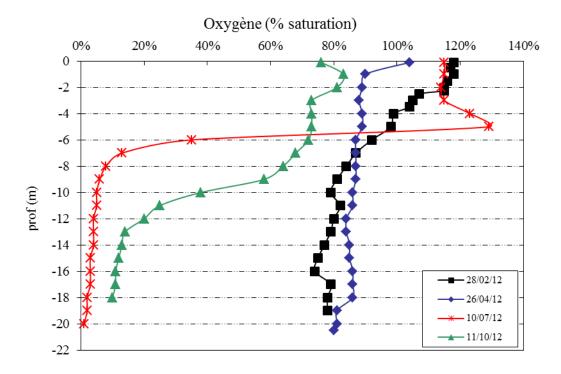


Figure 4: profils verticaux d'oxygène (% sat.) au point de plus grande profondeur

Les profils verticaux d'oxygène soulignent :

✓ une déplétion de ce paramètre après le brassage hivernal. Le taux de saturation en oxygène est inférieure à 90% à partir de -7 m en campagne 1 et de -2 m en campagne 2. L'activité photosynthétique compense cette désoxygénation sur les premiers mètres de surface ;

- Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse Retenue de Codole (2B)
- ✓ un démarrage précoce de l'activité biologique lors de la 1^{ère} campagne (importante sursaturation en oxygène avec près de 120% de saturation jusqu'à 2,5 m de profondeur). La fin du mois de février a été particulièrement ensoleillée et chaude après une 1^{ère} quinzaine enneigée en raison d'une vague de froid ;
- ✓ une forte activité photosynthétique lors de la campagne 3 jusqu'à 5 m de profondeur (≥115% de saturation avec un pic à 129% à -5 m;
- ✓ une importante consommation en oxygène en profondeur en période estivale, en lien avec les processus de dégradation de la matière organique. Le taux de saturation en oxygène est inférieur à 10% à partir de -8 m le 10/07/2012 avec une complète anoxie au fond, et est proche de 10% au fond le 11/10/2012. Ces conditions d'anoxie sont favorables au relargage de nutriments depuis les sédiments ;
- ✓ la déplétion en oxygène gagne l'épilimnion lors de la dernière campagne (70 à 80% de saturation) et explique celle initialement constatée sur l'ensemble de la colonne d'eau en fin d'hiver.

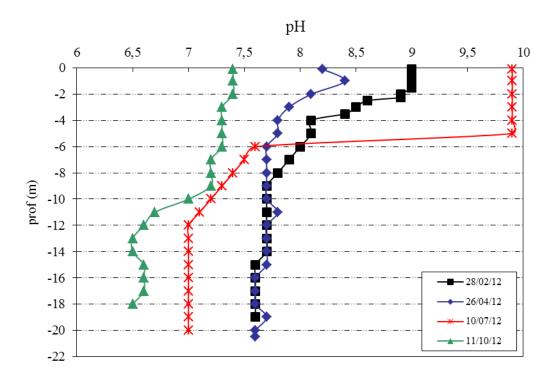


Figure 5 : profils verticaux de pH au point de plus grande profondeur

Le pH est très variable sur la retenue de Codole, compris entre 6,5 et 9,9. On peut faire l'hypothèse qu'avant le démarrage de l'activité biologique, le pH est relativement homogène sur toute la colonne d'eau à environ 7,7 (Cf. mesures réalisées lors du suivi 2009 (25/02/2009)). L'activité photosynthétique entraine ensuite une importante augmentation du pH dans la couche de surface qui atteint :

- ✓ 9,0 en campagne 1 avec le démarrage de l'activité biologique ;
- \checkmark 8,4 en campagne 2;
- ✓ 9,9 en campagne 3.

En parallèle, le pH diminue fortement en profondeur avec les processus de décomposition de la matière organique. Au fond, le pH est proche de 7,0 en campagne 3 et de 6,5 en campagne 4.

1.1.2 PARAMETRES DE CONSTITUTION ET TYPOLOGIE DU LAC

N.B. pour tous les tableaux suivants :

LD = limite de détection, généralement =SQ/3, sauf pour DBO5 et turbidité pour lesquels LD=SQ, avec SQ = seuil de quantification; Prés. = valeur comprise entre LD et SQ, composé présent mais non précisément quantifiable.

Les paramètres de minéralisation sont étudiés lors de la 1^{ère} campagne uniquement. Les résultats sont présentés dans le tableau 3.

Tableau 3 : résultats des paramètres de minéralisation lors de la 1ère campagne

Retenue de	Codole	seuil	28/02/	/2012
code plan d'eau :	Y7615003	quantification	Intégré	Fond
Dureté calculée	°F	0,1	5,7	
T.A.C.	°F	0,5	4,3	
T.A.	°F	0,5	<ld< td=""><td></td></ld<>	
CO ₃	mg(CO3)/l	6	<ld< td=""><td></td></ld<>	
HCO ₃	mg(HCO3)/l	6,1	52,5	
Calcium total	mg(Ca)/l	1	13,0	
Magnésium	mg(Mg)/l	1	6,0	
Sodium	mg(Na)/l	1	19,0	
Potassium	mg(K)/l	1	1,2	
Chlorures	mg(Cl)/l	1	31,0	
Sulfates	mg(SO4)/l	1	11,0	

Les résultats indiquent une eau faiblement carbonatée, de dureté faible. La retenue de Codole et son bassin versant se trouvent sur des terrains granitiques plus ou moins altérés, ce qui explique la faible minéralisation des eaux. Notons toutefois la quantification non négligeable de chlorures et de sodium issus de roches solubles.

1.1.3 RESULTATS DES ANALYSES PHYSICOCHIMIQUES DES EAUX (HORS MICROPOLLUANTS)

Tableau 4 : résultats des paramètres de physico-chimie classique sur eau.

Physico-chimie sur es	Physico-chimie sur eau										
Retenue de	Codole	seuil quantification	28/02	28/02/2012		/2012	10/07/2012		11/10/2012		
code plan d'eau :	Y7615003	seun quantification	Intégré	Fond	Intégré	Fond	Intégré	Fond	Intégré	Fond	
Turbidité	NTU	0,1	3,2	5,6	4,8	8,9	2,5	7,6	4,2	11,0	
M.E.S.T.	mg/l	1	6	33	9	21	5	6	2	8	
C.O.D.	mg(C)/l	0,1	4,6	4,9	3,5	3,5	3,8	4,3	3,3	4,1	
C.O.T.	mg(C)/l	0,1	4,7	5,0	3,6	3,6	3,8	4,3	3,3	4,2	
D.B.O.5	mg(O2)/l	0,5	3,4	3,0	2,3	2,0	1,8	<ld< td=""><td>1,3</td><td>1,1</td></ld<>	1,3	1,1	
Azote Kjeldahl	mg(N)/l	1	2	2	1	<ld< td=""><td><ld< td=""><td>2</td><td><ld< td=""><td>4</td></ld<></td></ld<></td></ld<>	<ld< td=""><td>2</td><td><ld< td=""><td>4</td></ld<></td></ld<>	2	<ld< td=""><td>4</td></ld<>	4	
NH ₄ ⁺	mg(NH4)/l	0,05	0,50	0,91	0,20	0,26	<ld< td=""><td>1,57</td><td>0,16</td><td>3,65</td></ld<>	1,57	0,16	3,65	
NO_3	mg(NO3)/l	1	2,1	2,1	2,3	2,3	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>	
NO_2^-	mg(NO2)/l	0,02	0,04	0,04	0,04	0,04	0,03	0,02	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>	
PO ₄	mg(PO4)/l	0,015	0,021	0,028	<ld< td=""><td>0,015</td><td><ld< td=""><td>0,530</td><td><ld< td=""><td>1,045</td></ld<></td></ld<></td></ld<>	0,015	<ld< td=""><td>0,530</td><td><ld< td=""><td>1,045</td></ld<></td></ld<>	0,530	<ld< td=""><td>1,045</td></ld<>	1,045	
Phosphore Total	mg(P)/l	0,005	0,030	0,098	0,062	0,084	0,023	0,229	0,020	0,574	
Silice dissoute	mg(SiO2)/l	0,2	4,3	5,6	4,7	4,9	7,1	6,6	6,4	8,1	
Chl. A	μg/l	1	18,1		5,4		11,3		7,8		
Chl. B	μg/l	1	<ld< td=""><td></td><td><ld< td=""><td></td><td>3,0</td><td></td><td><ld< td=""><td></td></ld<></td></ld<></td></ld<>		<ld< td=""><td></td><td>3,0</td><td></td><td><ld< td=""><td></td></ld<></td></ld<>		3,0		<ld< td=""><td></td></ld<>		
Chl. C	μg/l	1	7,7		<ld< td=""><td></td><td>1,6</td><td></td><td>1,4</td><td></td></ld<>		1,6		1,4		
Indice phéopigments	μg/l	1	<ld< td=""><td></td><td>2,2</td><td></td><td><ld< td=""><td></td><td><ld< td=""><td></td></ld<></td></ld<></td></ld<>		2,2		<ld< td=""><td></td><td><ld< td=""><td></td></ld<></td></ld<>		<ld< td=""><td></td></ld<>		

Les analyses des fractions dissoutes ont été réalisées sur eau filtrée (COD, NH4, NO3, NO2, PO4, Si).

Les concentrations en carbone organique dissous sont relativement élevées lors des 4 campagnes, comprises entre 3,3 et 4,9 mg/l. La retenue de Codole présente donc une forte charge organique dans l'eau. Les matières en suspension et la turbidité sont également élevées, notamment dans les échantillons de fond.

En fin d'hiver, les concentrations en nutriments disponibles sont élevées pour l'azote (présence de nitrates à 2,1 mg/l et d'ammonium à 0,50 mg/l) et plus modérées pour les orthophosphates (0,021 mg/l) dans l'échantillon intégré. Le rapport N/P² est donc important (> 100) : le phosphore est le facteur limitant pour la production végétale par rapport à l'azote, favorisant ainsi le développement des chlorophycées. Durant la période estivale, les teneurs en nutriments diminuent fortement dans la zone euphotique avec leur utilisation pour la production biologique : l'ammonium et les nitrates ne sont plus quantifiés en campagne 3, les orthophosphates ne sont pas quantifiés dès la campagne 2. En parallèle, les eaux du fond s'enrichissent intensément en ammonium, en phosphore total et en orthophosphates lors des campagnes 3 et 4. Dans un milieu quasi anoxique, ces composés ont pour origine :

- ✓ la dégradation de la matière organique qui chute dans la masse d'eau ;
- ✓ un relargage éventuel de nutriments depuis les sédiments.

La teneur en silice dissoute est élevée dans les eaux de la retenue de Codole, comprise entre 4,3 et 8,1 mg/l. Elle ne limite pas le développement des diatomées qui sont dominantes lors de la 1^{ère} campagne.

 $^{^{2}}$ le rapport N/P est calculé à partir de [Nminéral]/ [P-PO₄ 3 -] avec N minéral = [N-NO₃ $^{-}$]+[N-NO₂ $^{-}$]+[N-NH₄ $^{+}$] sur la campagne de fin d'hiver.

Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Retenue de Codole (2B) La production chlorophyllienne est déjà **importante en campagne 1 (25,8 μg/l de pigments chlorophylliens**), soulignant le démarrage précoce de l'activité biologique. Elle reste élevée durant toute la période estivale, notamment lors de la campagne 3 (15,9 μg/l de pigments chlorophylliens). Le démarrage précoce de l'activité photosynthétique a pu conduire à une certaine sous-évaluation des concentrations en nutriments disponibles dans la masse d'eau lors de la 1ère campagne.

1.1.4 MICROPOLLUANTS MINERAUX

Tableau 5 : résultats d'analyses de métaux sur eau

Micropolluants miné	Micropolluants minéraux sur eau									
Retenue de	Codole	seuil	28/02/	/2012	26/04	/2012	10/07/	/2012	11/10	/2012
code plan d'eau :	Y7615003	quantification	Intégré	Fond	Intégré	Fond	Intégré	Fond	Intégré	Fond
Aluminium	μg(Al)/l	5	<ld< td=""><td><ld< td=""><td>19</td><td>31</td><td>15</td><td>11</td><td>6</td><td>12</td></ld<></td></ld<>	<ld< td=""><td>19</td><td>31</td><td>15</td><td>11</td><td>6</td><td>12</td></ld<>	19	31	15	11	6	12
Antimoine	μg(Sb)/l	0,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Argent	μg(Ag)/l	0,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Arsenic	μg(As)/l	0,2	0,5	0,5	0,5	0,6	0,7	2,2	0,7	2,1
Baryum	μg(Ba)/l	5	11	15	10	11	9	17	10	18
Beryllium	μg(Be)/l	0,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Bore	μg(B)/l	5	9	11	10	10	7	6	10	9
Cadmium	μg(Cd)/l	0,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Chrome Total	μg(Cr)/l	0,2	<ld< td=""><td><ld< td=""><td>0,3</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,3</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,3</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,3</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,3	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,3</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,3</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,3</td></ld<></td></ld<>	<ld< td=""><td>0,3</td></ld<>	0,3
Cobalt	μg(Co)/l	0,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,3</td><td><ld< td=""><td>0,4</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,3</td><td><ld< td=""><td>0,4</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,3</td><td><ld< td=""><td>0,4</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,3</td><td><ld< td=""><td>0,4</td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,3</td><td><ld< td=""><td>0,4</td></ld<></td></ld<>	0,3	<ld< td=""><td>0,4</td></ld<>	0,4
Cuivre	μg(Cu)/l	0,2	2,3	0,5	0,8	0,7	0,6	0,2	1,0	0,5
Etain	μg(Sn)/l	0,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Fer total	μg(Fe)/l	5	72	90	72	124	39	2932	29	4558
Manganèse	μg(Mn)/l	5	<ld< td=""><td>35</td><td><ld< td=""><td>29</td><td><ld< td=""><td>482</td><td>10</td><td>650</td></ld<></td></ld<></td></ld<>	35	<ld< td=""><td>29</td><td><ld< td=""><td>482</td><td>10</td><td>650</td></ld<></td></ld<>	29	<ld< td=""><td>482</td><td>10</td><td>650</td></ld<>	482	10	650
Mercure	μg(Hg)/l	0,1	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Molybdène	μg(Mo)/l	0,2	0,5	0,5	0,5	0,5	0,6	0,6	0,5	<ld< td=""></ld<>
Nickel	μg(Ni)/l	0,2	0,3	0,2	0,2	0,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Plomb	μg(Pb)/l	0,2	0,2	0,4	0,2	0,3	<ld< td=""><td>0,5</td><td><ld< td=""><td>0,2</td></ld<></td></ld<>	0,5	<ld< td=""><td>0,2</td></ld<>	0,2
Sélénium	μg(Se)/l	0,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Thallium	μg(Tl)/l	0,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Titane	μg(Ti)/l	5	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Uranium	μg(U)/l	0,2	0,5	0,4	0,4	0,3	0,5	<ld< td=""><td>0,2</td><td>0,2</td></ld<>	0,2	0,2
Vanadium	μg(V)/l	0,2	0,4	0,5	0,8	0,9	1,6	1,0	0,3	1,8
Zinc	μg(Zn)/l	2	10	6	<ld< td=""><td><ld< td=""><td><ld< td=""><td>5</td><td>3</td><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>5</td><td>3</td><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td>5</td><td>3</td><td><ld< td=""></ld<></td></ld<>	5	3	<ld< td=""></ld<>

Les analyses sur les métaux ont été effectuées sur eau filtrée.

Les analyses de micropolluants minéraux sur eau révèlent :

- ✓ le relargage important de fer et de manganèse depuis les sédiments en conditions hypoxiques. Le phénomène est ainsi observable à partir de la campagne 3 et s'accentue ensuite. En campagne 4, les concentrations en fer et manganèse atteignent respectivement 4558 et 650 μg/l dans les eaux du fond ;
- ✓ le baryum et le bore ont également été mesurés lors de toutes les campagnes (éléments de constitution des minéraux des substrats).

Parmi les métaux lourds, certains présentent des concentrations non négligeables :

- ✓ 1'arsenic compris entre 0,5 et 2,2 µg/l;
- ✓ le cuivre compris entre 0.2 et $2.3 \mu g/1$;
- ✓ le zinc (10 μ g/l en campagne 1).

Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Retenue de Codole (2B) Les autres éléments présentent des concentrations nulles à faibles, qui ne suggèrent pas d'effet sur le milieu.

1.1.5 MICROPOLLUANTS ORGANIQUES

Le tableau 6 indique les micropolluants organiques qui ont été détectés (présent à l'état de traces ou quantifiés) lors des campagnes de prélèvements. La liste de l'ensemble des substances analysées est fournie en annexe 1.

Tableau 6: résultats d'analyses de micropolluants organiques présents sur eau

Micropolluants organiques	Micropolluants organiques mis en évidence sur eau										
Retenue de	Codole	couil quantification	28/02	28/02/2012		/2012	10/07/2012		11/10/2012		
code plan d'eau :	Y7615003	seuil quantification	Intégré	Fond	Intégré	Fond	Intégré	Fond	Intégré	Fond	
4-tert-butylphénol	μg/l	0,04	0,21	0,11	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>	
Acide monochloroacétique	μg/l	5	<ld< td=""><td>9</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	9	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>	
Benzène	μg/l	0,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,3</td><td>0,2</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,3</td><td>0,2</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,3</td><td>0,2</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,3</td><td>0,2</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	0,3	0,2	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>	
Ethylbenzène	μg/l	0,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,4</td><td>0,4</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,4</td><td>0,4</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,4</td><td>0,4</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,4</td><td>0,4</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	0,4	0,4	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>	
Formaldéhyde	μg/l	1	1,1	4,0	<ld< td=""><td><ld< td=""><td><ld< td=""><td>1,9</td><td>5,8</td><td>9,4</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>1,9</td><td>5,8</td><td>9,4</td></ld<></td></ld<>	<ld< td=""><td>1,9</td><td>5,8</td><td>9,4</td></ld<>	1,9	5,8	9,4	
Monobutylétain	μg/l	0,003		<ld< td=""><td><ld< td=""><td>0,005</td><td>0,050</td><td>0,013</td><td><ld< td=""><td>0,004</td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,005</td><td>0,050</td><td>0,013</td><td><ld< td=""><td>0,004</td></ld<></td></ld<>	0,005	0,050	0,013	<ld< td=""><td>0,004</td></ld<>	0,004	
Naphtalène	μg/l	0,02	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,03</td><td>0,03</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,03</td><td>0,03</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,03</td><td>0,03</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,03</td><td>0,03</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	0,03	0,03	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>	
Phénanthrène	μg/l	0,01	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,01</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,01</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,01</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,01</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,01</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	0,01	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>	
Toluène	μg/l	0,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>1,8</td><td>0,9</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>1,8</td><td>0,9</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>1,8</td><td>0,9</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>1,8</td><td>0,9</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	1,8	0,9	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>	
Xylène méta	μg/l	0,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,6</td><td>0,9</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,6</td><td>0,9</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,6</td><td>0,9</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,6</td><td>0,9</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	0,6	0,9	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>	
Xylène ortho	μg/l	0,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,4</td><td>0,6</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,4</td><td>0,6</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,4</td><td>0,6</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,4</td><td>0,6</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	0,4	0,6	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>	
Xylène para	μg/l	0,2	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,4</td><td>0,5</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,4</td><td>0,5</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,4</td><td>0,5</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,4</td><td>0,5</td><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	0,4	0,5	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>	

Il s'agit d'une présentation des résultats bruts, certaines valeurs pouvant être qualifiées d'incertaines suite à la validation finale des résultats (cas par exemple des valeurs mesurées en BTEX, HAP, DEHP, Formaldéhyde, dont une contamination via la chaîne de prélèvement et/ou d'analyse de laboratoire est parfois privilégiée).

Des composés de type BTEX (benzène, éthylbenzène, toluène et xylène) ont été quantifiés dans les eaux de la retenue de Codole, uniquement lors de la campagne 3, dans l'échantillon intégré comme dans celui de fond. De même, 2 hydrocarbures aromatiques polycycliques (HAP) ont été détectés uniquement lors de cette campagne, le naphtalène et le phénanthrène.

Le formaldéhyde a été repéré sur les échantillons des différentes campagnes hormis lors de la campagne 2. Il atteint la concentration de 9,4 μ g/l dans l'échantillon de fond de campagne 4. Les teneurs plus élevées dans le fond suggèrent un lien avec le processus de dégradation de la matière organique en conditions quasi anoxiques (le formaldéhyde pouvant être produit naturellement lors de ce processus).

Trois autres composés organiques ont été quantifiés lors des différentes campagnes de prélèvements :

- ✓ le 4-tert-butylphénol en campagne 1, aux applications diverses (additif d'huile de moteur, antioxydant dans les plastiques et adhésifs, antioxydant du savon, etc.);
- ✓ l'acide monochloroacétique dans l'échantillon de fond de campagne 1 ;
- ✓ le monobutylétain plus particulièrement en campagne 3, produit de dégradation du tributylétain (composé de la famille des organostanneux).

1.2 ANALYSES DE SÉDIMENTS

1.2.1 Physicochimie des sediments

Le tableau 7 fournit la synthèse de l'analyse granulométrique menée sur les sédiments prélevés.

Tableau 7 : synthèse granulométrique sur le sédiment du point de plus grande profondeur

Sédiment : composition granulométrique (%)							
R	etenue de	Codole	11/10/2012				
code pl	an d'eau :	Y7615003	11/10/2012				
classe granu	lométrique	(µm)	%				
0	à	2	2,5				
2	à	20	33,6				
20	à	50	24,1				
50	à	63	5,0				
63	à	200	20,7				
200	à	1000	14,1				
1000	à	2000	0,0				
> 2000	•		0,0				

Il s'agit de sédiments fins, de nature sablo-limoneuse. Les limons (2 à 20 μm) et les sables (20 à 1000 μm) représentent respectivement 33,6 % et 63,9 % du sédiment.

Les analyses de physico-chimie classique menées sur la fraction solide et sur l'eau interstitielle du sédiment sont rapportées au tableau 8.

Tableau 8 : analyse de sédiments

Eau interstitielle du sédiment : Physico-chimie									
Retenue de	Codole	souil quantification							
code plan d'eau :	Y7615003	seuil quantification	11/10/2012						
NH ₄ ⁺	mg(NH4)/l	0,5	9,72						
PO ₄	mg(PO4)/l	1,5	<ld< td=""></ld<>						
Phosphore Total	mg(P)/l	0,1	<ld< td=""></ld<>						

Sédiment : Physico-chimie									
Retenue de	Codole	savil avantification							
code plan d'eau : Y7615003		seuil quantification	11/10/2012						
Matières sèches minérales	% MS	0	86,3						
Perte au feu	% MS	0	13,7						
Matières sèches totales	%	0	46,8						
C.O.T.	mg(C)/kg MS	1	124000,0						
Azote Kjeldahl	mg(N)/kg MS	1	5800,0						
Phosphore Total	mg(P)/kg MS	0,5	1308,0						

Dans les sédiments, la teneur en matière organique est élevée avec 13,7 % de perte au feu. La concentration en azote organique est également élevée (5,8 g/kg MS). Le rapport C/N est de 21,4, il reflète une capacité métabolique faible du sédiment qui est très riche en matière carbonée. La concentration en phosphore est également élevée (1,3 g/kg MS).

Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Retenue de Codole (2B) L'eau interstitielle contient les minéraux facilement mobilisables dans les sédiments. La concentration élevée en ammonium suggère une forte potentialité de relargage de cet élément à l'interface eau/sédiment en conditions anoxiques, phénomène confirmé par les concentrations en ammonium observées dans les eaux du fond lors des campagnes estivales.

1.2.2 MICROPOLLUANTS MINERAUX

Ils ont été dosés sur la fraction solide du sédiment.

Tableau 9 : Micropolluants minéraux sur sédiment

Sédiment : Micropolluants minéraux							
Retenue de	Codole	:1					
code plan d'eau :	Y7615003	seuil quantification	11/10/2012				
Aluminium	mg(Al)/kg MS	10	54216				
Bore	mg(B)/kg MS	0,2	15,5				
Fer total	mg(Fe)/kg MS	10	37730				
Mercure	mg(Hg)/kg MS	0,009	0,009				
Zinc	mg(Zn)/kg MS	0,2	95,3				
Antimoine	mg(Sb)/kg MS	0,2	0,8				
Argent	mg(Ag)/kg MS	0,2	<ld< td=""></ld<>				
Arsenic	mg(As)/kg MS	0,2	12,1				
Baryum	mg(Ba)/kg MS	0,2	357,6				
Beryllium	mg(Be)/kg MS	0,2	4,5				
Cadmium	mg(Cd)/kg MS	0,2	0,3				
Chrome Total	mg(Cr)/kg MS	0,2	86,9				
Cobalt	mg(Co)/kg MS	0,2	12,6				
Cuivre	mg(Cu)/kg MS	0,2	31,2				
Etain	mg(Sn)/kg MS	0,2	7,2				
Manganèse	mg(Mn)/kg MS	0,2	585,5				
Molybdène	mg(Mo)/kg MS	0,2	2,5				
Nickel	mg(Ni)/kg MS	0,2	30,4				
Plomb	mg(Pb)/kg MS	0,2	70,8				
Sélénium	mg(Se)/kg MS	0,2	2,3				
Tellurium	mg(Te)/kg MS	0,2	<ld< td=""></ld<>				
Thallium	mg(Th)/kg MS	0,2	1,0				
Titane	mg(Ti)/kg MS	0,2	4121,0				
Uranium	mg(U)/kg MS	0,2	16,1				
Vanadium	mg(V)/kg MS	0,2	90,0				

Les sédiments sont riches en aluminium et en fer. On observe également des concentrations élevées pour les métaux de constitution : le baryum et le titane qui se retrouvent dans les minéraux constitutifs des roches.

Parmi les métaux lourds, le chrome et le plomb présentent des concentrations non négligeables.

1.2.3 MICROPOLLUANTS ORGANIQUES

Le tableau 10 indique les micropolluants organiques qui ont été quantifiés dans les sédiments lors de la campagne de prélèvements. La liste de l'ensemble des substances analysées est fournie en annexe 2.

Tableau 10 : résultats d'analyses de micropolluants organiques présents sur sédiment

Sédiment : Micropolluants organiques mis en évidence								
Retenue de	Codole	souil quantification						
code plan d'eau :	Y7615003	seuil quantification	11/10/2012					
Benzo (a) pyrène	μg/kg MS	10	41					
Benzo (b) fluoranthène	μg/kg MS	10	35					
Benzo (ghi) pérylène	μg/kg MS	10	32					
Benzo (k) fluoranthène	μg/kg MS	10	17					
DEHP	μg/kg MS	100	108					
Fluoranthène	μg/kg MS	40	63					
PCB44	μg/kg MS	1	1					
PCB52	μg/kg MS	1	1					
Phénanthrène	μg/kg MS	50	79					
Pyrène	μg/kg MS	40	67					

Plusieurs micropolluants organiques ont été quantifiés dans les sédiments de la retenue de Codole :

- √ 7 hydrocarbures aromatiques polycycliques (HAP) pour une concentration totale faible de 334 μg/kg;
- ✓ 2 substances appartenant aux PCB (polychlorobiphényles) pour une concentration totale très faible de 2 μg/kg;
- ✓ le DEHP, indicateur plastifiant, a également été mesuré à une concentration faible (108 µg/kg).

2 PHYTOPLANCTON

2.1 Prélèvements intégrés

Les prélèvements intégrés destinés à l'analyse du phytoplancton ont été réalisés en même temps que les prélèvements pour analyses physicochimiques. Sur la retenue de Codole, la zone euphotique et la transparence mesurées sont représentées par le graphique de la figure 6. La zone euphotique varie entre 3,0 et 7,0 m sur les quatre campagnes réalisées. La transparence est assez faible en lien avec une production primaire élevée sur les premiers mètres sur la retenue de Codole. Elle est minimale en campagne 2 avec 1,2 m et maximale en campagne 3 avec 2,8 m.

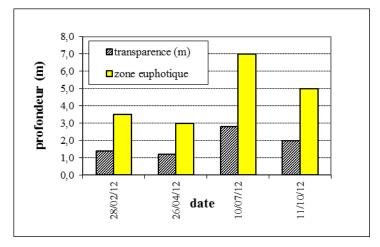


Figure 6 : évolution de la transparence et de la zone euphotique aux 4 campagnes

La liste des espèces de phytoplancton par plan d'eau a été établie selon la méthodologie développée par le CEMAGREF: Protocole standardisé d'échantillonnage, de conservation, d'observation et de dénombrement du phytoplancton en plan d'eau pour la mise en œuvre de la DCE, Mars 2009.

La diversité taxonomique N espèces correspond au nombre de taxons identifiés à l'espèce, à l'exclusion des groupes et familles, ainsi que des taxons identifiés au genre quand une espèce du même genre est présente et déterminée à l'espèce. Le nombre N' correspond à la diversité taxonomique totale incluant tous les taxons aux différents niveaux d'identification (nombre le plus probable).

2.2 LISTE FLORISTIQUE (NOMBRE DE CELLULES/ML)

Tableau 11: Liste taxonomique du phytoplancton

Retenue de Codo	ole		Date pré	lèvement	
Classe	Nom Taxon	28/02/2012	26/04/2012	10/07/2012	11/10/2012
Chlorophycées	Chlamydomonas globosa	376			
	Chlorella vulgaris	256	2459	1198	118
	Chlorophycées flagellées indéterminées diam 5-10 µm		162		101
	Chlorophycées indéterminées			104	
	Coenochloris hindakii			625	
	Coenocystis planctonica		2323		
	Coenocystis subcylindrica		6660		67
	Desmodesmus communis	274	162		
	Elakatothrix gelatinosa		108		
	Hyaloraphidium contortum	34			
	Monoraphidium circinale			122	50
	Monoraphidium minutum			174	50
	Oocystis lacustris	68			
	Oocystis naegelii		675		
	Oocystis solitaria		14		
	Scenedesmus semipulcher		108		
	Sphaerocystis schroeteri		324		
	Westella botryoides			69	
Chrysophycées	Kephyrion spirale	68			
	Ochromonas sp.		432		
	Salpingoeca frequentissima	68			
Cryptophycées	Cryptomonas sp.	479	14		
	Plagioselmis nannoplanctica	1231	68	365	470
Cyanobactéries	Cyanobactéries indéterminées		81	3612	302
	Dolichospermum spiroides				2871
	Microcystis aeruginosa				7556
	Pseudanabaena acicularis			1077	5071
	Pseudanabaena limnetica		54		
	Woronichinia naegeliana	68	838	3508	17
Desmidiacées	Closterium limneticum	17			
	Staurastrum pingue			504	
Diatomées	Achnanthidium sp.			35	
	Asterionella formosa	12667	419		
	Aulacoseira sp.	120	81		17
	Diatomées centriques indéterminées <10 μm		108	52	84
	Nitzschia sp.	17	149		
	Stephanodiscus minutulus	410			
Euglènes	Euglena sp.	17			
	Trachelomonas sp.	51	27		34
Ab	ondance cellulaire totale (nb cellules/ml)	16222	15265	11445	16807
	Diversité taxonomique N	17	18	10	11
	<u> </u>				

2.3 ÉVOLUTIONS SAISONNIÈRES DES GROUPEMENTS PHYTOPLANCTONIQUES

Les échantillons destinés à la détermination du phytoplancton sont constitués d'un prélèvement intégré sur la zone euphotique (équivalant à 2,5 fois la transparence lors de la campagne). Les graphiques suivants présentent la répartition du phytoplancton par groupe algal à partir des résultats exprimés en cellules/ml d'une part et à partir des biovolumes (mm³/l) d'autre part.

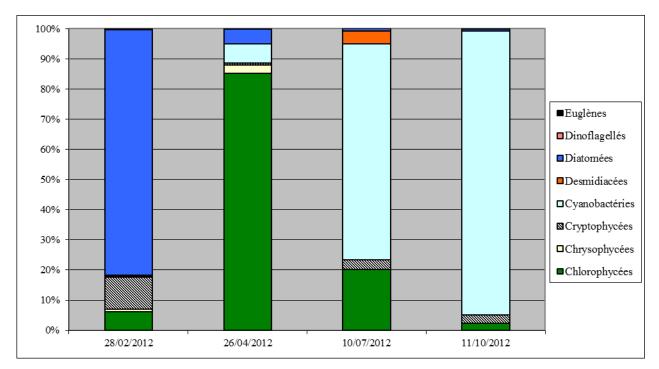


Figure 7: Répartition du phytoplancton sur la retenue de Codole à partir des abondances (cellules/ml)

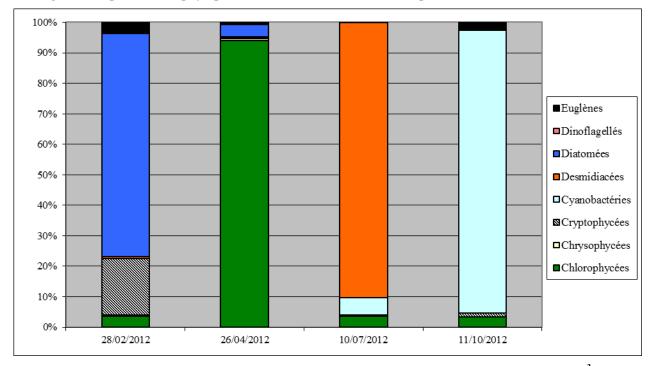


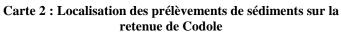
Figure 8: Répartition du phytoplancton sur la retenue de Codole à partir des biovolumes (mm³/l)

Le peuplement phytoplanctonique est très abondant lors des 4 campagnes (11445 à 16807 cellules/ml). La biomasse est comprise entre 2,514 mm³/l en campagne 4 et 6,369 mm³/l en campagne 3. Notons que le démarrage de l'activité biologique s'est révélé assez précoce sur la retenue de Codole avec 16222 cellules/ml et 5,040 mm³/l en campagne de fin d'hiver. La diversité taxonomique est relativement faible, comprise entre 10 à 18 taxons.

Comme en 2009, ce sont les diatomées, avec notamment l'espèce *Asterionella formosa*, qui dominent le peuplement phytoplanctonique en fin d'hiver : elles représentent 81% de l'abondance globale et 73% du biovolume total.

La 2^{nde} campagne se caractérise par une ultra-dominance des chlorophycées (*Coenocystis subcylindrica*, *Coenocystis planctonica*, *Chlorella vulgaris* et *Oocystis naegelii*) au détriment des diatomées. Les algues vertes constituent alors 85% du peuplement phytoplanctonique en termes d'abondance et même 94% en termes de biovolume.

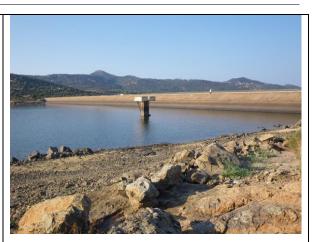
En campagne 3, la desmidiacée de grande taille *Staurastrum pingue* colonise le milieu (90% du biovolume phytoplanctonique). Il s'agit d'une espèce planctonique que l'on retrouve généralement dans les eaux mésotrophes. On observe également un petit bloom des cyanobactéries (8000 cellules/ml) *Woronichinia naegeliana* et *Pseudanabaena acicularis* qui sont des cellules de plus petite taille et qui sont donc plus nettement représentées en termes d'abondance cellulaire (72% du peuplement phytoplanctonique). Ces deux cyanobactéries sont indicatrices de milieux eutrophes et fortement pollués en région tempérée.

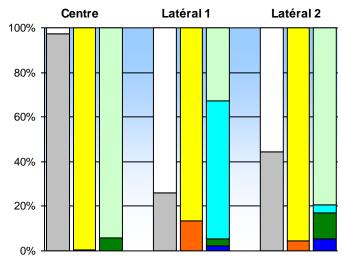

En campagne 4, on observe un bloom de cyanobactéries (plus de 15 000 cellules/ml) avec l'espèce commune *Microcystis aeruginosa* (dont la toxicité est avérée). Ce groupe algal représente alors près de 95% du peuplement phytoplanctonique.

Les groupes algaux présents, notamment les cyanobactéries et les chlorophycées, témoignent d'un milieu enrichi en nutriments. L'indice phytoplanctonique (IPL) est de 48,3, qualifiant le milieu de méso-eutrophe. Pour information, l'indice calculé à partir de l'abondance cellulaire est moins favorable (68,0 - eutrophe). Ce dernier indice tient compte des effectifs des différents groupes phytoplanctoniques présents et donc de la forte représentation des cyanobactéries en campagne 3.

3 OLIGOCHETES

3.1 CONDITIONS DE PRÉLÈVEMENTS




Photo 1 : Vue sur la partie Nord-Est du plan d'eau depuis la rive droite à proximité du point L2

Echantillon
Date et heure
Code point
Profondeur (m)
Type de benne
Nombre de bennes
Surface prospectée (m²)
Localisation
Coordonnées X (LII étendu)
Coordonnées Y (LII étendu)

Central (C)	Latéral 1 (L1)	Latéral 2 (L2)
10/09/2012 18:00	10/09/2012 18:30	10/09/2012 19:00
o1	o2	о3
21,0	10,5	10,5
Ekman	Ekman + Ponar	Ekman + Ponar
5	1E + 4P	3E + 2P
0,105	0,123	0,114
Z max	Rive gauche	Rive droite
1143640	1143494	1143620
1754524	1754697	1754426

3.2 CARACTÉRISTIQUES DES SÉDIMENTS RÉCOLTÉS

Echantillon	Central (C)	Latéral (L1)	Latéral (L2)
Couleur	noir-kaki	noir	kaki foncé
Odeur	moyen	faible	faible
Cohésion	moyen	faible	moyen
Taux de remplissage (1 ^{ère} barre)			
Volume (ml) sans sédiments	469	10239	8843
Volume (ml) avec sédiments	17402	3575	7000
Présence de débris (2 ^{ème} barre)			
Volume (ml) $< 0.5 \text{ mm (fines)}$	17360	3086	6679
Volume (ml) > 0,5 mm (débris)	43	489	321
Granulométrie (3 ^{ème} barre)			
Volume (ml) 0,5 à 5 mm, organique	40	160	255
Volume (ml) 0,5 à 5 mm, minéral	0	303	12
Volume (ml) > 5 mm, organique	3	15	37
Volume (ml) > 5 mm, minéral	0	11	17

Les trois points montrent une large dominance de fines par rapport aux débris ainsi qu'une prépondérance de la fraction fine (0,5 à 5 mm) parmi les débris.

Le point central se distingue des points latéraux par un taux de remplissage élevé des bennes (> 75%).

Les deux points latéraux diffèrent l'un de l'autre par la nature de la fraction fine des débris (0,5 à 5 mm) avec une partie minérale nettement mieux représentée en rive gauche (point latéral 1).

3.3 LISTE FAUNISTIQUE ET CALCUL DE L'INDICE IOBL

3.3.1 <u>Definitions</u>

(1) L'identification possible des taxons se fait soit à tous les stades (a) soit seulement à l'état mature (m).

(2) Pour aider à l'interprétation, une analyse des espèces indicatrices est menée en utilisant les éléments de diagnoctic de Lafont (2007)³. Les espèces sont réparties en 6 classes indicatrices de la dynamique du fonctionnement des sédiments lacustres :

S = espèces sensibles à la pollution organique et toxique,

I = espèces caractérisant un état intermédiaire,

D = espèces indicatrices d'une impasse trophique naturelle (dystrophie) quand elles sont dominantes,

P = espèces indicatrices d'un état de forte pollution quand elles sont dominantes,

H = espèces indicatrices d'échanges hydriques entre les eaux superficielles et souterraines,

³ Lafont, M. 2007. Interprétation de l'indice lacustre oligochètes IOBL et son intégration dans un système d'évaluation de l'état écologique. Cemagref/MEDAD : 18pp.

Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Retenue de Codole (2B) R =espèces probablement liées à un réchauffement climatique

- (3) Le nombre de taxons = R est le nombre minimal possible de taxons parmi les 100 oligochètes comptés. Par exemple, le taxon Naididae ASC immat. (identification limitée par le caractère immature de l'individu) sera comptabilisé comme un taxon uniquement en cas d'absence d'autres Naididae ASC identifiables seulement au stade mature. Les valeurs d'abondance mises en caractère gras correspondent aux taxons pris en compte pour le calcul de la richesse.
- (4) Le calcul de l'Indice IOBL est le suivant : IOBL = R + 3log10 (D+1) où $R^4 = nombre de taxons parmi les oligochètes comptés et <math>D = densité en oligochètes pour 0,1 m^2$.
- (5) La valeur globale = ½(valeur centre) + ¼(valeur lat1) + ¼(valeur lat2). Il s'agit donc de la moyenne entre la valeur de la zone centrale profonde et celle des zones latérales, cette dernière étant égale à la moyenne des valeurs des deux zones latérales (lat 1 et lat 2). Pour le pourcentage des espèces sensibles sur la globalité du plan d'eau, on applique la moyenne : moyenne (%cen;%lat1;%lat2).

3.3.2 Liste faunistique pour l'IOBL

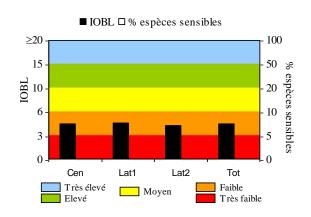
Tableau 12 : liste faunistique pour le calcul de l'IOBL

Groupe	Taxon	Code Sandre	Stades identifiables	Espèces indicatrices	Centre	Lat 1	Lat 2
Naididae ASC	Ilyodrilus templetoni	2995	m		4	4	6
	Naididae ASC immat.	5231	a			15	6
Naididae SSC	Bothrioneurum vejdovskyanum	19217	a	P	2		

Eléments utilisés pour le calcul de l'IOBL	Nombre de taxons = $R^{(3)}$
	Nombre d'oligochètes comptés
	Fraction observée de l'échantillon (%)
	Nombre d'oligochètes récoltés
	Surface échantillonnée (m²)
	Densité en oligochètes (pour 0,1 m²) = D
Indicateurs	Indice IOBL ⁽⁴⁾
maicateurs	% Espèces sensibles

Centre	Lat 1	Lat 2	Tot (5)
2	1	1	
6	19	12	
100	100	100	
6	19	12	
0,105	0,123	0,114	
6	15	11	
4,5	4,6	4,2	4,5
0	0	0	0,0

S.T.E. - Sciences et Techniques de l'Environnement - Rapport 08-283/2013-PE2012-08 - octobre 2013 - Page 28


⁴ Pour le calcul de l'IOBL selon la norme, R désigne le nombre de taxons comptés. Parmi les espèces indicatrices, Lafont a dénommé R les espèces indicatrices d'un réchauffement climatique. Attention au risque de confusion.

3.4 Interprétation des résultats

De manière globale, le potentiel métabolique est faible et le pourcentage d'abondance des espèces sensibles est nul, ce qui suggère l'existence d'une impasse trophique dans les sédiments de la retenue de Codole.

Le potentiel métabolique et le pourcentage d'espèces sensibles varient peu d'un point à l'autre.

En 2009, l'indice IOBL révélait déjà un faible potentiel métabolique (IOBL global = 5,0) et l'absence d'espèce sensible à la pollution dans les sédiments de la retenue de Codole. Aucune évolution significative n'est donc à souligner.

INTERPRETATION GLOBALE DES RESULTATS

Les résultats acquis durant le suivi annuel ont été interprétés en termes de potentiel écologique pour les plans d'eau d'origine anthropique et d'état chimique selon les critères et méthodes d'évaluation décrits dans l'arrêté du 25 janvier 2010.

Ces résultats ont également été traités en termes de niveau trophique à l'aide des outils de la diagnose rapide (Cemagref, 2003).

Les résultats de ces deux approches sont présentés dans le document complémentaire : Note synthétique d'interprétation des résultats.

✓ Critères d'applicabilité de la diagnose rapide

La diagnose rapide vise à évaluer l'état trophique des lacs et à mettre en évidence les phénomènes d'eutrophisation. Elle fait appel au principe fondamental du fonctionnement des lacs qui suppose qu'il existe un lien entre la composition physico-chimique à l'époque du mélange hivernal et les phénomènes qu'elle est susceptible d'engendrer dans les divers compartiments de l'écosystème au cours de la période de croissance végétale qui lui succède.

Cette méthode est donc adaptée aux plans d'eau qui stratifient durablement en été et exclut les plans d'eau au temps de séjour réduit (CEMAGREF, 1990, 2003) et les lacs dont la profondeur moyenne est inférieure à 3 m. Il convient également de noter que la diagnose rapide ne prend en compte que la biomasse phytoplanctonique sous l'aspect "production végétale" et n'intègre donc pas l'importance du recouvrement en macrophytes du plan d'eau.

La retenue de Codole est un plan d'eau d'origine artificielle d'une profondeur moyenne de 9 m. Le lac présente une stratification thermique bien marquée en période estivale. Ainsi, en 2012, elle est établie d'avril à octobre.

Le temps de séjour est considéré comme long : il est estimé à 167 jours.

Les périodes d'intervention des différentes campagnes de prélèvements menées en 2012 ne correspondent pas totalement aux préconisations de la méthodologie. La 1^{ère} campagne s'est déroulée après démarrage de l'activité biologique.

La retenue de Codole répond aux exigences pour appliquer la diagnose rapide.

Agence de l'Eau Rhône - Méditerranée & Corse Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Retenue de Codole (2B)
ANNEXES

1. LISTE DES MICROPOLLUANTS ANALYSES SUR EAU

Code		1	Code	T	
SANDRE	Libel_param	Famille composés	SANDRE	Libel_param	Famille composés
5474	4-n-nonylphénol	Alkylphénols	1118	Benzo (ghi) Pérylène	HAP
1957	Nonylphénols	Alkylphénols	1117	Benzo (k) Fluoranthène	HAP
1920	p-(n-octyl)phénols	Alkylphénols	1476	Chrysène	HAP
1958	Para-nonylphénols ramifiés	Alkylphénols	1621	Dibenzo (ah) Anthracène	HAP
1959	Para-tert-octylphénol	Alkylphénols	1191	Fluoranthène	HAP
1593	Chloroaniline-2	Anilines et Chloroanilines	1623	Fluorène	HAP
1592	Chloroaniline-3	Anilines et Chloroanilines	1204	Indéno (123c) Pyrène	HAP
1591	Chloroaniline-4	Anilines et Chloroanilines	1619	Méthyl-2-Fluoranthène	HAP
1589	Dichloroaniline-2,4	Anilines et Chloroanilines	1618	Méthyl-2-naphtalène	HAP
1114	Benzène	BTEX	1517	Naphtalène	HAP
1602	Chlorotoluène-2	BTEX	1524	Phénanthrène	HAP
1601	Chlorotoluène-3	BTEX	1537	Pyrène	HAP
1600	Chlorotoluène-4	BTEX	1370	Aluminium	Métaux
1497	Ethylbenzène	BTEX	1376	Antimoine	Métaux
1633	Isopropylbenzène	BTEX	1368	Argent	Métaux
1278	Toluène	BTEX	1369	Arsenic	Métaux
5431	Xylène (ortho+meta+para)	BTEX	1396	Baryum	Métaux
1292	Xylène-ortho	BTEX	1377	Beryllium	Métaux
1955	Chloroalcanes C10-C13	Chloroalacanes	1362	Bore	Métaux
1467	Chlorobenzène (Mono)	Chlorobenzènes	1388	Cadmium	Métaux
1165	Dichlorobenzène-1,2	Chlorobenzènes	1389	Chrome	Métaux
1164	Dichlorobenzène-1,3	Chlorobenzènes	1379	Cobalt	Métaux
	,		1		
1166	Dichlorobenzène-1,4	Chlorobenzènes	1392 1380	Cuivre	Métaux
1199	Hexachlorobenzène	Chlorobenzènes	1	Etain	Métaux
1888	Pentachlorobenzène	Chlorobenzènes	1393	Fer	Métaux
1631	Tétrachlorobenzène-1,2,4,5	Chlorobenzènes	1394	Manganèse	Métaux
1630	Trichlorobenzène-1,2,3	Chlorobenzènes	1387	Mercure	Métaux
1283	Trichlorobenzène-1,2,4	Chlorobenzènes	1395	Molybdène	Métaux
1629	Trichlorobenzène-1,3,5	Chlorobenzènes	1386	Nickel	Métaux
1774	Trichlorobenzènes	Chlorobenzènes	1382	Plomb	Métaux
1469	Chloronitrobenzène-1,2	Chloronitrobenzènes	1385	Sélénium	Métaux
1468	Chloronitrobenzène-1,3	Chloronitrobenzènes	2559	Tellurium	Métaux
1470	Chloronitrobenzène-1,4	Chloronitrobenzènes	2555	Thallium	Métaux
1617	Dichloronitrobenzène-2,3	Chloronitrobenzènes	1373	Titane	Métaux
1615	Dichloronitrobenzène-2,5	Chloronitrobenzènes	1361	Uranium	Métaux
1614	Dichloronitrobenzène-3,4	Chloronitrobenzènes	1384	Vanadium	Métaux
2915	BDE100	Diphényléthers bromés	1383	Zinc	Métaux
2912	BDE153	Diphényléthers bromés	1135	Chloroforme (trichlorométhane)	OHV
2911	BDE154	Diphényléthers bromés	2611	Chloroprène	OHV
2920	BDE28	Diphényléthers bromés	2065	Chloropropène-3	OHV
2919	BDE47	Diphényléthers bromés	1160	Dichloréthane-1,1	OHV
2916	BDE99	Diphényléthers bromés	1161	Dichloréthane-1,2	OHV
1815	Décabromodiphényléther	Diphényléthers bromés	1162	Dichloréthylène-1,1	OHV
2609	Octabromodiphénylether	Diphényléthers bromés	1163	Dichloréthylène-1,2	OHV
1921	Pentabromodiphényléther	Diphényléthers bromés	1456	Dichloréthylène-1,2 cis	OHV
1465	Acide monochloroacétique	Divers	1727	Dichloréthylène-1,2 trans	OHV
1753	Chlorure de vinyle	Chlorure de vinyles	1168	Dichlorométhane	OHV
2826	Diéthylamine	Divers	1652	Hexachlorobutadiène	OHV
	Diméthylamine	Divers	1271	Tétrachloréthane-1,1,2,2	OHV
1494	Epichlorohydrine	Divers	1272	Tétrachloréthylène	OHV
1453	Acénaphtène	HAP	1276	Tétrachlorure de C	OHV
1622	Acénaphtylène	HAP	1284	Trichloréthane-1,1,1	OHV
1458	Anthracène	HAP	1285	Trichloréthane-1,1,2	OHV
1082	Benzo (a) Anthracène	HAP	1286	Trichloréthylène	OHV
1115	Benzo (a) Pyrène	HAP	1771	Dibutylétain	Organostanneux complets
1116	Benzo (b) Fluoranthène	HAP	1936	Tétrabutylétain	Organostanneux complets

Agence de l'Eau Rhône - Méditerranée & Corse

Etude des plans d'eau du programme de surveillance des bassins Rhône-Méditerranée et Corse – Retenue de Codole (2B)

0 1	Etude des plans d'eau	du programme de surve		assins Rhone-Mediterran	iée et Corse – Retenue de Co
	Libel_param	Famille_composés	Code SANDRE	Libel_param	Famille composés
2879	Tributylétain-cation	Organostanneux complets	1187	Fénitrothion	Pesticides
1779	Triphénylétain	Organostanneux complets	1967	Fénoxycarbe	Pesticides
1242	PCB 101	PCB	2022	Fludioxonil	Pesticides
1243	PCB 118	PCB	1765	Fluroxypyr	Pesticides
1244	PCB 138	PCB	2547	Fluroxypyr-meptyl	Pesticides
1245	PCB 153	PCB	1194	Flusilazole	Pesticides
1090	PCB 169	PCB	1702	Formaldéhyde	Pesticides
1246	PCB 180	PCB	1506	Glyphosate	Pesticides
1239	PCB 28	PCB	1200	HCH alpha	Pesticides
1240	PCB 35	PCB	1201	HCH beta	Pesticides
1241	PCB 52	PCB	1202	HCH delta	Pesticides
1091	PCB 77	PCB	2046	HCH epsilon	Pesticides
1141	2 4 D	Pesticides	1203	HCH gamma	Pesticides
1212	2 4 MCPA	Pesticides	1405	Hexaconazole	Pesticides
1832	2-Hydroxy-atrazine	Pesticides	1877	Imidaclopride	Pesticides
1903	Acétochlore	Pesticides	1206	Iprodione	Pesticides
1688	Aclonifen	Pesticides	1207	Isodrine	Pesticides
1101	Alachlore	Pesticides	1208	Isoproturon	Pesticides
1103	Aldrine	Pesticides	1950	Kresoxim méthyl	Pesticides
1105	Aminotriazole	Pesticides	1094	Lambda Cyhalothrine	Pesticides
1907	AMPA	Pesticides	1209	Linuron	Pesticides
1107	Atrazine	Pesticides	1209	Malathion	Pesticides
1107	Atrazine déisopropyl		1214		Pesticides
		Pesticides	-	Mécoprop	
1108	Atrazine déséthyl	Pesticides	2987	Métalaxyl m = mefenoxam	Pesticides
1951	Azoxystrobine	Pesticides	1796	Métaldéhyde	Pesticides
1113	Bentazone	Pesticides	1215	Métamitrone	Pesticides
1686	Bromacil	Pesticides	1670	Métazachlore	Pesticides
1125	Bromoxynil	Pesticides	1216	Méthabenzthiazuron	Pesticides
1941	Bromoxynil octanoate	Pesticides	1227	Monolinuron	Pesticides
1129	Carbendazime	Pesticides	1519	Napropamide	Pesticides
1130	Carbofuran	Pesticides	1882	Nicosulfuron	Pesticides
1464	Chlorfenvinphos	Pesticides	1669	Norflurazon	Pesticides
1134	Chlorméphos	Pesticides	1667	Oxadiazon	Pesticides
1474	Chlorprophame	Pesticides	1666	Oxadixyl	Pesticides
1083	Chlorpyriphos éthyl	Pesticides	1231	Oxydéméton méthyl	Pesticides
1540	Chlorpyriphos méthyl	Pesticides	1234	Pendiméthaline	Pesticides
1136	Chlortoluron	Pesticides	1665	Phoxime	Pesticides
2017	Clomazone	Pesticides	1664	Procymidone	Pesticides
1680	Cyproconazole	Pesticides	1414	Propyzamide	Pesticides
1359	Cyprodinil	Pesticides	1432	Pyriméthanil	Pesticides
1143	DDD-o,p'	Pesticides	1892	Rimsulfuron	Pesticides
1144	DDD-p,p'	Pesticides	1263	Simazine	Pesticides
1145	DDE-o,p'	Pesticides	1662	Sulcotrione	Pesticides
1146	DDE-p,p'	Pesticides	1694	Tébuconazole	Pesticides
1147	DDT-o,p'	Pesticides	1661	Tébutame	Pesticides
1148	DDT-p,p'	Pesticides	1268	Terbuthylazine	Pesticides
1830	Déisopropyl-déséthyl-atrazine	Pesticides	2045	Terbuthylazine déséthyl	Pesticides
1149	Deltaméthrine	Pesticides	1954	Terbuthylazine hydroxy	Pesticides
1480	Dicamba	Pesticides	1269	Terbutryne	Pesticides
	Dichlorprop	Pesticides	1660	Tétraconazole	Pesticides
1170	Dichlorvos	Pesticides	1288	Trichlopyr	Pesticides
1173	Dieldrine	Pesticides	1289	Trifluraline	Pesticides
1814	Diflufénicanil	Pesticides	1636	Chlorométhylphénol-4,3	
		Pesticides			Phénois et chlorophénois
1678	Diméthénamide Diméthemorphe		1471	Chlorophénol-2	Phénois et chlorophénois
1403	Diméthomorphe	Pesticides	1651	Chlorophénol-3	Phénois et chlorophénois
1177	Diuron	Pesticides	1650	Chlorophénol-4	Phénois et chlorophénois
1178	Endosulfan alpha	Pesticides	1486	Dichlorophénol-2,4	Phénols et chlorophénols
1179	Endosulfan beta	Pesticides	1235	Pentachlorophénol	Phénols et chlorophénols
1742	Endosulfan sulfate	Pesticides	1548	Trichlorophénol-2,4,5	Phénols et chlorophénols
1743	Endosulfan Total	Pesticides	1549	Trichlorophénol-2,4,6	Phénols et chlorophénols
1181	Endrine	Pesticides	1584	Biphényle	Semi volatils organiques divers
1744	Epoxiconazole	Pesticides	1461	DEPH	Semi volatils organiques divers
1184	Ethofumésate	Pesticides	1847	Tributylphosphate	Semi volatils organiques divers

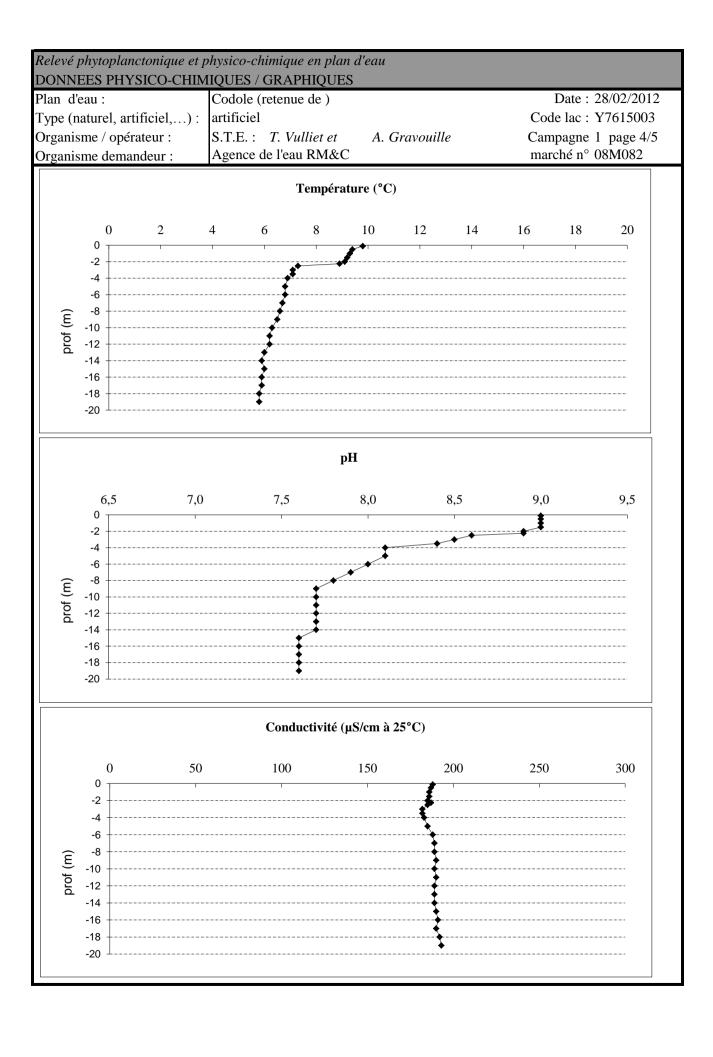
2. LISTE DES MICROPOLLUANTS ANALYSES SUR SEDIMENTS

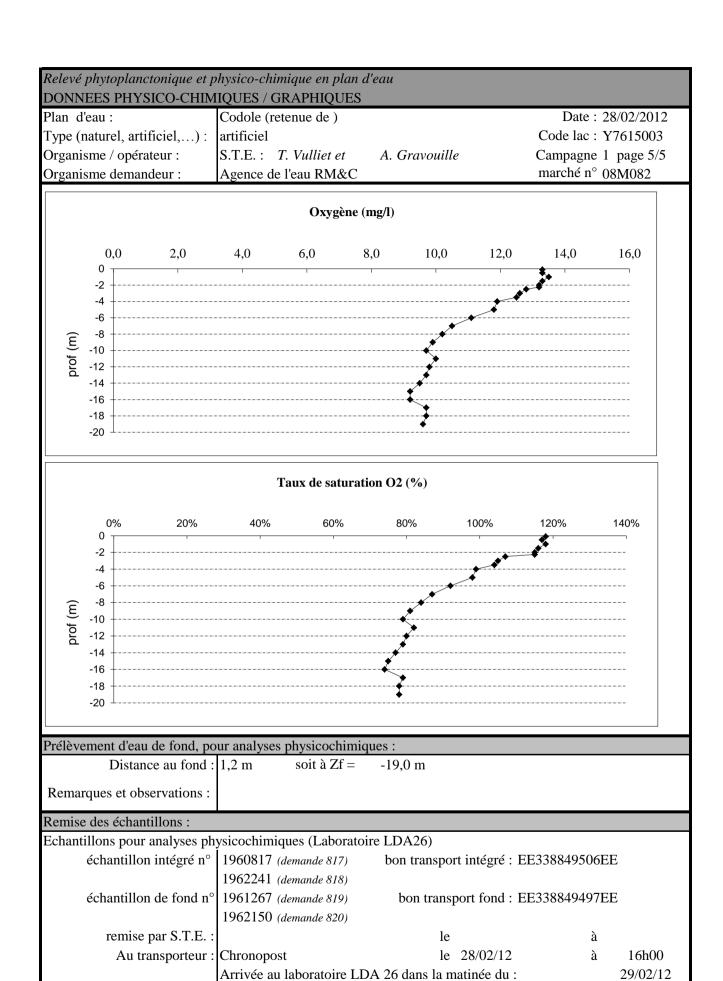
5474	Libel param	Famille_composés	Code_SANDR		Famille_composés OHV
1957	4-n-nonylphénol	Alkylphénols	1652 1770	Hexachlorobutadiène	
1920	Nonylphénols p-(n-octyl)phénols	Alkylphénols Alkylphénols	1936	Dibutylétain (oxyde) Tétrabutylétain	Organostanneux complets Organostanneux complets
1958	Para-nonylphénols ramifiés	Alkylphénols	2879	Tributylétain-cation	Organostanneux complets
1959	Para-tert-octylphénol	Alkylphénols	1779	Triphénylétain	Organostanneux complets
1602	Chlorotoluène-2	BTEX	1242	PCB 101	PCB
1601	Chlorotoluène-3	BTEX	1243	PCB 101	PCB
1600	Chlorotoluène-4	BTEX	1244	PCB 138	PCB
1497	Ethylbenzène	BTEX	1245	PCB 153	PCB
1633	Isopropylbenzène	BTEX	1090	PCB 169	PCB
5431	Xylène (ortho+meta+para)	BTEX	1246	PCB 180	PCB
1292	Xylène-ortho	BTEX	1239	PCB 28	PCB
1955	Chloroalcanes C10-C13	Chloroalacanes	1240	PCB 35	PCB
1165	Dichlorobenzène-1,2	Chlorobenzènes	1241	PCB 52	PCB
1164	Dichlorobenzène-1,3	Chlorobenzènes	1091	PCB 77	PCB
1166	Dichlorobenzène-1,4	Chlorobenzènes	1903	Acétochlore	Pesticides
1199	Hexachlorobenzène	Chlorobenzènes	1688	Aclonifen	Pesticides
1888	Pentachlorobenzène	Chlorobenzènes	1103	Aldrine	Pesticides
1631	Tétrachlorobenzène-1,2,4,5	Chlorobenzènes	1125	Bromoxynil	Pesticides
1630	Trichlorobenzène-1,2,3	Chlorobenzènes	1941	Bromoxynil octanoate	Pesticides
1283	Trichlorobenzène-1,2,4	Chlorobenzènes	1464	Chlorfenvinphos	Pesticides
1629	Trichlorobenzène-1,3,5	Chlorobenzènes	1134	Chlorméphos	Pesticides
1774	Trichlorobenzènes	Chlorobenzènes	1474	Chlorprophame	Pesticides
1617	Dichloronitrobenzène-2,3	Chloronitrobenzènes	1083	Chlorpyriphos éthyl	Pesticides
1615	Dichloronitrobenzène-2,5	Chloronitrobenzènes	1540	Chlorpyriphos méthyl	Pesticides
1614	Dichloronitrobenzène-3,4	Chloronitrobenzènes	1359	Cyprodinil	Pesticides
2915	BDE100	Diphényléthers bromés	1143	DDD-o,p'	Pesticides
2912	BDE153	Diphényléthers bromés	1144	DDD-p,p'	Pesticides
2911	BDE154	Diphényléthers bromés	1145	DDE-o,p'	Pesticides
2920	BDE28	Diphényléthers bromés	1146	DDE-p,p'	Pesticides
2919	BDE47	Diphényléthers bromés	1147	DDT-o,p'	Pesticides
2916	BDE99	Diphényléthers bromés	1148	DDT-p,p'	Pesticides
1815	Décabromodiphényléther	Diphényléthers bromés	1149	Deltaméthrine	Pesticides
2609	Octabromodiphénylether	Diphényléthers bromés	1169	Dichlorprop	Pesticides
1921	Pentabromodiphényléther	Diphényléthers bromés	1173	Dieldrine	Pesticides
1453	Acénaphtène	HAP	1814	Diflufénicanil	Pesticides
1622	Acénaphtylène	HAP	1178	Endosulfan alpha	Pesticides
1458	Anthracène	HAP	1179	Endosulfan beta	Pesticides
1082	Benzo (a) Anthracène	HAP	1742	Endosulfan sulfate	Pesticides
1115	Benzo (a) Pyrène	HAP	1742	Endosulfan Total	Pesticides
1116	Benzo (b) Fluoranthène	HAP	1181	Endrine	Pesticides
1118	Benzo (ghi) Pérylène	HAP	1744	Epoxiconazole	Pesticides
1117	Benzo (k) Fluoranthène	HAP	1187	Fénitrothion	Pesticides
1476	Chrysène	HAP	1967	Fénoxycarbe	Pesticides
1621	Dibenzo (ah) Anthracène	HAP	2022	Fludioxonil	Pesticides
1191	Fluoranthène	HAP	2547	Fluroxypyr-meptyl	Pesticides
1623	Fluorène	HAP	1194	Flusilazole	Pesticides
1204	Indéno (123c) Pyrène	HAP	1200	HCH alpha	Pesticides
1619	Méthyl-2-Fluoranthène	HAP	1201	HCH beta	Pesticides
1618	Méthyl-2-naphtalène	HAP	1201	HCH delta	Pesticides
1517	Naphtalène	HAP	2046	HCH delta HCH epsilon	Pesticides
1524	Phénanthrène	HAP	1203	HCH gamma	Pesticides
1537		HAP	1405		Pesticides
1370	Pyrène Aluminium	Métaux	1206	Hexaconazole Inrodione	Pesticides
	Antimoino		1206	Iprodione Isodrine	
1376 1368	Antimoine Argent	Métaux Métaux	1950		Pesticides Pesticides
			1094	Kresoxim méthyl Lambda Cyhalothrine	
1369 1396	Arsenic	Métaux Métaux	1209		Pesticides
1396	Baryum	Métaux	1519	Linuron Napropamide	Pesticides Pesticides
1362	Beryllium Bore	Métaux	1667	Oxadiazon	Pesticides
1362	Cadmium	Métaux	1234	Pendiméthaline	Pesticides
1389	Chrome	Métaux	1664	Procymidone	Pesticides
1379		Métaux	1414	Propyzamide	Pesticides
1379	Cobalt Cuivre	Métaux	1694	Tébuconazole	Pesticides
1380	Etain	Métaux	1661	Tébutame	Pesticides
1393	Fer	Métaux	1268	Terbuthylazine	Pesticides
1394	Manganèse	Métaux	1269	Terbutryne	Pesticides
1387	Mercure	Métaux	1660	Tétraconazole	Pesticides
1395	Molybdène	Métaux	1289	Trifluraline	Pesticides
1386	Nickel	Métaux	1636	Chlorométhylphénol-4,3	Phénols et chlorophénols
1382	Plomb	Métaux	1486	Dichlorophénol-2,4	Phénols et chlorophénols
1385	Sélénium	Métaux	1235	Pentachlorophénol	Phénols et chlorophénols
2559	Tellurium	Métaux	1548	Trichlorophénol-2,4,5	Phénols et chlorophénols
2555	Thallium	Métaux	1549	Trichlorophénol-2,4,6	Phénols et chlorophénols
1373	Titane	Métaux	1584	Biphényle	Semi volatils organiques dive
1201	Uranium	Métaux	1461	DEPH	Semi volatils organiques dive
1361					
1384	Vanadium	Métaux	1847	Tributylphosphate	Semi volatils organiques dive

Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES GENERALES PLAN D'EAU - STATION Codole (retenue de) Date: 28/02/2012 Plan d'eau: Type (naturel, artificiel,...): artificiel Code lac: Y7615003 Organisme / opérateur : **S.T.E.**: T. Vulliet et A. Gravouille Campagne 1 page 1/5 Organisme demandeur: Agence de l'eau RM&C marché n° 08M082 LOCALISATION PLAN D'EAU Commune: Speloncato (2B) Lac marnant: Type: A12 Temps de séjour : 167 jours retenues méditerranéennes de basse altitude, sur Superficie du plan d'eau: ha socle cristallin, profondes Profondeur maximale: Carte: (extrait SCAN25, IGN 1/25 000) Moulin de Capizzolu Parata Popollucc an Michele Bargoletu localisation du point de prélèvements **C** angle de prise de vue de la photographie STATION Photo du site:

D 0111111111 GT111111 1 T T G 011	vsico-chimique en plan d'eau		
DONNEES GENERALES CAN			20/02/2012
Plan d'eau:	Codole (retenue de)		Date: 28/02/2012
Type (naturel, artificiel,):	artificiel		Code lac : Y7615003
Organisme / opérateurs :	S.T.E.: T. Vulliet et	A. Gravouille	Campagne 1 page 2/5
Organisme demandeur:	Agence de l'eau RM&C		marché n° 08M082
STATION			
Coordonnées de la station	relevées sur : GPS		
Lambert 93	X:1188646	Y: 618383	32 alt.: 110 m
WGS 84 (systinternational)	GPS (en dms) X:	Y:	alt.: m
Profondeur:	20,2 m		
	Vent: nul		
	Météo : ensoleillé sec		
	interes : ensoreme see		
Conditions d'observation :	Surface de l'eau : lisse		
Conditions d'observation.	Surface de l'eau.		
		D	1 1 1001 10
	Hauteur des vagues : 0,0	m P atm stan	
	Bloom algal : non	Pression a	
Marnage :	oui	Hauteur de la ban	de: -6,0 m
Campagne:	campagne de fin d'hiver : 1 de l'activité biologique	homothermie du pl	an d'eau avant démarrage
PRELEVEMENTS			
Heure de début du relevé :	11:00 Heur	re de fin du relevé :	12:40
Prélèvements pour analyses :	eau chlorophylle maté phytoplancton	ériel employé :	pompe
_ 1010 . Simonus pour unuigibos .			
. ,			
. ,	OEHC pour irrigation et adduction	on en eau potable	
Gestion :		_	
Gestion :	OEHC pour irrigation et adduction OEHC - H. Politi - Tél.: 04.95.3	_	
Gestion :		_	
Gestion :		_	
Gestion :		_	
Gestion : Contact préalable :	OEHC - H. Politi - Tél. : 04.95.3	0.93.93	
Gestion : Contact préalable :		0.93.93	
Gestion : Contact préalable :	OEHC - H. Politi - Tél. : 04.95.3	0.93.93	
Gestion : Contact préalable :	OEHC - H. Politi - Tél. : 04.95.3	0.93.93	
Gestion : Contact préalable :	OEHC - H. Politi - Tél. : 04.95.3	0.93.93	
Gestion : Contact préalable :	OEHC - H. Politi - Tél. : 04.95.3	0.93.93	

Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES PHYSICO-CHIMIQUES Plan d'eau : Codole (retenue de) Date : 28/02/2012


Type (naturel, artificiel,...): artificiel Code lac: Y7615003


Organisme / opérateur: S.T.E.: T. Vulliet et A. Gravouille Campagne 1 page 3/5

Organisme demandeur: Agence de l'eau RM&C marché n° 08M082

TRANSPARENCE

Secchi en m:	1,4		Z eupho	otique (2,5 x S	ecchi):	3,5	m
PROFIL VERTICAL		_					
Moyen de mesure utilisé :		in-situ à d	chaque p	orof.	X	en surface da	ans un récipient
Volume prélevé (en litres) :	Prof.	Temp.	pН	Cond.	O_2	O_2	Heure
volume prefeve (en nues).	(m)	(°C)		(µS/cm 25°)	(mg/l)	(%)	
prélèvement intégré (2 L)	-0,1	9,8	9,0	188	13,3	118%	11:00
prélèvement intégré (2 L)	-0,5	9,4	9,0	187	13,3	117%	
prélèvement intégré (2 L)	-1,0	9,3	9,0	186	13,5	118%	
prélèvement intégré (2 L)	-1,5	9,2	9,0	186	13,3	116%	
prélèvement intégré (2 L)	-2,0	9,1	8,9	185	13,2	115%	
	-2,3	8,9	8,9	187	13,2	115%	
prélèvement intégré (2 L)	-2,5	7,3	8,6	185	12,8	107%	
prélèvement intégré (2 L)	-3,0	7,1	8,5	182	12,6	105%	
prélèvement intégré (2 L)	-3,5	7,1	8,4	182	12,5	104%	11:20
	-4,0	6,9	8,1	183	11,9	99%	
	-5,0	6,8	8,1	185	11,8	98%	
	-6,0	6,8	8,0	188	11,1	92%	
	-7,0	6,7	7,9	189	10,5	87%	
	-8,0	6,6	7,8	189	10,2	84%	
	-9,0	6,5	7,7	190	9,9	81%	
	-10,0	6,3	7,7	189	9,7	79%	
	-11,0	6,2	7,7	190	10,0	82%	
	-12,0	6,2	7,7	189	9,8	80%	
	-13,0	6,0	7,7	189	9,7	79%	
	-14,0	5,9	7,7	189	9,5	77%	
	-15,0	6,0	7,6	190	9,2	75%	
	-16,0	5,9	7,6	191	9,2	74%	
	-17,0	5,9	7,6	190	9,7	79%	
	-18,0	5,8	7,6	192	9,7	78%	
prélèvement de fond	-19,0	5,8	7,6	193	9,6	78%	12:20
ļ							

Echantillons pour analyses phytoplanctoniques à BECQ'EAU, le 04/06/12

Relevé phytoplanctonique et physico-chimique en plan d'eau

DONNEES GENERALES PLAN D'EAU - STATION

Codole (retenue de) Plan d'eau: Date: 26/04/2012 Code lac: Y7615003 Type (naturel, artificiel,...): artificiel **S.T.E.** : Organisme / opérateur : F. Lledo et E.Bertrand Campagne 2 page 1/5 Agence de l'eau RM&C marché n° 08M082 Organisme demandeur:

LOCALISATION PLAN D'EAU

Commune: Speloncato (2B)

Lac marnant : oui Type: A12

retenues méditerranéennes de basse altitude, sur Temps de séjour : 167 jours

Superficie du plan d'eau : 51 socle cristallin, profondes ha

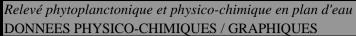
Profondeur maximale

Carte: (extrait SCAN25, IGN 1/25 000)

localisation du point de prélèvements

angle de prise de vue de la photographie

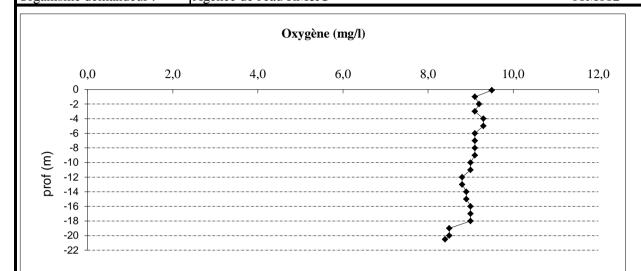
STATION

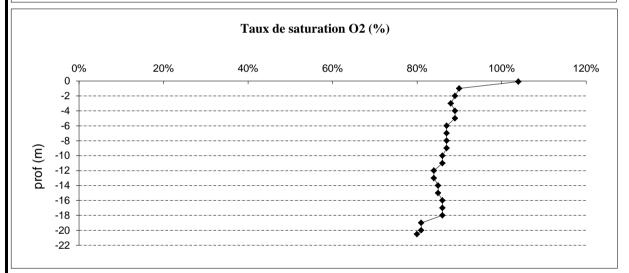

Photo du site:

Relevé phytoplanctonique et phy	* *
DONNEES GENERALES CAM	
Plan d'eau:	Codole (retenue de) Date: 26/04/2012
Type (naturel, artificiel,):	artificiel Code lac: Y7615003
Organisme / opérateurs :	S.T.E.: F. Lledo et E.Bertrand Campagne 2 page 2/5
Organisme demandeur :	Agence de l'eau RM&C marché n° 08M082
STATION	and and
Coordonnées de la station	
Lambert 93	
WGS 84 (systinternational)	
Profondeur :	
	Vent: faible
	Météo : ensoleillé sec
Conditions d'observation :	Surface de l'eau : faiblement agitée
	Hauteur des vagues: 0,05 m P atm standard: 1001 hPa
	Bloom algal: non Pression atm.: 1001 hPa
Marnage:	oui Hauteur de la bande : -1,5 m
PRELEVEMENTS Heure de début du relevé : Prélèvements pour analyses :	de la thermocline 15:10
Gestion:	OEHC pour irrigation et adduction en eau potable
Contact préalable :	OEHC - H. Politi - Tél. : 04.95.30.93.93
Remarques, observations:	Forte présence de zooplancton (observé)

<i>Relevé phytoplanctonique et p</i> DONNEES PHYSICO-CHIM		1	I				
lan d'eau :	Codole (r	etenue de	:)			Date :	26/04/2012
Type (naturel, artificiel,):	artificiel					Code lac:	Y7615003
'	S.T.E. :	F. Lledo	et	E.Bertrand		Campagne	2 page 3/5
Organisme demandeur :	Agence d	le l'eau RN	M&C			marché n°	
TRANSPARENCE							
Secchi en m:	1,2		Z euph	otique (2,5 x S	ecchi):	3,0	m
ROFIL VERTICAL	•		•				
Moyen de mesure utilisé :		in-situ à	chaque	prof.	X	en surface d	ans un récipie
Volumo prálová (an litras)	Prof.	Temp.	pН	Cond.	O_2	O_2	Heure
Volume prélevé (en litres) :	(m)	(°C)		(µS/cm 25°)	(mg/l)	(%)	
prélèvement intégré (2 L)	-0,1	19,2	8,2	170	9,5	104%	15:10
prélèvement intégré (2 L)	-1,0	14,5	8,4	157	9,1	90%	
prélèvement intégré (2 L)	-2,0	13,4	8,1	163	9,2	89%	
prélèvement intégré (2 L)	-3,0	13,2	7,9	171	9,1	88%	16:20
	-4,0	12,9	7,8	166	9,3	89%	
	-5,0	12,8	7,8	167	9,3	89%	
	-6,0	13,0	7,7	170	9,1	87%	
	-7,0	12,9	7,7	168	9,1	87%	
	-8,0	12,8	7,7	171	9,1	87%	
	-9,0	12,8	7,7	170	9,1	87%	
	-10,0	12,8	7,7	169	9,0	86%	
	-11,0	12,6	7,8	171	9,0	86%	
	-12,0	12,5	7,7	173	8,8	84%	
	-13,0	12,7	7,7	172	8,8	84%	
	-14,0	12,6	7,7	173	8,9	85%	
	-15,0	12,6	7,7	174	8,9	85%	
	-16,0	12,7	7,6	171	9,0	86%	
	-17,0	12,7	7,6	170	9,0	86%	
	-18,0	12,8	7,6	170	9,0	86%	
	-19,0	12,6	7,7	174	8,5	81%	
	-20,0	12,7	7,6	174	8,5	81%	
prélèvement de fond	-20,5	12,6	7,6	176	8,4	80%	16:10
							_

Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES Codole (retenue de) Date: 26/04/2012 Plan d'eau: Code lac: Y7615003 Type (naturel, artificiel,...): artificiel Organisme / opérateur : S.T.E.: F. Lledo et Campagne 2 page 4/5 E.Bertrand Agence de l'eau RM&C marché n° 08M082 Organisme demandeur: Température (°C) 0 2 4 8 10 12 14 16 18 6 20 0 -2 -4 -6 -8 prof (m) -10 -12 -14 -16 -18 -20 -22 pН 7,0 7,5 8,0 8,5 6,5 9,0 0 -2 -4 -6 -8 prof (m) -10 -12 -14 -16 -18 -20 -22 Conductivité (µS/cm à 25°C) 100 0 50 200 150 250 300 0 -2 -4 -6 -8 prof (m) -10 -12 -14 -16 -18 -20 -22


Plan d'eau : Codole (retenue de)


Type (naturel, artificiel,...): artificiel

Organisme / opérateur : S.T.E. : F. Lledo et
Organisme demandeur : Agence de l'eau RM&C

E.Bertrand

Date: 26/04/2012 Code lac: Y7615003 Campagne 2 page 5/5 marché n° 08M082

Prélèvement d'eau de fond, pour analyses physicochimiques :

Distance au fond : 1.5 m soit à Zf = -20.5 m

Remarques et observations :

Remise des échantillons:

Echantillons pour analyses physicochimiques (Laboratoire LDA26)

échantillon intégré n° 1960840 (demande 817) bon transport intégré :

1962263 (demande 818)

échantillon de fond n° 1961287 (demande 819) bon transport fond :

1962168 (demande 820)

remise par S.T.E.: le 27/04/12 à 10h00

Au transporteur : le à

Arrivée au laboratoire LDA 26 dans la matinée du :

Echantillons pour analyses phytoplanctoniques à BECQ'EAU, le 25/06/12

Relevé phytoplanctonique et physico-chimique en plan d'eau

DONNEES GENERALES PLAN D'EAU - STATION

Plan d'eau: Codole (retenue de) Date: 10/07/2012 Code lac: Y7615003 Type (naturel, artificiel,...): artificiel Organisme / opérateur : **S.T.E.** : Campagne 3 A. Gravouille et L. Krithari page 1/5 marché n° 08M082 Organisme demandeur: Agence de l'eau RM&C

LOCALISATION PLAN D'EAU

Commune: Speloncato (2B)

Lac marnant : oui Type: A12

retenues méditerranéennes de basse altitude, sur Temps de séjour : 167 jours

Superficie du plan d'eau : 51 socle cristallin, profondes ha

Profondeur maximale

Carte: (extrait SCAN25, IGN 1/25 000)

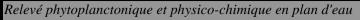
localisation du point de prélèvements

angle de prise de vue de la photographie

STATION

Photo du site:

Relevé phytoplanctonique et phy	* *			
DONNEES GENERALES CAM	ì		D-4 10/07/	2012
Plan d'eau:	Codole (retenue de) artificiel		Date: 10/07/2	
Type (naturel, artificiel,):		1 12 1.1 1		
Organisme / opérateurs :		L. Krithari	Campagne 3 pa	_
Organisme demandeur :	Agence de l'eau RM&C		marché n° 08M08	52
STATION Coordonnées de la station	relevées sur : GPS			
		V (1020)	20 .1. 11	_
Lambert 93		Y: 618383		
WGS 84 (systinternational)		Y:	alt.:	m
Profondeur:	21,0 m			
	Vent: nul			
	Météo : ensoleillé sec			
Conditions d'observation :	Surface de l'eau : lisse			
	Hauteur des vagues : 0,0	m P atm stan	dard: 1001 l	nPa
	Bloom algal: non	Pression a	tm.: 999 1	nPa
Marnage:	oui	Hauteur de la ban	nde: -1,0	m
Campagne :	campagne estivale : thermo croissance du phytoplancto		e, 2ème phase de	
PRELEVEMENTS				
Heure de début du relevé :	9.40 House	e de fin du relevé :	9:50	
Heure de debut du releve.	8.40 Heur	e de IIII du Televe .	9.30	
Prélèvements pour analyses :	eau chlorophylle matéi phytoplancton	riel employé :	pompe	
Gestion:	OEHC pour irrigation et adductio	n en eau potable		
Contact préalable :	OEHC - H. Politi - Tél. : 04.95.30).93.93		
Remarques, observations:	Vérification et confirmation des v	valeurs de pH avec	un second appareil	


DONNEES PHYSICO-CHIMIQUES

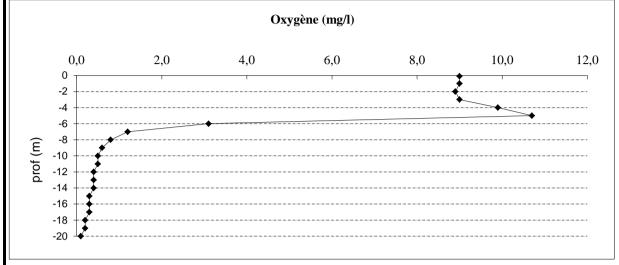
Codole (retenue de) Date: 10/07/2012 Plan d'eau: Type (naturel, artificiel,...): artificiel Code lac: Y7615003

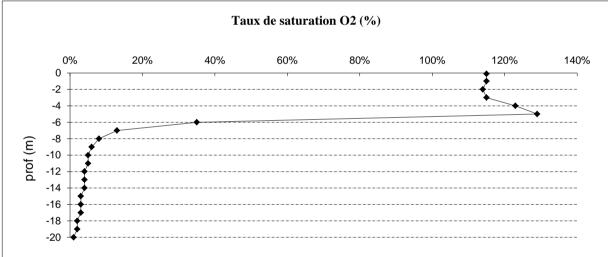
Organisme / opérateur : Campagne 3 page 3/5 marché n° 08M082 S.T.E.: A. Gravouille et L. Krithari Organisme demandeur :
TRANSPARENCE Agence de l'eau RM&C

TRANSPARENCE							
Secchi en m:	2,8 Z euphotique (2,5 x Secchi): 7,0 m						m
PROFIL VERTICAL							
Moyen de mesure utilisé :		in-situ à	chaque	prof.	X	en surface da	ans un récipient
Volume prélevé (en litres) :	Prof.	Temp.	pН	Cond.	O_2	O_2	Heure
volume preseve (en mues).	(m)	(°C)		(µS/cm 25°)	(mg/l)	(%)	
prélèvement intégré (1,5 L)	-0,1	27,4	9,9	198	9,0	115%	8:40
prélèvement intégré (1,5 L)	-1,0	27,5	9,9	198	9,0	115%	
prélèvement intégré (1,5 L)	-2,0	27,5	9,9	198	8,9	114%	
prélèvement intégré (1,5 L)	-3,0	27,4	9,9	197	9,0	115%	
prélèvement intégré (1,5 L)	-4,0	25,5	9,9	189	9,9	123%	
prélèvement intégré (1,5 L)	-5,0	23,8	9,9	183	10,7	129%	
prélèvement intégré (1,5 L)	-6,0	19,5	7,6	176	3,1	35%	
prélèvement intégré (1,5 L)	-7,0	18,8	7,5	175	1,2	13%	9:00
	-8,0	18,1	7,4	176	0,8	8%	
	-9,0	17,3	7,3	176	0,6	6%	
	-10,0	16,3	7,2	178	0,5	5%	
	-11,0	14,8	7,1	179	0,5	5%	
	-12,0	13,9	7,0	180	0,4	4%	
	-13,0	13,5	7,0	182	0,4	4%	
	-14,0	13,3	7,0	182	0,4	4%	
	-15,0	13,2	7,0	181	0,3	3%	
	-16,0	12,9	7,0	184	0,3	3%	
	-17,0	12,8	7,0	190	0,3	3%	
	-18,0	12,8	7,0	192	0,2	2%	
	-19,0	12,8	7,0	193	0,2	2%	
prélèvement de fond	-20,0	12,7	7,0	195	0,1	1%	9:30
		ļ					
		ļ					
		ļ					

Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES Date: 10/07/2012 Plan d'eau: Codole (retenue de) Code lac: Y7615003 Type (naturel, artificiel,...): artificiel Organisme / opérateur : S.T.E.: A. Gravouille et L. Krithari Campagne 3 page 4/5 Agence de l'eau RM&C marché n° 08M082 Organisme demandeur: Température (°C) 0 5 10 15 20 25 30 0 -2 -6 -8 prof (m) -10 -12 -14 -16 -18 -20 pН 7,0 7,5 8,0 9,0 9,5 6,5 8,5 10,0 0 -2 -4 -6 -8 prof (m) -10 -12 -14 -16 -18 -20 Conductivité (µS/cm à 25°C) 0 50 100 150 200 250 300 0 -2 -4 -6 -8 prof (m) -10 -12 -14 -16 -18 -20

DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES


Plan d'eau : Codole (retenue de)


Type (naturel, artificiel,...) : artificiel

Type (naturel, artificiel,...) : artificiel
Organisme / opérateur : S.T.E. : A. Gravouille et L. Krithari

Organisme demandeur : Agence de l'eau RM&C

Date: 10/07/2012 Code lac: Y7615003 Campagne 3 page 5/5 marché n° 08M082

Prélèvement d'eau de fond, pour analyses physicochimiques :

Distance au fond : 1.0 m soit à Zf = -20.0 m

Remarques et observations :

Remise des échantillons:

Echantillons pour analyses physicochimiques (Laboratoire LDA26)

échantillon intégré n° | 1960864 (demande 817) bon transport intégré : EE338589134EE

1962287 (demande 818)

échantillon de fond n° 1961296 (demande 819) bon transport fond : EE338589148EE

1962188 (demande 820)

remise par S.T.E.: le à

Au transporteur : Chronopost le 10/07/12 à 15h30

Arrivée au laboratoire LDA 26 dans la matinée du : 11/07/12

Echantillons pour analyses phytoplanctoniques à BECQ'EAU, le 27/08/12

Relevé phytoplanctonique et physico-chimique en plan d'eau

DONNEES GENERALES PLAN D'EAU - STATION

Plan d'eau: Codole (retenue de) Date: 11/10/2012 Type (naturel, artificiel,...): Code lac: Y7615003 artificiel Organisme / opérateur : **S.T.E.** : Campagne 4 S. Meistermann et E. Dor page 1/6 Organisme demandeur: marché n° 08M082 Agence de l'eau RM&C

LOCALISATION PLAN D'EAU

Commune: Speloncato (2B)

Lac marnant : oui Type: A12

retenues méditerranéennes de basse altitude, sur Temps de séjour : 167 jours

Superficie du plan d'eau : 51 socle cristallin, profondes ha

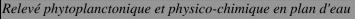
Profondeur maximale

Carte: (extrait SCAN25, IGN 1/25 000)

localisation du point de prélèvements

angle de prise de vue de la photographie

STATION

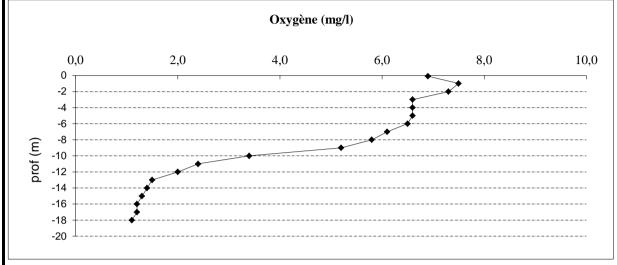

Photo du site:

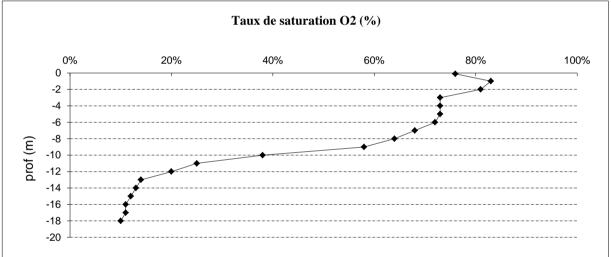
1 7 1	ysico-chimique en plan d'eau
DONNEES GENERALES CAN	
Plan d'eau:	Codole (retenue de) Date: 11/10/2012
Type (naturel, artificiel,):	artificiel Code lac : Y7615003
Organisme / opérateurs :	S.T.E.: S. Meistermann et E. Dor Campagne 4 page 2/6
Organisme demandeur:	Agence de l'eau RM&C marché n° 08M082
STATION	
Coordonnées de la station	relevées sur :
Lambert 93	X:1188646 Y: 6183832 alt.: 115 m
WGS 84 (systinternational)	GPS (en dms) X: Y: alt.: m
Profondeur :	19,0 m
	Vent: nul
	Météo : ensoleillé sec
Conditions d'observation :	Surface de l'eau : lisse
	Hauteur des vagues : 0,0 m P atm standard : 1001 hPa
	Bloom algal: oui Pression atm.: 996 hPa
Marnage:	C
Warnage .	oui mauteur de la bande5,0 m
Campagne:	campagne de fin d'été : fin de stratification estivale, avant baisse de la température
PRELEVEMENTS	
Heure de début du relevé :	
ricure de debut du reieve.	09:20 Heure de fin du relevé : 10:30
Prélèvements pour analyses :	eau chlorophylle matériel employé : pompe phytoplancton
	eau chlorophylle matériel employé : pompe phytoplancton
Prélèvements pour analyses :	eau chlorophylle matériel employé : pompe phytoplancton
Prélèvements pour analyses :	eau chlorophylle matériel employé : pompe phytoplancton sédiments benne Ekmann
Prélèvements pour analyses : Gestion :	eau chlorophylle matériel employé : pompe phytoplancton sédiments benne Ekmann
Prélèvements pour analyses : Gestion :	eau chlorophylle matériel employé : pompe phytoplancton sédiments benne Ekmann OEHC pour irrigation et adduction en eau potable
Prélèvements pour analyses : Gestion :	eau chlorophylle matériel employé : pompe phytoplancton sédiments benne Ekmann OEHC pour irrigation et adduction en eau potable
Prélèvements pour analyses : Gestion :	eau chlorophylle matériel employé : pompe phytoplancton sédiments benne Ekmann OEHC pour irrigation et adduction en eau potable
Prélèvements pour analyses : Gestion : Contact préalable :	eau chlorophylle matériel employé : pompe phytoplancton sédiments benne Ekmann OEHC pour irrigation et adduction en eau potable
Prélèvements pour analyses : Gestion :	eau chlorophylle matériel employé : pompe phytoplancton sédiments benne Ekmann OEHC pour irrigation et adduction en eau potable
Prélèvements pour analyses : Gestion : Contact préalable :	eau chlorophylle matériel employé : pompe phytoplancton sédiments benne Ekmann OEHC pour irrigation et adduction en eau potable
Prélèvements pour analyses : Gestion : Contact préalable :	eau chlorophylle matériel employé : pompe phytoplancton sédiments benne Ekmann OEHC pour irrigation et adduction en eau potable
Prélèvements pour analyses : Gestion : Contact préalable :	eau chlorophylle matériel employé : pompe phytoplancton sédiments benne Ekmann OEHC pour irrigation et adduction en eau potable
Prélèvements pour analyses : Gestion : Contact préalable :	eau chlorophylle matériel employé : pompe phytoplancton sédiments benne Ekmann OEHC pour irrigation et adduction en eau potable

Relevé phytoplanctonique et p DONNEES PHYSICO-CHIM	•	imique en	plan d'e	eau					
Plan d'eau :	_	etenue de)			Date :	11/10/2012		
	artificiel Code lac: Y7615003								
Organisme / opérateur :	S.T.E.: S. Meistermann e E. Dor Code lac: 17013003 Campagne 4 page 3/6								
Organisme demandeur :									
Organisme demandeur : Agence de l'eau RM&C marché n° 08M082 TRANSPARENCE									
Secchi en m: 2,0 Z euphotique (2,5 x Secchi): 5,0 m									
PROFIL VERTICAL									
Moyen de mesure utilisé :	in-situ à chaque prof.				X	en surface da	ans un récipient		
	Prof.	Temp.	pH	Cond.	O_2	O ₂	Heure		
Volume prélevé (en litres) :	(m)	(°C)	hii	(μS/cm 25°)	(mg/l)	(%)	Heure		
prélèvement intégré (2 L)	-0,1	19,7	7,4	190	6,9	76%	9:20		
prélèvement intégré (2 L)	-1,0	19,8	7,4	197	7,5	83%	7.20		
prélèvement intégré (2 L)	-2,0	19,8	7,4	197	7,3	81%			
prélèvement intégré (2 L)	-3,0	19,8	7,3	192	6,6	73%			
prélèvement intégré (2 L)	-4,0	19,7	7,3	196	6,6	73%			
prélèvement intégré (2 L)	-5,0	19,8	7,3	196	6,6	73%	9:50		
protevenient integre (2 L)	-6,0	19,8	7,3	196	6,5	72%	7.50		
	-7,0	19,6	7,3	193	6,1	68%			
	-8,0	19,5	7,2	193	5,8	64%			
	-9,0	19,5	7,2	193	5,2	58%			
	-10,0	19,2	7,0	193	3,4	38%			
	-10,0	18,3	6,7	193	2,4	25%			
	-11,0	15,3	6,6	192	2,0	20%			
	-13,0	13,7	6,5	207	1,5	14%			
	-14,0	13,4	6,5	207	1,4	13%			
	-15,0	13,4	6,6	207	1,3	12%			
<u> </u>	-16,0	13,1	6,6	211	1,2	11%			
	-17,0	13,1	6,6	215	1,2	11%			
prélèvement de fond	-18,0	13,1	6,5	216	1,1	10%	10:10		
protevenient de rond	10,0	13,1	0,0	210	1,1	1070	10.10		
				 					
				 					
				 					
				 					
				 					
				 					
				 					
				 					
				 					
				 					

Relevé phytoplanctonique et physico-chimique en plan d'eau DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES Date: 11/10/2012 Plan d'eau: Codole (retenue de) Code lac: Y7615003 artificiel Type (naturel, artificiel,...): Organisme / opérateur : S.T.E.: S. Meistermann e E. Dor Campagne 4 page 4/6 Agence de l'eau RM&C marché n° 08M082 Organisme demandeur: Température (°C) 0 5 10 15 20 25 0 -2 -6 -8 prof (m) -10 -12 -14 -16 -18 -20 pН 7,0 7,5 6,0 6,5 8,0 8,5 -2 -4 -6 -8 prof (m) -10 -12 -14 -16 -18 -20 Conductivité (µS/cm à 25°C) 0 50 100 200 150 250 300 0 -2 -4 -6 -8 prof (m) -10 -12 -14 -16 -18 -20

DONNEES PHYSICO-CHIMIQUES / GRAPHIQUES


Plan d'eau : Codole (retenue de)


Type (naturel, artificiel,...) : artificiel

Organisme / opérateur : S.T.E. : S. Meistermann e E. Dor

Organisme demandeur : Agence de l'eau RM&C

Date: 11/10/2012 Code lac: Y7615003 Campagne 4 page 5/6 marché n° 08M082

Prélèvement d'eau de fond, pour analyses physicochimiques :

Distance au fond : 1.0 m soit à Zf = -18.0 m

Remarques et observations :

Remise des échantillons:

Echantillons pour analyses physicochimiques (Laboratoire LDA26)

échantillon intégré n° 1960892 (demande 817) bon transport intégré :

1962310 (demande 818)

échantillon de fond n° 1961330 (demande 819) bon transport fond :

1962206 (demande 820)

remise par S.T.E.: au L.D.A. le 12/10/12 à 11h00

Au transporteur : le à

Arrivée au laboratoire LDA 26 dans la matinée du :

Echantillons pour analyses phytoplanctoniques à BECQ'EAU, le 17/10/12

Prélèvements de se		4		•	-						
DONNEES GENE	ERAI				/EM	IENT DE S	EDIM	IENTS			
Plan d'eau :			Codole (retenue de)							Date: 11/1	
Type (naturel, artif	ficiel							C	ode lac : Y76	15003	
Organisme / opéra	teur :	S.T	.E.	S. Meistermann et				E. Doi	•	heur	re: 10:50
Organisme demandeur : Agence de l'ea				u RM&C					m	arché n° 08M	1082
										page	e 6/6
Conditions de mil	lieu	•									
chaud, ensoleillé		péri	période estimée favorable à : débits des affluents								nts
couvert	X	moi	mort et sédimentation du plancton								
pluie, neige		sédi	sédimentation de MES de toute nature					>>	>	turbidité aff	uent
Vent		1 🗀	sedimentation de M25 de toute nature							Secchi (m)	2
		1								()	<u> </u>
Matériel drague fond plat		nell	e à main			benne	X	nië	ège	caro	ttier
		1 1-									ttici
Localisation géné	rale	de la zo	ne de prélè	èvements (en p	particulier,	$\mathbf{X} \mathbf{Y}$	Lambe	rt 93))	
Point de plus grand	de nr	ofondeu	r (cf campa	gne 4)	χ.	1188646				Y: 618383	2.
1 omit de plus grand	ac pr	oronacu	i (ci campa	igne +)	41.	11000-0				1. 010303	<i>_</i>
D 415						2					-
Prélèvements				1		2		3		4	5
profondeur (en m)				19		19		19)	19	
épaisseur échantil											
récents (X		X		X		X	
anciens		n)									
indéterm											
épaisseu											
gran <u>ulomérie dom</u>	iinan	te									
graviers											
sables											
limons											
vases		X		X		X	-	X			
argile											
aspect du sédimer											
homogèi				37		37		37		37	
hétérogè	ne			X		X	•	X		X	
couleur				noir>gr	18	noir>gr	18	noir>	_	noir>gris	
odeur		óty non	dásamn	oui		oui		ou		oui	
présence de débris			_	non		non		no		non	
présence d'hydrocarbures (irisations) présence d'autres débris			non		non		no		non		
presence d'autres	ucom	.5		non		non		no	11	non	
Remarques génér	ales	:									
Remise des échan	tillo	ns:									
Echantillons pour			sicochimia	ies (Labora	atoir	e LDA26)					
			eau insters			2016888		sé	dimer		
remise par S.T.E.: au L.D.A.					2048305 le 12/10/2012 à 11h00						
Au t	transj	porteur :			le			à			
			arrivée au	laboratoire	e LD	OA 26 en mi	-jourr	née du :			